Sample records for ultrashort terahertz pulses

  1. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.

    PubMed

    Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra

    2017-10-30

    Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

  2. Mid-infrared beam splitter for ultrashort pulses.

    PubMed

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  3. Creating Rydberg electron wave packets using terahertz pulses

    NASA Astrophysics Data System (ADS)

    Bromage, Jake

    1999-10-01

    In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the

  4. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases

    NASA Astrophysics Data System (ADS)

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  5. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases.

    PubMed

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  6. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  7. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  8. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  9. Mode-locking of a terahertz laser by direct phase synchronization.

    PubMed

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  10. Development of experimental techniques for the characterization of ultrashort photon pulses of extreme ultraviolet free-electron lasers

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; Frühling, U.; Gerasimova, N.; Gerken, N.; Gerth, C.; Golz, T.; Grebentsov, A.; Hass, E.; Honkavaara, K.; Kocharian, V.; Kurka, M.; Limberg, Th.; Mitzner, R.; Moshammer, R.; Plönjes, E.; Richter, M.; Rönsch-Schulenburg, J.; Rudenko, A.; Schlarb, H.; Schmidt, B.; Senftleben, A.; Schneidmiller, E. A.; Siemer, B.; Sorgenfrei, F.; Sorokin, A. A.; Stojanovic, N.; Tiedtke, K.; Treusch, R.; Vogt, M.; Wieland, M.; Wurth, W.; Wesch, S.; Yan, M.; Yurkov, M. V.; Zacharias, H.; Schreiber, S.

    2014-12-01

    One of the most challenging tasks for extreme ultraviolet, soft and hard x-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. Nine different methods, able to determine such ultrashort photon pulse durations, were compared experimentally at FLASH, the self-amplified spontaneous emission free-electron laser at DESY in Hamburg, in order to identify advantages and disadvantages of different methods. Radiation pulses at a wavelength of 13.5 and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations, and energy modulations of the electron bunch and also by direct methods like autocorrelation techniques, terahertz streaking, or reflectivity changes of solid state samples. In this paper, we present a comprehensive overview of the various techniques and a comparison of the individual experimental results. The information gained is of utmost importance for the future development of reliable pulse duration monitors indispensable for successful experiments with ultrashort extreme ultraviolet pulses.

  11. Using ultrashort terahertz pulses to directly probe spin dynamics in insulating antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bowlan, P.; Trugman, S. A.; Yarotski, D. A.; Taylor, A. J.; Prasankumar, R. P.

    2018-05-01

    Terahertz pulses are a direct and general probe of ultrafast spin dynamics in insulating antiferromagnets (AFM). This is shown by using optical-pump, THz-probe spectroscopy to directly track AFM spin dynamics in the hexagonal multiferroic HoMnO3 and the orthorhombic multiferroic TbMnO3. Our studies show that despite the different structural and spin orders in these materials, THz pulses can unambiguously resolve spin dynamics after optical photoexcitation. We believe that this approach is quite general and can be applied to a broad range of materials with different AFM spin alignments, providing a novel non-contact approach for probing AFM order with femtosecond temporal resolution.

  12. Ultrashort pulse energy distribution for propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  13. Dislocation structure produced by an ultrashort shock pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Tomoki, E-mail: t-matsu@mapse.eng.osaka-u.ac.jp; Hirose, Akio; Sano, Tomokazu

    We found an ultrashort shock pulse driven by a femtosecond laser pulse on iron generates a different dislocation structure than the shock process which is on the nanosecond timescale. The ultrashort shock pulse produces a highly dense dislocation structure that varies by depth. According to transmission electron microscopy, dislocations away from the surface produce microbands via a network structure similar to a long shock process, but unlike a long shock process dislocations near the surface have limited intersections. Considering the dislocation motion during the shock process, the structure near the surface is attributed to the ultrashort shock duration. This approachmore » using an ultrashort shock pulse will lead to understanding the whole process off shock deformation by clarifying the early stage.« less

  14. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2008-04-01

    We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.

  15. Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.

    PubMed

    In, Chihun; Kim, Hyeon-Don; Min, Bumki; Choi, Hyunyong

    2016-02-17

    The first experimental demonstration of nonlinear terahertz difference-frequency generation in a hybrid graphene metadevice is reported. Decades of research have revealed that terahertz-wave generation is impossible in single-layer graphene. This limitation is overcome and nonlinear terahertz generation by ultra-short optical pulse injection is demonstrated. This device is an essential step toward atomically thin, nonlinear terahertz optoelectronic components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  17. Simulations of terahertz pulse emission from thin-film semiconductor structures

    NASA Astrophysics Data System (ADS)

    Semichaevsky, Andrey

    The photo-Dember effect is the formation of transient electric dipoles due to the interaction of semiconductors with ultrashort optical pulses. Typically the optically-induced dipole moments vary on the ns- or ps- scales, leading to the emission of electromagnetic pulses with terahertz (THz) bandwidths. One of the applications of the photo-Dember effect is a photoconductive dipole antenna (PDA). This work presents a computational model of a PDA based on Maxwell's equations coupled to the Boltzmann transport equation. The latter is solved semiclassically for the doped GaAs using a continuum approach. The emphasis is on the accurate prediction of the emitted THz pulse shape and bandwidth, particularly when materials are doped with a rare-earth metal such as erbium or terbium that serve as carrier recombination centers. Field-dependent carrier mobility is determined from particle-based simulations. Some of the previous experimental results are used as a basis for comparison with our model.

  18. Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses

    DOE PAGES

    Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...

    2016-11-22

    We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less

  19. Acousto-optic replication of ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  20. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  1. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  2. Monolithic hybrid optics for focusing ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuchs, U.

    2014-03-01

    Almost any application of ultrashort laser pulses involves focusing them in order to reach high intensities and/or small spot sizes as needed for micro-machining or Femto-LASIK. Hence, it is indispensable to be able to understand pulse front distortion caused by real world optics. Focusing causes pulse front distortion due to aberrations, dispersion and diffraction. Thus, the spatio-temporal profile of ultrashort laser is altered, which increases automatically the pulse duration and the focusing spot. Consequently, the main advantage of having ultrashort laser pulses - pulse durations way below 100 fs - can be lost in that one last step of the experimental set-up by focusing them unfavorable. Since compensating for dispersion, aberration and diffraction effects is quite complicated and not always possible, we pursue a different approach. We present a specially designed monolithic hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA = 0.35) and low internal dispersion at the same time. The focusing properties are very promising, due to a design, which provides diffraction limited focusing for 100 nm bandwidth at 780 nm center wavelength. Thus, pulses with durations as short as 10 fs can be focused without pulse front distortion. The outstanding performance of this optics is shown in theory and experimentally. Above that, such focusing optics are easily adapted to their special purpose - changing the center wavelength, achromatic bandwidth or even correcting for focusing into material is possible.

  3. Plasmon enhanced terahertz emission from single layer graphene.

    PubMed

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  4. Electro-optic measurement of terahertz pulse energy distribution.

    PubMed

    Sun, J H; Gallacher, J G; Brussaard, G J H; Lemos, N; Issac, R; Huang, Z X; Dias, J M; Jaroszynski, D A

    2009-11-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz electromagnetic pulse can be determined by directly measuring the absolute electric field amplitude and beam energy density distribution using electro-optic detection. This method has potential use as a routine method of measuring the energy density of terahertz pulses that could be applied to evaluating future high power terahertz sources, terahertz imaging, and spatially and temporarily resolved pump-probe experiments.

  5. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  6. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    PubMed

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  7. Ultrafast control and monitoring of material properties using terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less

  8. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation

    PubMed Central

    Eilenberger, Falk; Kabakova, Irina V.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations. PMID:24060831

  9. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity  Service  Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB

  10. Terahertz pulse generation from metal nanoparticle ink

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  11. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  12. Heat input and accumulation for ultrashort pulse processing with high average power

    NASA Astrophysics Data System (ADS)

    Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart

    2018-05-01

    Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.

  13. Terahertz control of nanotip photoemission

    NASA Astrophysics Data System (ADS)

    Wimmer, L.; Herink, G.; Solli, D. R.; Yalunin, S. V.; Echternkamp, K. E.; Ropers, C.

    2014-06-01

    The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction.

  14. Adaptive spatiotemporal optical pulse front tilt using a digital micromirror device and its terahertz application.

    PubMed

    Murate, Kosuke; Roshtkhari, Mehraveh Javan; Ropagnol, Xavier; Blanchard, François

    2018-05-01

    We report a new method to temporally and spatially manipulate the pulse front tilt (PFT) intensity profile of an ultrashort optical pulse using a commercial microelectromechanical system, also known as a digital micromirror device (DMD). For our demonstration, we show terahertz generation in a lithium niobate crystal using the PFT pumping scheme derived from a DMD chip. The adaptive functionality of the DMD could be a convenient alternative to the more conventional grating required to generate a laser beam with a PFT intensity profile that is typically used for efficient optical rectification in noncollinear phase-matching conditions. In contrast to a grating, PFT using DMD does not suffer from wavelength dispersion, and exhibits overlap properties between grating and a stair-step echelon mirror.

  15. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  16. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  17. Ultrashort-Pulse Laser System: Theory of Operation and Operating Procedures

    DTIC Science & Technology

    1992-07-01

    Nov 89 - Jul 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Ultrashort-Pulse Laser System : Theory of Operation and C - F33615-88-C-0631 Operating...i ’IR~A&, D2;" T.&B [E] al uicod [] j 0 Avhi lp.bilty C: oded’ Avail i Qiv ULTRASHORT-PULSE LASER SYSTEM : THEORY OF OPERATION AND OPERATING PROCEDURES

  18. Development of a wavefront sensor for terahertz pulses.

    PubMed

    Abraham, Emmanuel; Cahyadi, Harsono; Brossard, Mathilde; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi

    2016-03-07

    Wavefront characterization of terahertz pulses is essential to optimize far-field intensity distribution of time-domain (imaging) spectrometers or increase the peak power of intense terahertz sources. In this paper, we report on the wavefront measurement of terahertz pulses using a Hartmann sensor associated with a 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. We quantitatively determined the deformations of planar and converging spherical wavefronts using the modal Zernike reconstruction least-squares method. Associated with deformable mirrors, the sensor will also open the route to terahertz adaptive optics.

  19. Reconfigurable wavefront sensor for ultrashort pulses.

    PubMed

    Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger

    2012-04-01

    A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.

  20. Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch

    NASA Astrophysics Data System (ADS)

    König, Jens; Bauer, Thorsten

    2011-03-01

    Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.

  1. Post-filament self-trapping of ultrashort laser pulses.

    PubMed

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Andriukaitis, G; Flöry, T; Pugžlys, A; Fedotov, A B; Mikhailova, J M; Panchenko, V Ya; Baltuška, A; Zheltikov, A M

    2014-08-15

    Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

  2. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    DOE PAGES

    Isaienko, Oleksandr; Robel, Istvan

    2016-03-15

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ (2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P NL of the impulsively excited phonons and those of parametrically amplified waves.« less

  3. Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses

    NASA Astrophysics Data System (ADS)

    Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto

    2018-04-01

    We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.

  4. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  5. Resonant features of the terahertz generation in semiconductor nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhin, V. N., E-mail: valera.truchin@mail.ioffe.ru; Bouravleuv, A. D.; Mustafin, I. A.

    2016-12-15

    The paper presents the results of experimental studies of the generation of terahertz radiation in periodic arrays of GaAs nanowires via excitation by ultrashort optical pulses. It is found that the generation of THz radiation exhibits resonant behavior due to the resonant excitation of cylindrical modes in the nanowires. At the optimal geometric parameters of the nanowire array, the generation efficiency is found to be higher than that for bulk p-InAs, which is one of the most effective coherent terahertz emitters.

  6. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  7. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  8. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  9. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  10. Terahertz spin current pulses controlled by magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.

    2013-04-01

    In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.

  11. Nonlinear scattering of ultrashort laser pulses on two-level system

    NASA Astrophysics Data System (ADS)

    Astapenko, Valery A.; Sakhno, Sergey V.

    2015-05-01

    The presentation is devoted to the theoretical investigation of nonlinear scattering of ultrashort electromagnetic pulses (USP) on two-level quantum system. We consider the scattering of several types of USP, namely, so called corrected Gaussian pulse (CGP) and cosine wavelet pulse. Such pulses have no constant component in their spectrum in contrast with traditional Gaussian pulse. It should be noted that the presence of constant component in the limit of ultrashort pulse durations leads to unphysical results. The main purpose of the present work is the investigation of the change of pulse temporal shape after scattering as a function of initial phase at different distances from the target. Numerical calculations are based on the solution of Bloch equations and expression for scattering field strength via dipole moment of two-level system exposed by the action of incident USP. In our calculation we also account for the influence of refracting index of the air on electric field strength in the pulse after scattering.

  12. Fracture toughness of ultrashort pulse-bonded fused silica

    NASA Astrophysics Data System (ADS)

    Richter, S.; Naumann, F.; Zimmermann, F.; Tünnermann, A.; Nolte, S.

    2016-02-01

    We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of 0.71 {MPa} {m}^{1/2}, about 90 % of the pristine bulk material ({≈ } 0.8 {MPa} {m}^{1/2}), is obtained.

  13. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  14. The role of optical rectification in the generation of terahertz radiation from GaBiAs

    NASA Astrophysics Data System (ADS)

    Radhanpura, K.; Hargreaves, S.; Lewis, R. A.; Henini, M.

    2009-06-01

    We report on a detailed study of the emission of terahertz-frequency electromagnetic radiation from layers of GaBiyAs1-y (0≤y<0.04) grown by molecular beam epitaxy on (311)B and (001) GaAs substrates. We measure two orthogonally polarized components of the terahertz radiation emitted under excitation by ultrashort near-infrared laser pulses in both transmission and reflection geometries as a function of the crystal rotation about its surface normal as well as the effect of in-plane magnetic field and pump fluence on the terahertz emission. We conclude that the principal mechanism for terahertz generation is via optical rectification rather than transient currents.

  15. Steering population transfer of the Na2 molecule by an ultrashort pulse train

    NASA Astrophysics Data System (ADS)

    Niu, Dong-Hua; Wang, Shuo; Zhan, Wei-Shen; Tao, Hong-Cai; Wang, Si-Qi

    2018-05-01

    We theoretically investigate the complete population transfer among quantum states of the Na2 molecule using ultrashort pulse trains using the time-dependent wave packet method. The population accumulation of the target state can be steered by controlling the laser parameters, such as the variable pulse pairs, the different pulse widths, the time delays and the repetition period between two contiguous pulses; in particular, the pulse pairs and the pulse widths have a great effect on the population transfer. The calculations show that the ultrashort pulse train is a feasible solution, which can steer the population transfer from the initial state to the target state efficiently with lower peak intensities.

  16. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  17. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  18. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  19. Calculus removal on a root cement surface by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kraft, Johan F.; Vestentoft, Kasper; Christensen, Bjarke H.; Løvschall, Henrik; Balling, Peter

    2008-01-01

    Ultrashort-pulse-laser ablation of dental calculus (tartar) and cement is performed on root surfaces. The investigation shows that the threshold fluence for ablation of calculus is a factor of two to three times smaller than that of a healthy root cement surface. This indicates that ultrashort laser pulses may provide an appropriate tool for selective removal of calculus with minimal damage to the underlying root cement. Future application of an in situ profiling technique allows convenient on-line monitoring of the ablation process.

  20. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  1. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani Gishini, M. S.; Ganjovi, A., E-mail: Ganjovi@kgut.ac.ir; Saeed, M.

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H{sub 2}) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. Formore » all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 10{sup 14} w/cm{sup 2}, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.« less

  2. Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media

    NASA Astrophysics Data System (ADS)

    Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger

    2005-03-01

    In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.

  3. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  4. Hawking radiation from ultrashort laser pulse filaments.

    PubMed

    Belgiorno, F; Cacciatori, S L; Clerici, M; Gorini, V; Ortenzi, G; Rizzi, L; Rubino, E; Sala, V G; Faccio, D

    2010-11-12

    Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our measurements demonstrate a spontaneous emission of photons that confirms theoretical predictions.

  5. Influence of atomic densities on propagation property for ultrashort pulses in a two-level medium

    NASA Astrophysics Data System (ADS)

    Liu, Bingxin; Gong, Shangqing; Song, Xiaohong; Jin, Shiqi

    2005-05-01

    The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2? ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.

  6. Scattering of ultrashort electromagnetic pulses on metal clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V.

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  7. Scattering of ultrashort electromagnetic pulses on metal clusters

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Sakhno, S. V.

    2016-12-01

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  8. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    NASA Astrophysics Data System (ADS)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a

  10. Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie

    2018-04-01

    Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.

  11. Phase stabilization of multidimensional amplification architectures for ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Müller, M.; Kienel, M.; Klenke, A.; Eidam, T.; Limpert, J.; Tünnermann, A.

    2015-03-01

    The active phase stabilization of spatially and temporally combined ultrashort pulses is investigated theoretically and experimentally. Particularly, considering a combining scheme applying 2 amplifier channels and 4 divided-pulse replicas a bistable behavior is observed. The reason is mutual influence of the optical error signals that is intrinsic to temporal polarization beam combining. A successful mitigation strategy is proposed and is analyzed theoretically and experimentally.

  12. Interaction of ultrashort laser pulses and silicon solar cells under short circuit conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundus, M., E-mail: markus.mundus@ise.fraunhofer.de; Giesecke, J. A.; Fischer, P.

    Ultrashort pulse lasers are promising tools for numerous measurement purposes. Among other benefits their high peak powers allow for efficient generation of wavelengths in broad spectral ranges and at spectral powers that are orders of magnitude higher than in conventional light sources. Very recently this has been exploited for the establishment of sophisticated measurement facilities for electrical characterization of photovoltaic (PV) devices. As the high peak powers of ultrashort pulses promote nonlinear optical effects they might also give rise to nonlinear interactions with the devices under test that possibly manipulate the measurement outcome. In this paper, we present a comprehensivemore » theoretical and experimental study of the nonlinearities affecting short circuit current (I{sub SC}) measurements of silicon (Si) solar cells. We derive a set of coupled differential equations describing the radiation-device interaction and discuss the nonlinearities incorporated in those. By a semi-analytical approach introducing a quasi-steady-state approximation and integrating a Green's function we solve the system of equations and obtain simulated I{sub SC} values. We validate the theoretical model by I{sub SC} ratios obtained from a double ring resonator setup capable for reproducible generation of various ultrashort pulse trains. Finally, we apply the model to conduct the most prominent comparison of I{sub SC} generated by ultrashort pulses versus continuous illumination. We conclude by the important finding that the nonlinearities induced by ultrashort pulses are negligible for the most common I{sub SC} measurements. However, we also find that more specialized measurements (e.g., of concentrating PV or Si-multijunction devices as well as highly localized electrical characterizations) will be biased by two-photon-absorption distorting the I{sub SC} measurement.« less

  13. Delivery of ultrashort spatially focused pulses through a multimode fiber

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-08-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  14. Terahertz pulse induced intervalley scattering in photoexcited GaAs.

    PubMed

    Su, F H; Blanchard, F; Sharma, G; Razzari, L; Ayesheshim, A; Cocker, T L; Titova, L V; Ozaki, T; Kieffer, J-C; Morandotti, R; Reid, M; Hegmann, F A

    2009-06-08

    Nonlinear transient absorption bleaching of intense few-cycle terahertz (THz) pulses is observed in photoexcited GaAs using opticalpump--THz-probe techniques. A simple model of the electron transport dynamics shows that the observed nonlinear response is due to THz-electric- field-induced intervalley scattering over sub-picosecond time scales as well as an increase in the intravalley scattering rate attributed to carrier heating. Furthermore, the nonlinear nature of the THz pulse transmission at high peak fields leads to a measured terahertz conductivity in the photoexcited GaAs that deviates significantly from the Drude behavior observed at low THz fields, emphasizing the need to explore nonlinear THz pulse interactions with materials in the time domain.

  15. Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leblond, Herve; Kremer, David; Mihalache, Dumitru

    2010-03-15

    By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.

