Sample records for ultrasonic brain therapy

  1. Tumour cell dispersion by the ultrasonic aspirator during brain tumour resection.

    PubMed

    Preston, J K; Masciopinto, J; Salamat, M S; Badie, B

    1999-10-01

    Ultrasonic aspirators are commonly used to resect brain tumours because they allow safe, rapid and accurate removal of diseased tissue. Since ultrasonic aspirators generate a spray of aerosolized irrigating fluid around the instrument tip, we questioned whether this spray might contain viable tumours cells that could contribute to intraoperative spread of tumour fragments. To test this hypothesis, we collected the spray produced during the resection of nine brain tumours with an ultrasonic aspirator and semi-quantitatively analysed it for tumour presence. The aerosolized irrigation fluid was found to contain intact tumour cells or clumps of tumour cells in all nine instances, and there was a trend of increasing tumour cell dispersion with increasing ultrasonic aspiration times. Further examination is required to determine if this intraoperative dispersion of apparently viable tumour fragments contributes to local neoplasm recurrence.

  2. 21 CFR 1050.10 - Ultrasonic therapy products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...

  3. 21 CFR 1050.10 - Ultrasonic therapy products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...

  4. 21 CFR 1050.10 - Ultrasonic therapy products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...

  5. 21 CFR 1050.10 - Ultrasonic therapy products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...

  6. 21 CFR 1050.10 - Ultrasonic therapy products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... greater than 5 percent of the spatial-maximum intensity in that plane. (4) Beam nonuniformity ratio means..., operation controls, and a cabinet to house these components. (17) Maximum beam nonuniformity ratio means the maximum value of the beam nonuniformity ratio characteristic of a model of an ultrasonic therapy product...

  7. High power transcranial beam steering for ultrasonic brain therapy

    NASA Astrophysics Data System (ADS)

    Pernot, M.; Aubry, J.-F.; Tanter, M.; Thomas, J.-L.; Fink, M.

    2003-08-01

    A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5 cm2 and works at 0.9 MHz central frequency with a maximum 20 W cm-2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducer distributions on a spherical surface are simulated: hexagonal, annular and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/-15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system.

  8. High power transcranial beam steering for ultrasonic brain therapy

    PubMed Central

    Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickaël; Thomas, Jean-Louis; Fink, Mathias

    2003-01-01

    A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single-elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5cm2 and works at 0.9 MHz central frequency with a maximum 20W.cm−2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducers distributions on a spherical surface are simulated: hexagonal, annular, and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/− 15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system. PMID:12974575

  9. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    PubMed

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  11. Comparative Efficacy of Platelet Rich Plasma Injection, Corticosteroid Injection and Ultrasonic Therapy in the Treatment of Periarthritis Shoulder.

    PubMed

    Kothari, Shashank Yeshwant; Srikumar, Venkataraman; Singh, Neha

    2017-05-01

    Periarthritis (PA) shoulder characterised by pain and restricted range of motion has a plethora of treatment options with inconclusive evidence. Platelet Rich Plasma (PRP) is an emerging treatment option and its efficacy needs to be examined and compared with other routine interventions. To assess the efficacy of PRP injection and compare it with corticosteroid injection and ultrasonic therapy in the treatment of PA shoulder. Patients with PA shoulder (n=195) were randomised to receive single injection of PRP (2 ml) or corticosteroid (80 mg of methylprednisolone) or ultrasonic therapy (seven sittings in two weeks; 1.5 W/cm 2 , 1 MHz, continuous mode). All participants were also advised to perform a home based 10 minute exercise therapy. The primary outcome measure was active range of motion of the shoulder. Secondary outcome measures used were Visual Analogue Scale (VAS) for pain and a shortened version of Disabilities of the Arm, Shoulder and Hand (QuickDASH) for function. Participants were evaluated at 0, 3, 6 and 12 weeks. Chi-square test, one way and repeated measures of ANOVA tests were used to determine significant differences. PRP treatment resulted in statistically significant improvements over corticosteroid and ultrasonic therapy in active as well as passive range of motion of shoulder, VAS and QuickDASH at 12 weeks. At six weeks, PRP treatment resulted in statistically significant improvements over ultrasonic therapy in VAS and QuickDASH. No major adverse effects were observed. This study demonstrates that single injection of PRP is effective and better than corticosteroid injection or ultrasonic therapy in treatment of PA shoulder.

  12. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  13. Comparative Efficacy of Platelet Rich Plasma Injection, Corticosteroid Injection and Ultrasonic Therapy in the Treatment of Periarthritis Shoulder

    PubMed Central

    Srikumar, Venkataraman; Singh, Neha

    2017-01-01

    Introduction Periarthritis (PA) shoulder characterised by pain and restricted range of motion has a plethora of treatment options with inconclusive evidence. Platelet Rich Plasma (PRP) is an emerging treatment option and its efficacy needs to be examined and compared with other routine interventions. Aim To assess the efficacy of PRP injection and compare it with corticosteroid injection and ultrasonic therapy in the treatment of PA shoulder. Materials and Methods Patients with PA shoulder (n=195) were randomised to receive single injection of PRP (2 ml) or corticosteroid (80 mg of methylprednisolone) or ultrasonic therapy (seven sittings in two weeks; 1.5 W/cm2, 1 MHz, continuous mode). All participants were also advised to perform a home based 10 minute exercise therapy. The primary outcome measure was active range of motion of the shoulder. Secondary outcome measures used were Visual Analogue Scale (VAS) for pain and a shortened version of Disabilities of the Arm, Shoulder and Hand (QuickDASH) for function. Participants were evaluated at 0, 3, 6 and 12 weeks. Chi-square test, one way and repeated measures of ANOVA tests were used to determine significant differences. Results PRP treatment resulted in statistically significant improvements over corticosteroid and ultrasonic therapy in active as well as passive range of motion of shoulder, VAS and QuickDASH at 12 weeks. At six weeks, PRP treatment resulted in statistically significant improvements over ultrasonic therapy in VAS and QuickDASH. No major adverse effects were observed. Conclusion This study demonstrates that single injection of PRP is effective and better than corticosteroid injection or ultrasonic therapy in treatment of PA shoulder. PMID:28658861

  14. New application system for laser and ultrasonic therapy in endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Mueller, Gerhard J.

    1996-12-01

    Flexible acoustic waveguides for selective tissue fragmentation are not yet commercially available. Experimental studies have shown the possibility of transmission of acoustical transients via optical silica glass fibers. The aim of this project is the development of a new endoscopic application system that would enable surgeons to use the laser and the ultrasound technique for therapy simultaneously. The concept of this application system is based on the transmission of laser radiation and ultrasound power via flexible silica glass fibers. Theoretical and experimental results on the feasibility of such an application system for an ultrasonic power delivery system are presented. Piezo-electric transducers are used to provide a high efficiency in generating the ultrasonic power. With reference to the CUSA-technique, a special flexible guiding system has been designed for providing aspiration at the tip and for protection of the fiber. The system transmits via an optical fiber up to 100 Watt Nd:YAG laser radiation. The axial oscillation of the fiber tip is +/- micrometers at a frequency of 27 kHz. First results of in vitro experiments are presented. The parenchymatous cells of liver can be fragmented without destruction of the collagenous matrix. The laser can be optionally used to coagulate bleedings or to cut collagenous tissues in contact. Applications for an acoustical and optical waveguide in ultrasonic surgery are demonstrated. This new approach in developing a first application system for the therapeutical use of laser radiation and power ultrasound in minimal invasive surgery via optical waveguides offers new possibilities in surgery. The laser ultrasonic surgical therapy (LUST) with its thin and flexible applicator provides new working fields especially for neuro or liver surgery. The tip can be bent and thus areas which could not be treated before have now been made accessible. Without changing the instrumentation, the surgeon can use the laser for tissue

  15. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    PubMed

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  16. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    PubMed Central

    Khuri-Yakub, Butrus T.; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications. PMID:21860542

  17. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  18. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  19. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  20. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  1. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  2. Gene therapy of the brain: the trans-vascular approach.

    PubMed

    Schlachetzki, Felix; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2004-04-27

    Many chronic neurologic diseases do not respond to small molecule therapeutics, and have no effective long-term therapy. Gene therapy offers the promise of an effective cure for both genetic and acquired brain disease. However, the limiting problem in brain gene therapy is delivery to brain followed by regulation of the expression of the transgene. Present day gene vectors do not cross the blood-brain barrier (BBB). Consequently, brain gene therapy requires craniotomy and the local injection of a viral gene vector. However, there are few brain disorders that can be effectively treated with local injection. Most applications of gene therapy require global expression in the brain of the exogenous gene, and this can only be achieved with a noninvasive delivery through the BBB--the trans-vascular route to brain. An additional consideration is the potential toxicity of all viral and nonviral approaches, which may either integrate into the host genome and cause insertional mutagenesis or cause inflammation in the brain. Nonviral, noninvasive gene therapy of the brain is now possible with the development of a new approach to targeting therapeutic genes to the brain following an IV administration. This approach utilizes genetically engineered molecular Trojan horses, which ferry the gene across the BBB and into neurons. Global and reversible expression of therapeutic genes in the human brain without surgery and without viral vectors is now possible.

  3. Combination of photodynamic and ultrasonic therapy for treatment of infected wounds in animal model

    NASA Astrophysics Data System (ADS)

    Menyaev, Yulian A.; Zharov, Vladimir P.

    2006-02-01

    One of the important problems of modern medicine is treatment of infected wounds. There are many diversified expedients of treatment, but none of them obey the modern physician completely. The aim of this study is to develop and test a new combined method of photodynamic ultrasonic therapy (PDUST) for treatment of infected wounds with focus on experimental trials. PDUST is based on a combination of two methods: photodynamic (PD) therapy (PDT) with photosensitizer and low frequency ultrasonic (US) therapy with antibiotic as tools for treatment of wounds and effectively killing bacteria. The main parameters are: US frequency - 26.5 kHz; US tip elongation - 40+/-20 μm wavelength of light emitting diodes (LED) array - 660+/-10 nm; light intensity on biotissue surface - 1-2 mW/cm2; photosensitizer - an aluminum disulfonated phtalocyanine dissolved in a physiological solution in concentration 10 mg/l. The experiments were carried out with 70 male chinchilla rabbits divided into 7 groups, thus the dynamics of wounds healing were studied in different modes of PDUST. The PD and US methods supplement each other and in conjunction provide additive and especially synergetic effects. The experimental data demonstrated advantages of new technology in comparison with conventional methods in cases of treatment of extended suppurative inflammatory and profound wounds. The more detailed study of PDUST method's mechanism, which is based on low intensity of LED light, PD therapy and US influence is required.

  4. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  5. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    PubMed

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  6. Time reversal for ultrasonic transcranial surgery and echographic imaging

    NASA Astrophysics Data System (ADS)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  7. Photodynamic therapy versus ultrasonic irrigation: interaction with endodontic microbial biofilm, an ex vivo study.

    PubMed

    Muhammad, Omid H; Chevalier, Marlene; Rocca, Jean-Paul; Brulat-Bouchard, Nathalie; Medioni, Etienne

    2014-06-01

    Photodynamic therapy was introduced as an adjuvant to conventional chemo-mechanical debridement during endodontic treatment to overcome the persistence of biofilms. The aim of this study was to evaluate the ability of photodynamic therapy (PDT) to disrupt an experimental microbial biofilm inside the root canal in a clinically applicable working time. Thirty extracted teeth were prepared and then divided in three groups. All samples were infected with an artificially formed biofilm made of Enterococcus faecalis, Streptococcus salivarius, Porphyromonas gingivalis and Prevotella intermedia bacteria. First group was treated with Aseptim Plus® photo-activated (LED) disinfection system, second group by a 650 nm Diode Laser and Toluidine blue as photosensitizer, and the third group, as control group, by ultrasonic irrigation (PUI) using EDTA 17% and NaOCl 2.6% solutions. The working time for all three groups was fixed at 3 min. Presence or absence of biofilm was assessed by aerobic and anaerobic cultures. There was no statistically significant difference between results obtained from groups treated by Aseptim Plus® and Diode Laser (P<0.6267). In cultures of both groups there was a maximal bacterial growth. The group that was treated by ultrasonic irrigation and NaOCl and EDTA solutions had the best results (P<0.0001): there was a statistically significant reduction of bacterial load and destruction of microbial biofilm. Under the condition of this study, Photodynamic therapy could not disrupt endodontic artificial microbial biofilm and could not inhibit bacterial growth in a clinically favorable working time. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  9. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface.

    PubMed

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Song, Jie; Nair, Veena A; Grogan, Scott W; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2014-01-01

    This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.

  10. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  11. [Brain metastases: Focal treatment (surgery and radiation therapy) and cognitive consequences].

    PubMed

    Reygagne, Emmanuelle; Du Boisgueheneuc, Foucaud; Berger, Antoine

    2017-04-01

    Brain metastases represent the first cause of malignant brain tumor. Without radiation therapy, prognosis was poor with fast neurological deterioration, and a median overall survival of one month. Nowadays, therapeutic options depend on brain metastases presentation, extra brain disease, performance status and estimated prognostic (DS GPA). Therefore, for oligometastatic brain patients with a better prognosis, this therapeutic modality is controversial. In fact, whole-brain radiation therapy improves neurological outcomes, but it can also induce late neuro-cognitive sequelae for long-term survivors of brain metastases. Thus, in this strategy for preserving good cognitive functions, stereotactic radiation therapy is a promising treatment. Delivering precisely targeted radiation in few high-doses in one to four brain metastases, allows to reduce radiation damage to normal tissues and it should allow to decrease radiation-induced cognitive decline. In this paper, we will discuss about therapeutic strategies (radiation therapy and surgery) with their neuro-cognitive consequences for brain metastases patients and future concerning preservation of cognitive functions. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep

    NASA Astrophysics Data System (ADS)

    Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickael; Boch, Anne Laure; Kujas, Michelle; Fink, Mathias

    2005-03-01

    A high power prototype dedicated to trans-skull therapy has been tested in vivo on 22 sheep. The array is made of 300 high power transducers working at 1MHz central frequency and is able to achieve 400 bars at focus in water during five seconds with a 50% percent duty cycle. In the first series of experiments, 10 sheep were treated and sacrificed immediately after treatment. A complete craniotomy was performed on half of the treated animal models in order to get a reference model. On the other half, minimally invasive surgery has been performed: a hydrophone was inserted at a given target location inside the brain through a craniotomy of a few mm2. A time reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. Thanks to the high power technology of the prototype, trans-skull adaptive treatment could be achieved. In a second series of experiments, 12 animals were divided into three groups and sacrificed respectively one, two or three weeks after treatment. Finally, Magnetic Resonance Imaging and histological examination were performed to confirm tissue damage.

  13. Ultrasonic brain therapy: First trans-skull in vivo experiments on sheep using adaptive focusing

    NASA Astrophysics Data System (ADS)

    Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Michael; Fink, Mathias; Boch, Anne-Laure; Kujas, Michèle

    2004-05-01

    A high-power prototype dedicated to trans-skull therapy has been tested in vivo on 20 sheep. The array is made of 200 high-power transducers working at 1-MHz central and is able to reach 260 bars at focus in water. An echographic array connected to a Philips HDI 1000 system has been inserted in the therapeutic array in order to perform real-time monitoring of the treatment. A complete craniotomy has been performed on half of the treated animal models in order to get a reference model. On the other animals, a minimally invasive surgery has been performed thanks to a time-reversal experiment: a hydrophone was inserted at the target inside the brain thanks to a 1-mm2 craniotomy. A time-reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. For all the animals a specified region around the target was treated thanks to electronic beam steering. Animals were finally divided into three groups and sacrificed, respectively, 0, 1, and 2 weeks after treatment. Finally, histological examination confirmed tissue damage. These in vivo experiments highlight the strong potential of high-power time-reversal technology.

  14. The Role of Surgery, Radiosurgery and Whole Brain Radiation Therapy in the Management of Patients with Metastatic Brain Tumors

    PubMed Central

    Ellis, Thomas L.; Neal, Matthew T.; Chan, Michael D.

    2012-01-01

    Brain tumors constitute the most common intracranial tumor. Management of brain metastases has become increasingly complex as patients with brain metastases are living longer and more treatment options develop. The goal of this paper is to review the role of stereotactic radiosurgery (SRS), whole brain radiation therapy (WBRT), and surgery, in isolation and in combination, in the contemporary treatment of brain metastases. Surgery and SRS both offer management options that may help to optimize therapy in selected patients. WBRT is another option but can lead to late toxicity and suboptimal local control in longer term survivors. Improved prognostic indices will be critical for selecting the best therapies. Further prospective trials are necessary to continue to elucidate factors that will help triage patients to the proper brain-directed therapy for their cancer. PMID:22312545

  15. Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy.

    PubMed

    Zheng, Meng; Tao, Wei; Zou, Yan; Farokhzad, Omid C; Shi, Bingyang

    2018-05-01

    Small interfering RNA (siRNA)-based gene silencing technology has demonstrated significant potential for treating brain-associated diseases. However, effective and safe systemic delivery of siRNA into the brain remains challenging because of biological barriers such as enzymatic degradation, short circulation lifetime, the blood-brain barrier (BBB), insufficient tissue penetration, cell endocytosis, and cytosolic transport. Nanotechnology offers intriguing potential for addressing these challenges in siRNA brain delivery in conjunction with chemical and biological modification strategies. In this review, we outline the challenges of systemic delivery of siRNA-based therapy for brain diseases, highlight recent advances in the development and engineering of siRNA nanomedicines for various brain diseases, and discuss our perspectives on this exciting research field for siRNA-based therapy towards more effective brain disease therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Music therapy for acquired brain injury.