  16. Unstable and multiple pulsing can be invisible to ultrashort pulse measurement techniques

    DOE PAGES

    Rhodes, Michelle A.; Guang, Zhe; Trebino, Rick

    2016-12-29

    Here, multiple pulsing occurs in most ultrashort-pulse laser systems when pumped at excessively high powers, and small fluctuations in pump power in certain regimes can cause unusual variations in the temporal separations of sub-pulses. Unfortunately, the ability of modern intensity-and-phase pulse measurement techniques to measure such unstable multi-pulsing has not been studied. Here we report calculations and simulations finding that allowing variations in just the relative phase of a satellite pulse causes the second pulse to completely disappear from a spectral interferometry for direct electric field reconstruction (SPIDER) measurement. We find that, although neither frequency-resolved optical gating (FROG) nor autocorrelationmore » can determine the precise properties of satellite pulses due to the presence of instability, they always succeed in, at least, seeing the satellite pulses. Also, additional post-processing of the measured FROG trace can determine the correct approximate relative height of the satellite pulse and definitively indicate the presence of unstable multiple-pulsing.« less

  17. Unstable and multiple pulsing can be invisible to ultrashort pulse measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, Michelle A.; Guang, Zhe; Trebino, Rick

    Here, multiple pulsing occurs in most ultrashort-pulse laser systems when pumped at excessively high powers, and small fluctuations in pump power in certain regimes can cause unusual variations in the temporal separations of sub-pulses. Unfortunately, the ability of modern intensity-and-phase pulse measurement techniques to measure such unstable multi-pulsing has not been studied. Here we report calculations and simulations finding that allowing variations in just the relative phase of a satellite pulse causes the second pulse to completely disappear from a spectral interferometry for direct electric field reconstruction (SPIDER) measurement. We find that, although neither frequency-resolved optical gating (FROG) nor autocorrelationmore » can determine the precise properties of satellite pulses due to the presence of instability, they always succeed in, at least, seeing the satellite pulses. Also, additional post-processing of the measured FROG trace can determine the correct approximate relative height of the satellite pulse and definitively indicate the presence of unstable multiple-pulsing.« less

  18. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    NASA Astrophysics Data System (ADS)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  19. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    PubMed

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  20. Spatiotemporal characterization of ultrashort optical vortex pulses

    NASA Astrophysics Data System (ADS)

    Miranda, Miguel; Kotur, Marija; Rudawski, Piotr; Guo, Chen; Harth, Anne; L'Huillier, Anne; Arnold, Cord L.

    2017-12-01

    We use a spiral phase plate to generate few-cycle optical vortices from an ultrafast titanium:sapphire oscillator and characterize them in the spatiotemporal domain with a recently introduced technique based on spatially resolved Fourier transform spectrometry. The performance of this simple approach to the generation of optical vortices is analysed from a wavelength-dependent perspective as well as in the spatiotemporal domain, allowing us to characterize ultrashort vortex pulses in space, frequency and time.

  1. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.

    PubMed

    Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro

    2016-12-26

    We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.

  2. [Flexible Guidance of Ultra-Short Laser Pulses in Ophthalmic Therapy Systems].

    PubMed

    Blum, J; Blum, M; Rill, M S; Haueisen, J

    2017-01-01

    In the last 20 years, the role of ultrashort pulsed lasers in ophthalmology has become increasingly important. However, it is still impossible to guide ultra-short laser pulses with standard glass fibres. The highly energetic femtosecond pulses would destroy the fibre material, and non-linear dispersion effects would significantly change beam parameters. In contrast, photonic crystal fibres mainly guide the laser pulses in air, so that absorption and dispersive pulse broadening have essentially no effect. This article compares classical beam guidance with mirrors, lenses and prisms with photonic crystal fibres and describes the underlying concepts and the current state of technology. A classical mirror arm possesses more variable optical properties, while the HCF (Hollow-Core Photonic Crystal Fibre) must be matched in terms of the laser energy and the laser spectrum. In contrast, the HCF has more advantages in respect of handling, system integration and costs. For applications based on photodisruptive laser-tissue interaction, the relatively low damage threshold of photonic crystal fibres compared to classic beam guiding systems is unacceptable. If, however, pulsed laser radiation has a sufficiently low peak intensity, e.g. as used for plasma-induced ablation, photonic crystal fibres can definitely be considered as an alternative solution to classic beam guidance. Georg Thieme Verlag KG Stuttgart · New York.

  3. Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives

    DTIC Science & Technology

    2013-02-01

    DTRA-TR-12-65 Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives ...Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives HDTRA1-09-1-0021 Valery...destructive detection of volatile explosives . Moshe Shapiro1, Valery Milner1 and Jun Ye2 1University of British Columbia, Vancouver, Canada 2JILA

  4. Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang

    2017-09-01

    Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.

  5. Pulsed excitation terahertz tomography - multiparametric approach

    NASA Astrophysics Data System (ADS)

    Lopato, Przemyslaw

    2018-04-01

    This article deals with pulsed excitation terahertz computed tomography (THz CT). Opposite to x-ray CT, where just a single value (pixel) is obtained, in case of pulsed THz CT the time signal is acquired for each position. Recorded waveform can be parametrized - many features carrying various information about examined structure can be calculated. Based on this, multiparametric reconstruction algorithm was proposed: inverse Radon transform based reconstruction is applied for each parameter and then fusion of results is utilized. Performance of the proposed imaging scheme was experimentally verified using dielectric phantoms.

  6. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

    PubMed

    Shane, Janelle C; Mazilu, Michael; Lee, Woei Ming; Dholakia, Kishan

    2010-03-29

    We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

  7. Pair Production Induced by Ultrashort and Ultraintense Laser Pulses in Plasmas

    NASA Astrophysics Data System (ADS)

    Luo, Yue-E.; Wang, Xue-Wen; Wang, Yuan-Sheng; Ji, Shen-Tong; Yu, Hong

    2018-06-01

    The probability of Schwinger pair production is calculated, which is induced by an ultraintense and ultrashort laser pulse propagating in a plasma. The dependence of the probability on the amplitude of the laser pulse and the frequency of plasmas is analyzed. Particularly, the effect of the pulse duration on the probability is discussed, by introducing a pulse-shape function to describe the temporal shape of the laser pulse. The results show that a laser with shorter pulse is more efficient in pair production. The probability of pair production increases when the order of the duration is comparable to the period of a laser.

  8. Fractional-order Fourier analysis for ultrashort pulse characterization.

    PubMed

    Brunel, Marc; Coetmellec, Sébastien; Lelek, Mickael; Louradour, Frédéric

    2007-06-01

    We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fractional-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces.

  9. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  10. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE PAGES

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...

    2016-12-22

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  11. Black phosphorus saturable absorber for ultrashort pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation.more » The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.« less

  12. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  13. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  14. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    PubMed

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  15. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  16. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    DTIC Science & Technology

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...afosr.reports.sgizmo.com/s3/> Subject: Final Report to Dr. Arje Nachman Contract/Grant Title: Long Wavelength Electromagnetic Light Bullets Generated by a 10.6

  17. Propagation of terahertz pulses in random media.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-02-15

    We describe measurements of single-cycle terahertz pulse propagation in a random medium. The unique capabilities of terahertz time-domain spectroscopy permit the characterization of a multiply scattered field with unprecedented spatial and temporal resolution. With these results, we can develop a framework for understanding the statistics of broadband laser speckle. Also, the ability to extract information on the phase of the field opens up new possibilities for characterizing multiply scattered waves. We illustrate this with a simple example, which involves computing a time-windowed temporal correlation between fields measured at different spatial locations. This enables the identification of individual scattering events, and could lead to a new method for imaging in random media.

  18. Multiple scattering of broadband terahertz pulses

    NASA Astrophysics Data System (ADS)

    Pearce, Jeremiah Glen

    Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal

  19. Applications of terahertz-pulsed technology in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Taday, Philip F.

    2010-02-01

    Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.

  20. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, themore » low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.« less

  1. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    NASA Astrophysics Data System (ADS)

    de Araujo, Luís E. E.

    2010-09-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  2. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Luis E. E. de

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  3. Propagation of three-dimensional bipolar ultrashort electromagnetic pulses in an inhomogeneous array of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.

    2018-04-01

    We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.

  4. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  5. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  6. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  7. Precision resection of intestine using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Gora, Wojciech S.; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2016-03-01

    Endoscopic resection of early colorectal neoplasms typically employs electrocautery tools, which lack precision and run the risk of full thickness thermal injury to the bowel wall with subsequent perforation. We present a means of endoluminal colonic ablation using picosecond laser pulses as a potential alternative to mitigate these limitations. High intensity ultrashort laser pulses enable nonlinear absorption processes, plasma generation, and as a consequence a predominantly non-thermal ablation regimen. Robust process parameters for the laser resection are demonstrated using fresh ex vivo pig intestine samples. Square cavities with comparable thickness to early colorectal neoplasms are removed for a wavelength of 1030 nm and 515 nm using a picosecond laser system. The corresponding histology sections exhibit in both cases only minimal collateral damage to the surrounding tissue. The ablation depth can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers for the resection of intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional electrocautery.

  8. TOPICAL REVIEW: Semiconductors for terahertz photonics applications

    NASA Astrophysics Data System (ADS)

    Krotkus, Arūnas

    2010-07-01

    Generation and measurement of ultrashort, subpicosecond pulses of electromagnetic radiation with their characteristic Fourier spectra that reach far into terahertz (THz) frequency range has recently become a versatile tool of far-infrared spectroscopy and imaging. This technique, THz time-domain spectroscopy, in addition to a femtosecond pulse laser, requires semiconductor components manufactured from materials with a short photoexcited carrier lifetime, high carrier mobility and large dark resistivity. Here we will review the most important developments in the field of investigation of such materials. The main characteristics of low-temperature-grown or ion-implanted GaAs and semiconducting compounds sensitive in the wavelength ranges around 1 µm and 1.5 µm will be surveyed. The second part of the paper is devoted to the effect of surface emission of THz transients from semiconductors illuminated by femtosecond laser pulses. The main physical mechanisms leading to this emission as well as their manifestation in various crystals will be described.

  9. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  10. Electromagnetic fields of an ultra-short tightly-focused radially-polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.; Li, Jian-Xing

    2017-12-01

    Fully analytic expressions, for the electric and magnetic fields of an ultrashort and tightly focused laser pulse of the radially polarized category, are presented to lowest order of approximation. The fields are derived from scalar and vector potentials, along the lines of our earlier work for a similar pulse of the linearly polarized variety. A systematic program is also described from which the fields may be obtained to any desired accuracy, analytically or numerically.

  11. Emission of terahertz waves in the interaction of a laser pulse with clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru

    2016-07-15

    A theory of generation of terahertz radiation in the interaction of a femtosecond laser pulse with a spherical cluster is developed for the case in which the density of free electrons in the cluster plasma exceeds the critical value. The spectral, angular, and energy characteristics of the emitted terahertz radiation are investigated, as well as its spatiotemporal structure. It is shown that the directional pattern of radiation has a quadrupole structure and that the emission spectrum has a broad maximum at a frequency nearly equal to the reciprocal of the laser pulse duration. It is found that the total radiatedmore » energy depends strongly on the cluster size. Analysis of the spatiotemporal profile of the terahertz signal shows that it has a femtosecond duration and contains only two oscillation cycles.« less

  12. Ultrashort electromagnetic pulse control of intersubband quantum well transitions

    PubMed Central

    2012-01-01

    We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956

  13. Ultrashort electromagnetic pulse control of intersubband quantum well transitions.

    PubMed

    Paspalakis, Emmanuel; Boviatsis, John

    2012-08-23

    : We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.

  14. Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging

    NASA Astrophysics Data System (ADS)

    Karagoz, Burcu; Kamburoglu, Kıvanc; Altan, Hakan

    2017-07-01

    Dental caries in sliced samples are investigated using terahertz pulsed imaging. Frequency domain terahertz response of these structures consistent with X-ray imaging results show the potential of this technique in the detection of early caries.

  15. Laser ablation mechanism of transparent layers on semiconductors with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Rublack, Tino; Hartnauer, Stefan; Mergner, Michael; Muchow, Markus; Seifert, Gerhard

    2011-12-01

    Transparent dielectric layers on semiconductors are used as anti-reflection coatings both for photovoltaic applications and for mid-infrared optical elements. We have shown recently that selective ablation of such layers is possible using ultrashort laser pulses at wavelengths being absorbed by the semiconductor. To get a deeper understanding of the ablation mechanism, we have done ablation experiments for different transparent materials, in particular SiO2 and SixNy on silicon, using a broad range of wavelengths ranging from UV to IR, and pulse durations between 50 and 2000 fs. The characterization of the ablated regions was done by light microscopy and atomic force microscopy (AFM). Utilizing laser wavelengths above the silicon band gap, selective ablation of the dielectric layer without noticeable damage of the opened silicon surface is possible. In contrast, ultrashort pulses (1-2 ps) at mid-infrared wavelengths already cause damage in the silicon at lower intensities than in the dielectric layer, even when a vibrational resonance (e.g. at λ = 9.26 μm for SiO2) is addressed. The physical processes behind this, on the first glance counterintuitive, observation will be discussed.

  16. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses.

    PubMed

    Jukna, Vytautas; Jarnac, Amélie; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-06-01

    Acoustic signals generated by filamentation of ultrashort terawatt laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  17. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  18. Dynamic target ionization using an ultrashort pulse of a laser field

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2014-09-01

    Ionization processes under the interaction of an ultrashort pulse of an electromagnetic field with atoms in nonstationary states are considered. As an example, the ionization probability of the hydrogen-like atom upon the decay of quasi-stationary state is calculated. The method developed can be applied to complex systems, including targets in collisional states and various chemical reactions.

  19. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J. T.; Anderson, S. G.; Anderson, G.

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  20. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE PAGES

    Moody, J. T.; Anderson, S. G.; Anderson, G.; ...

    2016-02-29

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  1. Wear-reducing Surface Functionalization of Implant Materials Using Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Oldorf, P.; Peters, R.; Reichel, S.; Schulz, A.-P.; Wendlandt, R.

    The aim of the project called "EndoLas" is the development of a reproducible and reliable method for a functionalization of articulating surfaces on hip joint endoprostheses due to a reduction of abrasion and wear by the generation of micro structures using ultrashort laser pulses. On the one hand, the microstructures shall ensure the capture of abraded particles, which cause third-body wear and thereby increase aseptic loosening. On the other hand, the structures shall improve or maintain the tribologically important lubricating film. Thereby, the cavities serve as a reservoir for the body's own synovial fluid. The dry friction, which promotes abrasion and is a part of the mixed friction in the joint, shall therefore be reduced. In experimental setups it was shown, that the abrasive wear can be reduced significantly due to micro-structuring the articulating implant surfaces. To shape the fine and deterministic cavities on the surfaces, an ultra-short pulsed laser, which is integrated in a high-precision, 5-axes micro-machining system, was used. The laser system, based on an Yb:YAG thin-disk regenerative amplifier, has an average output power of 50 W at the fundamental wavelength of 1030 nm, a maximum repetition rate of 400 kHz and a pulse duration of 6 ps. Due to this, a maximum pulse energy of 125 μJ is achievable. Furthermore external second and third harmonic generation enables the usage of wavelengths in the green and violet spectral range.

  2. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less

  3. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  4. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  5. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    PubMed Central

    Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.

    2010-01-01

    Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148

  6. Effects of chirp of pump pulses on broadband terahertz pulse spectra generated by optical rectification

    NASA Astrophysics Data System (ADS)

    Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-11-01

    The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.

  7. Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system

    NASA Astrophysics Data System (ADS)

    Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro

    2018-05-01

    To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.

  8. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  9. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference

    PubMed Central

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-01-01

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257

  10. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    PubMed

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  11. Reemission spectra and interference effects at the interaction of multiatomic targets with ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Matrasulov, D. U.

    2013-01-01

    The processes of reemission of ultrashort electromagnetic pulses by linear chains consisting of isolated multielectron atoms have been considered. The developed method makes it possible to accurately take into account the spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in reemission processes. The angular distributions of reemission spectra have been obtained for an arbitrary number of atoms in a chain. It has been shown that the interference of the photon emission amplitudes leads to the appearance of characteristic "diffraction" maxima. The results allow standard generalization to the cases of rescattering from two-dimensional (graphene-like) and three-dimensional lattices, as well as to the case of the inclusion of thermal vibrations of the atoms of lattices.

  12. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  13. Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.

    PubMed

    Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J

    2010-10-01

    We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.

  14. Self-calibrating d-scan: measuring ultrashort laser pulses on-target using an arbitrary pulse compressor.

    PubMed

    Alonso, Benjamín; Sola, Íñigo J; Crespo, Helder

    2018-02-19

    In most applications of ultrashort pulse lasers, temporal compressors are used to achieve a desired pulse duration in a target or sample, and precise temporal characterization is important. The dispersion-scan (d-scan) pulse characterization technique usually involves using glass wedges to impart variable, well-defined amounts of dispersion to the pulses, while measuring the spectrum of a nonlinear signal produced by those pulses. This works very well for broadband few-cycle pulses, but longer, narrower bandwidth pulses are much more difficult to measure this way. Here we demonstrate the concept of self-calibrating d-scan, which extends the applicability of the d-scan technique to pulses of arbitrary duration, enabling their complete measurement without prior knowledge of the introduced dispersion. In particular, we show that the pulse compressors already employed in chirped pulse amplification (CPA) systems can be used to simultaneously compress and measure the temporal profile of the output pulses on-target in a simple way, without the need of additional diagnostics or calibrations, while at the same time calibrating the often-unknown differential dispersion of the compressor itself. We demonstrate the technique through simulations and experiments under known conditions. Finally, we apply it to the measurement and compression of 27.5 fs pulses from a CPA laser.

  15. Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems

    NASA Technical Reports Server (NTRS)

    Belenov, E.; Isakov, V.; Nazarkin, A.

    1994-01-01

    Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.

  16. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing.

    PubMed

    Allegre, O J; Jin, Y; Perrie, W; Ouyang, J; Fearon, E; Edwardson, S P; Dearden, G

    2013-09-09

    We report on new developments in wavefront and polarization control for ultrashort-pulse laser microprocessing. We use two Spatial Light Modulators in combination to structure the optical fields of a picosecond-pulse laser beam, producing vortex wavefronts and radial or azimuthal polarization states. We also carry out the first demonstration of multiple first-order beams with vortex wavefronts and radial or azimuthal polarization states, produced using Computer Generated Holograms. The beams produced are used to nano-structure a highly polished metal surface. Laser Induced Periodic Surface Structures are observed and used to directly verify the state of polarization in the focal plane and help to characterize the optical properties of the setup.

  17. Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.

    2018-05-01

    It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.

  18. Ultrafast magnetization modulation induced by the electric field component of a terahertz pulse in a ferromagnetic-semiconductor thin film.

    PubMed

    Ishii, Tomoaki; Yamakawa, Hiromichi; Kanaki, Toshiki; Miyamoto, Tatsuya; Kida, Noriaki; Okamoto, Hiroshi; Tanaka, Masaaki; Ohya, Shinobu

    2018-05-02

    High-speed magnetization control of ferromagnetic films using light pulses is attracting considerable attention and is increasingly important for the development of spintronic devices. Irradiation with a nearly monocyclic terahertz pulse, which can induce strong electromagnetic fields in ferromagnetic films within an extremely short time of less than ~1 ps, is promising for damping-free high-speed coherent control of the magnetization. Here, we successfully observe a terahertz response in a ferromagnetic-semiconductor thin film. In addition, we find that a similar terahertz response is observed even in a non-magnetic semiconductor and reveal that the electric-field component of the terahertz pulse plays a crucial role in the magnetization response through the spin-carrier interactions in a ferromagnetic-semiconductor thin film. Our findings will provide new guidelines for designing materials suitable for ultrafast magnetization reversal.

  19. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  20. Optimal control of quantum rings by terahertz laser pulses.

    PubMed

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  1. Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses

    NASA Astrophysics Data System (ADS)

    Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard

    2017-10-01

    We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.

  2. Measurement of ultrashort laser pulses using single-crystal films of 4-aminobenzophenone

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.; Tan, Shida; Ahyi, Ayayi C.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; Mathur, D.

    2007-12-01

    Single-crystal thin-film of an organic second-order nonlinear optical material, 4-aminobenzophenone (ABP), is used to measure the pulsewidth of a Ti-Sapphire laser producing ˜45 fs pulses at 1 kHz repetition rate, by the non-collinear second-harmonic generation (SHG) intensity autocorrelation technique. These films are suitable for measurements over a broad wavelength range, down to 780 nm, due to their wide optical transparency. The single-crystal film with thickness (˜3 μm) less than the coherence length requires no phase-matching for efficient broadband SHG. Pulse walk-off due to group-velocity mismatch (GVM) and temporal broadening of the pulses due to group-velocity dispersion (GVD) are found to be negligible. These effects have been estimated for pulse width down to few-cycle pulses (˜10 fs), and the analyses show that these films can be used to characterize such ultrashort optical pulses.