    PubMed

    Bradt, Joke; Magee, Wendy L; Dileo, Cheryl; Wheeler, Barbara L; McGilloway, Emer

    2010-07-07

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, sensory processing and emotional disturbances. This may severely reduce a survivor's quality of life. Music therapy has been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions and sensory perceptions. A systematic review is needed to gauge the efficacy of music therapy as a rehabilitation intervention for people with ABI. To examine the effects of music therapy with standard care versus standard care alone or standard care combined with other therapies on gait, upper extremity function, communication, mood and emotions, social skills, pain, behavioral outcomes, activities of daily living and adverse events. We searched the Cochrane Stroke Group Trials Register (February 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 2, 2009), MEDLINE (July 2009), EMBASE (August 2009), CINAHL (March 2010), PsycINFO (July 2009), LILACS (August 2009), AMED (August 2009) and Science Citation Index (August 2009). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted experts and music therapy associations. There was no language restriction. Randomized and quasi-randomized controlled trials that compared music therapy interventions and standard care with standard care alone or combined with other therapies for people older than 16 years of age who had acquired brain damage of a non-degenerative nature and were participating in treatment programs offered in hospital, outpatient or community settings. Two review authors independently assessed methodological quality and extracted data. We present results using mean differences (using post-test scores) as all outcomes were measured with the same scale. We included seven studies (184 participants). The results suggest that rhythmic

  17. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  18. Current status of gene therapy for brain tumors

    PubMed Central

    MURPHY, ANDREA M.; RABKIN, SAMUEL D.

    2013-01-01

    Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma. PMID:23246627

  19. Models to Tailor Brain Stimulation Therapies in Stroke

    PubMed Central

    Plow, E. B.; Sankarasubramanian, V.; Cunningham, D. A.; Potter-Baker, K.; Varnerin, N.; Cohen, L. G.; Sterr, A.; Conforto, A. B.; Machado, A. G.

    2016-01-01

    A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke. PMID:27006833

  20. [Timing of Brain Radiation Therapy Impacts Outcomes in Patients with 
Non-small Cell Lung Cancer Who Develop Brain Metastases].

    PubMed

    Wang, Yang; Fang, Jian; Nie, Jun; Dai, Ling; Hu, Weiheng; Zhang, Jie; Ma, Xiangjuan; Han, Jindi; Chen, Xiaoling; Tian, Guangming; Wu, Di; Han, Sen; Long, Jieran

    2016-08-20

    Radiotherapy combined with chemotherapy or molecular targeted therapy remains the standard of treatment for brain metastases from non-small cell lung cancer (NSCLC). The aim of this study is to determine if the deferral of brain radiotherapy impacts patient outcomes. Between May 2003 and December 2015, a total of 198 patients with brain metastases from NSCLC who received both brain radiotherapy and systemic therapy (chemotherapy or targeted therapy) were identified. The rate of grade 3-4 adverse reactions related to chemotherapy and radiotherapy had no significant difference between two groups. 127 patients received concurrent brain radiotherapy and systemic therapy, and 71 patients received deferred brain radiotherapy after at least two cycles of chemotherapy or targeted therapy. Disease specific-graded prognostic assessment was similar in early radiotherapy group and deferred radiotherapy group. Median overall survival (OS) was longer in early radiotherapy group compared to deferred radiotherapy group (17.9 months vs 12.6 months; P=0.038). Progression free survival (PFS) was also improved in patients receiving early radiotherapy compared to those receiving deferred radiotherapy (4.0 months vs 3.0 months; P<0.01). Receiving tyrosine kinase inhibitor (TKI) therapy after the diagnosis of brain metastases as any line therapy improved the OS (20.0 months vs 10.7 months; P<0.01), whereas receiving TKI as first line therapy did not (17.9 months vs 15.2 months; P=0.289). Our study suggests that the use of deferred brain radiotherapy may resulted in inferior OS in patients with NSCLC who develop brain metastases. A prospective multi-central randomized study is imminently needed.

  1. Therapy-induced brain reorganization patterns in aphasia.

    PubMed

    Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten

    2015-04-01

    Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in

  2. SPECT study of low intensity He-Ne laser intravascular irradiation therapy for brain infarction

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Chang; Dong, Jia-Zheng; Chu, Xiao-Fan; Jia, Shao-Wei; Liu, Timon C.; Jiao, Jian-Ling; Zheng, Xi-Yuan; Zhou, Ci-Xiong

    2003-12-01

    We used single photon emission computed tomography (SPECT) in brain perfusion imaging to study the changes of regional cerebral blood flow (rCBF) and cerebral function in brain infarction patients treated with intravascular laser irradiation of blood (ILIB). 17 of 35 patients with brain infarction were admitted to be treated by ILIB on the base of standard drug therapy, and SPECT brain perfusion imaging was performed before and after ILIB therapy with self-comparison. The results were analyzed in quantity with brain blood flow function change rate (BFCR%) model. Effect of ILIB during the therapy process in the other 18 patients were also observed. In the 18 patients, SPECT indicated an improvement of rCBF (both in focus and in total brain) and cerebral function after a 30 min-ILIB therapy. And the 17 patients showed an enhancement of total brain rCBF and cerebral function after ILIB therapy in comparison with that before, especially for the focus side of the brain. The enhancement for focus itself was extremely obvious with a higher significant difference (P<0.0001). The mirror regions had no significant change (P>0.05). BFCR% of foci was prominently higher than that of mirror regions (P<0.0001). In conclusion, the ILIB therapy can improve rCBF and cerebral function and activate brain cells of patients with brain infarction. The results denote new evidence of ILIB therapy for those patients with cerebral ischemia.

  3. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  4. Ultrasonic nebulization platforms for pulmonary drug delivery.

    PubMed

    Yeo, Leslie Y; Friend, James R; McIntosh, Michelle P; Meeusen, Els N T; Morton, David A V

    2010-06-01

    Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific requirements of a patient, taking into account the patient's breathing pattern, physiological profile and disease state. Nevertheless, owing to the difficulties and limitations associated with conventional designs and technologies, ultrasonic nebulizers have never been widely adopted, and have in recent years been in a state of decline. An overview is provided on the advances in new miniature ultrasonic nebulization platforms in which large increases in lung dose efficiency have been reported. In addition to a discussion of the underlying mechanisms governing ultrasonic nebulization, in which there appears to be widely differing views, the advantages and shortcomings of conventional ultrasonic nebulization technology are reviewed and advanced state-of-the-art technologies that have been developed recently are discussed. Recent advances in ultrasonic nebulization technology demonstrate significant potential for the development of smart, portable inhalation therapy platforms for the future. Nevertheless, there remain considerable challenges that need to be addressed before such personalized delivery systems can be realized. These have to be addressed across the spectrum from fundamental physics through to in vivo device testing and dealing with the relevant regulatory framework.

  5. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Katrina, E-mail: Trinabena23@gmail.com; Lenards, Nishele; Holson, Janice

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to themore » hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.« less

  6. Thermal injury through intraradicular heat transfer using ultrasonic devices: precautions and practical preventive strategies.

    PubMed

    Gluskin, Alan H; Ruddle, Clifford J; Zinman, Edwin J

    2005-09-01

    The use of ultrasonic energy is a highly efficient method of removing obstructions and cements within the root canal space when re-treatment or rehabilitation of that ultrasonic energy dislodges and removes cemented objects from the bonded interface of the canal wall. When using this method, there is less potential for structural loss or root damage and significantly less operator stress than when using other methods. There is little evidence in published research of the considerable heat transfer that occurs during use of ultrasonic devices to remove posts, pastes and separated instruments in teeth. The authors present three cases of patients who experienced serious burn injuries during application of ultrasonic energy for restorative dentistry. The authors also offer techniques and strategies for safe and effective use of ultrasonic devices. On the basis of the best available evidence, the authors recommend strategies to provide safe and effective therapy while using ultrasonic devices in intraradicular obstruction removal. The intent of the suggested protocols is to provide advanced and sophisticated therapies in a safe and regulated manner with patient safety as an overriding priority.

  7. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  8. [Disorders of endocrine function after brain tumor therapy in childhood].

    PubMed

    Marx, M; Langer, T; Beck, J D; Dörr, H G

    1999-07-01

    Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Own data and literature review. Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 Gy. With some delay, other hypothalamo-pituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved.

  9. [Radiotherapy plus concomitant systemic therapies for patients with brain metastases from breast cancer].

    PubMed

    Cao, K I; Kirova, Y M

    2014-06-01

    The incidence of brain metastases from breast cancer is increasing with diagnosis and therapeutics progress, especially with systemic therapies. The occurrence of multiple brain metastases remains a delicate situation when surgery and stereotactic radiosurgery are not indicated, nor available. Treatment strategy is based on the patient's general condition and extracranial disease status. Whole brain radiation therapy remains the gold standard local treatment but its efficacy is limited with a median overall survival of 6 months. New strategies are needed for increasing survival and patients' quality of life. Combining radiation therapy and chemotherapy has been a subject of interest. This article sums up the different radiotherapy plus concomitant systemic therapies combinations for the treatment of brain metastases from breast cancer. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Stereotactic Radiosurgery: Treatment of Brain Metastasis Without Interruption of Systemic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Colette J.; Kummerlowe, Megan N.; Redmond, Kristin J.

    Purpose: To evaluate the prevalence, outcomes, and toxicities of concurrent delivery of systemic therapy with stereotactic radiosurgery (SRS) for treatment of brain metastases. Methods and Materials: We conducted a retrospective review of 193 patients treated at our institution with SRS without prior whole-brain radiation therapy (WBRT) for brain metastases between 2009 and 2014. Outcome metrics included administration of concurrent systemic therapy, myelosuppression, neurotoxicity, and survival. Results: One hundred ninety-three patients with a median age of 61 years underwent a total of 291 SRS treatments. Thirty-seven percent of SRS treatments were delivered concurrently with systemic therapy, of which 46% were with conventional myelosuppressivemore » chemotherapy, and 54% with targeted and immune therapy agents. Myelosuppression was minimal after treatment with both systemic therapy and SRS, with 14% grade 3-4 toxicity for lymphopenia and 4-9% for leukopenia, neutropenia, anemia, and thrombocytopenia. Neurotoxicity was also minimal after combined therapy, with no grade 4 and <5% grade 3 toxicity, 34% dexamethasone requirement, and 4% radiation necrosis, all similar to treatments with SRS alone. Median overall survival was similar after SRS alone (14.4 months) versus SRS with systemic therapy (12.9 months). In patients with a new diagnosis of primary cancer with brain metastasis, early treatment with concurrent systemic therapy and SRS correlated with improved survival versus SRS alone (41.6 vs 21.5 months, P<.05). Conclusions: Systemic therapy can be safely given concurrently with SRS for brain metastases: our results suggest minimal myelosuppression and neurotoxicity. Concurrent therapy is an attractive option for patients who have both intracranial and extracranial metastatic disease and may be particularly beneficial in patients with a new diagnosis of primary cancer with brain metastasis.« less

  12. Brain-targeted stem cell gene therapy corrects mucopolysaccharidosis type II via multiple mechanisms.

    PubMed

    Gleitz, Hélène Fe; Liao, Ai Yin; Cook, James R; Rowlston, Samuel F; Forte, Gabriella Ma; D'Souza, Zelpha; O'Leary, Claire; Holley, Rebecca J; Bigger, Brian W

    2018-06-08

    The pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.ApoEII) compared to a lentivirus expressing normal IDS or a normal bone marrow transplant. In mucopolysaccharidosis II mice, all treatments corrected peripheral disease, but only IDS.ApoEII mediated complete normalization of brain pathology and behavior, providing significantly enhanced correction compared to IDS. A normal bone marrow transplant achieved no brain correction. Whilst corrected macrophages traffic to the brain, secreting IDS/IDS.ApoEII enzyme for cross-correction, IDS.ApoEII was additionally more active in plasma and was taken up and transcytosed across brain endothelia significantly better than IDS via both heparan sulfate/ApoE-dependent receptors and mannose-6-phosphate receptors. Brain-targeted hematopoietic stem cell gene therapy provides a promising therapy for MPS II patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?

    PubMed

    Sandu, Raluca Elena; Balseanu, Adrian Tudor; Bogdan, Catalin; Slevin, Mark; Petcu, Eugen; Popa-Wagner, Aurel

    2017-08-01

    Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. Copyright © 2017. Published by Elsevier Inc.

  14. Gene therapy to target ER stress in brain diseases.

    PubMed

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Blood-brain barrier transport machineries and targeted therapy of brain diseases

    PubMed Central

    Barar, Jaleh; Rafi, Mohammad A.; Pourseif, Mohammad M.; Omidi, Yadollah

    2016-01-01

    Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes. Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting. Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs). Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain. PMID:28265539

  16. Blood-brain barrier transport machineries and targeted therapy of brain diseases.

    PubMed

    Barar, Jaleh; Rafi, Mohammad A; Pourseif, Mohammad M; Omidi, Yadollah

    2016-01-01

    Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes. Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting. Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs). Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.

  17. Dendrimer brain uptake and targeted therapy for brain injury in a large animal model of hypothermic circulatory arrest.

    PubMed

    Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G; Kambhampati, Siva P; Zhang, Fan; Wilson, Mary A; Blue, Mary E; Troncoso, Juan C; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M

    2014-03-25

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.

  18. Dendrimer Brain Uptake and Targeted Therapy for Brain Injury in a Large Animal Model of Hypothermic Circulatory Arrest

    PubMed Central

    2015-01-01

    Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315

  19. [Study on medical economic evaluation methods for metastatic brain tumors therapy].

    PubMed

    Takura, Tomoyuki; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Uetsuka, Yoshio

    2010-07-01

    Treatment design for metastatic brain tumors is required to firstly care about the life and function for which the patient hopes because it is terminal care. Therefore, to discuss the value of the therapy, a viewpoint of the QOL and the socioeconomic factors other than the survival rate is important. However, examination that applies these factors to the therapy needs to be carried out more thoroughly. With this in mind, we discuss cost effectiveness of therapy for metastatic brain tumor, through a pilot study on gamma knife therapy. We studied 18 patients (mean age 61.6 years old) undergoing therapy for metastatic brain tumors. The health rate QOL was assessed by the profile-type measure SF-36 (Short-Form 36-Item Ver1.2) and the preference-based measure EQ-5D (EuroQoL-5D), before and six months after gamma knife therapy. Cost-utility-analysis (yen/Qaly) was carried out from quality adjusted life years (Qalys) and medical fee claims. In addition, we made a correlation analysis of the irradiation procedure and the gains attained. The observation by SF-36 for six months was useful for metastatic brain tumor. As a result, the QOL indicators showed increased mental health (MH: p=0.040) and role emotional (RE: p=0.029) with significant difference. In the measurement of EQ-5D, it was added only for one month based on the significant difference (p=0.022) from the pre-therapy QOL. The utilities that were analyzed became 0.052+/-0.175SD (score), and Qalys were 0.135. Because the cost was 721.4+/-5.2SD (thousand yen), the performance of cost-utility-analysis was estimated as 5, 330, 000 (yen/Qaly). In addition, positive correlation (r=0.845/p=0.034) was found between the EQ-5D utility score and the tumor irradiation energy (mJ), etc. We established a new value over and above mere survival rate concerning metastatic brain tumor therapy. The socioeconomics and efficacy of therapy are more difficult to discuss in this disease than in other diseases. We did this by clarifying

  20. Wii-habilitation as balance therapy for children with acquired brain injury.

    PubMed

    Tatla, Sandy K; Radomski, Anna; Cheung, Jessica; Maron, Melissa; Jarus, Tal

    2014-02-01

    To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury. A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines. Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability. Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.

  1. Ultrasonic evaluation of the neonatal brain.

    PubMed

    Johnson, M L; Rumack, C M

    1980-04-01

    Ultrasound examination of the infant brain has been performed in selected medical centers for many years. However, the equipment necessary for obtaining satisfactory visualization of the brain has only recently become commercially available. Currently, ultrasonography is an excellent, noninvasive, inexpensive, rapid, and safe imaging modality for the evaluation of hydrocephalus and other pathologic conditions of the neonatal brain. Ventricular size can often be evaluated in infants up to two or three years of age, but a detailed image of the brain parenchyma becomes more difficult to obtain in a term infant after the first two to three months of life. With the use of the water path and high resolution, real-time systems and with the delineation of structures by multiple projections, (axial, coronal, sagittal and occipital), complex abnormalities may be delineated.

  2. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  3. Participant evaluation of an inpatient occupational therapy groups programme in brain injury rehabilitation.

    PubMed

    Patterson, Freyr; Fleming, Jennifer; Doig, Emmah; Griffin, Janelle

    2017-10-01

    Therapy groups are commonly used in brain injury rehabilitation yet patient perceptions of participation in groups are largely uninvestigated. This paper describes the occupational therapy groups programme at an inpatient brain injury rehabilitation unit and presents an evaluation from the patient's perspective. Participants were in patients with traumatic brain injury who participated in the groups programme and completed a customised self-report questionnaire measuring perceptions about and satisfaction with four occupational therapy groups. Data were analysed descriptively and comparisons made between groups with a functional focus (meal preparation and community access) and an impairment focus (cognitive and upper limb) using Z scores. Thirty-five participants (30 males, five females) completed a total of 83 questionnaires. Over 90% of responses agreed or strongly agreed that working with others was enjoyable, that the groups provided feedback and individualised treatment, and were useful for them. There were no significant differences in perceptions about the functional and impairment-focussed groups. An illustrative case example of participation in the groups programme is presented. Overall, consumer feedback on different aspects of the occupational therapy groups programme in brain injury rehabilitation was positive. Further in-depth investigation of patient perceptions of groups including processes that facilitate or challenge participation is warranted. © 2017 Occupational Therapy Australia.

  4. Brain disease, connectivity, plasticity and cognitive therapy: A neurological view of mental disorders.

    PubMed

    Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E

    2018-04-01

    Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. [Deep brain stimulation in movement disorders: evidence and therapy standards].

    PubMed

    Parpaley, Yaroslav; Skodda, Sabine

    2017-07-01

    The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice. Georg Thieme Verlag KG Stuttgart · New York.

  6. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  7. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  8. The Use of Computers and Video Games in Brain Damage Therapy.

    ERIC Educational Resources Information Center

    Lorimer, David

    The use of computer assisted therapy (CAT) in the rehabilitation of individuals with brain damage is examined. Hardware considerations are explored, and the variety of software programs available for brain injury rehabilitation is discussed. Structured testing and treatment programs in time measurement, memory, and direction finding are described,…

  9. Stem cell-based therapies for tumors in the brain: are we there yet?

    PubMed Central

    Shah, Khalid

    2016-01-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. PMID:27282399

  10. Targeted Therapies for Brain Metastases from Breast Cancer.

    PubMed

    Venur, Vyshak Alva; Leone, José Pablo

    2016-09-13

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  11. The biology of brain metastases—translation to new therapies

    PubMed Central

    Eichler, April F.; Chung, Euiheon; Kodack, David P.; Loeffler, Jay S.; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    Brain metastases are a serious obstacle in the treatment of patients with solid tumors and contribute to the morbidity and mortality of these cancers. It is speculated that the frequency of brain metastasis is increasing for several reasons, including improved systemic therapy and survival, and detection of metastases in asymptomatic patients. The lack of preclinical models that recapitulate the clinical setting and the exclusion of patients with brain metastases from most clinical trials have slowed progress. Molecular factors contributing to brain metastases are being elucidated, such as genes involved in cell adhesion, extravasation, metabolism, and cellular signaling. Furthermore, the role of the unique brain microenvironment is beginning to be explored. Although the presence and function of the blood–brain barrier in metastatic tumors is still poorly understood, it is likely that some tumor cells are protected from therapeutics by the blood–tumor barrier, creating a sanctuary site. This Review discusses what is known about the biology of brain metastases, what preclinical models are available to study the disease, and which novel therapeutic strategies are being studied in patients. PMID:21487419

  12. MRI-controlled interstitial ultrasound brain therapy: An initial in-vivo study

    NASA Astrophysics Data System (ADS)

    N'Djin, W. Apoutou; Burtnyk, Mathieu; Lipsman, Nir; Bronskill, Michael; Schwartz, Michael; Kucharczyk, Walter; Chopra, Rajiv

    2012-11-01

    The recent emergence at the clinical level of minimally-invasive focal therapy such as laser-induced thermal therapy (LITT) has demonstrated promise in the management of brain metastasis [1], although control over the spatial pattern of heating is limited. Delivery of HIFU from minimally-invasive applicators enables high spatial control of the heat deposition in biological tissues, large treatment volumes and high treatment rate in well chosen conditions [2,3]. In this study, the feasibility of MRI-guided interstitial ultrasound therapy in brain was studies in-vivo in a porcine model. A prototype system originally developed for transurethral ultrasound therapy [4,5,6] was used in this study. Two burr holes of 12 mm in diameter were created in the animal's skull to allow the insertion of the therapeutic ultrasound applicator (probe) into the brain at two locations (right and left frontal lobe). A 4-element linear ultrasound transducer (f = 8 MHz) was mounted at the tip of a 25-cm linear probe (6 mm in diameter). The target boundary was traced to cover in 2D a surface compatible with the treatment of a 2 cm brain tumor. Acoustic power of each element and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary [2,4,5]. Two MRT-controlled ultrasound brain treatments per animal have been performed using a maximal surface acoustic power of 10W.cm-2. In all cases, it was possible to increase accurately the temperature of the brain tissues in the targeted region over the 55°C threshold necessary for the creation of irreversible thermal lesion. Tissue changes were visible on T1w contrast-enhanced images immediately after treatment. These changes were also evident on T2w FSE images taken 2 hours after the 1st treatment and correlated well with the temperature image. On average, the targeted volume was 4.7 ± 2.3 cm3 and the 55°C treated volume was 6.7 ± 4.4 cm3. The volumetric

  13. Evaluation of ultrasound techniques for brain injury detection

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  14. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  15. Gene Therapy for Brain Cancer: Combination Therapies Provide Enhanced Efficacy and Safety

    PubMed Central

    Candolfi, Marianela; Kroeger, Kurt M.; Muhammad, A.K.M.G.; Yagiz, Kader; Farrokhi, Catherine; Pechnick, Robert N.; Lowenstein, Pedro R.; Castro, Maria G.

    2009-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Despite significant advances in treatment and intensive research, the prognosis for patients with GBM remains poor. Therapeutic challenges for GBM include its invasive nature, the proximity of the tumor to vital brain structures often preventing total resection, and the resistance of recurrent GBM to conventional radiotherapy and chemotherapy. Gene therapy has been proposed as a useful adjuvant for GBM, to be used in conjunction with current treatment. Work from our laboratory has shown that combination of conditional cytotoxic with immunotherapeutic approaches for the treatment of GBM elicits regression of large intracranial tumor masses and anti-tumor immunological memory in syngeneic rodent models of GBM. In this review we examined the currently available animal models for GBM, including rodent transplantable models, endogenous rodent tumor models and spontaneous GBM in dogs. We discuss non-invasive surrogate end points to assess tumor progression and therapeutic efficacy, such as behavioral tests and circulating biomarkers. Growing preclinical and clinical data contradict the old dogma that cytotoxic anti-cancer therapy would lead to an immune-suppression that would impair the ability of the immune system to mount an anti-tumor response. The implications of the findings reviewed indicate that combination of cytotoxic therapy with immunotherapy will lead to synergistic antitumor efficacy with reduced neurotoxicity and supports the clinical implementation of combined cytotoxic-immunotherapeutic strategies for the treatment of patients with GBM. PMID:19860655

  16. The role of whole brain radiation therapy in the management of melanoma brain metastases

    PubMed Central

    2014-01-01

    Background Brain metastases are common in patients with melanoma, and optimal management is not well defined. As melanoma has traditionally been thought of as “radioresistant,” the role of whole brain radiation therapy (WBRT) in particular is unclear. We conducted this retrospective study to identify prognostic factors for patients treated with stereotactic radiosurgery (SRS) for melanoma brain metastases and to investigate the role of additional up-front treatment with whole brain radiation therapy (WBRT). Methods We reviewed records of 147 patients who received SRS as part of initial management of their melanoma brain metastases from January 2000 through June 2010. Overall survival (OS) and time to distant intracranial progression were calculated using the Kaplan-Meier method. Prognostic factors were evaluated using the Cox proportional hazards model. Results WBRT was employed with SRS in 27% of patients and as salvage in an additional 22%. Age at SRS > 60 years (hazard ratio [HR] 0.64, p = 0.05), multiple brain metastases (HR 1.90, p = 0.008), and omission of up-front WBRT (HR 2.24, p = 0.005) were associated with distant intracranial progression on multivariate analysis. Extensive extracranial metastases (HR 1.86, p = 0.0006), Karnofsky Performance Status (KPS) ≤ 80% (HR 1.58, p = 0.01), and multiple brain metastases (HR 1.40, p = 0.06) were associated with worse OS on univariate analysis. Extensive extracranial metastases (HR 1.78, p = 0.001) and KPS (HR 1.52, p = 0.02) remained significantly associated with OS on multivariate analysis. In patients with absent or stable extracranial disease, multiple brain metastases were associated with worse OS (multivariate HR 5.89, p = 0.004), and there was a trend toward an association with worse OS when up-front WBRT was omitted (multivariate HR 2.56, p = 0.08). Conclusions Multiple brain metastases and omission of up-front WBRT (particularly in combination) are

  17. Glioma tissue obtained by modern ultrasonic aspiration with a simple sterile suction trap for primary cell culture and pathological evaluation.

    PubMed

    Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian

    2014-01-01

    Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.

  18. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    ClinicalTrials.gov

    2017-07-31

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  19. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  20. SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeid, L; Adam, J; Tessier, A

    2014-06-01

    Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator)more » were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR

  1. Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma.

    PubMed

    O'Donnell-Luria, Anne H; Lin, Alexander P; Merugumala, Sai K; Rohr, Frances; Waisbren, Susan E; Lynch, Rebecca; Tchekmedyian, Vatche; Goldberg, Aaron D; Bellinger, Andrew; McFaline-Figueroa, J Ricardo; Simon, Tracey; Gershanik, Esteban F; Levy, Bruce D; Cohen, David E; Samuels, Martin A; Berry, Gerard T; Frank, Natasha Y

    2017-05-01

    Acute idiopathic hyperammonemia in an adult patient is a life-threatening condition often resulting in a rapid progression to irreversible cerebral edema and death. While ammonia-scavenging therapies lower blood ammonia levels, in comparison, clearance of waste nitrogen from the brain may be delayed. Therefore, we used magnetic resonance spectroscopy (MRS) to monitor cerebral glutamine levels, the major reservoir of ammonia, in a gastric bypass patient with hyperammonemic coma undergoing therapy with N-carbamoyl glutamate and the ammonia-scavenging agents, sodium phenylacetate and sodium benzoate. Improvement in mental status mirrored brain glutamine levels, as coma persisted for 48h after plasma ammonia normalized. We hypothesize that the slower clearance for brain glutamine levels accounts for the delay in improvement following initiation of treatment in cases of chronic hyperammonemia. We propose MRS to monitor brain glutamine as a noninvasive approach to be utilized for diagnostic and therapeutic monitoring purposes in adult patients presenting with idiopathic hyperammonemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study.

    PubMed

    Suda, Tomonari; Kobayashi, Hiroaki; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-09-01

    Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency.

  3. Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy.

    PubMed

    Barton, David A; Esler, Murray D; Dawood, Tye; Lambert, Elisabeth A; Haikerwal, Deepak; Brenchley, Celia; Socratous, Florentia; Hastings, Jacqueline; Guo, Ling; Wiesner, Glen; Kaye, David M; Bayles, Richard; Schlaich, Markus P; Lambert, Gavin W

    2008-01-01

    The biological basis for the development of major depressive disorder (MDD) remains incompletely understood. To quantify brain serotonin (5-hydroxytryptamine [5-HT]) turnover in patients with MDD. Patients with depression were studied both untreated and during administration of a selective serotonin reuptake inhibitor (SSRI) in an unblinded study of sequential design. Healthy volunteers were examined on only 1 occasion. Direct internal jugular venous blood sampling was used to directly quantify brain serotonin turnover. The effect of serotonin transporter (5-HTT) genotype on brain serotonin turnover was evaluated and the influence of SSRI therapy on serotonin turnover was investigated. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the research catheterization laboratory of a major training hospital and medical research institute. Studies were performed in 21 patients fulfilling the DSM-IV and International Statistical Classification of Diseases, 10th Revision diagnostic criteria for MDD and in 40 healthy volunteers. Treatment for patients consisted of SSRI administration for approximately 12 weeks. Brain serotonin turnover before and after SSRI therapy. Brain serotonin turnover was significantly elevated in unmedicated patients with MDD compared with healthy subjects (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 4.4 [4.3] vs 1.6 [2.4] nmol/L, respectively; P = .003). Analysis of the influence of the 5-HTT genotype in MDD indicated that carriage of the s allele compared with the l allele was associated with greater than a 2-fold increase in brain serotonin turnover (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.5 [4.7] vs 2.7 [2.9] nmol/L, respectively; P = .04). Following SSRI therapy, brain serotonin turnover was substantially reduced (mean [SD] internal jugular venoarterial

  4. Transcranial Low-Level Laser (Light) Therapy for Brain Injury

    PubMed Central

    Thunshelle, Connor

    2016-01-01

    Abstract Background: Low-level laser therapy (LLLT) or photobiomodulation (PBM) is a possible treatment for brain injury, including traumatic brain injury (TBI). Methods: We review the fundamental mechanisms at the cellular and molecular level and the effects on the brain are discussed. There are several contributing processes that have been proposed to lead to the beneficial effects of PBM in treating TBI such as stimulation of neurogenesis, a decrease in inflammation, and neuroprotection. Both animal and clinical trials for ischemic stroke are outlined. A number of articles have shown how transcranial LLLT (tLLLT) is effective at increasing memory, learning, and the overall neurological performance in rodent models with TBI. Results: Our laboratory has conducted three different studies on the effects of tLLLT on mice with TBI. The first studied pulsed against continuous laser irradiation, finding that 10 Hz pulsed was the best. The second compared four different wavelengths, discovering only 660 and 810 nm to have any effectiveness, whereas 732 and 980 nm did not. The third looked at varying regimens of daily laser treatments (1, 3, and 14 days) and found that 14 laser applications was excessive. We also review several studies of the effects of tLLLT on neuroprogenitor cells, brain-derived neurotrophic factor and synaptogenesis, immediate early response knockout mice, and tLLLT in combination therapy with metabolic inhibitors. Conclusions: Finally, some clinical studies in TBI patients are covered. PMID:28001759

  5. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.

    PubMed

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-12-01

    Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.

  6. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    PubMed Central

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  7. Stem cell-based therapies for tumors in the brain: are we there yet?

    PubMed

    Shah, Khalid

    2016-08-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Split-mode ultrasonic transducer.

    PubMed

    Ostrovskii, Igor; Cremaldi, Lucien

    2013-08-01

    A split-mode ultrasonic transducer is investigated in both theory and experiment. This transducer is a two-dimensional structure of periodically poled domains in a ferroelectric wafer with free surfaces. The acoustic vibrations are excited by a radio frequency electric current applied along the length of the wafer, which allows the basal-plane surfaces to be free of metal coatings and thus ready for further biomedical applications. A specific physical property of this transducer consists of the multiple acousto-electric resonances, which occur due to an acoustic mode split when the acoustic half-wavelength is equal to the domain length. Possible applications include ultrasonic generation and detection at the micro-scale, intravascular sonification and visualization, ultrasound therapy of localized small areas such as the eye, biomedical applications for cell cultures, and traditional nondestructive testing including bones and tissues. A potential use of a non-metallized wafer is a therapeutic application with double action that is both ultrasound itself and an electric field over the wafer. The experimental measurements and theoretical calculations are in good agreement.

  9. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening

    PubMed Central

    Kamimura, HAS; Wang, S; Wu, S-Y; Karakatsani, ME; Acosta, C; Carneiro, AAO; Konofagou, EE

    2015-01-01

    Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n=15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38±5.71 mm3, 8.91±3.91 mm3 and 35.47 ± 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40±28.43 V.s, 63.87±29.97 V.s and 356.52±257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue. PMID:26394091

  10. Compelling Evidence that Exposure Therapy for PTSD Normalizes Brain Function.

    PubMed

    Roy, Michael J; Costanzo, Michelle E; Blair, James R; Rizzo, Albert A

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is helping us better understand the neurologic pathways involved in posttraumatic stress disorder (PTSD). We previously reported that military service members with PTSD after deployment to Iraq or Afghanistan demonstrated significant improvement, or normalization, in the fMRI-measured activation of the amygdala, prefrontal cortex and anterior cingulate gyrus following exposure therapy for PTSD. However, our original study design did not include repeat scans of control participants, rendering it difficult to discern how much of the observed normalization in brain activity is attributable to treatment, rather than merely a practice effect. Using the same Affective Stroop task paradigm, we now report on a larger sample of PTSD-positive combat veterans that we treated with exposure therapy, as well as a combat-exposed control group of service members who completed repeat scans at 3-4 month intervals. Findings from the treatment group are similar to our prior report. Combat controls showed no significant change on repeat scanning, indicating that the observed differences in the intervention group were in fact due to treatment. We continue to scan additional study participants, in order to determine whether virtual reality exposure therapy has a different impact on regional brain activation than other therapies for PTSD.

  11. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial.

    PubMed

    Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D

    2009-01-07

    Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small

  12. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    PubMed Central

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  13. Management of melanoma brain metastases in the era of targeted therapy.

    PubMed

    Shapiro, Daniela Gonsalves; Samlowski, Wolfram E

    2011-01-01

    Disseminated metastatic disease, including brain metastases, is commonly encountered in malignant melanoma. The classical treatment approach for melanoma brain metastases has been neurosurgical resection followed by whole brain radiotherapy. Traditionally, if lesions were either too numerous or surgical intervention would cause substantial neurologic deficits, patients were either treated with whole brain radiotherapy or referred to hospice and supportive care. Chemotherapy has not proven effective in treating brain metastases. Improvements in surgery, radiosurgery, and new drug discoveries have provided a wider range of treatment options. Additionally, recently discovered mutations in the melanoma genome have led to the development of "targeted therapy." These vastly improved options are resulting in novel treatment paradigms for approaching melanoma brain metastases in patients with and without systemic metastatic disease. It is therefore likely that improved survival can currently be achieved in at least a subset of melanoma patients with brain metastases.