  3. Relativistic longitudinal self-compression of ultrashort time-domain hollow Gaussian pulses in plasma

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Fang, Feiyun; Wang, Zhaoying; Lin, Qiang

    2017-10-01

    We report a study on dynamical evolution of the ultrashort time-domain dark hollow Gaussian (TDHG) pulses beyond the slowly varying envelope approximation in homogenous plasma. Using the complex-source-point model, an analytical formula is proposed for describing TDHG pulses based on the oscillating electric dipoles, which is the exact solution of the Maxwell's equations. The numerical simulations show the relativistic longitudinal self-compression (RSC) due to the relativistic mass variation of moving electrons. The influences of plasma oscillation frequency and collision effect on dynamics of the TDHG pulses in plasma have been considered. Furthermore, we analyze the evolution of instantaneous energy density of the TDHG pulses on axis as well as the off axis condition.

  4. Ultrashort high-brightness pulses from storage rings

    NASA Astrophysics Data System (ADS)

    Khan, Shaukat

    2017-09-01

    The brightness of short-wavelength radiation from accelerator-based sources can be increased by coherent emission in which the radiation intensity scales with the number of contributing electrons squared. This requires a microbunched longitudinal electron distribution, which is the case in free-electron lasers. The brightness of light sources based on electron storage rings was steadily improved, but could profit further from coherent emission. The modulation of the electron energy by a continuous-wave laser field may provide steady-state microbunching in the infrared regime. For shorter wavelengths, the energy modulation can be converted into a temporary density modulation by a dispersive chicane. One particular goal is coherent emission from a very short "slice" within an electron bunch in order to produce ultrashort radiation pulses with high brightness.

  5. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz; Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk; Zhukov, Vladimir P.

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when allmore » motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.« less

  6. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiang; Shi, Junkai; Xu, Baozhong

    2014-01-20

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  7. Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2018-03-01

    Quantum optimal control theory is applied to determine numerically the terahertz and nonresonant laser pulses leading, respectively, to the highest degree of orientation and alignment of the asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero and 50 K lead after 50 ps to an orientation with ⟨ΦZx⟩ = 0.959 73 and ⟨⟨ΦZx⟩⟩ = 0.742 30, respectively. For the zero temperature, the orientation is close to its maximum theoretical value; for the higher temperature, it is below the maximum theoretical value. The mechanism by which the terahertz pulse populates high lying rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature leads to an alignment with ⟨ΦZy 2 ⟩ =0.944 16 and consists of several kick pulses with a duration of ≈0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is 6 ps long and yields a lower alignment with ⟨⟨ΦZy 2 ⟩ ⟩ =0.717 20 .

  8. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  9. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  10. Prompt increase of ultrashort laser pulse transmission through thin silver films

    NASA Astrophysics Data System (ADS)

    Bezhanov, S. G.; Danilov, P. A.; Klekovkin, A. V.; Kudryashov, S. I.; Rudenko, A. A.; Uryupin, S. A.

    2018-03-01

    We study experimentally and numerically the increase in ultrashort laser pulse transmissivity through thin silver films caused by the heating of electrons. Low to moderate energy femtosecond laser pulse transmission measurements through 40-125 nm thickness silver films were carried out. We compare the experimental data with the values of transmitted fraction of energy obtained by solving the equations for the field together with the two-temperature model. The measured values were fitted with sufficient accuracy by varying the electron-electron collision frequency whose exact values are usually poorly known. Since transmissivity experiences more pronounced changes with the increase in temperature compared to reflectivity, we suggest this technique for studying the properties of nonequilibrium metals.

  11. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.

    2010-04-09

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing amore » He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.« less

  12. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  13. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Liu, Jiansheng; Wang, Cheng; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan

    2006-08-01

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effects of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.

  14. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin

    2016-11-01

    Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.

  15. Simulation study of terahertz radiation generation by circularly polarized laser pulses propagating in axially magnetized plasma

    NASA Astrophysics Data System (ADS)

    Saroch, Akanksha; Jha, Pallavi

    2017-12-01

    This paper deals with a two-dimensional simulation study of terahertz radiation emission in the wake of circularly polarized laser pulses propagating in uniformly magnetized plasma, using the XOOPIC code. The external magnetic field is applied along the direction of propagation of the laser pulse. It is seen that linearly polarized terahertz radiation is emitted off-axis, along the propagation direction, in plasma. This emitted radiation is also seen to be transmitted in vacuum. Simulation studies reveal that no such radiation is generated on-axis for the given configuration.

  16. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    PubMed

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  17. Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Baldeck, P. L.; Ho, P. P.; Alfano, Robert R.

    Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

  18. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  19. Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil.

    PubMed

    Ferrante, G; Zarcone, M; Uryupin, S A

    2003-08-22

    The formation of a highly anisotropic photoelectron velocity distribution as a result of the interaction of a powerful ultrashort laser pulse with a thin foil is found to yield a large skin-layer depth and an anomalous increase of the transmission coefficient. The physical reason for the effect is the influence of the incident wave magnetic field, through the Lorenz force, on the electron kinetics in the skin layer.

  20. The diagnostics of ultra-short pulse laser-produced plasma

    NASA Astrophysics Data System (ADS)

    Roth, Markus

    2011-09-01

    Since the invention of the laser, coherent light has been used to break down solid or gaseous material and transform it into a plasma. Over the last three decades two things have changed. Due to multiple advancements and design of high power lasers it is now possible to increase the electric and magnetic field strength that pushed the electron motion towards the regime of relativistic plasma physics. Moreover, due to the short pulse duration of the driving laser the underlying physics has become so transient that concepts like thermal equilibrium (even a local one) or spatial isotropy start to fail. Consequently short pulse laser-driven plasmas have become a rich source of new phenomena that we are just about beginning to explore. Such phenomena, like particle acceleration, nuclear laser-induced reactions, the generation of coherent secondary radiation ranging from THz to high harmonics and the production of attosecond pulses have excited an enormous interest in the study of short pulse laser plasmas. The diagnostics of such ultra-short pulse laser plasmas is a challenging task that involves many and different techniques compared to conventional laser-produced plasmas. While this review cannot cover the entire field of diagnostics that has been developed over the last years, we will try to give a summarizing description of the most important techniques that are currently being used.

  1. Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.

    2016-09-01

    Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.

  2. Studies of Inactivation Mechanism of non-enveloped icosahedral viruses by a visible ultrashort pulsed laser

    USDA-ARS?s Scientific Manuscript database

    The inactivation mechanism of ultrashort pulsed laser irradiation at a wavelength of 425 nm has been studied using two different-sized, non-enveloped icosahedral viruses, murine norovirus-1 (MNV-1) and human papillomavirus-16 (HPV-16) pseudovirions. Our experimental results are consistent with a mo...

  3. Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Eisfeld, Eugen; Roth, Johannes

    2018-05-01

    Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer's law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  4. The Mathematical Modeling and Computer Simulation of Electrochemical Micromachining Using Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.

    2009-05-01

    The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.

  5. Time-resolved microscopy reveals the driving mechanism of particle formation during ultrashort pulse laser ablation of dentin-like ivory

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Gavrilova, Anna; Rapp, Stephan; Frentzen, Matthias; Meister, Joerg; Huber, Heinz P.

    2015-07-01

    In dental health care, the application of ultrashort laser pulses enables dental tissue ablation free from thermal side effects, such as melting and cracking. However, these laser types create undesired micro- and nanoparticles, which might cause a health risk for the patient or surgeon. The aim of this study was to investigate the driving mechanisms of micro- and nanoparticle formation during ultrashort pulse laser ablation of dental tissue. Time-resolved microscopy was chosen to observe the ablation dynamics of mammoth ivory after irradiation with 660 fs laser pulses. The results suggest that nanoparticles might arise in the excited region. The thermal expansion of the excited material induces high pressure in the surrounding bulk tissue, generating a pressure wave. The rarefaction wave behind this pressure wave causes spallation, leading to ejection of microparticles.

  6. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  7. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  8. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  9. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  10. Intensity autocorrelation measurements of frequency combs in the terahertz range

    NASA Astrophysics Data System (ADS)

    Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme

    2017-09-01

    We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.

  11. Quantum preservation of the measurements precision using ultra-short strong pulses in exact analytical solution

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Eleuch, H.

    2017-09-01

    Various schemes have been proposed to improve the parameter-estimation precision. In the present work, we suggest an alternative method to preserve the estimation precision by considering a model that closely describes a realistic experimental scenario. We explore this active way to control and enhance the measurements precision for a two-level quantum system interacting with classical electromagnetic field using ultra-short strong pulses with an exact analytical solution, i.e. beyond the rotating wave approximation. In particular, we investigate the variation of the precision with a few cycles pulse and a smooth phase jump over a finite time interval. We show that by acting on the shape of the phase transient and other parameters of the considered system, the amount of information may be increased and has smaller decay rate in the long time. These features make two-level systems incorporated in ultra-short, of-resonant and gradually changing phase good candidates for implementation of schemes for the quantum computation and the coherent information processing.

  12. Coulomb explosion of hydrogen clusters irradiated by an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongyu; Liu Jiansheng; Wang Cheng

    The explosion dynamics of hydrogen clusters driven by an ultrashort intense laser pulse has been analyzed analytically and numerically by employing a simplified Coulomb explosion model. The dependence of average and maximum proton kinetic energy on cluster size, pulse duration, and laser intensity has been investigated respectively. The existence of an optimum cluster size allows the proton energy to reach the maximum when the cluster size matches with the intensity and the duration of the laser pulse. In order to explain our experimental results such as the measured proton energy spectrum and the saturation effect of proton energy, the effectsmore » of cluster size distribution as well as the laser intensity distribution on the focus spot should be considered. A good agreement between them is obtained.« less

  13. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  14. Method and apparatus for measuring the intensity and phase of an ultrashort light pulse

    DOEpatents

    Kane, Daniel J.; Trebino, Rick P.

    1998-01-01

    The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.

  15. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  16. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  17. Growth and Spectral Assessment of Yb3+-Doped KBaGd(MoO4)3 Crystal: A Candidate for Ultrashort Pulse and Tunable Lasers

    PubMed Central

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal. An Yb3+:KBaGd(MoO4)3 crystal with dimensions of 50×40×9 mm3 was grown by the TSSG method from the K2Mo2O7 flux. The investigated spectral properties indicated that Yb3+:KBaGd(MoO4)3 crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb3+:KBaGd(MoO4)3 crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers. PMID:23349892

  18. Growth and spectral assessment of Yb(3+)-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers.

    PubMed

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2013-01-01

    In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb(3+)-doped KBaGd(MoO(4))(3) crystal. An Yb(3+):KBaGd(MoO(4))(3) crystal with dimensions of 50×40×9 mm(3) was grown by the TSSG method from the K(2)Mo(2)O(7) flux. The investigated spectral properties indicated that Yb(3+):KBaGd(MoO(4))(3) crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb(3+):KBaGd(MoO(4))(3) crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers.

  19. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  20. Influence of dispersion stretching of ultrashort UV laser pulse on the critical power for self-focusing

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Mokrousova, D. V.; Piterimov, D. A.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2018-04-01

    The critical power for self-focusing in air for ultrashort ultraviolet laser pulses, stretched due to dispersion from 90 to 730 fs, was experimentally measured. It was shown that the pulse duration enhancement due to its propagation in condensed media leads to an almost linear decrease in the critical power for self-focusing. It was also observed that when the pulse peak power exceeds the critical one, the maximum of linear plasma distribution along the ultraviolet laser filament does not shift in the direction opposite to the laser pulse propagation, as observed for infrared laser filaments, but remains at the geometrical focus.

  1. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB_3O_5

    NASA Astrophysics Data System (ADS)

    Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick

    2016-05-01

    We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2<1.26 for the SH beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.

  2. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  3. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  4. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu.

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that themore » ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.« less

  5. Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Weickhardt, C.; Grun, C.; Grotemeyer, J.

    1998-12-01

    Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.

  6. Limits of applicability of a two-temperature model under nonuniform heating of metal by an ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D S; Yakovlev, E B

    The heating of metals (silver and aluminium) by ultrashort laser pulses is analysed proceeding from a spatially nonuniform kinetic equation for the electron distribution function. The electron subsystem thermalisation is estimated in a wide range of absorbed pulse energy density. The limits of applicability are determined for the two-temperature model. (interaction of laser radiation with matter)

  7. Terahertz photonic crystals

    NASA Astrophysics Data System (ADS)

    Jian, Zhongping

    This thesis describes the study of two-dimensional photonic crystals slabs with terahertz time domain spectroscopy. In our study we first demonstrate the realization of planar photonic components to manipulate terahertz waves, and then characterize photonic crystals using terahertz pulses. Photonic crystal slabs at the scale of micrometers are first designed and fabricated free of defects. Terahertz time domain spectrometer generates and detects the electric fields of single-cycle terahertz pulses. By putting photonic crystals into waveguide geometry, we successfully demonstrate planar photonic components such as transmission filters, reflection frequency-selective filters, defects modes as well as superprisms. In the characterization study of out-of-plane properties of photonic crystal slabs, we observe very strong dispersion at low frequencies, guided resonance modes at middle frequencies, and a group velocity anomaly at high frequencies. We employ Finite Element Method and Finite-Difference Time-Domain method to simulate the photonic crystals, and excellent agreement is achieved between simulation results and experimental results.

  8. High-resolution emission spectra of pulsed terahertz quantum-cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikonnikov, A. V., E-mail: antikon@ipm.sci-nnov.ru; Antonov, A. V.; Lastovkin, A. A.

    The spectra of pulsed terahertz quantum-cascade lasers were measured with high spectral resolution. The characteristic line width at half maximum was 0.01 cm{sup -1}; it is controlled by laser temperature variations during the supply voltage pulse. It was shown that an increase in the laser temperature leads to a decrease in the emission frequency, which is caused by an increase in the effective refractive index of the active region. It was also found that a decrease in the supply voltage results in a decrease in the emission frequency, which is caused by a change in the energy of diagonal transitionsmore » between lasing levels.« less

  9. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  10. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.

    PubMed

    Hu, Q; Viswanadham, S; Joshi, R P; Schoenbach, K H; Beebe, S J; Blackmore, P F

    2005-03-01

    A molecular dynamics (MD) scheme is combined with a distributed circuit model for a self-consistent analysis of the transient membrane response for cells subjected to an ultrashort (nanosecond) high-intensity (approximately 0.01-V/nm spatially averaged field) voltage pulse. The dynamical, stochastic, many-body aspects are treated at the molecular level by resorting to a course-grained representation of the membrane lipid molecules. Coupling the Smoluchowski equation to the distributed electrical model for current flow provides the time-dependent transmembrane fields for the MD simulations. A good match between the simulation results and available experimental data is obtained. Predictions include pore formation times of about 5-6 ns. It is also shown that the pore formation process would tend to begin from the anodic side of an electrically stressed membrane. Furthermore, the present simulations demonstrate that ions could facilitate pore formation. This could be of practical importance and have direct relevance to the recent observations of calcium release from the endoplasmic reticulum in cells subjected to such ultrashort, high-intensity pulses.

  11. 0.4-1.4 μm Visible to Near-Infrared Widely Broadened Super Continuum Generation with Er-doped Ultrashort Pulse Fiber Laser System

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Mitsuzawa, Hideyuki; Sumimura, Kazuhiko

    2009-03-01

    Visible to near-infrared widely broadened super continuum generation is demonstrated using ultrashort-pulse fiber laser system. Er-doped fiber chirped-pulse amplification system operated at 1550 nm in wavelength is used for the amplifier system, which generated ultrashort-pulse of 112 fs in FWHM with output power of 160 mW, on average. Almost pedestal free 200 fs second harmonic generation pulse is generated at 780 nm region using periodically poled LiNbO3 and conversion efficiency is as high as 37%. 0.45-1.40 μm widely broadened super continuum is generated in highly nonlinear photonic crystal fiber and spectrum flatness is within ±6 dB. All of the fiber devices are fusion spliced so that this system shows a good stability.

  12. Removing the echoes from terahertz pulse reflection system and sample

    NASA Astrophysics Data System (ADS)

    Liu, Haishun; Zhang, Zhenwei; Zhang, Cunlin

    2018-01-01

    Due to the echoes both from terahertz (THz) pulse reflection system and sample, the THz primary pulse will be distorted. The system echoes include two types. One preceding the main peak probably is caused by ultrafast laser pulse and the other at the back of the primary pulse is caused by the Fabry-Perot (F-P) etalon effect of detector. We attempt to remove the corresponding echoes by using two kinds of deconvolution. A Si wafer of 400μm was selected as the tested sample. Firstly, the method of double Gaussian filter (DGF) decnvolution was used to remove the systematic echoes, and then another deconvolution technique was employed to eliminate the two obvious echoes of the sample. The ultimate results indicated: although the combination of two deconvolution techniques could not entirely remove the echoes of sample and system, the echoes were largely reduced.

  13. Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-12-01

    We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.

  14. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less

  15. Delivery of an ultrashort spatially focused pulse to the other end of a multimode fiber using digital phase conjugation

    NASA Astrophysics Data System (ADS)

    Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-03-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  16. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.

    PubMed

    Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K

    2017-05-24

    The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0  ≥ 0.025 λ) and lateral shear (y 0  ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.

  17. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    PubMed

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  18. Tuning the frequency of ultrashort laser pulses by a cross-phase-modulation-induced shift in a photonic crystal fiber.

    PubMed

    Konorov, S O; Akimov, D A; Zheltikov, A M; Ivanov, A A; Alfimov, M V; Scalora, M

    2005-06-15

    Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.

  19. Elliptically polarized terahertz radiation from a chiral oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, R.; Kida, N., E-mail: kida@k.u-tokyo.ac.jp; Sotome, M.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses.more » Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.« less

  20. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons.

    PubMed

    Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu

    2016-09-01

    Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optimization of the parameters for intrastromal refractive surgery with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Alexander; Ripken, Tammo; Lubatschowski, Holger; Welling, Herbert; Dommer, Wolfgang; Luetkefels, Elke; Mamom, Thanongsak; Ertmer, Wolfgang

    2001-06-01

    Focussing femtosecond laser pulses into a transparent media, such as corneal tissue, leads to optical breakdown, generation of a micro-plasma and, thus, a cutting effect inside the tissue. To proof the potential of fs-lasers in refractive surgery, three-dimensional cutting within the corneal stroma was evaluated. With the use of ultrashort laser pulses within the LASIK procedure (laser in situ keratomileusis) possible complications in handling of a mechanical knife, the microkeratome, can be reduced by using the treatment laser as the keratome itself. To study woundhealing effects, animal studies were carried out in rabbit specimen. The surgical outcome was analyzed by means of histological sections, as well as light and scanning electron microscopy. Dependencies on the dispersion caused by focussing optics were evaluated and optimized. Thus, pulse energies well below 1 (mu) J were sufficient to perform the intrastromal cuts. The laser pulses with a duration of 180 fs and energies of 0.5-100 (mu) J were provided by a modelocked frequency doubled erbium fiber-laser with subsequent chirped pulse amplification in a titanium sapphire amplifier at up to 3 kHz.

  2. Scale model experimentation: using terahertz pulses to study light scattering.

    PubMed

    Pearce, Jeremy; Mittleman, Daniel M

    2002-11-07

    We describe a new class of experiments involving applications of terahertz radiation to problems in biomedical imaging and diagnosis. These involve scale model measurements, in which information can be gained about pulse propagation in scattering media. Because of the scale invariance of Maxwell's equations, these experiments can provide insight for researchers working on similar problems at shorter wavelengths. As a first demonstration, we measure the propagation constants for pulses in a dense collection of spherical scatterers, and compare with the predictions of the quasi-crystalline approximation. Even though the fractional volume in our measurements exceeds the limit of validity of this model, we find that it still predicts certain features of the propagation with reasonable accuracy.

  3. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration < 250 fs (more than 20 bound pulses when obtained multi-bound soliton generation with intertemporal width 5 ps) at a repetition rate 11.3 MHz (with signal-to-noise ratio at fundamental frequency > 59 dB) and relative intensity noise <-101 dBc / Hz.

  4. Metal wires for terahertz wave guiding.

    PubMed

    Wang, Kanglin; Mittleman, Daniel M

    2004-11-18

    Sources and systems for far-infrared or terahertz (1 THz = 10(12) Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.

  5. Amplification of terahertz pulses in gases beyond thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Schwaab, G. W.; Schroeck, K.; Havenith, M.

    2007-03-01

    In Ebbinghaus [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schrödinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.

  6. Self similar solution of superradiant amplification of ultrashort laser pulses in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghadasin, H.; Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Shokri, B.