  14. Is art therapy a reliable tool for rehabilitating people suffering from brain/mental diseases?

    PubMed

    Mirabella, Giovanni

    2015-04-01

    Whether art therapy can be an effective rehabilitative treatment for people with brain or mental diseases (e.g., dementia, Alzheimer's disease, Parkinson's disease, autism, schizophrenia) is a long-standing and highly debated issue. On the one hand, several observational studies and anecdotal evidence enthusiastically support the effectiveness of arts-based therapy. On the other hand, few rigorous clinical investigations have been performed, and there is too little empirical evidence to allow a full assessment of the risks and benefits of this intervention. Nevertheless, there is a progressively increasing demand for the development of appropriate complementary therapies to improve the personal and social lives of patients with neurodegenerative diseases. This is because conventional medical treatments are aimed at alleviating symptoms but cannot arrest or reverse the degenerative process. Thus, as disease progresses and adverse effects emerge, patients' quality of life dramatically decreases; when this occurs patients seek different forms of intervention. Art therapy is a potentially appealing treatment because of its more holistic approach to healthcare. However, as with any medicine, its effects must be tested by using standard, rigorous scientific approaches. This report describes the current state of research into art therapy and outlines many key factors that future research should consider, all of which are directly or indirectly related to the neural mechanism underlying behavioral changes: brain plasticity. Artistic performance could promote some form of brain plasticity that, to some extent, might compensate for the brain damage caused by the disease.

  15. [Trampoline therapy with brain-injured children and adolescents (author's transl)].

    PubMed

    Erichsen, H; Böttcher, H

    1976-05-01

    Trampoline therapy is a useful part of the medical rehabilitation treatment of brain-injured children and adolescents, if the basic principles of accident prevention are observed. The therapy should only consist of systematically organised exercise series and be carried out by adequately trained sport teachers, medical paedagogues or physical therapists. In the "Jugendwerk Gailingen" an improvement of the standing balance and movement co-ordination was achieved in more than 20 patients with hemiparesis and tetraparesis. Only little progress was achieved in atactic and athetoid patients. It is important to stress the positive psychological effects of the trampoline therapy.

  16. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    PubMed

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates.

    PubMed

    Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A

    2015-06-01

    The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study

    PubMed Central

    Suda, Tomonari; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-01-01

    Background Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. Aim This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. Materials and Methods This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. Results The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. Conclusion This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency. PMID:26501012

  19. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  20. Hyperbaric oxygen therapy for traumatic brain injury

    PubMed Central

    2011-01-01

    Traumatic brain injury (TBI) is a major public health issue. The complexity of TBI has precluded the use of effective therapies. Hyperbaric oxygen therapy (HBOT) has been shown to be neuroprotective in multiple neurological disorders, but its efficacy in the management of TBI remains controversial. This review focuses on HBOT applications within the context of experimental and clinical TBI. We also discuss its potential neuroprotective mechanisms. Early or delayed multiple sessions of low atmospheric pressure HBOT can reduce intracranial pressure, improve mortality, as well as promote neurobehavioral recovery. The complimentary, synergistic actions of HBOT include improved tissue oxygenation and cellular metabolism, anti-apoptotic, and anti-inflammatory mechanisms. Thus HBOT may serve as a promising neuroprotective strategy that when combined with other therapeutic targets for TBI patients which could improve long-term outcomes. PMID:22146562

  1. CXCL12 Gene Therapy Ameliorates Ischemia-Induced White Matter Injury in Mouse Brain.

    PubMed

    Li, Yaning; Tang, Guanghui; Liu, Yanqun; He, Xiaosong; Huang, Jun; Lin, Xiaojie; Zhang, Zhijun; Yang, Guo-Yuan; Wang, Yongting

    2015-10-01

    Remyelination is an important repair process after ischemic stroke-induced white matter injury. It often fails because of the insufficient recruitment of oligodendrocyte progenitor cells (OPCs) to the demyelinated site or the inefficient differentiation of OPCs to oligodendrocytes. We investigated whether CXCL12 gene therapy promoted remyelination after middle cerebral artery occlusion in adult mice. The results showed that CXCL12 gene therapy at 1 week after ischemia could protect myelin sheath integrity in the perifocal region, increase the number of platelet-derived growth factor receptor-α (PDGFRα)-positive and PDGFRα/bromodeoxyuridine-double positive OPCs in the subventricular zone, and further enhance their migration to the ischemic lesion area. Coadministration of AMD3100, the antagonist for CXCL12 receptor CXCR4, eliminated the beneficial effect of CXCL12 on myelin sheath integrity and negatively influenced OPC proliferation and migration. At 5 weeks after ischemia, CXCR4 was found on the PDGFRα- and/or neuron/glia type 2 (NG2)-positive OPCs but not on the myelin basic protein-positive mature myelin sheaths, and CXCR7 was only expressed on the mature myelin sheath in the ischemic mouse brain. Our data indicated that CXCL12 gene therapy effectively protected white matter and promoted its repair after ischemic injury. The treatment at 1 week after ischemia is effective, suggesting that this strategy has a longer therapeutic time window than the treatments currently available. This study has demonstrated for the first time that CXCL12 gene therapy significantly ameliorates brain ischemia-induced white matter injury and promotes oligodendrocyte progenitor cell proliferation in the subventricular zone and migration to the perifocal area in the ischemic mouse brain. Additional data showed that CXCR4 receptor plays an important role during the proliferation and migration of oligodendrocyte progenitor cells, and CXCR7 might play a role during maturation. In

  2. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  3. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0389 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury...2015 4. TITLE AND SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  4. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  5. Active music therapy in the rehabilitation of severe brain injured patients during coma recovery.

    PubMed

    Formisano, R; Vinicola, V; Penta, F; Matteis, M; Brunelli, S; Weckel, J W

    2001-01-01

    Active improvised music therapy may offer an adjuvant from of treatment in the early rehabilitation of severe brain-injured patients. Active music therapy consists of musical improvisation between patient and therapist by singing or by playing different musical instruments, according to the vital functions, the neurological conditions and the motor abilities of the patients. We studied 34 severe brain-injured patients with a mean coma duration of 52 days +/- 37.21 and a mean interval from coma onset to the beginning of rehabilitation of 154 days on average. Our preliminary results show a significant improvement of the collaboration of the severe brain-injured patients and a reduction of undesired behaviours such as inertia (reduced psychomotor initiative) or psychomotor agitation.

  6. Incidence of Leukoencephalopathy After Whole-Brain Radiation Therapy for Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Junko, E-mail: junkoe@fmu.ac.jp; Sato, Hisashi; Nakajima, Masaru

    2013-04-01

    Purpose: To evaluate the incidence of leukoencephalopathy after whole-brain radiation therapy (WBRT) in patients with brain metastases. Methods and Materials: We retrospectively reviewed 111 patients who underwent WBRT for brain metastases from April 2001 through March 2008 and had evaluable computed tomography (CT) and/or magnetic resonance imaging (MRI) at least 1 month after completion of WBRT. We evaluated the leukoencephalopathy according to the Common Terminology Criteria for Adverse Events, version 3.0. The patients who had brain tumor recurrence after WBRT were censored at the last follow-up CT or MRI without recurrence. To evaluate the risk factors for leukoencephalopathy, bivariate analysismore » was performed using a logistic regression analysis adjusted for follow-up time. Factors included in the analysis were age, gender, dose fractionation, 5-fluorouracil, methotrexate, cisplatin, and other chemotherapeutic agents. Results: The median age of the 111 patients was 60.0 years (range, 23-89 years). The median follow-up was 3.8 months (range, 1.0-38.1 months). Leukoencephalopathy developed in 23 of the 111 patients. Grades 1, 2, and 3 were observed in 8, 7, and 8 patients, respectively. The incidence was 34.4% (11 of 32), 42.9% (6 of 14), 66.7% (2 of 3), and 100% (2 of 2) of the patients who were followed up for ≥6, ≥12, ≥24, and ≥36 months, respectively. In the bivariate analysis, older age (≥65 years) was significantly correlated with higher risk of leukoencephalopathy (odds ratio 3.31; 95% confidence interval 1.15-9.50; P=.03). Conclusions: The incidence of leukoencephalopathy after WBRT was 34.4% with ≥6 months follow-up, and increased with longer follow-up. Older age was a significant risk factor. The schedule of WBRT for patients with brain metastases should be carefully determined, especially for favorable patients.« less

  7. Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas

    PubMed Central

    Tang, Hailiang; Zhang, Haishi; Xie, Qing; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu

    2014-01-01

    Background Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Methods Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. Results All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. Conclusions This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique. PMID:25561762

  8. Cost-effectiveness of stereotactic radiosurgery versus whole-brain radiation therapy for up to 10 brain metastases.

    PubMed

    Lester-Coll, Nataniel H; Dosoretz, Arie P; Magnuson, William J; Laurans, Maxwell S; Chiang, Veronica L; Yu, James B

    2016-12-01

    OBJECTIVE The JLGK0901 study found that stereotactic radiosurgery (SRS) is a safe and effective treatment option for treating up to 10 brain metastases. The purpose of this study is to determine the cost-effectiveness of treating up to 10 brain metastases with SRS, whole-brain radiation therapy (WBRT), or SRS and immediate WBRT (SRS+WBRT). METHODS A Markov model was developed to evaluate the cost effectiveness of SRS, WBRT, and SRS+WBRT in patients with 1 or 2-10 brain metastases. Transition probabilities were derived from the JLGK0901 study and modified according to the recurrence rates observed in the Radiation Therapy Oncology Group (RTOG) 9508 and European Organization for Research and Treatment of Cancer (EORTC) 22952-26001 studies to simulate the outcomes for patients who receive WBRT. Costs are based on 2015 Medicare reimbursements. Health state utilities were prospectively collected using the Standard Gamble method. End points included cost, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). The willingness-to-pay (WTP) threshold was $100,000 per QALY. One-way and probabilistic sensitivity analyses explored uncertainty with regard to the model assumptions. RESULTS In patients with 1 brain metastasis, the ICERs for SRS versus WBRT, SRS versus SRS+WBRT, and SRS+WBRT versus WBRT were $117,418, $51,348, and $746,997 per QALY gained, respectively. In patients with 2-10 brain metastases, the ICERs were $123,256, $58,903, and $821,042 per QALY gained, respectively. On the sensitivity analyses, the model was sensitive to the cost of SRS and the utilities associated with stable post-SRS and post-WBRT states. In patients with 2-10 brain metastases, SRS versus WBRT becomes cost-effective if the cost of SRS is reduced by $3512. SRS versus WBRT was also cost effective at a WTP of $200,000 per QALY on the probabilistic sensitivity analysis. CONCLUSIONS The most cost-effective strategy for patients with up to 10 brain metastases is SRS

  9. Effectiveness of Animal Assisted Therapy after brain injury: A bridge to improved outcomes in CRT.

    PubMed

    Stapleton, Mary

    2016-06-18

    Animal Assisted Therapy (AAT) has been widely used as a complementary therapy in mental health treatment especially to remediate social skill deficits. The goal of AAT is to improve social, emotional, and cognitive functioning. The purpose of this article is to draw upon the literature on AAT and explore specific applications to cognitive rehabilitation therapy (CRT) and social skills training. This study provides a systematic review of most of the available literature on ATT and assesses that potential uses of ATT for brain injury rehabilitation. Although the efficacy of AAT is not currently well documented by rigorous research, (Kazin, 2010) anecdotal evidence suggests that brain injury survivors may benefit from the combination of AAT and cognitive rehabilitation techniques. Acquired Brain Injury (ABI) survivors with cognitive impairments can benefit from AAT as part of a comprehensive and holistic rehabilitation treatment plan.

  10. Brain tumour stem cells: implications for cancer therapy and regenerative medicine.

    PubMed

    Sanchez-Martin, Manuel

    2008-09-01

    The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.

  11. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies.

    PubMed

    Vonder Haar, Cole; Peterson, Todd C; Martens, Kris M; Hoane, Michael R

    2016-06-01

    With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    ERIC Educational Resources Information Center

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  13. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer

    PubMed Central

    Sonali; Viswanadh, Matte Kasi; Singh, Rahul Pratap; Agrawal, Poornima; Mehata, Abhishesh Kumar; Pawde, Datta Maroti; Narendra; Sonkar, Roshan; Muthu, Madaswamy Sona

    2018-01-01

    Nanotheranostics have demonstrated the development of advanced platforms that can diagnose brain cancer at early stages, initiate first-line therapy, monitor it, and if needed, rapidly start subsequent treatments. In brain nanotheranostics, therapeutic as well as diagnostic entities are loaded in a single nanoplatform, which can be further developed as a clinical formulation for targeting various modes of brain cancer. In the present review, we concerned about theranostic nanosystems established till now in the research field. These include gold nanoparticles, carbon nanotubes, magnetic nanoparticles, mesoporous silica nanoparticles, quantum dots, polymeric nanoparticles, upconversion nanoparticles, polymeric micelles, solid lipid nanoparticles and dendrimers for the advanced detection and treatment of brain cancer with advanced features. Also, we included the role of three-dimensional models of the BBB and cancer stem cell concept for the advanced characterization of nanotheranostic systems for the unification of diagnosis and treatment of brain cancer. In future, brain nanotheranostics will be able to provide personalized treatment which can make brain cancer even remediable or at least treatable at the primary stages. PMID:29291164

  14. A finger exoskeleton for rehabilitation and brain image study.

    PubMed

    Tang, Zhenjin; Sugano, Shigeki; Iwata, Hiroyasu

    2013-06-01

    This paper introduces the design, fabrication and evaluation of the second generation prototype of a magnetic resonance compatible finger rehabilitation robot. It can not only be used as a finger rehabilitation training tool after a stroke, but also to study the brain's recovery process during the rehabilitation therapy (ReT). The mechanical design of the current generation has overcome the disadvantage in the previous version[13], which can't provide precise finger trajectories during flexion and extension motion varying with different finger joints' torques. In addition, in order to study the brain activation under different training strategies, three control modes have been developed, compared to only one control mode in the last prototype. The current prototype, like the last version, uses an ultrasonic motor as its actuator to enable the patient to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger. Finally, experiments have been carried out to evaluate the performances of this device.

  15. Brain metastases as site of first and isolated recurrence of breast cancer: the role of systemic therapy after local treatment.

    PubMed

    Niwińska, Anna

    2016-10-01

    The role of systemic treatment was assessed after local therapy for breast cancer patients who developed central nervous system (CNS) metastases as a first and isolated recurrence. Subjects were 128 breast cancer patients with brain metastases as the first and isolated site of recurrence that were selected from 673 consecutive breast cancer patients with brain metastases treated at the same institution. Median survival from brain metastases in patients with and without systemic treatment after local therapy was respectively 15 and 4 months (p < 0.001). In patients with a Karnofsky Performance Status ≥70 and those <70, survival was respectively 16 and 5.5 months (p < 0.001). The median survival from brain metastasis in patients with solitary brain metastasis, with and without systemic treatment after local therapy, was respectively 22 and 7 months (p = 0.003). Cox multivariate analysis demonstrated that good performance status, solitary brain metastasis and systemic therapy undertaken after local treatment were factors which prolonged survival. However patient survival was adversely affected by those having leptomeningeal metastasis associated with brain parenchymal lesions. Systemic therapy, undertaken after local treatment improved survival in those patients with breast cancer and brain metastases as the site of first and isolated recurrence. Further study is required in order to fully establish the role of systemic treatment for this patient group.

  16. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  17. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation.

    PubMed

    Wöhr, Markus; Schwarting, Rainer K W

    2013-10-01

    Mice and rats emit and perceive calls in the ultrasonic range, i.e., above the human hearing threshold of about 20 kHz: so-called ultrasonic vocalizations (USV). Juvenile and adult rats emit 22-kHz USV in aversive situations, such as predator exposure and fighting or during drug withdrawal, whereas 50-kHz USV occur in appetitive situations, such as rough-and-tumble play and mating or in response to drugs of abuse, e.g., amphetamine. Aversive 22-kHz USV and appetitive 50-kHz USV serve distinct communicative functions. Whereas 22-kHz USV induce freezing behavior in the receiver, 50-kHz USV lead to social approach behavior. These opposite behavioral responses are paralleled by distinct patterns of brain activation. Freezing behavior in response to 22-kHz USV is paralleled by increased neuronal activity in brain areas regulating fear and anxiety, such as the amygdala and periaqueductal gray, whereas social approach behavior elicited by 50-kHz USV is accompanied by reduced activity levels in the amygdala but enhanced activity in the nucleus accumbens, a brain area implicated in reward processing. These opposing behavioral responses, together with distinct patterns of brain activation, particularly the bidirectional tonic activation or deactivation of the amygdala elicited by 22-kHz and 50-kHz USV, respectively, concur with a wealth of behavioral and neuroimaging studies in humans involving emotionally salient stimuli, such as fearful and happy facial expressions. Affective ultrasonic communication therefore offers a translational tool for studying the neurobiology underlying socio-affective communication. This is particularly relevant for rodent models of neurodevelopmental disorders characterized by social and communication deficits, such as autism and schizophrenia.

  18. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  19. Statistical ultrasonics: the influence of Robert F. Wagner

    NASA Astrophysics Data System (ADS)

    Insana, Michael F.

    2009-02-01

    An important ongoing question for higher education is how to successfully mentor the next generation of scientists and engineers. It has been my privilege to have been mentored by one of the best, Dr Robert F. Wagner and his colleagues at the CDRH/FDA during the mid 1980s. Bob introduced many of us in medical ultrasonics to statistical imaging techniques. These ideas continue to broadly influence studies on adaptive aperture management (beamforming, speckle suppression, compounding), tissue characterization (texture features, Rayleigh/Rician statistics, scatterer size and number density estimators), and fundamental questions about how limitations of the human eye-brain system for extracting information from textured images can motivate image processing. He adapted the classical techniques of signal detection theory to coherent imaging systems that, for the first time in ultrasonics, related common engineering metrics for image quality to task-based clinical performance. This talk summarizes my wonderfully-exciting three years with Bob as I watched him explore topics in statistical image analysis that formed a rational basis for many of the signal processing techniques used in commercial systems today. It is a story of an exciting time in medical ultrasonics, and of how a sparkling personality guided and motivated the development of junior scientists who flocked around him in admiration and amazement.