    2015-05-15

    Based on the self-similar method, superradiant amplification of ultrashort laser pulses by the counterpropagating pump in a plasma is investigated. Here, we present a governing system of partial differential equations for the signal pulse and the motion of the electrons. These equations are transformed to ordinary differential equations by the self-similar method and numerically solved. It is found that the increase of the signal intensity is proportional to the square of the propagation distance and the signal frequency has a red shift. Also, depending on the pulse width, the signal breaks up into a train of short pulses or itsmore » duration decreases with the inverse square root of the distance. Moreover, we identified two distinct categories of the electrons by the phase space analysis. In the beginning, one of them is trapped in the ponderomotive potential well and oscillates while the other is untrapped. Over time, electrons of the second kind also join to the trapped electrons. In the potential well, the electrons are bunched to form an electron density grating which reflects the pump pulse into the signal pulse. It is shown that the backscattered intensity is enhanced with the increase of the electron bunching parameter which leads to the enhanced efficiency of superradiant amplification.« less

  7. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    PubMed

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-05

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

  8. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    PubMed

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed

  9. Terahertz pulsed imaging study to assess remineralization of artificial caries lesions

    NASA Astrophysics Data System (ADS)

    Churchley, David; Lynch, Richard J. M.; Lippert, Frank; O'Bryan Eder, Jennifer Susan; Alton, Jesse; Gonzalez-Cabezas, Carlos

    2011-02-01

    We compare terahertz-pulsed imaging (TPI) with transverse microradiography (TMR) and microindentation to measure remineralization of artificial caries lesions. Lesions are formed in bovine enamel using a solution of 0.1 M lactic acid/0.2% Carbopol C907 and 50% saturated with hydroxyapatite adjusted to pH 5.0. The 20-day experimental protocol consists of four 1 min treatment periods with dentifrices containing 10, 675, 1385, and 2700 ppm fluoride, a 4-h/day acid challenge, and, for the remaining time, specimens are stored in a 50:50 pooled human/artificial saliva mixture. Each specimen is imaged at the focal point of the terahertz beam (data-point spacing = 50 μm). The time-domain data are used to calculate the refractive index volume percent profile throughout the lesion, and the differences in the integrated areas between the baseline and post-treatment profiles are used to calculate ΔΔZ(THz). In addition, the change from baseline in both the lesion depth and the intensity of the reflected pulse from the air/enamel interface is determined. Statistically significant Pearson correlation coefficients are observed between TPI and TMR/microindentation (P < 0.05). We demonstrate that TPI has potential as a research tool for hard tissue imaging.

  10. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    PubMed

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  11. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acuna, M. A.; Gravielle, M. S.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

    2011-03-15

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, whilemore » the influence of the crystal orientation was found to be negligible.« less

  12. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  13. Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.

    2017-02-01

    The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.

  14. Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Löffler, T.; Roskos, H. G.

    2002-03-01

    Far-infrared (terahertz) pulses can be generated by photoionization of electrically biased gases with amplified laser pulses [T. Löffler, F. Jacob, and H. G. Roskos, Appl. Phys. Lett. 77, 453 (2000)]. The efficiency of the generation process can be significantly increased when the absolute gas pressure is raised because it is then possible to apply higher bias fields close to the dielectric breakdown field of the gas which increases with the pressure. The dependence of the THz output on the optical pump power does not show any indication of saturation, making the plasma emitter an interesting source for THz pulses especially in conjunction with terawatt laser systems.

  15. Depolarization of an Ultrashort Pulse in a Disordered Ensemble of Mie Particles

    NASA Astrophysics Data System (ADS)

    Gorodnichev, E. E.; Ivliev, S. V.; Kuzovlev, A. I.; Rogozkin, D. B.

    2017-12-01

    We study propagation of an ultrashort pulse of polarized light through a turbid medium with the Reynolds-McCormick phase function. Within the basic mode approach to the vector radiative transfer equation, the temporal profile of the degree of polarization is calculated analytically with the use of the small-angle approximation. The degree of polarization is shown to be described by the self-similar dependence on some combination of the transport scattering coefficient, the temporal delay and the sample thickness. Our results are in excellent agreement with the data of numerical simulations carried out previously for aqueous suspension of polystyrene microspheres.

  16. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecz, Zs.; Andreev, A.; Max-Born Institute, Berlin

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter thanmore » the characteristic development time of the parasitic Weibel instability.« less

  17. Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1996-07-01

    The authors explore several practical experimental issues in measuring ultrashort laser pulses using the technique of frequency-resolved optical gating (FROG). They present a simple method for checking the consistency of experimentally measured FROG data with the independently measured spectrum and autocorrelation of the pulse. This method is a powerful way of discovering systematic errors in FROG experiments. They show how to determine the optimum sampling rate for FROG and show that this satisfies the Nyquist criterion for the laser pulse. They explore the low- and high-power limits to FROG and determine that femtojoule operation should be possible, while the effectsmore » of self-phase modulation limit the highest signal efficiency in FROG to 1%. They also show quantitatively that the temporal blurring due to a finite-thickness medium in single-shot geometries does not strongly limit the FROG technique. They explore the limiting time-bandwidth values that can be represented on a FROG trace of a given size. Finally, they report on a new measure of the FROG error that improves convergence in the presence of noise.« less

  18. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    NASA Astrophysics Data System (ADS)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  19. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called π-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur,more » the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.« less

  20. Recording of Terahertz Pulses of Microsecond Duration Using the Thermoacoustic Effect

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Vdovin, V. A.; Kalynov, Yu. K.

    2014-01-01

    We consider the possibility of using a thermoacoustic detector (TAD) for recording of high-power pulse radiation at frequencies of 0.55, 0.68, and 0.87 THz. Electromagnetic wave is transformed into an acoustic wave in a structure consisting of a 10-nm thick chromium film deposited on a quartz substrate and a layer of the immersion liquid that is in contact with the film. It is shown that for the pulse of microsecond duration (3-10 μs) the waveform detected by the thermoacoustic detector is matched with high accuracy to the derivative of the terahertz pulse profile. For recording of electromagnetic radiation in the 0.5-0.9 THz frequency range it is possible to employ the simplified design of TAD, in which a transparent quartz substrate is in contact with a layer of water or ethanol.

  1. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  2. Optical field ionization of atoms and ions using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fittinghoff, D. N.

    1993-12-01

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He(+2), Ne(+2), and Ar(+2). The ion yields for He(+1), Ne(sup +1) and Ar(sup +1) agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved the following: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.

  3. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Self-action of a high-power 10-μm laser radiation in gases: control of the pulse duration and generation of hot electrons

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Platonenko, Viktor T.; Sterzhantov, A. F.

    2009-07-01

    The propagation of ultrashort 10-μm laser pulses of power exceeding the critical self-focusing power in xenon and air is numerically simulated. It is shown that the pulse duration in certain regimes in xenon can be decreased by 3-4 times simultaneously with the increase in the pulse power by 2-3 times. It is found that the average energy of electrons in a filament upon filamentation of 10-μm laser pulses in air can exceed 200 eV. The features of the third harmonic and terahertz radiation generation upon filamentation are discussed.

  4. Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.

    PubMed

    Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

    2018-05-14

    Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

  5. Propagation of single-cycle terahertz pulses in random media.

    PubMed

    Pearce, J; Mittleman, D M

    2001-12-15

    We describe what are to our knowledge the first measurements of the propagation of coherent, single-cycle pulses of terahertz radiation in a scattering medium. By measuring the transmission as a function of the length L of the medium, we extract the scattering mean free path l(s)(omega) over a broad bandwidth. We observe variations in l(s) ranging over nearly 2 orders of magnitude and covering the entire thin sample regime from L/l(s)<1 to L/l(s)~10 . We also observe scattering-induced dispersive effects, which can be attributed to the additional path traveled by photons scattered at small angles.

  6. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  7. Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging.

    PubMed

    Pastorelli, Gianluca; Trafela, Tanja; Taday, Phillip F; Portieri, Alessia; Lowe, David; Fukunaga, Kaori; Strlič, Matija

    2012-05-01

    Terahertz (THz) time-domain spectroscopy and 3D THz pulsed imaging have been explored with regard to polymer materials, both commodity and historic polymers. A systematic spectroscopic study of a wide range of different polymer materials showed significant differences in their spectra. Polyolefins and polystyrenes generally exhibit lower absorption than other examined polymers, various cellulose derivates, poly(vinyl chloride), poly(methyl methacrylate), polyamide, hard rubber and phenol formaldehyde resin, the last of these exhibiting the most intense absorption over the entire range, 0.15-4.2 THz. It was also examined how the presence of plasticisers in poly(vinyl chloride), the presence of fillers in polypropylene, and the degree of branching in polyethylene and polystyrene affect the spectra; inorganic fillers in polypropylene affected the absorption most. With 3D THz pulsed imaging, features in polymer objects were explored, appearing either as integral parts of the material (coatings and pores in foams) or as a consequence of physical deterioration (cracks, delamination). All of these features of various complexities can be successfully imaged in 3D. Terahertz technology is thus shown to have significant potential for both chemical and structural characterisation of polymers, which will be of interest to heritage science, but also to the polymer industry and development of analytical technologies in general.

  8. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  9. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    PubMed

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  10. Method and apparatus for measuring the intensity and phase of one or more ultrashort light pulses and for measuring optical properties of materials

    DOEpatents

    Trebino, Rick P.; DeLong, Kenneth W.

    1996-01-01

    The intensity and phase of one or more ultrashort light pulses are obtained using a non-linear optical medium. Information derived from the light pulses is also used to measure optical properties of materials. Various retrieval techniques are employed. Both "instantaneously" and "non-instantaneously" responding optical mediums may be used.

  11. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  12. Generation of Ultrashort Pulses from Chromium - Forsterite Laser

    NASA Astrophysics Data System (ADS)

    Seas, Antonios

    This thesis discusses the generation of ultrashort pulses from the chromium-doped forsterite laser, the various designs, construction and operation of forsterite laser systems capable of generating picosecond and femtosecond pulses in the near infrared. Various mode-locking techniques including synchronous optical pumping, active mode-locking, and self-mode-locking were successfully engineered and implemented. Active and synchronously pumped mode-locking using a three mirror, astigmatically compensated cavity design and a forsterite crystal with a figure of merit of 26 (FOM = alpha_{rm 1064nm} /alpha_{rm 1250nm }) generated pulses with FWHM of 49 and 260 ps, respectively. The tuning range of the mode-locked forsterite laser in both cases was determined to be in the order of 100 nm limited only by the dielectric coatings of the mirrors used in the cavity. The slope efficiency was measured to be 12.5% for synchronous pumping and 9.1% for active mode-locking. A four mirror astigmatically compensated cavity was found to be more appropriate for mode-locking. Active mode-locking using the four-mirror cavity generated pulses with FWHM of 31 ps. The pulsewidth was further reduced to 6 ps by using a forsterite crystal with a higher figure of merit (FOM = 39). Pulsewidth-bandwidth measurements indicated the presence of chirp in the output pulses. Numerical calculation of the phase characteristics of various optical materials indicated that a pair of prisms made of SF 14 optical glass can be used in the cavity in order to compensate for the chirp. The insertion of the prisms in the cavity resulted in a reduction of the pulsewidth from 6 ps down to 900 fs. Careful optimization of the laser cavity resulted in the generation of stable 90-fs pulses. Pulses as short as 60 fs were generated and self-mode-locked mode of operation using the Cr:forsterite laser was demonstrated for the first time. Pure self-mode-locking was next achieved generating 105-fs pulses tunable between 1230

  13. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  14. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  15. Kron-Branin modelling of ultra-short pulsed signal microelectrode

    NASA Astrophysics Data System (ADS)

    Xu, Zhifei; Ravelo, Blaise; Liu, Yang; Zhao, Lu; Delaroche, Fabien; Vurpillot, Francois

    2018-06-01

    An uncommon circuit modelling of microelectrode for ultra-short signal propagation is developed. The proposed model is based on the Tensorial Analysis of Network (TAN) using the Kron-Branin (KB) formalism. The systemic graph topology equivalent to the considered structure problem is established by assuming as unknown variables the branch currents. The TAN mathematical solution is determined after the KB characteristic matrix identification. The TAN can integrate various structure physical parameters. As proof of concept, via hole ended microelectrodes implemented on Kapton substrate were designed, fabricated and tested. The 0.1-MHz-to-6-GHz S-parameter KB model, simulation and measurement are in good agreement. In addition, time-domain analyses with nanosecond duration pulse signals were carried out to predict the microelectrode signal integrity. The modelled microstrip electrode is usually integrated in the atom probe tomography. The proposed unfamiliar KB method is particularly beneficial with respect to the computation speed and adaptability to various structures.

  16. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principalmore » validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.« less

  17. Real-time terahertz near-field microscope.

    PubMed

    Blanchard, F; Doi, A; Tanaka, T; Hirori, H; Tanaka, H; Kadoya, Y; Tanaka, K

    2011-04-25

    We report a terahertz near-field microscope with a high dynamic range that can capture images of a 370 x 740 μm2 area at 35 frames per second. We achieve high spatial resolution (14 μm corresponding to λ/30 for a center frequency at 0.7 THz) on a large area by combining two novel techniques: terahertz generation by tilted-pulse-front excitation and electro-optic balanced imaging detection using a thin crystal. To demonstrate the microscope capability, we reveal the field enhancement at the gap position of a dipole antenna after the irradiation of a terahertz pulse.

  18. Quasi-matched propagation of an ultrashort and intense laser pulse in a plasma channel

    NASA Astrophysics Data System (ADS)

    Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2011-10-01

    The propagation of an ultrashort and relativistically-intense laser pulse in a preformed parabolic plasma channel is investigated. The nonlinear paraxial wave equation is solved both analytically and numerically. Numerical solutions are obtained using the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO, recently developed at LBNL. For an arbitrary laser pulse profile with a given power for each longitudinal slice (less then the critical power for self-focusing), we determine the laser intensity distribution ensuring matched propagation in the channel, neglecting non-paraxial effects (self-steepening, red-shifting, etc.). Similarly, in the case of a Gaussian pulse profile, we determine the optimal channel depth yielding a quasi-matched laser propagation, including the plasma density modification induced by the laser-pulse. The analytical results obtained for both cases in the weakly-relativistic intensity regime are presented and validated through comparison with numerical simulations. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  19. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy

    PubMed Central

    Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma

    2011-01-01

    The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652

  20. Degradation mechanism of SESAMs under intense ultrashort pulses in modelocked VECSELs

    NASA Astrophysics Data System (ADS)

    Addamane, Sadhvikas; Shima, Darryl; Laurain, Alexandre; Chan, Hsiu-Ting; Balakrishnan, Ganesh; Moloney, Jerome V.

    2018-02-01

    Mode-locked VECSELs using SESAMs are a relatively less complex and cost-effective alternative to state-of-the-art ultrafast lasers based on solid-state or fiber lasers. VECSELs have seen considerable progress in device performance in terms of pulse width and peak power in the recent years. However, it appears that the combination of high power and short pulses can cause some irreversible damage to the SESAM. The degradation mechanism, which can lead to a reduction of the VECSEL output power over time, is not fully understood and deserves to be investigated and alleviated in order to achieve stable mode-locking over long periods of time. It is particularly important for VECSEL systems meant to be commercialized, needing long term operation with a long product lifetime. Here, we investigate the performance and robustness of a SESAM-modelocked VECSEL system under intense pulse intensity excitation. The effect of the degradation on the VECSEL performance is investigated using the SESAM in a VECSEL cavity supporting ultrashort pulses, while the degradation mechanism was investigated by exciting the SESAMs with an external femtosecond laser source. The decay of the photoluminescence (PL) and reflectivity under high excitation was monitored and the damaged samples were further analyzed using a thorough Transmission Electron Microscopy (TEM) analysis. It is found that the major contribution to the degradation is the field intensity and that the compositional damage is confined to the DBR region of the SESAM.

  1. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  2. Damage in a Thin Metal Film by High-Power Terahertz Radiation.

    PubMed

    Agranat, M B; Chefonov, O V; Ovchinnikov, A V; Ashitkov, S I; Fortov, V E; Kondratenko, P S

    2018-02-23

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  3. Damage in a Thin Metal Film by High-Power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Agranat, M. B.; Chefonov, O. V.; Ovchinnikov, A. V.; Ashitkov, S. I.; Fortov, V. E.; Kondratenko, P. S.

    2018-02-01

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  4. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser

  5. Multi-dimensional simulation package for ultrashort pulse laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Suslova, Anastassiya; Hassanein, Ahmed

    2017-10-01

    Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.

  6. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-planemore » electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.« less

  7. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  8. Dipolar effects on propagation of ultrashort laser pulse in one-dimensional para-nitroaniline (pNA) molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Li, Hong-Yu; Liu, Ji-Cai; Wang, Chuan-Kui; Luo, Yi

    2005-12-01

    The dynamic behaviour of ultrashort (femtosecond) laser pulses in a molecular medium is studied by solving the full Maxwell-Bloch equations beyond the limits of the slowly varying envelope approximation and the rotating-wave approximation under the resonant and the non-resonant conditions. A one-dimensional asymmetric charge-transfer molecule, para-nitroaniline, is used as a model molecule whose electronic properties are calculated with the time-dependent hybrid density functional theory. Under the one-photon resonant condition, 4π pulse is separated into two sub-pulses. The weight of the second-harmonic component mainly contributed by the two-photon excitation becomes stronger with longer propagation time. Under the two-photon resonant condition, the separation of 4π pulse is not induced and many higher-order spectral components beyond the second-harmonic generation occur. Interestingly, when the pulse propagates for long enough, the carrier modification becomes so significant that a continuous spectrum is generated. The Fourier transform of the high-harmonic spectrum demonstrates that an even shorter laser pulse can be produced in both resonant and non-resonant propagations. The effects of permanent dipole moments on the pulse evolution are discussed.

  9. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE PAGES

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...

    2017-09-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  10. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  11. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    PubMed Central

    Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.

    2017-01-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713

  12. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  13. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film.

    PubMed

    Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K

    2009-10-26

    A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.

  14. Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses.

    PubMed

    Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-06-22

    Waveform-controlled terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~1.7 optical cycles) laser pulses at 1.8 μm into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.

  15. co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers

    DOE PAGES

    Polyanskiy, Mikhail N.

    2015-01-01

    We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.

  16. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  17. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  18. Birefringence profile adjustment by spatial overlap of nanogratings induced by ultra-short laser pulses inside fused silica

    NASA Astrophysics Data System (ADS)

    Arabanian, Atoosa Sadat; Najafi, Somayeh; Ajami, Aliasghar; Husinsky, Wolfgang; Massudi, Reza

    2018-02-01

    We have succeeded in realizing a method to control the spatial distribution of optical retardation as a result of nanogratings in bulk-fused silica induced by ultrashort laser pulses. A colorimetry-based retardation measurement (CBRM) based on the Michel-Levy interference color chart using a polarization microscope is used to determine the profiles of the optical retardation. Effects of the spatial overlap of written regions as well as the energy and polarization of the writing pulses on the induced retardations are studied. It has been found that the spatial overlap of lines written by pulse trains with different energies and polarizations can result in an adjustment of the induced birefringence in the overlap region. This approach offers the possibility of designing polarization-sensitive components with a desired birefringence profile.

  19. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  20. Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2017-09-01

    Various carbon-based nanoparticles ablated at the conditions suitable for efficient harmonic generation during propagation of ultrashort pulses through the laser-produced plasmas were studied. The transmission electron microscopy of ablated debris and the time-of-flight mass-spectroscopy studies of plasmas are presented. The conditions of laser ablation of the carbon-contained nanoparticles (fullerenes, graphene, carbon nanotubes, carbon nanofibers, and diamond nanoparticles) were varied to define the impeding processes restricting the harmonic yield from such laser-produced plasmas. These studies show that the enhancement of harmonics during ablation of nanoparticle targets was related with the appearance of small carbon clusters at the moment of propagation of the ultrashort laser pulses though such plasmas.

  1. A non-destructive method for quality control of the pellet distribution within a MUPS tablet by terahertz pulsed imaging.

    PubMed

    Novikova, Anna; Markl, Daniel; Zeitler, J Axel; Rades, Thomas; Leopold, Claudia S

    2018-01-01

    Terahertz pulsed imaging (TPI) was applied to analyse the inner structure of multiple unit pellet system (MUPS) tablets. MUPS tablets containing different amounts of theophylline pellets coated with Eudragit® NE 30 D and with microcrystalline cellulose (MCC) as cushioning agent were analysed. The tablets were imaged by TPI and the results were compared to X-ray microtomography. The terahertz pulse beam propagates through the tablets and is back-reflected at the interface between the MCC matrix and the coated pellets within the tablet causing a peak in the terahertz waveform. Cross-section images of the tablets were extracted at different depths and parallel to the tablet faces from 3D terahertz data to visualise the surface-near structure of the MUPS tablets. The images of the surface-near structure of the MUPS tablets were compared to X-ray microtomography images at the same depths. The surface-near structure could be clearly resolved by TPI at depths between 24 and 152μm below the tablet surface. An increasing amount of pellets within the MUPS tablets appears to slightly decrease the detectability of the pellets within the tablets by TPI. TPI was shown to be a non-destructive method for the detection of pellets within the tablets and could resolve structures thicker than 30μm. In conclusion, a proof-of-concept was provided for TPI as a method of quality control for MUPS tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  3. D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser.

    PubMed

    Liao, Changrui; Wang, Qiao; Xu, Lei; Liu, Shen; He, Jun; Zhao, Jing; Li, Zhengyong; Wang, Yiping

    2016-03-01

    The fabrication of fiber Bragg gratings was here demonstrated using ultrashort pulse laser point-by-point inscription. This is a very convenient means of creating fiber Bragg gratings with different grating periods and works by changing the translation speed of the fiber. The laser energy was first optimized in order to improve the spectral properties of the fiber gratings. Then, fiber Bragg gratings were formed into D-shaped fibers for use as refractive index sensors. A nonlinear relationship was observed between the Bragg wavelength and liquid refractive index, and a sensitivity of ∼30  nm/RIU was observed at 1.450. This shows that D-shaped fiber Bragg gratings might be used to develop promising biochemical sensors.

  4. Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation.

    PubMed

    Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo

    2017-04-15

    This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.

  5. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  6. Ultrashort Echo Time and Zero Echo Time MRI at 7T

    PubMed Central

    Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.

    2016-01-01

    Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940

  7. Novel THz radiation from relativistic laser-plasmas

    NASA Astrophysics Data System (ADS)

    Sheng, Z. M.; Wu, H. C.; Wang, W. M.; Dong, X. G.; Chen, M.; Zhang, J.

    2009-05-01

    The interaction of ultrashort intense laser pulses with plasma can produce electromagnetic radiation of ultra-broad spectra ranging from terahertz (THz) radiation to keV x-rays and beyond. Here we present a review of our recent theoretical and numerical investigation on high power THz generation from tenuous plasma or gas targets irradiated by ultrashort intense laser pulses. Three mechanisms of THz emission are addressed, which include the linear mode conversion from laser wakefields in inhomogeneous plasma, transient current emission at the plasma-vacuum boundaries, and the emission from residual transverse currents produced by temporally-asymmetric laser pulses passing through gas or plasma targets. Since there is no breakdown limit for plasma under the irradiation of high power lasers, in principle, all these mechanisms can lead to terahertz pulse emission at the power of beyond megawatt with the field strength of MV/cm, suitable for the study of high THz field physics and other applications.

  8. Dynamics of the Coulomb explosion of large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Krainov, V. P.; Roshchupkin, A. S.

    2001-12-01

    Dynamics of the inner and outer above-barrier ionization and of the Coulomb explosion are calculated for large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses. We have found that the Coulomb forces predominate in the expansion of these clusters in comparison with the hydrodynamic forces. The energy distribution of the iodine multiple atomic ions in laser focal volume is derived. Results of our calculations are in a good agreement with the recent experimental data of Tisch et al. [Phys. Rev. A 60, 3076 (1999)].

  9. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.

    2015-06-01

    We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.

  10. Photonic approach to the selective inactivation of viruses with a near-infrared ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Fu, Q.; Lindsay, S. M.; Kibler, K.; Jacobs, B.; Wu, T. C.; Li, Zhe; Yan, Hao; Cope, Stephanie; Vaiana, Sara; Kiang, Juliann G.

    2010-02-01

    We report a photonic approach for selective inactivation of viruses with a near-infrared ultrashort pulsed (USP) laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as M13 bacteriophage, tobacco mosaic virus (TMV) to pathogenic viruses like human papillomavirus (HPV) and human immunodeficiency virus (HIV). At the same time sensitive materials like human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.

  11. Targeted disruption of deep-lying neocortical microvessels in rat using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Nishimura, Nozomi; Schaffer, Christopher B.; Friedman, Beth; Tsai, Philbert S.; Lyden, Patrick D.; Kleinfeld, David

    2004-06-01

    The study of neurovascular diseases such as vascular dementia and stroke require novel models of targeted vascular disruption in the brain. We describe a model of microvascular disruption in rat neocortex that uses ultrashort laser pulses to induce localized injury to specific targeted microvessels and uses two-photon microscopy to monitor and guide the photodisruption process. In our method, a train of high-intensity, 100-fs laser pulses is tightly focused into the lumen of a blood vessel within the upper 500 μm of cortex. Photodisruption induced by these laser pulses creates injury to a single vessel located at the focus of the laser, leaving the surrounding tissue intact. This photodisruption results in three modalities of localized vascular injury. At low power, blood plasma extravasation can be induced. The vessel itself remains intact, while serum is extravasated into the intercellular space. Localized ischemia caused by an intravascular clot results when the photodisruption leads to a brief disturbance of the vascular walls that initiates an endogenous clotting cascade. The formation of a localized thrombus stops the blood flow at the location of the photodisruption. A hemorrhage, defined as a large extravasation of blood including plasma and red blood cells, results when higher laser power is used. The targeted vessel does not remain intact.

  12. Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin Charles

    The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three

  13. The dependence on optical energy of terahertz emission from air plasma induced by two-color femtosecond laser-pulses

    NASA Astrophysics Data System (ADS)

    Wu, Si-Qing; Liu, Jin-Song; Wang, Sheng-Lie; Hu, Bing

    2013-10-01

    The generation of terahertz (THz) emission from air plasma induced by two-color femtosecond laser pulses is studied on the basis of a transient photocurrent model. While the gas is ionized by the two-color femtosecond laser-pulses composed of the fundamental and its second harmonic, a non-vanishing directional photoelectron current emerges, radiating a THz electromagnetic pulse. The gas ionization processes at three different laser-pulse energies are simulated, and the corresponding THz waveforms and spectra are plotted. The results demonstrate that, by keeping the laser-pulse width and the relative phase between two pulses invariant when the laser energy is at a moderate value, the emitted THz fields are significantly enhanced with a near-linear dependence on the optical energy.

  14. Novel oral applications of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wieger, V.; Wernisch, J.; Wintner, E.

    2007-02-01

    In the past decades, many efforts have been made to replace mechanical tools in oral applications by various laser systems. The reasons therefore are manifold: i) Friction causes high temperatures damaging adjacent tissue. ii) Smear layers and rough surfaces are produced. iii) Size and shape of traditional tools are often unsuitable for geometrically complicated incisions and for minimum invasive treatment. iv) Mechanical damage of the remaining tissue occurs. v) Online diagnosis for feedback is not available. Different laser systems in the µs and sub-&mrgs-pulse regime, among them Erbium lasers, have been tested in the hope to overcome the mentioned drawbacks and, to some extent, they represent the current state of the art with respect to commercial and hence practical application. In the present work the applicability of scanned ultrashort pulse lasers (USPLs) for biological hard tissue as well as dental restoration material removal was tested. It is shown that cavities with features superior to mechanically treated or Erbium laser ablated cavities can be generated if appropriate scan algorithms and optimum laser parameters are matched. Smooth cavity rims, no microcracks, melting or carbonisation and precise geometry are the advantages of scanned USLP ablation. For bone treatment better healing conditions are expected as the natural structure remains unaffected by the preparation procedure. The novelty of this work is represented by a comprehensive compilation of various experimental results intended to assess the performance of USPLs. In this context, various pulse durations in the picosecond and femtosecond regime were applied to dental and bone tissue as well as dental restoration materials which is considered to be indispensable for a complete assessment. Parameters like ablation rates describing the efficiency of the ablation process, and ablation thresholds were determined - some of them for the first time - and compared to the corresponding Erbium

  15. All-fiber mode-locked erbium-doped ring laser based on a highly-nonlinear resonator with a low-noise ultrashort pulse generation

    NASA Astrophysics Data System (ADS)

    Kudelin, Igor S.; Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2018-04-01

    Ultrashort pulse (USP) fiber lasers have found applications in such various fields as frequency metrology and spectroscopy, telecommunication systems, etc. For the last decade, mode-locking (ML) fiber lasers have been under carefully investigations for scientific, medical and industrial applications. Also, USP fiber sources can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics with a presence of high value of group velocity dispersion (GVD) and the third order dispersion in the resonator. For more reliable and robust launching of passive mode-locking based on a nonlinear polarization evolution, we used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the cavity and we have obtained ultrashort stretched pulses with a high peak power and energy. In this work relative intensity noise and frequency repetition stability is improved by applying isolator-polarizer (ISO-PM) with increased extinction ratio Pext and by compensation of intracavity group-velocity dispersion from the value β2 - 0.021 ps2 to - 0.0053 ps2 at 1550 nm. As a result, we have obtained the low-noise stretched pulse generation with duration 180 fs at a repetition rate 11.3 MHz (with signal-tonoise ratio at fundamental frequency 59 dB) with Allan deviation of a pulse repetition frequency for 1 s interval 5,7 * 10-9 and a relative intensity noise < -101 dBc / Hz.

  16. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  17. Control of electron excitation and localization in the dissociation of H2(+) and its isotopes using two sequential ultrashort laser pulses.

    PubMed

    He, Feng; Ruiz, Camilo; Becker, Andreas

    2007-08-24

    We study the control of dissociation of the hydrogen molecular ion and its isotopes exposed to two ultrashort laser pulses by solving the time-dependent Schrödinger equation. While the first ultraviolet pulse is used to excite the electron wave packet on the dissociative 2psigma{u} state, a second time-delayed near-infrared pulse steers the electron between the nuclei. Our results show that by adjusting the time delay between the pulses and the carrier-envelope phase of the near-infrared pulse, a high degree of control over the electron localization on one of the dissociating nuclei can be achieved (in about 85% of all fragmentation events). The results demonstrate that current (sub-)femtosecond technology can provide a control over both electron excitation and localization in the fragmentation of molecules.

  18. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation.

    PubMed

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-12

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.

  19. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  20. Optical and terahertz energy concentration on the nanoscale in plasmonics

    NASA Astrophysics Data System (ADS)

    Rusina, Anastasia

    We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R0 ≈ lambda0 ≈ 300 microm to the unprecedented final size of R = 100--250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These

  1. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  2. Terahertz pulsed imaging study of dental caries

    NASA Astrophysics Data System (ADS)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  3. Investigation of ultrashort-pulsed laser on dental hard tissue

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2007-02-01

    Ultrashort-pulsed laser (USPL) can ablate various materials with precious less thermal effect. In laser dentistry, to solve the problem that were the generation of crack and carbonized layer by irradiating with conventional laser such as Er:YAG and CO II laser, USPL has been studied to ablate dental hard tissues by several researchers. We investigated the effectiveness of ablation on dental hard tissues by USPL. In this study, Ti:sapphire laser as USPL was used. The laser parameter had the pulse duration of 130 fsec, 800nm wavelength, 1KHz of repetition rate and the average power density of 90~360W/cm2. Bovine root dentin plates and crown enamel plates were irradiated with USPL at 1mm/sec using moving stage. The irradiated samples were analyzed by SEM, EDX, FTIR and roughness meter. In all irradiated samples, the cavity margin and wall were sharp and steep, extremely. In irradiated dentin samples, the surface showed the opened dentin tubules and no smear layer. The Ca/P ratio by EDX measurement and the optical spectrum by FTIR measurement had no change on comparison irradiated samples and non-irradiated samples. These results confirmed that USPL could ablate dental hard tissue, precisely and non-thermally. In addition, the ablation depths of samples were 10μm, 20μm, and 60μm at 90 W/cm2, 180 W/cm2, and 360 W/cm2, approximately. Therefore, ablation depth by USPL depends on the average power density. USPL has the possibility that can control the precision and non-thermal ablation with depth direction by adjusting the irradiated average power density.

  4. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  5. Sub-wavelength ripples in fused silica after irradiation of the solid/liquid interface with ultrashort laser pulses.

    PubMed

    Böhme, R; Vass, C; Hopp, B; Zimmer, K

    2008-12-10

    Laser-induced backside wet etching (LIBWE) is performed using ultrashort 248 nm laser pulses with a pulse duration of 600 fs to obtain sub-wavelength laser-induced periodic surface structures (LIPSS) on the back surface of fused silica which is in contact with a 0.5 mol l(-1) solution of pyrene in toluene. The LIPSS are strictly one-dimensional patterns, oriented parallel to the polarization of the laser radiation, and have a constant period of about 140 nm at all applied laser fluences (0.33-0.84 J cm(-2)) and pulse numbers (50-1000 pulses). The LIPSS amplitude varies due to the inhomogeneous fluence in the laser spot. The LIPSS are examined with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their power spectral density (PSD) distribution is analysed at a measured area of 10 µm × 10 µm. The good agreement of the measured and calculated LIPSS periods strongly supports a mechanism based on the interference of surface-scattered and incident waves.

  6. Effect of gas heating on the generation of an ultrashort avalanche electron beam in the pulse-periodic regime

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Tarasenko, V. F.

    2015-07-01

    The generation of an ultrashort avalanche electron beam (UAEB) in nitrogen in the pulse-periodic regime is investigated. The gas temperature in the discharge gap of the atmospheric-pressure nitrogen is measured from the intensity distribution of unresolved rotational transitions ( C 3Π u , v' = 0) → ( B 3Π g , v″ = 0) in the nitrogen molecule for an excitation pulse repetition rate of 2 kHz. It is shown that an increase in the UAEB current amplitude in the pulse-periodic regime is due to gas heating by a series of previous pulses, which leads to an increase in the reduced electric field strength as a result of a decrease in the gas density in the zone of the discharge formation. It is found that in the pulse-periodic regime and the formation of the diffuse discharge, the number of electrons in the beam increases by several times for a nitrogen pressure of 9 × 103 Pa. The dependences of the number of electrons in the UAEB on the time of operation of the generator are considered.

  7. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  8. Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation

    NASA Astrophysics Data System (ADS)

    Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela

    2015-03-01

    Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (~1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma

  9. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar

    2015-09-14

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  10. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    NASA Astrophysics Data System (ADS)

    Moskalenko, Andrey S.; Zhu, Zhen-Gang; Berakdar, Jamal

    2017-02-01

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver

  11. Enhanced coupling of terahertz radiation to cylindrical wire waveguides.

    PubMed

    Deibel, Jason A; Wang, Kanglin; Escarra, Matthew D; Mittleman, Daniel

    2006-01-09

    Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM). Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

  12. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  13. Investigation of Temperature Change under Influence of Ultrashort Laser Pulses Taking into Account Relaxation Properties of Materials

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Kudinov, V. A.; Stefanyuk, E. V.; Kudinov, I. V.

    2018-03-01

    By using the modified Fourier law’s formula considering the relaxation of heat flow and temperature gradient, a mathematical model of the local non-equilibrium process of plate heating with ultrashort laser pulses was developed. The research showed that consideration of non-locality results in the delayed plate heat up irrespective of the laser radiation flow intensity. It was also shown that in consideration of the relaxation phenomena, the boundary conditions may not be fulfilled immediately – they may be set only within a definite range of the initial time.

  14. Dynamics of laser-induced damage of spherical nanoparticles by high-intensity ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Komolov, Vladimir L.; Gruzdev, Vitaly E.; Przhibelskii, Sergey G.; Smirnov, Dmitry S.

    2012-12-01

    Damage of a metal spherical nanoparticle by femtosecond laser pulses is analyzed by splitting the overall process into two steps. The fast step includes electron photoemission from a nanoparticle. It takes place during direct action of a laser pulse and its rate is evaluated as a function of laser and particle parameters by two approaches. Obtained results suggest the formation of significant positive charge of the nanoparticles due to the photoemission. The next step includes ion emission that removes the excessive positive charge and modifies particle structure. It is delayed with respect to the photo-emission and is analyzed by a simple analytical model and modified molecular dynamics. Obtained energy distribution suggests generation of fast ions capable of penetrating into surrounding material and generating defects next to the nanoparticle. The modeling is extended to the case of a nanoparticle on a solid surface to understand the basic mechanism of surface laser damage initiated by nano-contamination. Simulations predict embedding the emitted ions into substrate within a spot with size significantly exceeding the original particle size. We discuss the relation of those effects to the problem of bulk and surface laser-induced damage of optical materials by single and multiple ultrashort laser pulses.

  15. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  16. A coherent detection technique via optically biased field for broadband terahertz radiation.

    PubMed

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  17. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging.

    PubMed

    Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas

    2007-02-01

    Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.

  18. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  19. In situ accurate determination of the zero time delay between two independent ultrashort laser pulses by observing the oscillation of an atomic excited wave packet.

    PubMed

    Zhang, Qun; Hepburn, John W

    2008-08-15

    We propose a novel method that uses the oscillation of an atomic excited wave packet observed through a pump-probe technique to accurately determine the zero time delay between a pair of ultrashort laser pulses. This physically based approach provides an easy fix for the intractable problem of synchronizing two different femtosecond laser pulses in a practical experimental environment, especially where an in situ time zero measurement with high accuracy is required.

  20. Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.

    PubMed

    Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas

    2013-12-05

    Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    within the THz spectral region providing an additional benefit. His review describes the principle, characteristics, and applications of terahertz molecular imaging, where the use of nanoparticle probes allows dramatically enhanced sensitivity. Jiaguang Han and Weili Zhang and colleagues in China, Saudi Arabia, Japan and the US report exciting developments for optoelectronics [11]. They describe work on plasmon-induced transparency (PIT), an analogue of electromagnetically induced transparency (EIT) where interference leads to a sharp transparency window that may be useful for nonlinear and slow-light devices, optical switching, pulse delay, and storage for optical information processing. While PIT has advantages over the cumbersome experimental systems required for EIT, it has so far been constrained to very narrow band operation. Now Zhang and colleagues present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning across a frequency range greater than 0.40 THz in the terahertz regime. 'We can foresee a historic breakthrough for science and technology through terahertz research,' concluded Masayoshi Tonouchi in his review over five years ago as momentum in the field was mounting [12]. He added, 'It is also noteworthy that THz research is built on many areas of science and the coordination of a range of disciplines is giving birth to a new science.' With the inherently multidisciplinary nature of nanotechnology research it is not so strange to see the marriage of the two fields form such a fruitful partnership, as this special section highlights. References [1] Williams B S, Kumar S, Hu Q and Reno J L 2006 High-power terahertz quantum-cascade lasers Electron. Lett. 42 89-91 [2] Köhler R et al 2002 Terahertz semiconductor-heterostructure laser Nature 417 156-9 [3] Mittendorff M, Xu M, Dietz R J B, K¨unzel H, Sartorius B, Schneider H, Helm M and Winnerl S 2013 Large area photoconductive THz emitter for 1.55 μm excitation based on

  2. Multimodal evaluation of ultra-short laser pulses treatment for skin burn injuries.

    PubMed

    Santos, Moises Oliveira Dos; Latrive, Anne; De Castro, Pedro Arthur Augusto; De Rossi, Wagner; Zorn, Telma Maria Tenorio; Samad, Ricardo Elgul; Freitas, Anderson Zanardi; Cesar, Carlos Lenz; Junior, Nilson Dias Vieira; Zezell, Denise Maria

    2017-03-01

    Thousands of people die every year from burn injuries. The aim of this study is to evaluate the feasibility of high intensity femtosecond lasers as an auxiliary treatment of skin burns. We used an in vivo animal model and monitored the healing process using 4 different imaging modalities: histology, Optical Coherence Tomography (OCT), Second Harmonic Generation (SHG), and Fourier Transform Infrared (FTIR) spectroscopy. 3 dorsal areas of 20 anesthetized Wistar rats were burned by water vapor exposure and subsequently treated either by classical surgical debridement, by laser ablation, or left without treatment. Skin burn tissues were non-invasively characterized by OCT images and biopsied for further histopathology analysis, SHG imaging and FTIR spectroscopy at 3, 5, 7 and 14 days after burn. The laser protocol was found as efficient as the classical treatment for promoting the healing process. The study concludes to the validation of femtosecond ultra-short pulses laser treatment for skinburns, with the advantage of minimizing operatory trauma.