  20. Photo-activated Cancer Therapy: Potential for Treatment of Brain Tumors

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry

    The diffuse and infiltrative nature of high grade gliomas, such as glioblastoma multiforme (GBM), makes complete surgical resection virtually impossible. The propensity of glioma cells to migrate along white matter tracts suggests that a cure is possible only if these migratory cells can be eradicated. Approximately 80% of GBMs recur within 2 cm of the resection margin, suggesting that a reasonable approach for improving the prognosis of GBM patients would be the development of improved local therapies capable of eradicating glioma cells in the brain-adjacent-to-tumor (BAT). An additional complicating factor for the development of successful therapies is the presence of the blood-brain barrier (BBB) which is highly variable throughout the BAT—it is intact in some regions, while leaky in others. This variance in BBB patency has significant implications for the delivery of therapeutic agents. The results of a number of studies have shown that experimental light-based therapeutic modalities such as photochemical internalization (PCI) and photothermal therapy (PTT) may be useful in the treatment of gliomas. This chapter summarizes recent findings illustrating the potential of: (1) PCI for the delivery of therapeutic macromolecules such as chemotherapeutic agents and tumor suppressor genes, and (2) nanoshell-mediated PTT, including nanoparticle delivery approaches via macrophages.

  1. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  2. Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies.

    PubMed

    Vosoughi, Elham; Lee, Jee Min; Miller, James R; Nosrati, Mehdi; Minor, David R; Abendroth, Roy; Lee, John W; Andrews, Brian T; Leng, Lewis Z; Wu, Max; Leong, Stanley P; Kashani-Sabet, Mohammed; Kim, Kevin B

    2018-04-27

    Melanoma brain metastasis is associated with an extremely poor prognosis, with a median overall survival of 4-5 months. Since 2011, the overall survival of patients with stage IV melanoma has been significantly improved with the advent of new targeted therapies and checkpoint inhibitors. We analyze the survival outcomes of patients diagnosed with brain metastasis after the introduction of these novel drugs. We performed a retrospective analysis of our melanoma center database and identified 79 patients with brain metastasis between 2011 and 2015. The median time from primary melanoma diagnosis to brain metastasis was 3.2 years. The median overall survival duration from the time of initial brain metastasis was 12.8 months. Following a diagnosis of brain metastasis, 39 (49.4%), 28 (35.4%), and 24 (30.4%) patients were treated with anti-CTLA-4 antibody, anti-PD-1 antibody, or BRAF inhibitors (with or without a MEK inhibitor), with a median overall survival of 19.2 months, 37.9 months and 12.7 months, respectively. Factors associated with significantly reduced overall survival included male sex, cerebellar metastasis, higher number of brain lesions, and treatment with whole-brain radiation therapy. Factors associated with significantly longer overall survival included treatment with craniotomy, stereotactic radiosurgery, or with anti-PD-1 antibody after initial diagnosis of brain metastasis. These results show a significant improvement in the overall survival of patients with melanoma brain metastasis in the era of novel therapies. In addition, they suggest the activity of anti-PD-1 therapy specifically in the setting of brain metastasis.

  3. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  4. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  5. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  6. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  7. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  8. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy.

    PubMed

    Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye

    2015-01-01

    Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Resting regional brain metabolism in social anxiety disorder and the effect of moclobemide therapy.

    PubMed

    Doruyter, Alex; Dupont, Patrick; Taljaard, Lian; Stein, Dan J; Lochner, Christine; Warwick, James M

    2018-04-01

    While there is mounting evidence of abnormal reactivity of several brain regions in social anxiety disorder, and disrupted functional connectivity between these regions at rest, relatively little is known regarding resting regional neural activity in these structures, or how such activity is affected by pharmacotherapy. Using 2-deoxy-2-(F-18)fluoro-D-glucose positron emission tomography, we compared resting regional brain metabolism between SAD and healthy control groups; and in SAD participants before and after moclobemide therapy. Voxel-based analyses were confined to a predefined search volume. A second, exploratory whole-brain analysis was conducted using a more liberal statistical threshold. Fifteen SAD participants and fifteen matched controls were included in the group comparison. A subgroup of SAD participants (n = 11) was included in the therapy effect comparison. No significant clusters were identified in the primary analysis. In the exploratory analysis, the SAD group exhibited increased metabolism in left fusiform gyrus and right temporal pole. After therapy, SAD participants exhibited reductions in regional metabolism in a medial dorsal prefrontal region and increases in right caudate, right insula and left postcentral gyrus. This study adds to the limited existing work on resting regional brain activity in SAD and the effects of therapy. The negative results of our primary analysis suggest that resting regional activity differences in the disorder, and moclobemide effects on regional metabolism, if present, are small. While the outcomes of our secondary analysis should be interpreted with caution, they may contribute to formulating future hypotheses or in pooled analyses.

  10. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Outcomes of intrathecal baclofen therapy in patients with cerebral palsy and acquired brain injury

    PubMed Central

    Yoon, Young Kwon; Lee, Kil Chan; Cho, Han Eol; Chae, Minji; Chang, Jin Woo; Chang, Won Seok; Cho, Sung-Rae

    2017-01-01

    Abstract Intrathecal baclofen (ITB) has been known to reduce spasticity which did not respond to oral medications and botulinum toxin treatment. However, few results have been reported comparing the effects of ITB therapy in patients with cerebral palsy (CP) and acquired brain injury. This study aimed to investigate beneficial and adverse effects of ITB bolus injection and pump therapy in patients with CP and to compare outcomes to patients with acquired brain injury such as traumatic brain injury and hypoxic brain injury. ITB test trials were performed in 37 patients (19 CP and 18 acquired brain injury). Based on ambulatory function, CP patients were divided into 2 groups: 11 patients with nonambulatory CP and 8 patients with ambulatory CP. Change of spasticity was evaluated using the Modified Ashworth Scale. Additional positive or negative effects were also evaluated after ITB bolus injection. In patients who received ITB pump implantation, outcomes of spasticity, subjective satisfaction and adverse events were evaluated until 12 months post-treatment. After ITB bolus injection, 32 patients (86.5%) (CP 84.2% versus acquired brain injury 88.9%) showed a positive response of reducing spasticity. However, 8 patients with CP had negative adverse effects. Particularly, 3 ambulatory CP patients showed standing impairment and 1 ambulatory CP patient showed impaired gait pattern such as foot drop because of excessive reduction of lower extremity muscle tone. Ambulatory CP patients received ITB pump implantation less than patients with acquired brain injury after ITB test trials (P = .003 by a chi-squared test). After the pump implantation, spasticity was significantly reduced within 1 month and the effect maintained for 12 months. Seventeen patients or their caregivers (73.9%) were very satisfied, whereas 5 patients (21.7%) suffered from adverse events showed no subjective satisfaction. In conclusion, ITB therapy was effective in reducing spasticity in patients with

  12. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming

    2017-07-01

    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  13. Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases.

    PubMed

    Osswald, Matthias; Blaes, Jonas; Liao, Yunxiang; Solecki, Gergely; Gömmel, Miriam; Berghoff, Anna S; Salphati, Laurent; Wallin, Jeffrey J; Phillips, Heidi S; Wick, Wolfgang; Winkler, Frank

    2016-12-15

    The role of blood-brain barrier (BBB) integrity for brain tumor biology and therapy is a matter of debate. We developed a new experimental approach using in vivo two-photon imaging of mouse brain metastases originating from a melanoma cell line to investigate the growth kinetics of individual tumor cells in response to systemic delivery of two PI3K/mTOR inhibitors over time, and to study the impact of microregional vascular permeability. The two drugs are closely related but differ regarding a minor chemical modification that greatly increases brain penetration of one drug. Both inhibitors demonstrated a comparable inhibition of downstream targets and melanoma growth in vitro In vivo, increased BBB permeability to sodium fluorescein was associated with accelerated growth of individual brain metastases. Melanoma metastases with permeable microvessels responded similarly to equivalent doses of both inhibitors. In contrast, metastases with an intact BBB showed an exclusive response to the brain-penetrating inhibitor. The latter was true for macro- and micrometastases, and even single dormant melanoma cells. Nuclear morphology changes and single-cell regression patterns implied that both inhibitors, if extravasated, target not only perivascular melanoma cells but also those distant to blood vessels. Our study provides the first direct evidence that nonpermeable brain micro- and macrometastases can effectively be targeted by a drug designed to cross the BBB. Small-molecule inhibitors with these optimized properties are promising agents in preventing or treating brain metastases in patients. Clin Cancer Res; 22(24); 6078-87. ©2016 AACRSee related commentary by Steeg et al., p. 5953. ©2016 American Association for Cancer Research.

  14. Improving the axial resolution in time-reversed ultrasonically encoded (TRUE) optical focusing with dual ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Xu, Xiao; Lai, Puxiang; Sang, Xinzhu; Wang, Lihong V.

    2014-03-01

    Focusing light inside highly scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging, manipulation, and therapy. This challenge can be overcome by time reversing ultrasonically encoded (TRUE) diffuse light to the ultrasonic focus inside a turbid medium. In TRUE optical focusing, a photorefractive crystal or polymer is used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the response time of the photorefractive material, is used to encode the diffuse light. With this long ultrasound burst, the resolution of the TRUE focus along the acoustic axis is poor. In this work, we used two transducers, emitting two intersecting ultrasound beams at 3.4 MHz and 3.6 MHz respectively, to modulate the diffuse light within their intersection volume at the beat frequency. We show that light encoded at the beat frequency can be time-reversed and converge to the intersection volume. Experimentally, TRUE focusing with an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with the theoretical estimation.

  15. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  16. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study.

    PubMed

    Resnick, S M; Espeland, M A; Jaramillo, S A; Hirsch, C; Stefanick, M L; Murray, A M; Ockene, J; Davatzikos, C

    2009-01-13

    To determine whether menopausal hormone therapy (HT) affects regional brain volumes, including hippocampal and frontal regions. Brain MRI scans were obtained in a subset of 1,403 women aged 71-89 years who participated in the Women's Health Initiative Memory Study (WHIMS). WHIMS was an ancillary study to the Women's Health Initiative, which consisted of two randomized, placebo-controlled trials: 0.625 mg conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE + MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial follow-up intervals were 4.0 years for CEE + MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal, and frontal lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors, were the main outcome variables. Compared with placebo, covariate-adjusted mean frontal lobe volume was 2.37 cm(3) lower among women assigned to HT (p = 0.004), mean hippocampal volume was slightly (0.10 cm(3)) lower (p = 0.05), and differences in total brain volume approached significance (p = 0.07). Results were similar for CEE + MPA and CEE-Alone. HT-associated reductions in hippocampal volumes were greatest in women with the lowest baseline Modified Mini-Mental State Examination scores (scores <90). Conjugated equine estrogens with or without MPA are associated with greater brain atrophy among women aged 65 years and older; however, the adverse effects are most evident in women experiencing cognitive deficits before initiating hormone therapy.

  17. Perspectives of boron-neutron capture therapy of malignant brain tumors

    NASA Astrophysics Data System (ADS)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  18. Mortality and Outcome Comparison Between Brain Tissue Oxygen Combined with Intracranial Pressure/Cerebral Perfusion Pressure-Guided Therapy and Intracranial Pressure/Cerebral Perfusion Pressure-Guided Therapy in Traumatic Brain Injury: A Meta-Analysis.

    PubMed

    Xie, Qiang; Wu, Hai-Bing; Yan, Yu-Feng; Liu, Meng; Wang, Er-Song

    2017-04-01

    The combination of brain tissue oxygen and standard intracranial pressure (ICP)/cerebral perfusion pressure (CPP)-guided therapy is thought to improve traumatic brain injury (TBI) prognosis compared with standard ICP/CPP-guided therapy. However, related results of previous observational studies and recently published cohort studies and randomized controlled trials (RCTs) remain controversial. The objective of this study was to compare the effect of the combined therapy with that of standard ICP/CPP-guided therapy on mortality rate, favorable outcome, ICP/CPP, and length of stay (LOS). We systematically searched PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and Web of Science in July 2016 for studies comparing the combined therapy and standard ICP/CPP-guided therapy. Random-effect and fixed-effect models were used for pooled analyses. After screening 362 studies, 8 cohort studies and 1 RCT were included. Primary outcomes were mortality and favorable outcome. The overall mortality risk ratio showed no obvious advantages between the 2 groups (risk ratio [RR], 0.76; 95% confidence interval [CI], 0.54-1.06) and discharge mortality (RR, 1.01; 95% CI, 0.80-1.26) and 3-month mortality (RR, 0.77; 95% CI, 0.53-1.12). Compared with the ICP/CPP group, the combined group was more likely to achieve better outcome during the 6 months after TBI (RR, 1.26; 95% CI, 1.04-1.52) or exactly at 6 months (RR, 1.34; 95% CI, 1.07-1.68), whereas ICP (standardized mean difference [SMD], -0.19; 95% CI, -0.43 to 0.05), CPP (SMD, 0.13; 95% CI, -0.09 to 0.35), and LOS (SMD, 0.13; 95% CI, -0.11 to 0.37) showed no obvious differences. Compared with standard ICP/CPP-guided therapy, brain tissue oxygen combined with ICP/CPP-guided therapy improved long-term outcomes without any effects on mortality, ICP/CPP, or LOS. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  20. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  1. Vitamins and Nutrients as Primary Treatments in Experimental Brain Injury: Clinical Implications for Nutraceutical Therapies

    PubMed Central

    Haar, Cole Vonder; Peterson, Todd C.; Martens, Kris M.; Hoane, Michael R.

    2016-01-01

    With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. PMID:26723564

  2. Ultrasonic histogram assessment of early response to concurrent chemo-radiotherapy in patients with locally advanced cervical cancer: a feasibility study.

    PubMed

    Xu, Yan; Ru, Tong; Zhu, Lijing; Liu, Baorui; Wang, Huanhuan; Zhu, Li; He, Jian; Liu, Song; Zhou, Zhengyang; Yang, Xiaofeng

    To monitor early response for locally advanced cervical cancers undergoing concurrent chemo-radiotherapy (CCRT) by ultrasonic histogram. B-mode ultrasound examinations were performed at 4 time points in thirty-four patients during CCRT. Six ultrasonic histogram parameters were used to assess the echogenicity, homogeneity and heterogeneity of tumors. I peak increased rapidly since the first week after therapy initiation, whereas W low , W high and A high changed significantly at the second week. The average ultrasonic histogram progressively moved toward the right and converted into more symmetrical shape. Ultrasonic histogram could be served as a potential marker to monitor early response during CCRT. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Dosimetric analysis of the alopecia preventing effect of hippocampus sparing whole brain radiation therapy.

    PubMed

    Mahadevan, Anand; Sampson, Carrie; LaRosa, Salvatore; Floyd, Scott R; Wong, Eric T; Uhlmann, Erik J; Sengupta, Soma; Kasper, Ekkehard M

    2015-11-26

    Whole brain radiation therapy (WBRT) is widely used for the treatment of brain metastases. Cognitive decline and alopecia are recognized adverse effects of WBRT. Recently hippocampus sparing whole brain radiation therapy (HS-WBRT) has been shown to reduce the incidence of memory loss. In this study, we found that multi-field intensity modulated radiation therapy (IMRT), with strict constraints to the brain parenchyma and to the hippocampus, reduces follicular scalp dose and prevents alopecia. Suitable patients befitting the inclusion criteria of the RTOG 0933 trial received Hippocampus sparing whole brain radiation. On follow up, they were noticed to have full scalp hair preservation. 5 mm thickness of follicle bearing scalp in the radiation field was outlined in the planning CT scans. Conventional opposed lateral WBRT radiation fields were applied to these patient-specific image sets and planned with the same nominal dose of 30 Gy in 10 fractions. The mean and maximum dose to follicle bearing skin and Dose Volume Histogram (DVH) data were analyzed for conventional and HS-WBRT. Paired t-test was used to compare the means. All six patients had fully preserved scalp hair and remained clinically cognitively intact 1-3 months after HS-WBRT. Compared to conventional WBRT, in addition to the intended sparing of the Hippocampus, HS-WBRT delivered significantly lower mean dose (22.42 cGy vs. 16.33 cGy, p < 0.0001), V24 (9 cc vs. 44 cc, p < 0.0000) and V30 (9 cc vs. 0.096 cc, p = 0.0106) to follicle hair bearing scalp and prevented alopecia. There were no recurrences in the Hippocampus area. HS-WBRT, with an 11-field set up as described, while attempting to conserve hippocampus radiation and maintain radiation dose to brain inadvertently spares follicle-bearing scalp and prevents alopecia.

  4. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  5. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  6. Laser induced thermal therapy (LITT) for pediatric brain tumors: case-based review

    PubMed Central

    Riordan, Margaret

    2014-01-01

    Integration of Laser induced thermal therapy (LITT) to magnetic resonance imaging (MRI) have created new options for treating surgically challenging tumors in locations that would otherwise have represented an intrinsic comorbidity by the approach itself. As new applications and variations of the use are discussed, we present a case-based review of the history, development, and subsequent updates of minimally invasive MRI-guided laser interstitial thermal therapy (MRgLITT) ablation in pediatric brain tumors. PMID:26835340

  7. 99mTc-ECD brain perfusion SPECT imaging for the assessment of brain perfusion in cerebral palsy (CP) patients with evaluation of the effect of hyperbaric oxygen therapy.

    PubMed

    Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid

    2015-01-01

    The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value.