  3. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  4. Terahertz spectroscopic investigations of leather in terahertz wave range

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Pulsed THz time-domain spectroscopy is a coherent technique, in which both the amplitude and the phase of a THz pulse are measured. Recently, material characterization using THz spectroscopy has been applied to biochemicals, pharmaceuticals, polymers and semiconductors and has given us important information. Moreover, THz imaging has progressed and is expected to be applicable for the identification of narcotics and explosives. The most important and characteristic point of THz spectroscopy is said to be its ability to observe intermolecular vibrations in contrast to infrared spectroscopy (IR), which observes intramolecular vibrations. Coherent detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. Terahertz wave spectroscopy has been used to study the properties and absorption spectra characteristic of materials. In this paper, the spectral characteristics of cow skin, pig skin sheep skin, horse skin and deer skin have been measured with terahertz time-domain spectroscopy in the range of 0.1~2.0THz. The results show that THz-TDS technology provides an important tool for quality analysis and detection of leathers.

  5. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.

    2016-05-15

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less

  6. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  7. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  8. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  9. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  10. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.

    2016-03-21

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less

  11. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  12. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-03-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  13. Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification

    NASA Astrophysics Data System (ADS)

    Avetisyan, Y.; Makaryan, A.; Tadevosyan, V.; Tonouchi, M.

    2017-12-01

    A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets," which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.

  14. GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.

    2011-08-01

    We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).

  15. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    PubMed Central

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-01-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565

  16. Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-12-15

    We describe measurements of polarization dynamics as a probe of multiple scattering of photons in a random medium by use of single-cycle terahertz pulses. We measure the degree of polarization and correlate it directly with the single-scattering regime in the time domain. We also measure the evolution of the temporal phase of the radiation and show that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect can be used to distinguish photons that have been scattered a few times from those that are propagating diffusively.

  17. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  18. Controllable Terahertz Radiation from a Linear-Dipole Array Formed by a Two-Color Laser Filament in Air.

    PubMed

    Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie

    2016-12-09

    We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.

  19. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sha; Jones, R. R.

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  20. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE PAGES

    Li, Sha; Jones, R. R.

    2016-11-10

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  1. Interaction of intense ultrashort pulse lasers with clusters.

    NASA Astrophysics Data System (ADS)

    Petrov, George

    2007-11-01

    The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys

  2. Terahertz Technology: A Boon to Tablet Analysis

    PubMed Central

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  3. Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B

    2018-04-01

    To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Fully Phase-Encoded MRI Near Metallic Implants Using Ultrashort Echo Times and Broadband Excitation

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Koch, Kevin M.; Reeder, Scott B.

    2017-01-01

    Purpose To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. Theory and Methods An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Results Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T1-weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Conclusions Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 000:000–000, 2017. PMID:28833407

  5. An Overview of the Technological and Scientific Achievements of the Terahertz

    NASA Astrophysics Data System (ADS)

    Rostami, Ali; Rasooli, Hassan; Baghban, Hamed

    2011-01-01

    Due to the importance of terahertz radiation in the past several years in spectroscopy, astrophysics, and imaging techniques namely for biomedical applications (its low interference and non-ionizing characteristics, has been made to be a good candidate to be used as a powerful technique for safe, in vivo medical imaging), we decided to review of the terahertz technology and its associated science achievements. The review consists of terahertz terminology, different applications, and main components which are used for detection and generation of terahertz radiation. Also a brief theoretical study of generation and detection of terahertz pulses will be considered. Finally, the chapter will be ended by providing the usage of organic materials for generation and detection of terahertz radiation.

  6. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing

  7. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  8. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  9. Spatiotemporal behaviour of isodiffracting hollow Gaussian pulsed beams

    NASA Astrophysics Data System (ADS)

    Xu, Yanbing; Lü, Baida

    2007-05-01

    A model of isodiffracting hollow Gaussian pulsed beams (HGPBs) is presented. Based on the Fourier transform method, an analytical formula for the HGPBs propagating in free space is derived, which enables us to study the spatiotemporal behaviour of the ultrashort pulsed beams. Some interesting phenomena of ultrashort pulsed beams, such as the symmetrical temporal profiles, the dark rings, etc, are discussed in detail and illustrated numerically.

  10. Terahertz emission driven by two-color laser pulses at various frequency ratios

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.

    2017-08-01

    We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.

  11. Ultrashort polarization-tailored bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, Stefanie; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias

    2017-06-01

    We present a novel concept for the generation of ultrashort polarization-shaped bichromatic laser fields. The scheme utilizes a 4f polarization pulse shaper based on a liquid crystal spatial light modulator for independent amplitude and phase modulation of femtosecond laser pulses. By choice of either a conventional (p) or a composite (p-s) polarizer in the Fourier plane, the shaper setup enables the generation of parallel linearly and orthogonal linearly polarized bichromatic fields. Additional use of a ? wave plate behind the setup yields co-rotating and counter-rotating circularly polarized bichromatic fields. The scheme allows to independently control the spectral amplitude, phase and polarization profile of the output fields, offering an enormous versatility of bichromatic waveforms.

  12. Reduction of protection from laser eyewear with ultrashort exposure

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Stolarski, Jacob; Noojin, Gary D.; Rockwell, Benjamin A.; Thomas, Robert J.

    2001-07-01

    We have measured the optical density of various laser eye protection samples as a function of increasing irradiance. We show that the protective quality of some eyewear degrades as irradiance increases. In previous studies this problem has been demonstrated in samples irradiated by nanosecond pulses, but the current study shows that the modern laser eye protection seems to be robust except for the irradiance possible with ultrashort laser pulse exposure. We discuss the most likely saturation mechanisms in this pulse duration regime and discuss relevance to laser safety.

  13. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  14. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  15. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  16. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  17. Ultrafast spintronics roadmap: from femtosecond spin current pulses to terahertz non-uniform spin dynamics via nano-confined spin transfer torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe

    2016-10-01

    Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.

  18. Optical Properties of Laminarin Using Terahertz Time-Domain Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Shin, Hee Jun; Maeng, Inhee; Oh, Seung Jae; Kim, Sung In; Kim, Ha Won; Son, Joo-Hiuk

    2009-04-01

    Terahertz spectroscopy is important in the study of biomolecular structure because the vibration and rotation energy of large molecules such as DNA, proteins, and polysaccharides are laid in terahertz regions. Terahertz time-domain spectroscopy (THz-TDS), using terahertz pulses generated and detected by femto-second pulses laser, has been used in the study of biomolecular dynamics, as well as carrier dynamics of semiconductors. Laminarin is a polysaccharide of glucose in brown algae. It is made up of β(1-3)-glucan and β(1-6)-glucan. β-glucan is an anticancer material that activates the immune reaction of human cells and inhibits proliferation of cancer cells. β-glucan with a single-strand structure has been reported to activate the immune reaction to a greater extent than β-glucan with a triple-strand helix structure. We used THz-TDS to characterize the difference between single-strand and triple-strand β-glucan. We obtained single-strand β-glucan by chemical treatment of triple-strand β-glucan. We measured the frequency dependent optical constants of Laminarin using THz-TDS. Power absorption of the triple-strand helix is larger than the single-strand helix in terahertz regions. The refractive index of the triple-strand helix is also larger than that of the single-strand helix.

  19. Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy.

    PubMed

    Sun, Yiwen; Yang, Shengxin; Du, Pengju; Yan, Fei; Qu, Junle; Zhu, Zexuan; Zuo, Jian; Zhang, Cunlin

    2017-02-06

    The conductivity of poly(3,4-ethylene dioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) is significantly enhanced on adding some organic solvent such as ethylene glycol (EG). In this paper, the optoelectronic properties of EG doped PEDOT/PSS on transmission and anti-reflection effects are investigated in detail by terahertz time domain spectroscopy (THz-TDS). The transmission line circuit theory gives us an insight into the THz transmission mechanisms of the main and second pulses. In particular, we show that the conductivities of 10% EG doped PEDOT/PSS are nearly frequency independent from 0.3 to 1.5 THz. To demonstrate applications of this property, we design and fabricate broadband terahertz neutral density filters and anti-reflection coatings based on 10% EG doped PEDOT/PSS thin films with varying thickness. Our measurements highlight the capability of THz-TDS to characterize the conductivity of EG doped PEDOT/PSS, which is essential for broadband optoelectronic devices in THz region.

  20. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel

    NASA Astrophysics Data System (ADS)

    Kirner, S. V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; Krüger, J.; Solis, J.; Siegel, J.; Stratakis, E.; Bonse, J.

    2017-12-01

    Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials.

  1. A review of ultra-short pulse lasers for military remote sensing and rangefinding

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2009-09-01

    Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.

  2. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  3. ICPP: Relativistic Plasma Physics with Ultra-Short High-Intensity Laser Pulses

    NASA Astrophysics Data System (ADS)

    Meyer-Ter-Vehn, Juergen

    2000-10-01

    Recent progress in generating ultra-short high-intensity laser pulses has opened a new branch of relativistic plasma physics, which is discussed in this talk in terms of particle-in-cell (PIC) simulations. These pulses create small plasma volumes of high-density plasma with plasma fields above 10^12 V/m and 10^8 Gauss. At intensities beyond 10^18 W/cm^2, now available from table-top systems, they drive relativistic electron currents in self-focussing plasma channels. These currents are close to the Alfven limit and allow to study relativistic current filamentation. A most remarkable feature is the generation of well collimated relativistic electron beams emerging from the channels with energies up to GeV. In dense matter they trigger cascades of gamma-rays, e^+e^- pairs, and a host of nuclear and particle processes. One of the applications may be fast ignition of compressed inertial fusion targets. Above 10^23 W/cm^2, expected to be achieved in the future, solid-density matter becomes relativistically transparent for optical light, and the acceleration of protons to multi-GeV energies is predicted in plasma layers less than 1 mm thick. These results open completely new perspectives for plasma-based accelerator schemes. Three-dimensional PIC simulations turn out to be the superior tool to explore the relativistic plasma kinetics at such intensities. Results obtained with the VLPL code [1] are presented. Different mechanisms of particle acceleration are discussed. Both laser wakefield and direct laser acceleration in plasma channels (by a mechanism similar to inverse free electron lasers) have been identified. The latter describes recent MPQ experimental results. [1] A. Pukhov, J. Plasma Physics 61, 425 - 433 (1999): Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Laboratory).

  4. Optimized two- and three-colour laser pulses for the intense terahertz wave generation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-11-01

    Based on the photocurrent model, we perform a theoretical study on the optimization of terahertz (THz) wave emission from argon gas irradiated by the two- and three-colour laser fields. To obtain stronger THz radiation for the given conditions, a genetic algorithm method is applied to search for the optimum laser parameters. For the two-colour field, our optimizations reveal two types of optimal scheme, and each one dominates the THz generation in different regions of intensity ratio for a given total laser intensity. One scheme is the combination of a fundamental laser pulse and its second harmonic, while the other is the fundamental pulse with its fourth harmonic. For each scheme, the optimal intensity ratio and phase delay are obtained. For the three-colour case, our optimization shows that the excellent waveform for the strongest THz radiation is composed of a fundamental laser pulse, and its second, third harmonics, with appropriate intensity ratio and carrier-envelope phase. Such a 3-colour field can generate strong THz radiation comparable with a 10-colour sawtooth wave [Martínez et al., Phys. Rev. Lett. 114, 183901 (2015)]. The physical mechanisms for the enhancement of THz wave emission in gases are also discussed in detail. Our results give helpful guidance for intense THz generation with tabletop femtosecond laser device in experiment.

  5. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    PubMed Central

    Li, Sha; Jones, R. R.

    2016-01-01

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm

  6. Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons.

    PubMed

    Temnov, Vasily V; Klieber, Christoph; Nelson, Keith A; Thomay, Tim; Knittel, Vanessa; Leitenstorfer, Alfred; Makarov, Denys; Albrecht, Manfred; Bratschitsch, Rudolf

    2013-01-01

    Fundamental interactions induced by lattice vibrations on ultrafast time scales have become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the terahertz-frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here we report on the generation and nonlinear propagation of giant (1 per cent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping after a propagation distance of only 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond terahertz-ultrasonics at the nano-scale in metals at room temperature.

  7. Ultrashort x-ray backlighters and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umstadter, D., University of Michigan

    Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant tomore » high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.« less

  8. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  9. Non-contact weight measurement of flat-faced pharmaceutical tablets using terahertz transmission pulse delay measurements.

    PubMed

    Bawuah, Prince; Silfsten, Pertti; Ervasti, Tuomas; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2014-12-10

    By measuring the time delay of a terahertz pulse traversing a tablet, and hence its effective refractive index, it is possible to non-invasively and non-destructively detect the weight of tablets made of microcrystalline cellulose (MCC). Two sets of MCC tablets were used in the study: Set A (training set) consisted of 13 tablets with nominally constant height but varying porosities, whereas Set B (test set) comprised of 21 tablets with nominally constant porosity but different heights. A linear correlation between the estimated absolute weight based on the terahertz measurement and the measured weight of both sets of MCC tablets was found. In addition, it was possible to estimate the height of the tablets by utilizing the estimated absolute weight and calculating the relative change of height of each tablet with respect to an ideal tablet. A good agreement between the experimental and the calculated results was found highlighting the potential of this technique for in-line sensing of the weight, porosity and the relative change in height of the tablets compared to a reference/ideal tablet. In this context, we propose a quantitative quality control method to assess the deviations in porosity of tablets immediately after compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  11. Simulation and analysis of atmospheric transmission performance in airborne Terahertz communication

    NASA Astrophysics Data System (ADS)

    Pan, Chengsheng; Shi, Xin; Liu, Chengyang; Wang, Xue; Ding, Yuanming

    2018-02-01

    For the special meteorological condition of high altitude transmission; first the influence of atmospheric turbulence on the Terahertz wireless communication is analyzed, and the atmospheric constants model with increase in height is given. On this basis, the relationship between the flicker index and the high altitude horizon transmission distance of the Terahertz wave is analyzed by simulation. Then, through the analysis of high altitude path loss and noise, the high altitude wireless link model is built. Finally, the link loss budget is given according to the current Terahertz device parameters, and bit error rate (BER) performance of on-off keyed modulation (OOK) and pulse position modulation (PPM) in four Terahertz frequency bands is compared and analyzed. All these above provided theoretical reference for high-altitude Terahertz wireless communication transmission.

  12. The new methods of treatment for age-related macular degeneration using the ultra-short pulsed laser

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yumiko; Awazu, Kunio; Suzuki, Sachiko; Ohshima, Tetsuro; Sawa, Miki; Sakaguchi, Hirokazu; Tano, Yasuo; Ohji, Masahito

    2007-02-01

    The non-invasive methods of treatments have been studying for the improvement of quality of life (QOL) of patients undergoing treatment. A photodynamic therapy (PDT) is one of the non-invasive treatments. PDT is the methods of treatment using combination of a laser and a photosensitizer. PDT has few risks for patients. Furthermore, PDT enables function preservation of a disease part. PDT has been used for early cancer till now, but in late years it is applied for age-related macular degeneration (AMD). AMD is one of the causes of vision loss in older people. However, PDT for AMD does not produce the best improvement in visual acuity. The skin photosensivity by an absorption characteristic of a photosensitizer is avoided. We examined new PDT using combination of an ultra-short pulsed laser and indocyanine green (ICG).

  13. Toward remote sensing with broadband terahertz waves

    NASA Astrophysics Data System (ADS)

    Clough, Benjamin W.

    Terahertz electromagnetic waves, defined as the frequency region between 0.1 and 10 terahertz on the electromagnetic spectrum, have demonstrated remarkable usefulness for imaging and chemical identification with the ability to penetrate many optically opaque barriers. Photon energies at these frequencies are relatively small (meV), which means the radiation is non-ionizing and therefore considered biologically innocuous. With the growing list of applications and demand for terahertz technology, there is a need to develop innovative terahertz sources and detectors that can overcome existing limitations in power, bandwidth, and operating range. Although terahertz radiation has demonstrated unique and exceptional abilities, it has also presented several fundamental challenges. Most notably, the water vapor absorption of terahertz waves in air at habitable altitudes is greater than 100 dB/km. There is an immediate push to utilize the material and vapor identification abilities of terahertz radiation, while extending the effective distances over which the technology can be used. Remote terahertz detection, until recently, was thought to be impossible due to the high water content in the atmosphere, limited signal collection geometries, and solid state materials necessary for generation and detection. This dissertation focuses on laser air-photonics used for sensing short pulses of electromagnetic radiation. Through the ionization process, the very air that we breathe is capable of generating terahertz field strengths greater than 1 MV/cm, useful bandwidths over 100 terahertz, and highly directional emission patterns. Following ionization and plasma formation, the emitted plasma acoustics or fluorescence can be modulated by an external field to serve as omnidirectional, broadband, electromagnetic sensor. A deeper understanding of terahertz wave-plasma interaction is used to develop methods for retrieving coherent terahertz wave information that can be encoded into plasma

  14. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  15. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  16. Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.

    PubMed

    Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng

    2018-01-01

    We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.

  17. Ultrashort soliton switching based on coherent energy hiding.

    PubMed

    Romagnoli, M; Wabnitz, S; Zoccolotti, L

    1991-08-15

    Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signalprocessing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional coupler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.

  18. Terahertz imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam

    second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.

  19. Terahertz emission from ultrafast spin-charge current at a Rashba interface

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Jungfleisch, Matthias Benjamin; Zhang, Wei; Pearson, John E.; Wen, Haidan; Hoffmann, Axel

    Ultrafast broadband terahertz (THz) radiation is highly desired in various fields from fundamental research in condensed matter physics to bio-chemical detection. Conventional ultrafast THz sources rely on either nonlinear optical effects or ultrafast charge currents in semiconductors. Recently, however, it was realized that ultrabroad-band THz radiation can be produced highly effectively by novel spintronics-based emitters that also make use of the electron's spin degree of freedom. Those THz-emitters convert a spin current flow into a terahertz electromagnetic pulse via the inverse spin-Hall effect. In contrast to this bulk conversion process, we demonstrate here that a femtosecond spin current pulse launched from a CoFeB layer can also generate terahertz transients efficiently at a two-dimensional Rashba interface between two non-magnetic materials, i.e., Ag/Bi. Those interfaces have been proven to be efficient means for spin- and charge current interconversion.

  20. High-power ultrashort fiber laser for solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  1. Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Weerawarne, Darshana L.

    Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.

  2. Cherenkov emission of terahertz surface plasmon polaritons from a superluminal optical spot on a structured metal surface.

    PubMed

    Bakunov, M I; Tsarev, M V; Hangyo, M

    2009-05-25

    We propose to launch terahertz surface plasmon polaritons on a structured metal surface by using a femtosecond laser pulse obliquely incident on a strip of an electro-optic material deposited on the surface. The laser pulse creates a nonlinear polarization that moves along the strip with a superluminal velocity and emits surface terahertz waves via the Cherenkov radiation mechanism. We calculate the radiated fields and frequency distribution of the radiated energy for a grooved perfect-conductor surface with a GaAs strip illuminated by Ti:sapphire laser. This technique can be used to perform surface terahertz spectroscopy.

  3. Operation of Terahertz Quantum-cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-wave Mode

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

  4. Terahertz multiheterodyne spectroscopy using laser frequency combs

    DOE PAGES

    Yang, Yang; Burghoff, David; Hayton, Darren J.; ...

    2014-07-01

    The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 μs. As a proof of principle, we use these combs to measure the broadband transmissionmore » spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.« less

  5. Terahertz wave electro-optic measurements with optical spectral filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  6. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    PubMed

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300  μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  7. Defocusing complex short-pulse equation and its multi-dark-soliton solution.

    PubMed

    Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong

    2016-05-01

    In this paper, we propose a complex short-pulse equation of both focusing and defocusing types, which governs the propagation of ultrashort pulses in nonlinear optical fibers. It can be viewed as an analog of the nonlinear Schrödinger (NLS) equation in the ultrashort-pulse regime. Furthermore, we construct the multi-dark-soliton solution for the defocusing complex short-pulse equation through the Darboux transformation and reciprocal (hodograph) transformation. One- and two-dark-soliton solutions are given explicitly, whose properties and dynamics are analyzed and illustrated.

  8. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.

    PubMed

    Niwa, Masahiro; Hiraishi, Yasuhiro

    2014-01-30

    Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Brewster's angle silicon wafer terahertz linear polarizer.

    PubMed

    Wojdyla, Antoine; Gallot, Guilhem

    2011-07-18

    We present a new cost-effective terahertz linear polarizer made from a stack of silicon wafers at Brewster's angle, andevaluate its performances. We show that this polarizer is wide-band, has a high extinction ratio (> 6 × 10(3)) and very small insertion losses (< 1%). We provide measurements of the temporal waveforms after linearly polarizing the THz beam and show that there is no distortion of the pulse. We compare its performances with a commercial wire-grid polarizer, and show that the Brewster's angle polarizer can conveniently be used to control the power of a terahertz beam.

  10. Temperature control of the ultra-short laser pulse compression in a one-dimensional photonic band gap structure with nematic liquid crystal as a defect layer

    NASA Astrophysics Data System (ADS)

    Shiri, Ramin; Safari, Ebrahim; Bananej, Alireza

    2018-04-01

    We investigate numerically the controllable chirped pulse compression in a one-dimensional photonic structure containing a nematic liquid crystal defect layer using the temperature dependent refractive index of the liquid crystal. We consider the structure under irradiation by near-infrared ultra-short laser pulses polarized parallel to the liquid crystal director at a normal angle of incidence. It is found that the dispersion behaviour and consequently the compression ability of the system can be changed in a controlled manner due to the variation in the defect temperature. When the temperature increased from 290 to 305 K, the transmitted pulse duration decreased from 75 to 42 fs in the middle of the structure, correspondingly. As a result, a novel low-loss tunable pulse compressor with a really compact size and high compression factor is achieved. The so-called transfer matrix method is utilized for numerical simulations of the band structure and reflection/transmission spectra of the structure under investigation.

  11. [The Detection of Ultra-Broadband Terahertz Spectroscopy of InP Wafer by Using Coherent Heterodyne Time-Domain Spectrometer].

    PubMed

    Zhang, Liang-liang; Zhang, Rui; Xu, Xiao-yan; Zhang, Cun-lin

    2016-02-01

    Indium Phosphide (InP) has attracted great physical interest because of its unique characteristics and is indispensable to both optical and electronic devices. However, the optical property of InP in the terahertz range (0. 110 THz) has not yet been fully characterized and systematically studied. The former researches about the properties of InP concentrated on the terahertz frequency between 0.1 and 4 THz. The terahertz optical properties of the InP in the range of 4-10 THz are still missing. It is fairly necessary to fully understand its properties in the entire terahertz range, which results in a better utilization as efficient terahertz devices. In this paper, we study the optical properties of undoped (100) InP wafer in the ultra-broad terahertz frequency range (0.5-18 THz) by using air-biased-coherent-detection (ABCD) system, enabling the coherent detection of terahertz wave in gases, which leads to a significant improvement on the dynamic range and sensitivity of the system. The advantage of this method is broad frequency bandwidth from 0.2 up to 18 THz which is only mainly limited by laser pulse duration since it uses ionized air as terahertz emitter and detector instead of using an electric optical crystal or photoconductive antenna. The terahertz pulse passing through the InP wafer is delayed regarding to the reference pulse and has much lower amplitude. In addition, the frequency spectrum amplitude of the terahertz sample signal drops to the noise floor level from 6.7 to 12.1 THz. At the same time InP wafer is opaque at the frequencies spanning from 6.7 to 12.1 THz. In the frequency regions of 0.8-6.7 and 12.1-18 THz it has relativemy low absorption coefficient. Meanwhile, the refractive index increases monotonously in the 0.8-6.7 THz region and 12.1-18 THz region. These findings will contribute to the design of InP based on nonlinear terahertz devices.

  12. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  13. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  14. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2014-02-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.

  15. Ultrashort-pulse lasers treating the crystalline lens: will they cause vision-threatening cataract? (An American Ophthalmological Society thesis).

    PubMed

    Krueger, Ronald R; Uy, Harvey; McDonald, Jared; Edwards, Keith

    2012-12-01

    To demonstrate that ultrashort-pulse laser treatment in the crystalline lens does not form a focal, progressive, or vision-threatening cataract. An Nd:vanadate picosecond laser (10 ps) with prototype delivery system was used. Primates: 11 rhesus monkey eyes were prospectively treated at the University of Wisconsin (energy 25-45 μJ/pulse and 2.0-11.3M pulses per lens). Analysis of lens clarity and fundus imaging was assessed postoperatively for up to 4½ years (5 eyes). Humans: 80 presbyopic patients were prospectively treated in one eye at the Asian Eye Institute in the Philippines (energy 10 μJ/pulse and 0.45-1.45M pulses per lens). Analysis of lens clarity, best-corrected visual acuity, and subjective symptoms was performed at 1 month, prior to elective lens extraction. Bubbles were immediately seen, with resolution within the first 24 to 48 hours. Afterwards, the laser pattern could be seen with faint, noncoalescing, pinpoint micro-opacities in both primate and human eyes. In primates, long-term follow-up at 4½ years showed no focal or progressive cataract, except in 2 eyes with preexisting cataract. In humans, <25% of patients with central sparing (0.75 and 1.0 mm radius) lost 2 or more lines of best spectacle-corrected visual acuity at 1 month, and >70% reported acceptable or better distance vision and no or mild symptoms. Meanwhile, >70% without sparing (0 and 0.5 mm radius) lost 2 or more lines, and most reported poor or severe vision and symptoms. Focal, progressive, and vision-threatening cataracts can be avoided by lowering the laser energy, avoiding prior cataract, and sparing the center of the lens.

  16. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  17. Higgs amplitude mode in the BCS superconductors Nb1-xTi(x)N induced by terahertz pulse excitation.

    PubMed

    Matsunaga, Ryusuke; Hamada, Yuki I; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Shimano, Ryo

    2013-08-02

    Ultrafast responses of BCS superconductor Nb(1-x)Ti(x)N films in a nonadiabatic excitation regime were investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast manipulation of the superconducting order parameter by optical means.

  18. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays

    PubMed Central

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-01-01

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999

  19. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  20. Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters.

    PubMed

    Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona

    2013-07-08

    In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).

  1. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.

    PubMed

    Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben

    2017-11-01

    Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Ultrashort-Pulse Lasers Treating the Crystalline Lens: Will They Cause Vision-Threatening Cataract? (An American Ophthalmological Society Thesis)

    PubMed Central

    Krueger, Ronald R.; Uy, Harvey; McDonald, Jared; Edwards, Keith

    2012-01-01

    Purpose: To demonstrate that ultrashort-pulse laser treatment in the crystalline lens does not form a focal, progressive, or vision-threatening cataract. Methods: An Nd:vanadate picosecond laser (10 ps) with prototype delivery system was used. Primates: 11 rhesus monkey eyes were prospectively treated at the University of Wisconsin (energy 25–45 μJ/pulse and 2.0–11.3M pulses per lens). Analysis of lens clarity and fundus imaging was assessed postoperatively for up to 4½ years (5 eyes). Humans: 80 presbyopic patients were prospectively treated in one eye at the Asian Eye Institute in the Philippines (energy 10 μJ/pulse and 0.45–1.45M pulses per lens). Analysis of lens clarity, best-corrected visual acuity, and subjective symptoms was performed at 1 month, prior to elective lens extraction. Results: Bubbles were immediately seen, with resolution within the first 24 to 48 hours. Afterwards, the laser pattern could be seen with faint, noncoalescing, pinpoint micro-opacities in both primate and human eyes. In primates, long-term follow-up at 4½ years showed no focal or progressive cataract, except in 2 eyes with preexisting cataract. In humans, <25% of patients with central sparing (0.75 and 1.0 mm radius) lost 2 or more lines of best spectacle-corrected visual acuity at 1 month, and >70% reported acceptable or better distance vision and no or mild symptoms. Meanwhile, >70% without sparing (0 and 0.5 mm radius) lost 2 or more lines, and most reported poor or severe vision and symptoms. Conclusions: Focal, progressive, and vision-threatening cataracts can be avoided by lowering the laser energy, avoiding prior cataract, and sparing the center of the lens. PMID:23818739

  3. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.

    PubMed

    Xu, Quan; Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Cao, Wei; Zhang, Yuping; Li, Quan; Hu, Cong; Gu, Jianqiang; Tian, Zhen; Azad, Abul K; Han, Jiaguang; Zhang, Weili

    2016-10-01

    Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching responses. To further extend the functionalities of the EIT effect, here we present a frequency tunable EIT analogue in the terahertz regime by integrating photoactive silicon into the metamaterial unit cell. A tuning range from 0.82 to 0.74 THz for the EIT resonance frequency is experimentally observed by optical pump-terahertz probe measurements, allowing a frequency tunable group delay of the terahertz pulses. This straightforward approach delivers frequency agility of the EIT resonance and may enable novel ultrafast tunable devices for integrated plasmonic circuits.

  4. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  5. Strong terahertz emission by optical rectification of shaped laser pulse in transversely magnetized plasma

    NASA Astrophysics Data System (ADS)

    Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.

    2017-07-01

    This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.

  6. Microscale heat transfer in fusion welding of glass by ultra-short pulse laser using dual phase lag effects

    NASA Astrophysics Data System (ADS)

    Bag, Swarup

    2018-04-01

    The heat transfer in microscale has very different physical basis than macroscale where energy transport depends on collisions among energy carriers (electron and phonon), mean free path for the lattice (~ 10 – 100 nm) and mean free time between energy carriers. The heat transport is described on the basis of different types of energy carriers averaging over the grain scale in space and collations between them in time scale. The physical bases of heat transfer are developed by phonon-electron interaction for metals and alloys and phonon scattering for insulators and dielectrics. The non-Fourier effects in heating become more and more predominant as the duration of heating pulse becomes extremely small that is comparable with mean free time of the energy carriers. The mean free time for electron – phonon and phonon-phonon interaction is of the order of 1 and 10 picoseconds, respectively. In the present study, the mathematical formulation of the problem is defined considering dual phase lag i.e. two relaxation times in heat transport assuming a volumetric heat generation for ultra-short pulse laser interaction with dielectrics. The relaxation times are estimated based on phonon scattering model. A three dimensional finite element model is developed to find transient temperature distribution using quadruple ellipsoidal heat source model. The analysis is performed for single and multiple pulses to generate the time temperature history at different location and at different instant of time. The simulated results are validated with experiments reported in independent literature. The effect of two relaxation times and pulse width on the temperature profile is studied through numerical simulation.

  7. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  8. Critical dimension control using ultrashort laser for improving wafer critical dimension uniformity

    NASA Astrophysics Data System (ADS)

    Avizemer, Dan; Sharoni, Ofir; Oshemkov, Sergey; Cohen, Avi; Dayan, Asaf; Khurana, Ranjan; Kewley, Dave

    2015-07-01

    Requirements for control of critical dimension (CD) become more demanding as the integrated circuit (IC) feature size specifications become tighter and tighter. Critical dimension control, also known as CDC, is a well-known laser-based process in the IC industry that has proven to be robust, repeatable, and efficient in adjusting wafer CD uniformity (CDU) [Proc. SPIE 6152, 615225 (2006)]. The process involves locally and selectively attenuating the deep ultraviolet light which goes through the photomask to the wafer. The input data for the CDC process in the wafer fab is typically taken from wafer CDU data, which is measured by metrology tools such as wafer-critical dimension-scanning electron microscopy (CD-SEM), wafer optical scatterometry, or wafer level CD (WLCD). The CD correction process uses the CDU data in order to create an attenuation correction contour, which is later applied by the in-situ ultrashort laser system of the CDC to locally change the transmission of the photomask. The ultrashort pulsed laser system creates small, partially scattered, Shade-In-Elements (also known as pixels) by focusing the laser beam inside the quartz bulk of the photomask. This results in the formation of a localized, intravolume, quartz modified area, which has a different refractive index than the quartz bulk itself. The CDC process flow for improving wafer CDU in a wafer fab with detailed explanations of the shading elements formation inside the quartz by the ultrashort pulsed laser is reviewed.

  9. Screening mail for powders using terahertz technology

    NASA Astrophysics Data System (ADS)

    Kemp, Mike

    2011-11-01

    Following the 2001 Anthrax letter attacks in the USA, there has been a continuing interest in techniques that can detect or identify so-called 'white powder' concealed in envelopes. Electromagnetic waves (wavelengths 100-500 μm) in the terahertz frequency range penetrate paper and have short enough wavelengths to provide good resolution images; some materials also have spectroscopic signatures in the terahertz region. We report on an experimental study into the use of terahertz imaging and spectroscopy for mail screening. Spectroscopic signatures of target powders were measured and, using a specially designed test rig, a number of imaging methods based on reflection, transmission and scattering were investigated. It was found that, contrary to some previous reports, bacterial spores do not appear to have any strong spectroscopic signatures which would enable them to be identified. Imaging techniques based on reflection imaging and scattering are ineffective in this application, due to the similarities in optical properties between powders of interest and paper. However, transmission imaging using time-of-flight of terahertz pulses was found to be a very simple and sensitive method of detecting small quantities (25 mg) of powder, even in quite thick envelopes. An initial feasibility study indicates that this method could be used as the basis of a practical mail screening system.

  10. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    NASA Astrophysics Data System (ADS)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  11. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration.

    PubMed

    Gibbs, Holly C; Dodson, Colin R; Bai, Yuqiang; Lekven, Arne C; Yeh, Alvin T

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  12. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  13. Frequency-division multiplexer and demultiplexer for terahertz wireless links.

    PubMed

    Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M

    2017-09-28

    The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

  14. Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment

    NASA Astrophysics Data System (ADS)

    Tsen, Shaw-Wei David; Donthi, Nisha; La, Victor; Hsieh, Wen-Han; Li, Yen-Der; Knoff, Jayne; Chen, Alexander; Wu, Tzyy-Choou; Hung, Chien-Fu; Achilefu, Samuel; Tsen, Kong-Thon

    2015-05-01

    There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques.

  15. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less

  16. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.

    PubMed

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.

  17. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity

    DOE PAGES

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less

  18. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Chavez, Tanny; Khan, Kamrul; Wu, Jingxian; Chakraborty, Avishek; Rajaram, Narasimhan; Bailey, Keith; El-Shenawee, Magda

    2018-02-01

    This paper investigates terahertz (THz) imaging and classification of freshly excised murine xenograft breast cancer tumors. These tumors are grown via injection of E0771 breast adenocarcinoma cells into the flank of mice maintained on high-fat diet. Within 1 h of excision, the tumor and adjacent tissues are imaged using a pulsed THz system in the reflection mode. The THz images are classified using a statistical Bayesian mixture model with unsupervised and supervised approaches. Correlation with digitized pathology images is conducted using classification images assigned by a modal class decision rule. The corresponding receiver operating characteristic curves are obtained based on the classification results. A total of 13 tumor samples obtained from 9 tumors are investigated. The results show good correlation of THz images with pathology results in all samples of cancer and fat tissues. For tumor samples of cancer, fat, and muscle tissues, THz images show reasonable correlation with pathology where the primary challenge lies in the overlapping dielectric properties of cancer and muscle tissues. The use of a supervised regression approach shows improvement in the classification images although not consistently in all tissue regions. Advancing THz imaging of breast tumors from mice and the development of accurate statistical models will ultimately progress the technique for the assessment of human breast tumor margins.

  19. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  20. Time-domain measurement of terahertz frequency magnetoplasmon resonances in a two-dimensional electron system by the direct injection of picosecond pulsed currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.

    2016-02-29

    We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.

  1. Ultrashort pulse CPA-free Ho:YLF linear amplifier

    NASA Astrophysics Data System (ADS)

    Hinkelmann, Moritz; Wandt, Dieter; Morgner, Uwe; Neumann, Jörg; Kracht, Dietmar

    2018-02-01

    We present CPA-free linear amplification of 6:3 ps pulses in Ho:YLF crystals up to 100 μJ pulse energy at 10 kHz repetition rate. The seed pulses at a wavelength of 2:05 μm are provided by a Ho-based all-fiber system consisting of a soliton oscillator and a subsequent pre-amplifier followed by a free-space AOM as pulse-picker. Considering the achieved pulse peak power at MW-level, this system is a powerful tool for efficient pumping of parametric amplifiers addressing the highly demanded mid-IR spectral region. In detailed numerical simulations we verified our experimental results and discuss scaling options for pulse duration and energy.

  2. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  3. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  4. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  5. Transmission mode terahertz computed tomography

    DOEpatents

    Ferguson, Bradley Stuart; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-10

    A method of obtaining a series of images of a three-dimensional object by transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a scanning spot. The object is placed within the Rayleigh range of the focused THz beam and a focusing system is used to transfer the imaging plane from adjacent the object to a desired distance away from the object. A related system is also disclosed.

  6. Short pulse fiber lasers mode-locked by carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinji; Martinez, Amos; Xu, Bo

    2014-12-01

    One and two dimensional forms of carbon, carbon nanotubes and graphene, have interesting and useful, not only electronic but also photonic, properties. For fiber lasers, they are very attractive passive mode lockers for ultra-short pulse generation, since they have saturable absorption with inherently fast recovery time (<1 ps). In this paper, we review the photonic properties of graphene and CNT and our recent works on fabrication of fiber devices and applications to ultra-short pulse mode-locked fiber lasers.

  7. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.

    PubMed

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-10-18

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  8. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  9. Role of vanguard counter-potential in terahertz emission due to surface currents explicated by three-dimensional ensemble Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Lewis, R. A.

    2011-10-01

    The discovery that short pulses of near-infrared radiation striking a semiconductor may lead to emission of radiation at terahertz frequencies paved the way for terahertz time-domain spectroscopy. Previous modeling has allowed the physical mechanisms to be understood in general terms but it has not fully explored the role of key physical parameters of the emitter material nor has it fully revealed the competing nature of the surface-field and photo-Dember effects. In this context, our purpose has been to more fully explicate the mechanisms of terahertz emission from transient currents at semiconductor surfaces and to determine the criteria for efficient emission. To achieve this purpose we employ an ensemble Monte Carlo simulation in three dimensions. To ground the calculations, we focus on a specific emitter, InAs. We separately vary distinct physical parameters to determine their specific contribution. We find that scattering as a whole has relatively little impact on the terahertz emission. The emission is found to be remarkably resistant to alterations of the dark surface potential. Decreasing the band gap leads to a strong increase in terahertz emission, as does decreasing the electron mass. Increasing the absorption dramatically influences the peak-peak intensity and peak shape. We conclude that increasing absorption is the most direct path to improve surface-current semiconductor terahertz emitters. We find for longer pump pulses that the emission is limited by a newly identified vanguard counter-potential mechanism: Electrons at the leading edge of longer laser pulses repel subsequent electrons. This discovery is the main result of our work.

  10. Filamentation in Air with Ultrashort Mid-Infrared Pulses

    DTIC Science & Technology

    2011-05-09

    remote sensing [11, 12], lightning guiding [13–15], supercontinuum generation ( SCG ) [16], pulse compression [17], and THz generation [18]. Although...shock) and push the pulse toward positive times [23, 24, 46, 54, 55] [see Fig. 3(a) at ζ = 0.6]. Subsequently, the pulse collapses at ζ = 0.9, and SCG

  11. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483

  12. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    PubMed

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  13. Online terahertz thickness measurement in films and coatings

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  14. Potential uses of terahertz pulse imaging in dentistry: caries and erosion detection

    NASA Astrophysics Data System (ADS)

    Longbottom, Christopher; Crawley, David A.; Cole, Bryan E.; Arnone, Donald D.; Wallace, Vincent P.; Pepper, Michael

    2002-06-01

    TeraHertz Pulse Imaging (TPI) is a relatively new imaging modality for medical and dental imaging. The aim of the present study was to make a preliminary assessment of the potential uses of TPI in clinical dentistry, particularly in relation to caries detection and the detection and monitoring of erosion. Images were obtained in vitro using a new TPI system developed by TeraView Ltd. We present data showing that TPI in vitro images of approximal surfaces of whole teeth demonstrate a distinctive shadowing in the presence of natural carious lesions in enamel. The thickness of this enamel shadowing appears to be related to lesion depth. The use of non-ionizing radiation to image such lesions non-destructively in vitro represents a significant step towards such measurements in vivo. In addition, data is presented which indicates that TPI may have a potential role in the detection and monitoring of enamel erosion. In vitro experiments on whole incisor teeth show that TPI is capable of detecting relatively small artificially induced changes in the buccal or palatal surface of the enamel of these teeth. Imaging of enamel thickness at such a resolution without ionizing radiation would represent a significant breakthrough if applicable in vivo.

  15. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  16. Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  17. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  18. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  19. Interference-Free and Interference-Dominated Photoionization: Synthesis of Ultrashort and Coherent Single-Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-04-01

    Ionization of hydrogen-like ions driven by intense, short, and circularly-polarized laser pulses is considered under the scope of the relativistic strong-field approximation. We show that the energy spectra of photoelectrons can exhibit two types of structures, i.e., interference-dominated or interference-free ones. These structures are analyzed in connection to the time-dependent ponderomotive energy of electrons in the laser field. A possibility of synthesis of ultrashort single-electron pulses from those structures is also investigated.