  8. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    PubMed

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  9. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders

    PubMed Central

    Dukart, Juergen; Regen, Francesca; Kherif, Ferath; Colla, Michael; Bajbouj, Malek; Heuser, Isabella; Frackowiak, Richard S.; Draganski, Bogdan

    2014-01-01

    There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a “barbaric” form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology. PMID:24379394

  10. [Possibilities of magnetic-laser therapy in comprehensive treatment of patients with brain concussion in acute period].

    PubMed

    Zubkova, O V; Samosiuk, I Z; Polishchuk, O V; Shul'ga, N M; Samosiuk, N I

    2012-01-01

    The efficacy of magnetic-laser therapy used according to the method developed by us was studied in patients having the brain concussion (BC) in an acute period. The study was based on the dynamics of values of the evoked vestibular potentials and the disease clinical course. It was shown that following the magnetic-laser therapy in combination with traditional pharmacotherapy in BC acute period, the statistically significant positive changes were registered in the quantitative characteristics of the evoked vestibular brain potentials that correlated with the dynamics of the disease clinical course. The data obtained substantiate the possibility of using the magnetic-laser therapy in patients with a mild craniocereblal injury in an acute period.

  11. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy.

    PubMed

    Angell-Petersen, Even; Hirschberg, Henry; Madsen, Steen J

    2007-01-01

    Light and heat distributions are measured in a rat glioma model used in photodynamic therapy. A fiber delivering 632-nm light is fixed in the brain of anesthetized BDIX rats. Fluence rates are measured using calibrated isotropic probes that are positioned stereotactically. Mathematical models are then used to derive tissue optical properties, enabling calculation of fluence rate distributions for general tumor and light application geometries. The fluence rates in tumor-free brains agree well with the models based on diffusion theory and Monte Carlo simulation. In both cases, the best fit is found for absorption and reduced scattering coefficients of 0.57 and 28 cm(-1), respectively. In brains with implanted BT(4)C tumors, a discrepancy between diffusion and Monte Carlo-derived two-layer models is noted. Both models suggest that tumor tissue has higher absorption and less scattering than normal brain. Temperatures are measured by inserting thermocouples directly into tumor-free brains. A model based on diffusion theory and the bioheat equation is found to be in good agreement with the experimental data and predict a thermal penetration depth of 0.60 cm in normal rat brain. The predicted parameters can be used to estimate the fluences, fluence rates, and temperatures achieved during photodynamic therapy.

  12. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  13. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  14. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  15. Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis.

    PubMed

    Smart, DeeDee; Garcia-Glaessner, Alejandra; Palmieri, Diane; Wong-Goodrich, Sarah J; Kramp, Tamalee; Gril, Brunilde; Shukla, Sudhanshu; Lyle, Tiffany; Hua, Emily; Cameron, Heather A; Camphausen, Kevin; Steeg, Patricia S

    2015-10-01

    Most cancer patients with brain metastases are treated with radiation therapy, yet this modality has not yet been meaningfully incorporated into preclinical experimental brain metastasis models. We applied two forms of whole brain radiation therapy (WBRT) to the brain-tropic 231-BR experimental brain metastasis model of triple-negative breast cancer. When compared to sham controls, WBRT as 3 Gy × 10 fractions (3 × 10) reduced the number of micrometastases and large metastases by 87.7 and 54.5 %, respectively (both p < 0.01); whereas a single radiation dose of 15 Gy × 1 (15 × 1) was less effective, reducing metastases by 58.4 % (p < 0.01) and 47.1 % (p = 0.41), respectively. Neuroinflammation in the adjacent brain parenchyma was due solely to a reaction from metastases, and not radiotherapy, while adult neurogenesis in brains was adversely affected following both radiation regimens. The nature of radiation resistance was investigated by ex vivo culture of tumor cells that survived initial WBRT ("Surviving" cultures). The Surviving cultures surprisingly demonstrated increased radiosensitivity ex vivo. In contrast, re-injection of Surviving cultures and re-treatment with a 3 × 10 WBRT regimen significantly reduced the number of large and micrometastases that developed in vivo, suggesting a role for the microenvironment. Micrometastases derived from tumor cells surviving initial 3 × 10 WBRT demonstrated a trend toward radioresistance upon repeat treatment (p = 0.09). The data confirm the potency of a fractionated 3 × 10 WBRT regimen and identify the brain microenvironment as a potential determinant of radiation efficacy. The data also nominate the Surviving cultures as a potential new translational model for radiotherapy.

  16. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  17. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases.

    PubMed

    Patil, Chirag G; Pricola, Katie; Garg, Sachin K; Bryant, Andrew; Black, Keith L

    2010-06-16

    Historically, whole brain radiation therapy (WBRT) has been the main treatment for brain metastases. Stereotactic radiosurgery (SRS) delivers high dose focused radiation and is being increasingly utilized to treat brain metastases. The benefit of adding radiosurgery to WBRT is unclear. To assess the efficacy of WBRT plus radiosurgery versus WBRT alone in the treatment of of brain metastases. We searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 2, 2009), MEDLINE (1966 to 2009), EMBASE (1980 to 2009) and CancerLit (1975 to 2009) in order to identify trials for inclusion in this review. The review was restricted to randomised controlled trials (RCTs) that compared use of radiosurgery and WBRT versus WBRT alone for upfront treatment of adult patients with newly diagnosed metastases (single or multiple) in the brain resulting from any primary, extracranial cancer The Generic Inverse Variance method, random effects model in RevMan 5 was used for the meta-analysis. A meta-analysis of two trials with a total of 358 participants, found no statistically significant difference in overall survival (OS) between WBRT plus radiosurgery and WBRT alone groups (HR = 0.82, 95% CI 0.65 to 1.02). For patients with one brain metastasis median survival was significantly longer in WBRT plus SRS group (6.5 months) versus WBRT group (4.9 months, P = 0.04). Patients in the WBRT plus radiosurgery group had decreased local failure compared to patients who received WBRT alone (HR = 0.27, 95% CI 0.14 to 0.52). Furthermore, a statistically significant improvement in performance status scores and decrease in steroid use was seen in the WBRT plus SRS group. Unchanged or improved KPS at 6 months was seen in 43% of patients in the combined therapy group versus only 28% in WBRT group (P = 0.03). Overall, risk of bias in the included studies was unclear. Given the unclear risk of bias in the included studies, the results of this analysis have

  18. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  19. Evaluation of electrical aversion therapy for inappropriate sexual behaviour after traumatic brain injury: a single case experimental design study

    PubMed Central

    ter Mors, Bert Jan; van Heugten, Caroline M; van Harten, Peter N

    2012-01-01

    Inappropriate sexual behaviour after acquired brain injury is a severe complication. Evidence for effective treatment is not available. Electrical aversion therapy (EAT) is a behavioural therapeutic option used in persons with intellectual disabilities, which might be suitable for brain-injured individuals for whom other therapies are not effective. The effect of EAT in brain injury has not been investigated previously. A single case experimental design was used. In an ABBA (baseline-treatment-treatment-withdrawal) design the frequency of the target behaviour (ie, inappropriate sexual behaviour) in a 40-year-old man was measured daily. A total of 551 measurements were recorded. A significant reduction of the target behaviour was seen after the first treatment phase (baseline 12.18 (2.59) vs 3.15 (3.19) mean target behaviours daily); this reduction remained stable over time. We conclude that EAT was effective in this patient with inappropriate sexual behaviour due to severe brain injury. EAT can therefore be considered in therapy resistant inappropriate sexual behaviour in brain-injured patients. PMID:22922913

  20. Evaluation of electrical aversion therapy for inappropriate sexual behaviour after traumatic brain injury: a single case experimental design study.

    PubMed

    Ter Mors, Bert Jan; van Heugten, Caroline M; van Harten, Peter N

    2012-08-24

    Inappropriate sexual behaviour after acquired brain injury is a severe complication. Evidence for effective treatment is not available. Electrical aversion therapy (EAT) is a behavioural therapeutic option used in persons with intellectual disabilities, which might be suitable for brain-injured individuals for whom other therapies are not effective. The effect of EAT in brain injury has not been investigated previously. A single case experimental design was used. In an ABBA (baseline-treatment-treatment-withdrawal) design the frequency of the target behaviour (ie, inappropriate sexual behaviour) in a 40-year-old man was measured daily. A total of 551 measurements were recorded. A significant reduction of the target behaviour was seen after the first treatment phase (baseline 12.18 (2.59) vs 3.15 (3.19) mean target behaviours daily); this reduction remained stable over time. We conclude that EAT was effective in this patient with inappropriate sexual behaviour due to severe brain injury. EAT can therefore be considered in therapy resistant inappropriate sexual behaviour in brain-injured patients.

  1. Assessment and Therapeutic Application of the Expressive Therapies Continuum: Implications for Brain Structures and Functions

    ERIC Educational Resources Information Center

    Lusebrink, Vija B.

    2010-01-01

    The Expressive Therapies Continuum (ETC) provides a theoretical model for art-based assessments and applications of media in art therapy. The three levels of the ETC (Kinesthetic/Sensory, Perceptual/Affective, and Cognitive/Symbolic) appear to reflect different functions and structures in the brain that process visual and affective information.…

  2. A data-driven approach for evaluating multi-modal therapy in traumatic brain injury.

    PubMed

    Haefeli, Jenny; Ferguson, Adam R; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A; Massa, Stephen M

    2017-02-16

    Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans.

  3. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  4. Occupational, Physical, and Speech Therapy Treatment Activities During Inpatient Rehabilitation for Traumatic Brain Injury.

    PubMed

    Beaulieu, Cynthia L; Dijkers, Marcel P; Barrett, Ryan S; Horn, Susan D; Giuffrida, Clare G; Timpson, Misti L; Carroll, Deborah M; Smout, Randy J; Hammond, Flora M

    2015-08-01

    To describe the use of occupational therapy (OT), physical therapy (PT), and speech therapy (ST) treatment activities throughout the acute rehabilitation stay of patients with traumatic brain injury. Multisite prospective observational cohort study. Inpatient rehabilitation settings. Patients (N=2130) admitted for initial acute rehabilitation after traumatic brain injury. Patients were categorized on the basis of admission FIM cognitive scores, resulting in 5 fairly homogeneous cognitive groups. Not applicable. Percentage of patients engaged in specific activities and mean time patients engaged in these activities for each 10-hour block of time for OT, PT, and ST combined. Therapy activities in OT, PT, and ST across all 5 cognitive groups had a primary focus on basic activities. Although advanced activities occurred in each discipline and within each cognitive group, these advanced activities occurred with fewer patients and usually only toward the end of the rehabilitation stay. The pattern of activities engaged in was both similar to and different from patterns seen in previous practice-based evidence studies with different rehabilitation diagnostic groups. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Survival benefit of anti-HER2 therapy after whole-brain radiotherapy in HER2-positive breast cancer patients with brain metastasis.

    PubMed

    Zhang, Qian; Chen, Jian; Yu, Xiaoli; Cai, Gang; Yang, Zhaozhi; Cao, Lu; Hu, Chaosu; Guo, Xiaomao; Sun, Jing; Chen, Jiayi

    2016-09-01

    We aimed to assess the survival benefit of epidermal growth factor receptor 2 (HER2)-positive breast cancer patients with brain metastasis (BM) after whole-brain radiotherapy (WBRT) in combination with systemic treatments, especially anti-HER2 therapy. This retrospective study analyzed the overall survival (OS) of 60 HER2-positive breast cancer patients with BM after WBRT in combination with systemic treatments. Among them, 42 patients received chemotherapy while 18 patients did not receive after WBRT. With regard to anti-HER2 therapy, after WBRT, 17 patients received anti-HER2 treatment without prior adjuvant trastuzumab-based therapy, 7 patients received anti-HER2 treatment with prior adjuvant trastuzumab-based therapy, and 36 patients did not receive further anti-HER2 treatment. All patients were followed up regularly until January 23, 2013. The median OS of patients with BM was 12 months. Patients who received anti-HER2 therapy and chemotherapy after WBRT had significantly better survival compared with patients who did not receive further treatment. Patients who received anti-HER2 treatment after WBRT but did not receive adjuvant trastuzumab-based therapy for early breast cancer had better OS, followed by patients who received anti-HER2 agent both in adjuvant treatment and after WBRT and patients who did not receive anti-HER2 treatment. Multivariate analysis showed that Karnofsky Performance Status, control of extracranial metastases, chemotherapy after WBRT, and anti-HER2 therapy combined with WBRT were all independent predictors for OS. Both chemotherapy and anti-HER2 therapy after WBRT could improve OS. Moreover, patients without prior exposure to adjuvant anti-HER2 treatment may have survival benefit superior to those of patients with prior exposure.

  6. Change in brain and lesion volumes after CEE therapies

    PubMed Central

    Espeland, Mark A.; Hogan, Patricia E.; Resnick, Susan M.; Bryan, R. Nick; Robinson, Jennifer G.; Goveas, Joseph S.; Davatzikos, Christos; Kuller, Lewis H.; Williamson, Jeff D.; Bushnell, Cheryl D.; Shumaker, Sally A.

    2014-01-01

    Objectives: To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen–based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. Methods: A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Results: Total brain volume decreased an average of 3.22 cm3/y in the active arm and 3.07 cm3/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm3/y (p = 0.88). Conclusions: Conjugated equine estrogen–based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings. PMID:24384646

  7. Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes.

    PubMed

    Espeland, Mark A; Brinton, Roberta Diaz; Manson, JoAnn E; Yaffe, Kristine; Hugenschmidt, Christina; Vaughan, Leslie; Craft, Suzanne; Edwards, Beatrice J; Casanova, Ramon; Masaki, Kamal; Resnick, Susan M

    2015-09-29

    To examine whether the effect of postmenopausal hormone therapy (HT) on brain volumes in women aged 65-79 years differs depending on type 2 diabetes status during postintervention follow-up of a randomized controlled clinical trial. The Women's Health Initiative randomized clinical trials assigned women to HT (0.625 mg/day conjugated equine estrogens with or without 2.5 mg/day medroxyprogesterone acetate) or placebo for an average of 5.6 years. A total of 1,402 trial participants underwent brain MRI 2.4 years after the trials; these were repeated in 699 women 4.7 years later. General linear models were used to assess the interaction between diabetes status and HT assignment on brain volumes. Women with diabetes at baseline or during follow-up who had been assigned to HT compared to placebo had mean decrement in total brain volume of -18.6 mL (95% confidence interval [CI] -29.6, -7.6). For women without diabetes, this mean decrement was -0.4 (95% CI -3.8, 3.0) (interaction p=0.002). This interaction was evident for total gray matter (p<0.001) and hippocampal (p=0.006) volumes. It was not evident for changes in brain volumes over follow-up or for ischemic lesion volumes and was not influenced by diabetes duration or oral medications. For women aged 65 years or older who are at increased risk for brain atrophy due to type 2 diabetes, prescription of postmenopausal HT is associated with lower gray matter (total and hippocampal) volumes. Interactions with diabetes and insulin resistance may explain divergent findings on how estrogen influences brain volume among older women. © 2015 American Academy of Neurology.

  8. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  9. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  10. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  11. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  12. Self-awareness rehabilitation after Traumatic Brain Injury: A pilot study to compare two group therapies

    PubMed Central

    Rigon, Jessica; Burro, Roberto; Guariglia, Cecilia; Maini, Manuela; Marin, Dario; Ciurli, Paola; Bivona, Umberto; Formisano, Rita

    2017-01-01

    Background and Purpose: Deficits of self-awareness (SA) are very common after severe acquired brain injury (sABI), especially in traumatic brain injury (TBI), playing an important role in the efficacy of the rehabilitation process. This pilot study provides information regarding two structured group therapies for disorders of SA. Methods: Nine patients with severe TBI were consecutively recruited and randomly assigned to one SA group therapy programme, according either to the model proposed by Ben-Yishay & Lakin (1989) (B&L Group), or by Sohlberg & Mateer (1989) (S&M Group). Neuropsychological tests and self-awareness questionnaires were administered before and after a 10 weeks group therapy. Results: Results showed that both SA and neuropsychological functioning significantly improved in both groups. Conclusion: It is important to investigate and treat self-awareness, also to improve the outcome of neuropsychological disorders. The two group therapies proposed seem to be specific for impulsivity and emotional dyscontrol and for cognitive disorders. PMID:28059799

  13. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  14. Sonoporation, drug delivery, and gene therapy.

    PubMed

    Liang, H-D; Tang, J; Halliwell, M

    2010-01-01

    Ultrasound is a very effective modality for drug delivery and gene therapy because energy that is non-invasively transmitted through the skin can be focused deeply into the human body in a specific location and employed to release drugs at that site. Ultrasound cavitation, enhanced by injected microbubbles, perturbs cell membrane structures to cause sonoporation and increases the permeability to bioactive materials. Cavitation events also increase the rate of drug transport in general by augmenting the slow diffusion process with convective transport processes. Drugs and genes can be incorporated into microbubbles, which in turn can target a specific disease site using ligands such as the antibody. Drugs can be released ultrasonically from microbubbles that are sufficiently robust to circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Local drug delivery ensures sufficient drug concentration at the diseased region while limiting toxicity for healthy tissues. Ultrasound-mediated gene delivery has been applied to heart, blood vessel, lung, kidney, muscle, brain, and tumour with enhanced gene transfection efficiency, which depends on the ultrasonic parameters such as acoustic pressure, pulse length, duty cycle, repetition rate, and exposure duration, as well as microbubble properties such as size, gas species, shell material, interfacial tension, and surface rigidity. Microbubble-augmented sonothrombolysis can be enhanced further by using targeting microbubbles.

  15. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  16. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  17. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  18. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  19. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  20. Reversible lesions in the brain parenchyma in Wilson's disease confirmed by magnetic resonance imaging: earlier administration of chelating therapy can reduce the damage to the brain.