  20. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  1. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.

    PubMed

    Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng

    2017-06-14

    The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.

  2. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2014-10-15

    We present an all-fiber concept that generates ultrashort pulses using a passively Q-switched microchip seed laser. A proof-of-principle configuration combines nonlinear pulse compression applying a chirped fiber-Bragg-grating, dispersion-free pulse shortening by means of a fiber-integrated spectral filtering, and a final hollow-core-fiber compression to reach the sub-200-fs pulse-duration region. In a compact all-fiber pulse-shortening unit, initial 100 ps long microchip pulses at 1064 nm wavelength have been shortened to 174 fs and shifted to 1034 nm while preserving a high temporal quality.

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Application of the Wigner function and matrix optics to describe variations in the shape of ultrashort laser pulses propagating through linear optical systems

    NASA Astrophysics Data System (ADS)

    Gitin, Andrey V.

    2006-04-01

    The transformation of the shape of ultrashort laser pulses (USPs) in time can be described similarly to the process of image formation in space. It is shown that the wave description of imaging is simplified by using the Wigner function, this description in the quadratic approximation being identical to the use of the ABCD matrices. The transformation of USPs propagating through linear optical systems was described and these systems were classified by the methods of matrix optics.

  4. Medical applications of ultra-short pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less

  5. Terahertz Imaging of Subjects With Concealed Weapons

    DTIC Science & Technology

    2006-05-01

    pulsed imaging", Advanced Characterization, Therapeutics, and Systems XIV, Proceedings of SPIE, Vol. 5318: 23-33 6. Anthony E. Siegman , Lasers , p667...imagery. Both methods made use of in-house transceivers, consisting of two ultra-stable far-infrared lasers , terahertz heterodyne detection systems...SYSTEM The 1.56THz transceiver system at STL uses two carbon dioxide lasers paired individually with two far-infrared lasers . All four units are

  6. Terahertz beam propagation measured through three-dimensional amplitude profile determination

    NASA Astrophysics Data System (ADS)

    Reiten, Matthew T.; Harmon, Stacee A.; Cheville, Richard Alan

    2003-10-01

    To determine the spatio-temporal field distribution of freely propagating terahertz bandwidth pulses, we measure the time-resolved electric field in two spatial dimensions with high resolution. The measured, phase-coherent electric-field distributions are compared with an analytic model in which the radiation from a dipole antenna near a dielectric interface is coupled to free space through a spherical lens. The field external to the lens is limited by reflection at the lens-air dielectric interface, which is minimized at Brewster's angle, leading to an annular field pattern. Field measurements compare favorably with theory. Propagation of terahertz beams is determined both by assuming a TEM0,0 Gaussian profile as well as expanding the beam into a superposition of Laguerre-Gauss modes. The Laguerre-Gauss model more accurately describes the beam profile for free-space propagation and after propagating through a simple optical system. The accuracy of both models for predicting far-field beam patterns depend upon accurately measuring complex field amplitudes of terahertz beams.

  7. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  8. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less

  9. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  10. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  11. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, T. I.; Yoo, Y. J.; You, Y. S.

    2014-07-28

    We demonstrate high-field (>8 MV/cm) terahertz generation at a high-repetition-rate (1 kHz) via two-color laser filamentation. Here, we use a cryogenically cooled femtosecond laser amplifier capable of producing 30 fs, 15 mJ pulses at 1 kHz as a driver, along with a combination of a thin dual-wavelength half-waveplate and a Brewster-angled silicon window to enhance terahertz generation and transmission. We also introduce a cost-effective, uncooled microbolometer camera for real-time terahertz beam profiling with two different modes.

  12. Evaluation of image quality in terahertz pulsed imaging using test objects.

    PubMed

    Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M

    2002-11-07

    As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.

  13. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  14. Semiconductor activated terahertz metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hou-Tong

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  15. Semiconductor activated terahertz metamaterials

    DOE PAGES

    Chen, Hou-Tong

    2014-08-01

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  16. First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae, E-mail: jeongtm@gist.ac.kr

    A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied tomore » investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.« less

  17. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M

    2011-04-15

    We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

  18. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    PubMed Central

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  19. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging.

    PubMed

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-05-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of terahertz radiation upon filtration of a supercontinuum produced during the propagation of a femtosecond laser pulse in a GaAs crystal

    NASA Astrophysics Data System (ADS)

    Vardanyan, Aleksandr O.; Oganesyan, David L.

    2008-11-01

    The results of a theoretical study of the formation of a supercontinuum produced due to the interaction of femtosecond laser pulses with an isotropic nonlinear medium are presented. The system of nonlinear Maxwell's equations was numerically integrated in time by the finite-difference method. The interaction of mutually orthogonal linearly-polarised 1.98-μm, 30-fs, 30-nJ pulses propagating along the normal to the 110 plane in a 1-mm-long GaAs crystal was considered. In the nonlinear part of the polarisation medium, the inertialless second-order nonlinear susceptibility was taken into account. The formation process of a terahertz pulse obtained due to the supercontinuum filtration was studied.

  1. Subwavelength hybrid terahertz waveguides.

    PubMed

    Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly

    2009-12-07

    We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.

  2. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  3. Modeling of ultrashort pulse generation in mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.

    2016-03-01

    We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.

  4. Integrated injection seeded terahertz source and amplifier for time-domain spectroscopy.

    PubMed

    Maysonnave, J; Jukam, N; Ibrahim, M S M; Maussang, K; Madéo, J; Cavalié, P; Dean, P; Khanna, S P; Steenson, D P; Linfield, E H; Davies, A G; Tignon, J; Dhillon, S S

    2012-02-15

    We used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon increasing the amplitude of the THz input power, which indicates that the QCL is operating in an injection seeded regime.

  5. THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso

    NASA Astrophysics Data System (ADS)

    Fukunaga, Kaori; Ikari, Tomofumi; Iwai, Kikuko

    2016-02-01

    The terahertz pulsed time-domain imaging technique and near-infrared observation were applied to investigate an oil painting on canvas by Pablo Picasso. The multilayer structure is clearly observed in cross-sectional image by terahertz pulsed time-domain imaging, and particular Cubism style lines were revealed under newly painted area by near-infrared image.

  6. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  7. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  8. Optical trapping of nanoparticles by ultrashort laser pulses.

    PubMed

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.

  9. Propagation of femtosecond laser pulses through water in the linear absorption regime.

    PubMed

    Naveira, Lucas M; Strycker, Benjamin D; Wang, Jieyu; Ariunbold, Gombojav O; Sokolov, Alexei V; Kattawar, George W

    2009-04-01

    We investigate the controversy regarding violations of the Bouguer-Lambert-Beer (BLB) law for ultrashort laser pulses propagating through water. By working at sufficiently low incident laser intensities, we make sure that any nonlinear component in the response of the medium is negligible. We measure the transmitted power and spectrum as functions of water cell length in an effort to confirm or disprove alleged deviations from the BLB law. We perform experiments at two different laser pulse repetition rates and explore the dependence of transmission on pulse duration. Specifically, we vary the laser pulse duration either by cutting its spectrum while keeping the pulse shape near transform-limited or by adjusting the pulses chirp while keeping the spectral intensities fixed. Over a wide range of parameters, we find no deviations from the BLB law and conclude that recent claims of BLB law violations are inconsistent with our experimental data. We present a simple linear theory (based on the BLB law) for propagation of ultrashort laser pulses through an absorbing medium and find our experimental results to be in excellent agreement with this theory.

  10. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  11. Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends

    NASA Astrophysics Data System (ADS)

    Hochrein, Thomas

    2015-03-01

    Although a lot of work has already been done under the older terms "far infrared" or "sub-millimeter waves", the term "terahertz" stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.

  12. Cell Fragmentation and Permeabilization by a 1 ns Pulse Driven Triple-Point Electrode

    PubMed Central

    Li, Joy; Cho, Michael

    2018-01-01

    Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2 MV/cm) can be created when pulses are applied. However, such a high electric field was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1) cells in a crater (<100 μm from electrode) were fragmented and the debris was blown away. The principal mechanism for the damage is presumed to be shear forces due to bubble collapse; and (2) cells in the periphery of the crater were permeabilized, which was due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation tool for applications that require submillimeter precision. PMID:29744357

  13. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  14. The method for scanning reshaping the spectrum of chirped laser pulse based on the quadratic electro-optic effects

    NASA Astrophysics Data System (ADS)

    Ye, Rong; Yin, Ming; Wu, Xianyun; Tan, Hang

    2017-10-01

    T A new method for scanning reshaping the spectrum of chirped laser pulse based on quadratic electro-optic effects is proposed. The scanning reshaping scheme with a two-beam interference system is designed and the spectrum reshaping properties are analyzed theoretically. For the Gaussian chirped laser pulse with central wavelength λ0=800nm, nearly flat-topped spectral profiles with wider bandwidth is obtained with the proposed scanning reshaping method, which is beneficial to compensate for the gain narrowing effect in CPA and OPCPA. Further numerical simulations show that the reshaped spectrum is sensitive to the time-delay and deviation of the voltage applied to the crystal. In order to avoid narrowing or distorting the reshaped spectrum pointing to target, it is necessary to reduce the unfavorable deviations. With the rapid and wide applications of ultra-short laser pulse supported by some latter research results including photo-associative formation of ultra-cold molecules from ultra-cold atoms[1-3], laser-induced communications[4], capsule implosions on the National Ignition Facility(NIF)[5-6], the control of the temporal and spectral profiles of laser pulse is very important and urgently need to be addressed. Generally, the control of the pulse profiles depends on practical applications, ranging from femtosecond and picosecond to nanosecond. For instance, the basic shaping setup is a Fourier transform system for ultra-short laser pulse. The most important element is a spatially patterned mask which modulates the phase or amplitude, or sometimes the polarization after the pulse is decomposed into its constituent spectral components by usually a grating and a lens[7]. One of the generation techniques of ultra-short laser pulse is the chirped pulse amplifications(CPA), which brings a new era of development for high energy and high peak intensity ultra-short laser pulse, proposed by D. Strcik and G. Mourou from the chirping radar technology in microwave region

  15. Terahertz reflection imaging using Kirchhoff migration.

    PubMed

    Dorney, T D; Johnson, J L; Van Rudd, J; Baraniuk, R G; Symes, W W; Mittleman, D M

    2001-10-01

    We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.

  16. Highly efficient quantum dot-based photoconductive THz materials and devices

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  17. Terahertz Mapping of Microstructure and Thickness Variations

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  18. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  19. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, N.; Cardoso, L.; Geada, J.

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  20. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE PAGES

    Lemos, N.; Cardoso, L.; Geada, J.; ...

    2018-02-16

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  1. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    PubMed Central

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  2. Terahertz metamaterials

    DOEpatents

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  3. Detection of Ionic liquid using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  4. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.

    PubMed

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-10-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30-200 μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  6. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current.

    PubMed

    Mineo, H; Lin, S H; Fujimura, Y

    2013-02-21

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R

  7. Terahertz magnonics: Feasibility of using terahertz magnons for information processing

    NASA Astrophysics Data System (ADS)

    Zakeri, Khalil

    2018-06-01

    An immediate need of information technology is designing fast, small and low-loss devices. One of the ways to design such devices is using the bosonic quasiparticles, such as magnons, for information transfer/processing. This is the main idea behind the field of magnonics. When a magnon propagates through a magnetic medium, no electrical charge transport is involved and therefore no energy losses, creating Joule heating, occur. This is the most important advantage of using magnons for information transfer. Moreover the mutual conversion between magnons and the other carriers e.g. electrons, photons and plasmons shall open new opportunities to realize tunable multifunctional devices. Magnons cover a very wide range of frequency, from sub-gigahertz up to a few hundreds of terahertz. The magnon frequency has an important impact on the performance of magnon-based devices (the larger the excitation frequency, the faster the magnons). This means that the use of high-frequency (terahertz) magnons would provide a great opportunity for the design of ultrafast devices. However, up to now the focus in magnonics has been on the low-frequency gigahertz magnons. Here we discuss the feasibility of using terahertz magnons for application in magnonic devices. We shall bring the concept of terahertz magnonics into discussion. We discuss how the recently discovered phenomena in the field of terahertz magnons may inspire ideas for designing new magnonic devices. We further introduce methods to tune the fundamental properties of terahertz magnons, e.g. their eigenfrequency and lifetime.

  8. Imaging with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.

    2007-08-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  9. Multi-Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics

    DTIC Science & Technology

    2016-05-05

    multi -pulse fields 7 6 Filamentation and bulk modification by spatio-temporally chirped pulses 8 7 Quantum modeling of photoionization and nonlinear...pulses. (b) two co-propagating pulses of di↵erent frequencies. 4) Develop non-time-averaged multi -chromatic quantum -mechanical models of photoion- ization...very well with those of the extended multi -rate equation using the relaxation approximation, which is much faster. A continued collaboration to also

  10. Application of photonic crystal defects in constructing all-optical switches, optical delay lines and low-cross-talk waveguide intersections for ultrashort optical pulses

    NASA Astrophysics Data System (ADS)

    Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi

    2002-07-01

    We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.

  11. Partial ablation of Ti/Al nano-layer thin film by single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Gaković, B.; Tsibidis, G. D.; Skoulas, E.; Petrović, S. M.; Vasić, B.; Stratakis, E.

    2017-12-01

    The interaction of ultra-short laser pulses with Titanium/Aluminium (Ti/Al) nano-layered thin film was investigated. The sample composed of alternating Ti and Al layers of a few nanometres thick was deposited by ion-sputtering. A single pulse irradiation experiment was conducted in an ambient air environment using focused and linearly polarized femtosecond laser pulses for the investigation of the ablation effects. The laser induced morphological changes and the composition were characterized using several microscopy techniques and energy dispersive X-ray spectroscopy. The following results were obtained: (i) at low values of pulse energy/fluence, ablation of the upper Ti layer only was observed; (ii) at higher laser fluence, a two-step ablation of Ti and Al layers takes place, followed by partial removal of the nano-layered film. The experimental observations were supported by a theoretical model accounting for the thermal response of the multiple layered structure upon irradiation with ultra-short laser pulses.

  12. Modeling of ultrashort pulsed laser irradiation in the cornea based on parabolic and hyperbolic heat equations using electrical analogy

    NASA Astrophysics Data System (ADS)

    Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.

    2014-03-01

    Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.

  13. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    PubMed

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p < 0.05). Highest temperature increase could be observed in the 1-mm thickness group for enamel. Evaluating the 1-mm group for dentine, a significantly lower temperature increase could be measured (p < 0.05) with lowest values in the 3-mm group (p < 0.05). A time delay for temperature increase during the ablation process depending on the material thickness was observed for both hard tissues (p < 0.05). Employing the USPL system to remove dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  14. Higgs Mode in the d -Wave Superconductor Bi2Sr2CaCu2O8 +x Driven by an Intense Terahertz Pulse

    NASA Astrophysics Data System (ADS)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; Matsunaga, Ryusuke; Schneeloch, John; Zhong, Ruidan D.; Gu, Genda D.; Aoki, Hideo; Gallais, Yann; Shimano, Ryo

    2018-03-01

    We investigate the terahertz (THz)-pulse-driven nonlinear response in the d -wave cuprate superconductor Bi2Sr2CaCu2O8 +x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below Tc . The corresponding third-order nonlinear effect exhibits both A1 g and B1 g symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A1 g component is associated with the Higgs mode of the d -wave order parameter.

  15. Higgs Mode in the d -Wave Superconductor Bi 2 Sr 2 CaCu 2 O 8 + x Driven by an Intense Terahertz Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.

    We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.

  16. Higgs Mode in the d -Wave Superconductor Bi 2 Sr 2 CaCu 2 O 8 + x Driven by an Intense Terahertz Pulse

    DOE PAGES

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; ...

    2018-03-14

    We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.

  17. Bending and coupling losses in terahertz wire waveguides.

    PubMed

    Astley, Victoria; Scheiman, Julianna; Mendis, Rajind; Mittleman, Daniel M

    2010-02-15

    We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.

  18. Propagation of Bessel-X pulses in a hybrid photonic crystal

    NASA Astrophysics Data System (ADS)

    Chung, K. B.

    2018-05-01

    We report the propagation of Bessel-X pulses in a two-dimensional hybrid photonic crystal, investigated by the finite-difference time-domain method, in which broadband super-collimation and the propagation of self-collimated ultrashort pulses were reported. We first show the propagation of Bessel-X pulses in two-dimensional free space, whose transverse branches diverge rapidly with propagation. We then show that Bessel-X pulses propagate with their transverse and longitudinal shapes almost unchanged in the hybrid photonic crystal.

  19. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  20. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less

  1. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    PubMed Central

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-01-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior. PMID:26469886

  2. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  3. Terahertz multistatic reflection imaging.

    PubMed

    Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M

    2002-07-01

    We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.

  4. Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    PubMed Central

    2014-01-01

    Background Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. Results and discussions We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. Conclusion We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission

  5. Quantum coherence in photo-ionisation with tailored XUV pulses

    NASA Astrophysics Data System (ADS)

    Carlström, Stefanos; Mauritsson, Johan; Schafer, Kenneth J.; L'Huillier, Anne; Gisselbrecht, Mathieu

    2018-01-01

    Ionisation with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties of such a superposition, created by ionising xenon atoms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

  6. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changingmore » the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.« less

  7. Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique

    DTIC Science & Technology

    2015-10-01

    This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.

  8. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  9. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Jingle; Zhang, X.-C.

    2009-12-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  10. Stimulated Emission of Terahertz Radiation from Internal ExcitonTransitions in Cu2O

    NASA Astrophysics Data System (ADS)

    Schmid, B. A.; Huber, R.; Shen, Y. R.; Kaindl, R. A.; Chemla, D. S.

    2006-03-01

    Excitons are among the most fundamental optical excitation modes in semiconductors. Resonant infrared pulses have been used to sensitively probe absorptive transitions between hydrogen-like bound pair states [1,2]. We report the first observation of the reverse quantum process: stimulated emission of electromagnetic radiation from intra-excitonic transitions [3]. Broadband terahertz pulses monitor the far-infrared electromagnetic response of Cu2O after ultrafast resonant photogeneration of 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of ˜10-14 cm^2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency. Our results demonstrate a new fundamental process of THz quantum optics and highlight analogies and differences between excitonic and atomic systems. [1] R. A. Kaindl et al., Nature 423, 734 (2003). [2] M. Kubouchi et al., Phys. Rev. Lett. 94, 016403 (2005). [3] R. Huber et al., Phys. Rev. Lett., to appear.

  11. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    NASA Astrophysics Data System (ADS)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  12. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited].

    PubMed

    Hayashi, Shin'ichiro; Nawata, Koji; Sakai, Hiroshi; Taira, Takunori; Minamide, Hiroaki; Kawase, Kodo

    2012-01-30

    We report on the development of a high-peak-power, single-longitudinal-mode and tunable injection-seeded terahertz-wave parametric generator using MgO:LiNbO3, which operates at room temperature. The high peak power (> 120 W) is enough to allow easy detection by commercial and calibrated pyroelectric detectors, and the spectral resolution (< 10 GHz) is the Fourier transform limit of the sub-nanosecond terahertz-wave pulse. The tunability (1.2-2.8 THz) and the small footprint size (A3 paper, 29.7 × 42 cm) are suitable for a variety of applications.

  13. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan Pengfei; Lu Peixiang; Cao Wei

    2007-08-15

    High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultravioletmore » regime.« less

  14. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayduchenko, I., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru; National Research Centre “Kurchatov Institute,” Moscow 123128; Kardakova, A.

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DCmore » voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.« less

  15. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation

    PubMed Central

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-01-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30–200 μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3377–3385, 2015 PMID:26284354

  16. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.

    PubMed

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Axel Zeitler, J

    2015-10-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30-200μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3377-3385, 2015. Copyright © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Ultrashort laser pulse processing of wave guides for medical applications

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert

    2003-06-01

    The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  18. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.

    PubMed

    Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C

    2013-10-01

    petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber et al., Phys. Rev. Lett. 97, 045005 (2006); Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004); Silva et al., Phys. Rev. Lett. 92, 015002 (2004); Fiuza et al., Phys. Rev. Lett. 109, 215001 (2012)].

  19. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    NASA Astrophysics Data System (ADS)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  20. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: Angular momentum and ring current

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.

    2013-02-01

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R