    PubMed

    Kozić, Duško B; Petrović, Igor; Svetel, Marina; Pekmezović, Tatjana; Ragaji, Aleksandar; Kostić, Vladimir S

    2014-11-01

    The aim of this study was to evaluate the resolution of brain lesions in patients with Wilson's disease during the long-term chelating therapy using magnetic resonance imaging and a possible significance of the time latency between the initial symptoms of the disease and the introduction of this therapy. Initial magnetic resonance examination was performed in 37 patients with proven neurological form of Wilson's disease with cerebellar, parkinsonian and dystonic presentation. Magnetic resonance reexamination was done 5.7 ± 1.3 years later in 14 patients. Patients were divided into: group A, where chelating therapy was initiated < 24 months from the first symptoms and group B, where the therapy started ≥ 24 months after the initial symptoms. Symmetry of the lesions was seen in 100% of patients. There was a significant difference between groups A and B regarding complete resolution of brain stem and putaminal lesions (P = 0.005 and P = 0.024, respectively). If the correct diagnosis and adequate treatment are not established less than 24 months after onset of the symptoms, irreversible lesions in the brain parenchyma could be expected. Signal abnormalities on magnetic resonance imaging might therefore, at least in the early stages, represent reversible myelinolisis or cytotoxic edema associated with copper toxicity.

  1. Miniaturized multiple Fourier-horn ultrasonic droplet generators for biomedical applications.

    PubMed

    Tsai, Chen S; Mao, Rong W; Lin, Shih K; Wang, Ning; Tsai, Shirley C

    2010-10-21

    Here we report micro-electro-mechanical system (MEMS)-based miniaturized silicon ultrasonic droplet generators of a new and simple nozzle architecture with multiple Fourier horns in resonance but without a central channel. The centimetre-sized nozzles operate at one to two MHz and a single vibration mode which readily facilitates temporal instability of Faraday waves to produce monodisperse droplets. Droplets with diameter range 2.2-4.6 μm are produced at high throughput of 420 μl min(-1) and very low electrical drive power of 80 mW. We also report the first theoretical prediction of the droplet diameter. The resulting MHz ultrasonic devices possess important advantages and demonstrate superior performance over earlier devices with a central channel and thus have high potential for biomedical applications such as efficient and effective delivery of inhaled medications and encapsulated therapy to the lung.

  2. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  3. Incidence and impact of withdrawal of life-sustaining therapies in clinical trials of severe traumatic brain injury: A systematic review.

    PubMed

    Leblanc, Guillaume; Boutin, Amélie; Shemilt, Michèle; Lauzier, François; Moore, Lynne; Potvin, Véronique; Zarychanski, Ryan; Archambault, Patrick; Lamontagne, François; Léger, Caroline; Turgeon, Alexis F

    2018-06-01

    Background Most deaths following severe traumatic brain injury follow decisions to withdraw life-sustaining therapies. However, the incidence of the withdrawal of life-sustaining therapies and its potential impact on research data interpretation have been poorly characterized. The aim of this systematic review was to assess the reporting and the impact of withdrawal of life-sustaining therapies in randomized clinical trials of patients with severe traumatic brain injury. Methods We searched Medline, Embase, Cochrane Central, BIOSIS, and CINAHL databases and references of included trials. All randomized controlled trials published between January 2002 and August 2015 in the six highest impact journals in general medicine, critical care medicine, and neurocritical care (total of 18 journals) were considered for eligibility. Randomized controlled trials were included if they enrolled adult patients with severe traumatic brain injury (Glasgow Coma Scale ≤ 8) and reported data on mortality. Our primary objective was to assess the proportion of trials reporting the withdrawal of life-sustaining therapies in a publication. Our secondary objectives were to describe the overall mortality rate, the proportion of deaths following the withdrawal of life-sustaining therapies, and to assess the impact of the withdrawal of life-sustaining therapies on trial results. Results From 5987 citations retrieved, we included 41 randomized trials (n = 16,364, ranging from 11 to 10,008 patients). Overall mortality was 23% (range = 3%-57%). Withdrawal of life-sustaining therapies was reported in 20% of trials (8/41, 932 patients in trials) and the crude number of deaths due to the withdrawal of life-sustaining therapies was reported in 17% of trials (7/41, 884 patients in trials). In these trials, 63% of deaths were associated with the withdrawal of life-sustaining therapies (105/168). An analysis carried out by imputing a 4% differential rate in instances of withdrawal of life

  4. Osmolar Therapy in Pediatric Traumatic Brain Injury

    PubMed Central

    Bennett, Tellen D.; Statler, Kimberly D.; Korgenski, E. Kent; Bratton, Susan L.

    2011-01-01

    Objectives To describe patterns of use for mannitol and hypertonic saline in children with traumatic brain injury (TBI), to evaluate any potential associations between hypertonic saline and mannitol use and patient demographic, injury, and treatment hospital characteristics, and to determine if the 2003 guidelines for severe pediatric TBI impacted clinical practice regarding osmolar therapy. Design Retrospective cohort study Setting Pediatric Health Information System (PHIS) database, January, 2001 to December, 2008 Patients Children (age < 18 years) with TBI and head/neck Abbreviated Injury Scale (AIS) score ≥ 3 who received mechanical ventilation and intensive care Interventions None Measurements and Main Results The primary outcome was hospital billing for parenteral hypertonic saline and mannitol use, by day of service. Overall, 33% (2,069 of 6,238) of the patients received hypertonic saline and 40% (2,500 of 6,238) received mannitol. Of the 1,854 patients who received hypertonic saline or mannitol for ≥ 2 days in the first week of therapy, 29% did not have ICP monitoring. After adjustment for hospital-level variation, primary insurance payer, and overall injury severity, use of both drugs was independently associated with older patient age, intracranial hemorrhage (other than epidural), skull fracture, and higher head/neck injury severity. Hypertonic saline use increased and mannitol use decreased with publication of the 2003 guidelines, and these trends continued through 2008. Conclusions Hypertonic saline and mannitol are used less in infants than in older children. The patient-level and hospital-level variation in osmolar therapy use and the substantial amount of sustained osmolar therapy without ICP monitoring suggest opportunities to improve the quality of pediatric TBI care. With limited high-quality evidence available, published expert guidelines appear to significantly impact clinical practice in this area. PMID:21926592

  5. A data-driven approach for evaluating multi-modal therapy in traumatic brain injury

    PubMed Central

    Haefeli, Jenny; Ferguson, Adam R.; Bingham, Deborah; Orr, Adrienne; Won, Seok Joon; Lam, Tina I.; Shi, Jian; Hawley, Sarah; Liu, Jialing; Swanson, Raymond A.; Massa, Stephen M.

    2017-01-01

    Combination therapies targeting multiple recovery mechanisms have the potential for additive or synergistic effects, but experimental design and analyses of multimodal therapeutic trials are challenging. To address this problem, we developed a data-driven approach to integrate and analyze raw source data from separate pre-clinical studies and evaluated interactions between four treatments following traumatic brain injury. Histologic and behavioral outcomes were measured in 202 rats treated with combinations of an anti-inflammatory agent (minocycline), a neurotrophic agent (LM11A-31), and physical therapy consisting of assisted exercise with or without botulinum toxin-induced limb constraint. Data was curated and analyzed in a linked workflow involving non-linear principal component analysis followed by hypothesis testing with a linear mixed model. Results revealed significant benefits of the neurotrophic agent LM11A-31 on learning and memory outcomes after traumatic brain injury. In addition, modulations of LM11A-31 effects by co-administration of minocycline and by the type of physical therapy applied reached statistical significance. These results suggest a combinatorial effect of drug and physical therapy interventions that was not evident by univariate analysis. The study designs and analytic techniques applied here form a structured, unbiased, internally validated workflow that may be applied to other combinatorial studies, both in animals and humans. PMID:28205533

  6. Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    PubMed Central

    2012-01-01

    Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1) Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2) High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3) Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged. PMID:23198727

  7. Residual brain injury after early discontinuation of cooling therapy in mild neonatal encephalopathy.

    PubMed

    Lally, Peter J; Montaldo, Paolo; Oliveira, Vânia; Swamy, Ravi Shankar; Soe, Aung; Shankaran, Seetha; Thayyil, Sudhin

    2018-07-01

    We examined the brain injury and neurodevelopmental outcomes in a prospective cohort of 10 babies with mild encephalopathy who had early cessation of cooling therapy. All babies had MRI and spectroscopy within 2 weeks after birth and neurodevelopmental assessment at 2 years. Cooling was prematurely discontinued at a median age of 9 hours (IQR 5-13) due to rapid clinical improvement. Five (50%) had injury on MRI or spectroscopy, and two (20%) had an abnormal neurodevelopmental outcome at 2 years. Premature cessation of cooling therapy in babies with mild neonatal encephalopathy does not exclude residual brain injury and adverse long-term neurodevelopmental outcomes. This study refers to babies recruited into the MARBLE study (NCT01309711, pre-results stage). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Focused ultrasound-mediated sonochemical internalization: an alternative to light-based therapies

    NASA Astrophysics Data System (ADS)

    Gonzales, Jonathan; Nair, Rohit Kumar; Madsen, Steen J.; Krasieva, Tatiana; Hirschberg, Henry

    2016-07-01

    Activation of sonosensitizers via focused ultrasound (FUS), i.e., sonodynamic therapy has been proposed as an extension to light-activated photodynamic therapy for the treatment of brain as well as other tumors. The use of FUS, as opposed to light, allows treatment to tumor sites buried deep within tissues as well as through the intact skull. We have examined ultrasonic activation of sonosensitizers together with the anticancer agent bleomycin (BLM), i.e., sonochemical internalization (SCI). SCI is a technique that utilizes FUS for the enhanced delivery of endo-lysosomal trapped macromolecules into the cell cytoplasm in a similar manner to light-based photochemical internalization. The released agent can, therefore, exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Our results indicate that, compared to drug or FUS treatment alone, FUS activation of the sonosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to grow as three-dimensional tumor spheroids in vitro.

  9. Effects of hormone therapy on brain structure

    PubMed Central

    Tosakulwong, Nirubol; Lesnick, Timothy G.; Zuk, Samantha M.; Gunter, Jeffrey L.; Gleason, Carey E.; Wharton, Whitney; Dowling, N. Maritza; Vemuri, Prashanthi; Senjem, Matthew L.; Shuster, Lynne T.; Bailey, Kent R.; Rocca, Walter A.; Jack, Clifford R.; Asthana, Sanjay; Miller, Virginia M.

    2016-01-01

    Objective: To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Methods: Participants (aged 42–56 years, within 5–36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Results: Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = −0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Conclusions: Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. Classification of evidence: This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. PMID:27473135

  10. Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes

    PubMed Central

    Brinton, Roberta Diaz; Manson, JoAnn E.; Yaffe, Kristine; Hugenschmidt, Christina; Vaughan, Leslie; Craft, Suzanne; Edwards, Beatrice J.; Casanova, Ramon; Masaki, Kamal; Resnick, Susan M.

    2015-01-01

    Objective: To examine whether the effect of postmenopausal hormone therapy (HT) on brain volumes in women aged 65–79 years differs depending on type 2 diabetes status during postintervention follow-up of a randomized controlled clinical trial. Methods: The Women's Health Initiative randomized clinical trials assigned women to HT (0.625 mg/day conjugated equine estrogens with or without 2.5 mg/day medroxyprogesterone acetate) or placebo for an average of 5.6 years. A total of 1,402 trial participants underwent brain MRI 2.4 years after the trials; these were repeated in 699 women 4.7 years later. General linear models were used to assess the interaction between diabetes status and HT assignment on brain volumes. Results: Women with diabetes at baseline or during follow-up who had been assigned to HT compared to placebo had mean decrement in total brain volume of −18.6 mL (95% confidence interval [CI] −29.6, −7.6). For women without diabetes, this mean decrement was −0.4 (95% CI −3.8, 3.0) (interaction p = 0.002). This interaction was evident for total gray matter (p < 0.001) and hippocampal (p = 0.006) volumes. It was not evident for changes in brain volumes over follow-up or for ischemic lesion volumes and was not influenced by diabetes duration or oral medications. Conclusions: For women aged 65 years or older who are at increased risk for brain atrophy due to type 2 diabetes, prescription of postmenopausal HT is associated with lower gray matter (total and hippocampal) volumes. Interactions with diabetes and insulin resistance may explain divergent findings on how estrogen influences brain volume among older women. PMID:26163429

  11. MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.

    PubMed

    Wairagkar, Maitreyee; McCrindle, Rachel; Robson, Holly; Meteyard, Lotte; Sperrin, Malcom; Smith, Andy; Pugh, Moyra

    2017-03-23

    The functional connectivity and structural proximity of elements of the language and motor systems result in frequent co-morbidity post brain injury. Although rehabilitation services are becoming increasingly multidisciplinary and "integrated", treatment for language and motor functions often occurs in isolation. Thus, behavioural therapies which promote neural reorganisation do not reflect the high intersystem connectivity of the neurologically intact brain. As such, there is a pressing need for rehabilitation tools which better reflect and target the impaired cognitive networks. The objective of this research is to develop a combined high dosage therapy tool for language and motor rehabilitation. The rehabilitation therapy tool developed, MaLT (Motor and Language Therapy), comprises a suite of computer games targeting both language and motor therapy that use the Kinect sensor as an interaction device. The games developed are intended for use in the home environment over prolonged periods of time. In order to track patients' engagement with the games and their rehabilitation progress, the game records patient performance data for the therapist to interrogate. MaLT incorporates Kinect-based games, a database of objects and language parameters, and a reporting tool for therapists. Games have been developed that target four major language therapy tasks involving single word comprehension, initial phoneme identification, rhyme identification and a naming task. These tasks have 8 levels each increasing in difficulty. A database of 750 objects is used to programmatically generate appropriate questions for the game, providing both targeted therapy and unique gameplay every time. The design of the games has been informed by therapists and by discussions with a Public Patient Involvement (PPI) group. Pilot MaLT trials have been conducted with three stroke survivors for the duration of 6 to 8 weeks. Patients' performance is monitored through MaLT's reporting facility

  12. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  13. Comparison possibilities of ultrasound and its combination with laser in surgery and therapy

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Menyaev, Yulian A.; Kabisov, Ruslan K.; Alkov, Sergey V.; Nesterov, A. V.; Loshchilov, Vladimir I.; Suen, James Y.

    2000-05-01

    This article presents the further developments of combined laser-ultrasound medical technologies with paying attention the possibility ultrasound in surgery and therapy. The analyses of main effects at the low frequency ultrasonic treatment of biotissues including cavitation, acoustic streams, acoustic pressure, mechanical influence etc are analyzed. The main promising areas of application of low frequency ultrasound are considered including bactericidal treatment of infections wounds, spray treatment of wounds in head and neck surgery, tumor treatment etc. In particular the clinical result of using ultrasonic devices based on imposing ultrasonic oscillations in a range of 22-66 kHz on a cutting instrument with a special form, radiation intensity up to 10 W/cm2 and oscillation amplitude up to 40-60 micrometers with respect to oncology for halt bleeding from a tumor, liquidating pain, acoustic denervation are presented. Some limitation of medical application of ultrasound are discussed and perspective combination with laser for increasing efficiency of new combined technologies are found. Among them: combination photodynamic therapy and ultrasonic treatment of tumors, laser-ultrasonic treatment of infections wounds including using spray, laser-ultrasonic drug delivery. The preliminary result of experimental study of some of above-mentioned technologies are presented.

  14. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy.

    PubMed

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-08-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.

  15. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    NASA Astrophysics Data System (ADS)

    Martínez, José M.; Jarosz, Boguslaw J.

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m-1, 115  ±  4 dB m-1 and 175  ±  9 dB m-1, respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m-3 and 1545  ±  44 m s-1, respectively. The average thermal conductivity was 0.532 W m-1 K-1. The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  16. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  17. Combination Therapies for Traumatic Brain Injury: Retrospective Considerations

    PubMed Central

    Anderson, Gail; Atif, Fahim; Badaut, Jerome; Clark, Robert; Empey, Philip; Guseva, Maria; Hoane, Michael; Huh, Jimmy; Pauly, Jim; Raghupathi, Ramesh; Scheff, Stephen; Stein, Donald; Tang, Huiling; Hicks, Mona

    2016-01-01

    Abstract Patients enrolled in clinical trials for traumatic brain injury (TBI) may present with heterogeneous features over a range of injury severity, such as diffuse axonal injury, ischemia, edema, hemorrhage, oxidative damage, mitochondrial and metabolic dysfunction, excitotoxicity, inflammation, and other pathophysiological processes. To determine whether combination therapies might be more effective than monotherapy at attenuating moderate TBI or promoting recovery, the National Institutes of Health funded six preclinical studies in adult and immature male rats to evaluate promising acute treatments alone and in combination. Each of the studies had a solid rationale for its approach based on previous research, but only one reported significant improvements in long-term outcomes across a battery of behavioral tests. Four studies had equivocal results because of a lack of sensitivity of the outcome assessments. One study demonstrated worse results with the combination in comparison with monotherapies. While specific research findings are reported elsewhere, this article provides an overview of the study designs, insights, and recommendations for future research aimed at therapy development for TBI. PMID:25970337

  18. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  19. Treatment of solitary brain metastasis. Resection followed by whole brain radiation therapy (WBRT) and a radiation boost to the metastatic site.

    PubMed

    Rades, Dirk; Raabe, Annette; Bajrovic, Amira; Alberti, Winfried

    2004-03-01

    Whole brain radiation therapy (WBRT) is reported to improve local control after resection of brain metastases. Improvement of survival was only observed in patients with controlled extracranial disease. The optimum radiation schedule has yet to be defined. The authors' experience with a postoperative approach including WBRT and a radiation boost to the metastatic site is presented. Criteria for inclusion into this retrospective analysis were solitary brain metastasis, Karnofsky performance status > or = 70%, and controlled extracranial disease. Two therapies were compared for local control and survival: surgery followed by 40 Gy WBRT (group A) versus surgery followed by 40 Gy WBRT and a 10 Gy boost (group B). Statistical analysis was performed using the Kaplan-Meier method and log-rank test. 33 patients were included (17 group A, 16 group B). The results suggested better local control (p = 0.0087) and survival (p = 0.0023) for group B. 17/17 patients (100%) of group A and 13/16 patients (81%) of group B showed progression of brain metastasis, 8/17 and 3/16 patients in the area of metastatic surgery. Median time to progression was 7 (1-22) months in group A and 12 (3-42) months in group B. The number of cancer-related deaths amounted to 17/17 (100%) in group A after a median interval of 9 (3-26) months, and to 9/16 (56%) in group B after 14 (4-46) months. After resection of solitary brain metastasis, a radiation boost in addition to WBRT seems to improve local control and survival when compared to postoperative WBRT alone. The results should be confirmed in a larger prospective trial.

  20. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  1. Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity.

    PubMed

    Mohanty, Rosaleena; Sinha, Anita M; Remsik, Alexander B; Dodd, Keith C; Young, Brittany M; Jacobson, Tyler; McMillan, Matthew; Thoma, Jaclyn; Advani, Hemali; Nair, Veena A; Kang, Theresa J; Caldera, Kristin; Edwards, Dorothy F; Williams, Justin C; Prabhakaran, Vivek

    2018-01-01

    Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM) classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke rehabilitation that not only

  2. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  3. Cell therapy attempted as a novel approach for chronic traumatic brain injury - a pilot study.

    PubMed

    Sharma, Alok; Sane, Hemangi; Kulkarni, Pooja; Yadav, Jayanti; Gokulchandran, Nandini; Biju, Hema; Badhe, Prerna

    2015-01-01

    Traumatic brain injury is an injury to the brain parenchyma resulting from external factors such as vehicular accidents, falls, or sports injuries. Its outcome involves primary insult followed by a cascade of secondary insult, resulting in diffuse axonal injury further causing white matter damage. Surgical intervention targets the primary damage, whereas only few treatment alternatives are available to treat the secondary damage. Cellular therapy could be one of the prospective therapeutic options, as it has the potential to arrest the degeneration and promote regeneration of new cells in the brain. We conducted a pilot study on 14 cases who were administered with autologous bone marrow mononuclear cells, intrathecally. The follow up was done at 1 week, 3 months and 6 months after the intervention. The Functional Independence Measure scale, the SF-8 Health Survey Scoring and the disability rating scale were used as outcome measures. These scales showed a positive shift in scores at the end of 6 months. Improvements were observed in various symptoms, along with activities of daily living. Improvement in PET CT scan performed before and 6 months after the intervention in 3 patients corresponded to the clinical and functional improvements observed in these patients. The results of this study suggest that cell therapy may promote functional recovery leading to an improved quality of life in chronic TBI. Although the results are positive, the improvements after cell therapy are not optimal. Hence, additional multicenter, controlled studies are required to establish cell therapy as a standard therapeutic approach.

  4. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    PubMed

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  5. Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task.

    PubMed

    Wattiez, Nicolas; Constans, Charlotte; Deffieux, Thomas; Daye, Pierre M; Tanter, Mickael; Aubry, Jean-François; Pouget, Pierre

    Low intensity transcranial ultrasonic stimulation (TUS) has been demonstrated to non-invasively and transiently stimulate the nervous system. Although US neuromodulation has appeared robust in rodent studies, the effects of US in large mammals and humans have been modest at best. In addition, there is a lack of direct recordings from the stimulated neurons in response to US. Our study investigates the magnitude of the US effects on neuronal discharge in awake behaving monkeys and thus fills the void on both fronts. In this study, we demonstrate the feasibility of recording action potentials in the supplementary eye field (SEF) as TUS is applied simultaneously to the frontal eye field (FEF) in macaques performing an antisaccade task. We show that compared to a control stimulation in the visual cortex, SEF activity is significantly modulated shortly after TUS onset. Among all cell types 40% of neurons significantly changed their activity after TUS. Half of the neurons showed a transient increase of activity induced by TUS. Our study demonstrates that the neuromodulatory effects of non-invasive focused ultrasound can be assessed in real time in awake behaving monkeys by recording discharge activity from a brain region reciprocally connected with the stimulated region. The study opens the door for further parametric studies for fine-tuning the ultrasonic parameters. The ultrasonic effect could indeed be quantified based on the direct measurement of the intensity of the modulation induced on a single neuron in a freely performing animal. The technique should be readily reproducible in other primate laboratories studying brain function, both for exploratory and therapeutic purposes and to facilitate the development of future clinical TUS devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparative effectiveness of stereotactic radiosurgery versus whole-brain radiation therapy for patients with brain metastases from breast or non-small cell lung cancer.

    PubMed

    Halasz, Lia M; Uno, Hajime; Hughes, Melissa; D'Amico, Thomas; Dexter, Elisabeth U; Edge, Stephen B; Hayman, James A; Niland, Joyce C; Otterson, Gregory A; Pisters, Katherine M W; Theriault, Richard; Weeks, Jane C; Punglia, Rinaa S

    2016-07-01

    The optimal treatment for patients with brain metastases remains controversial as the use of stereotactic radiosurgery (SRS) alone, replacing whole-brain radiation therapy (WBRT), has increased. This study determined the patterns of care at multiple institutions before 2010 and examined whether or not survival was different between patients treated with SRS and patients treated with WBRT. This study examined the overall survival of patients treated with radiation therapy for brain metastases from non-small cell lung cancer (NSCLC; initially diagnosed in 2007-2009) or breast cancer (initially diagnosed in 1997-2009) at 5 centers. Propensity score analyses were performed to adjust for confounding factors such as the number of metastases, the extent of extracranial metastases, and the treatment center. Overall, 27.8% of 400 NSCLC patients and 13.4% of 387 breast cancer patients underwent SRS alone for the treatment of brain metastases. Few patients with more than 3 brain metastases or lesions ≥ 4 cm in size underwent SRS. Patients with fewer than 4 brain metastases less than 4 cm in size (n = 189 for NSCLC and n = 117 for breast cancer) who were treated with SRS had longer survival (adjusted hazard ratio [HR] for NSCLC, 0.58; 95% confidence Interval [CI], 0.38-0.87; P = .01; adjusted HR for breast cancer, 0.54; 95% CI, 0.33-0.91; P = .02) than those treated with WBRT. Patients treated for fewer than 4 brain metastases from NSCLC or breast cancer with SRS alone had longer survival than those treated with WBRT in this multi-institutional, retrospective study, even after adjustments for the propensity to undergo SRS. Cancer 2016;122:2091-100. © 2016 American Cancer Society. © 2016 American Cancer Society.

  8. A single cell penetration system by ultrasonic driving

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaoying; Xiao, Mingfei; Yang, Xing; Wu, Ting

    2008-12-01

    The researches of single cell's control and operation are the hotspots in whole world. Among the various technologies, the transmission of ectogenic genetic materials between cell membrane is very significant. Imitating the Chinese traditional acupuncture therapy, a new ultrasonic resonance driving method, is imported to drive a cell's penetration probe. A set of the single cell penetration system was established to perform this function. This system includes four subsystems: driving part, micromanipulation part, observation and measurement part, and actuation part. Some fish egg experiments indicate that this system is workable and effective.

  9. Serum levels of brain-derived neurotrophic factor (BNDF) in multiple sclerosis patients with Trichuris suis ova therapy.

    PubMed

    Rosche, Berit; Werner, Jonas; Benzel, Friderike Joëlle; Harms, Lutz; Danker-Hopfe, Heidi; Hellweg, Rainer

    2013-01-01

    We previously analysed clinical and immunological parameters under Trichuris suis ova (TSO) therapy in four patients with secondary progressive multiple sclerosis. The serum Brain-derived neurotrophic factor (BDNF) levels of these four patients were assessed before, during and after therapy with TSO and showed significant decrease of BDNF during TSO therapy (p < 0.05). © B. Rosche et al., published by EDP Sciences, 2013.

  10. Toward a preoperative planning tool for brain tumor resection therapies.

    PubMed

    Coffey, Aaron M; Miga, Michael I; Chen, Ishita; Thompson, Reid C

    2013-01-01

    Neurosurgical procedures involving tumor resection require surgical planning such that the surgical path to the tumor is determined to minimize the impact on healthy tissue and brain function. This work demonstrates a predictive tool to aid neurosurgeons in planning tumor resection therapies by finding an optimal model-selected patient orientation that minimizes lateral brain shift in the field of view. Such orientations may facilitate tumor access and removal, possibly reduce the need for retraction, and could minimize the impact of brain shift on image-guided procedures. In this study, preoperative magnetic resonance images were utilized in conjunction with pre- and post-resection laser range scans of the craniotomy and cortical surface to produce patient-specific finite element models of intraoperative shift for 6 cases. These cases were used to calibrate a model (i.e., provide general rules for the application of patient positioning parameters) as well as determine the current model-based framework predictive capabilities. Finally, an objective function is proposed that minimizes shift subject to patient position parameters. Patient positioning parameters were then optimized and compared to our neurosurgeon as a preliminary study. The proposed model-driven brain shift minimization objective function suggests an overall reduction of brain shift by 23 % over experiential methods. This work recasts surgical simulation from a trial-and-error process to one where options are presented to the surgeon arising from an optimization of surgical goals. To our knowledge, this is the first realization of an evaluative tool for surgical planning that attempts to optimize surgical approach by means of shift minimization in this manner.

  11. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  12. Activation of Macrophages in vitro by Phospholipids from Brain of Katsuwonus pelamis (Skipjack Tuna).

    PubMed

    Lu, Hang; Zhang, Li; Zhao, Hui; Li, Jingjing; You, Hailin; Jiang, Lu; Hu, Jianen

    2018-03-01

    The biological activities of phospholipids (PLs) have attracted people's attention, especially marine phospholipids with omega-3 polyunsaturated fatty acids DHA and EPA. In this study, we investigated the immunity activation of macrophages in vitro by phospholipids from skipjack brain. The phospholipids were extracted with hexane and ethanol ultrasonication instead of the traditional method of methanol and chloroform. The content of phospholipids from Skipjack brain was 19.59 g/kg by the method (the ratio of hexane and ethanol 2:1, 40 min, 35°C, 1:9 of the ratio of material to solvent, ultrasonic power 300W, ultrasonic extraction 2 times). The RAW264.7 macrophages were stimulated by the phospholipids from the Skipjack, by which the volume, viability and phagocytosis of macrophages were increased. The concentration of NO and the activity of SOD of the cells were also enhanced. The gene expressions of IL-1β, IL-6, iNOS and TNF-α mRNA assayed by RT-PCR were up-regulated. Phospholipids from brain of Skipjack Tuna could activate macrophages immunity which displayed to induce pro-inflammatroy cytokines mRNA expression.

  13. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  14. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  15. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  16. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  17. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  18. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  19. Nonpharmacological, somatic treatments of depression: electroconvulsive therapy and novel brain stimulation modalities

    PubMed Central

    Eitan, Renana; Lerer, Bernard

    2006-01-01

    Until recently, a review of nonpharmacological, somatic treatments of psychiatric disorders would have included only electroconvulsive therapy (ECT). This situation is now changing very substantially Although ECT remains the only modality in widespread clinical use, several new techniques are under investigation. Their principal indication in the psychiatric context is the treatment of major depression, but other applications are also being studied. All the novel treatments involve brain stimulation, which is achieved by different technological methods. The treatment closest to the threshold of clinical acceptability is transcranial magnetic stimulation (TMS). Although TMS is safe and relatively easy to administer, its efficacy has still to be definitively established. Other modalities, at various stages of research development, include magnetic seizure therapy (MST), deep brain stimulation (DBS), and vagus nerve stimulation (VNS). We briefly review the development and technical aspects of these treatments, their potential role in the treatment of major depression, adverse effects, and putative mechanism of action. As the only one of these treatment modalities that is in widespread clinical use, more extended consideration is given to ECT. Although more than half a century has elapsed since ECT was first introduced, it remains the most effective treatment for major depression, with efficacy in patients refractory to antidepressant drugs and an acceptable safety profile. Although they hold considerable promise, the novel brain stimulation techniques reviewed here will be need to be further developed before they achieve clinical acceptability. PMID:16889109

  20. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients.

    PubMed

    Meyers, C A; Weitzner, M A; Valentine, A D; Levin, V A

    1998-07-01

    Patients with malignant glioma develop progressive neurobehavioral deficits over the course of their illness. These are caused both by the effects of the disease and the effects of radiation and chemotherapy. We sought to determine whether methylphenidate treatment would improve these patients' neurobehavioral functioning despite their expected neurologic deterioration. Thirty patients with primary brain tumors underwent neuropsychologic assessment before and during treatment with methylphenidate. Ability to function in activities of daily living and magnetic resonance imaging (MRI) findings were also documented. Patients were assessed on 10, 20, and 30 mg of methylphenidate twice daily. Significant improvements in cognitive function were observed on the 10-mg twice-daily dose. Functional improvements included improved gait, increased stamina and motivation to perform activities, and in one case, increased bladder control. Adverse effects were minimal and immediately resolved when treatment was discontinued. There was no increase in seizure frequency and the majority of patients on glucocorticoid therapy were able to decrease their dose. Gains in cognitive function and ability to perform activities were observed in the setting of progressive neurologic injury documented by MRI in half of the subjects. This study demonstrated improved patient function in the setting of a progressive neurologic illness. Methylphenidate should be more widely considered as adjuvant brain tumor therapy.

  1. The value of normalization: Group therapy for individuals with brain injury.

    PubMed

    von Mensenkampff, Barbara; Ward, Marcia; Kelly, Grace; Cadogan, Sam; Fawsit, Feargus; Lowe, Niamh

    2015-01-01

    This paper reports on a client-driven therapy group designed to help clients actively process changes and equip them with the psychological skills necessary to facilitate rehabilitation. This is an exploratory mixed methods research design based in clinical practice. This study documents results from five therapy groups, each group consisting of 2-hour sessions over an average of 6 weeks with a review session 6 weeks later. Forty-five clients (13 female, 32 male, average age = 40.54, SD = 11.87) with brain injury attended the group with Headway psychological services, Cork. Clients' pre- and post-measures of functioning were gathered to assess the potential therapeutic benefits. Thematic analysis was used to evaluate the qualitative data. Results illustrate a number of benefits to the participants, including normalizing effects, helping with acceptance, finding a new identity and positive mental health changes. Findings are encouraging and help to validate the effectiveness of group therapy as an intervention tool.

  2. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  3. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study.

    PubMed

    Straudi, Sofia; Severini, Giacomo; Sabbagh Charabati, Amira; Pavarelli, Claudia; Gamberini, Giulia; Scotti, Anna; Basaglia, Nino

    2017-05-10

    Patients with traumatic brain injury often have balance and attentive disorders. Video game therapy (VGT) has been proposed as a new intervention to improve mobility and attention through a reward-learning approach. In this pilot randomized, controlled trial, we tested the effects of VGT, compared with a balance platform therapy (BPT), on balance, mobility and selective attention in chronic traumatic brain injury patients. We enrolled chronic traumatic brain injury patients (n = 21) that randomly received VGT or BPT for 3 sessions per week for 6 weeks. The clinical outcome measures included: i) the Community Balance & Mobility Scale (CB&M); ii) the Unified Balance Scale (UBS); iii) the Timed Up and Go test (TUG); iv) static balance and v) selective visual attention evaluation (Go/Nogo task). Both groups improved in CB&M scores, but only the VGT group increased on the UBS and TUG with a between-group significance (p < 0.05). Selective attention improved significantly in the VGT group (p < 0.01). Video game therapy is an option for the management of chronic traumatic brain injury patients to ameliorate balance and attention deficits. NCT01883830 , April 5 2013.

  4. Model validation of untethered, ultrasonic neural dust motes for cortical recording.

    PubMed

    Seo, Dongjin; Carmena, Jose M; Rabaey, Jan M; Maharbiz, Michel M; Alon, Elad

    2015-04-15

    A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 μm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 μm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 μW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ultrasonic modulation of neural circuit activity.

    PubMed

    Tyler, William J; Lani, Shane W; Hwang, Grace M

    2018-06-01

    Ultrasound (US) is recognized for its use in medical imaging as a diagnostic tool. As an acoustic energy source, US has become increasingly appreciated over the past decade for its ability to non-invasively modulate cellular activity including neuronal activity. Data obtained from a host of experimental models has shown that low-intensity US can reversibly modulate the physiological activity of neurons in peripheral nerves, spinal cord, and intact brain circuits. Experimental evidence indicates that acoustic pressures exerted by US act, in part, on mechanosensitive ion channels to modulate activity. While the precise mechanisms of action enabling US to both stimulate and suppress neuronal activity remain to be clarified, there are several advantages conferred by the physics of US that make it an appealing option for neuromodulation. For example, it can be focused with millimeter spatial resolutions through skull bone to deep-brain regions. By increasing our engineering capability to leverage such physical advantages while growing our understanding of how US affects neuronal function, the development of a new generation of non-invasive neurotechnology can be developed using ultrasonic methods. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Anti-high mobility group box-1 antibody therapy for traumatic brain injury.

    PubMed

    Okuma, Yu; Liu, Keyue; Wake, Hidenori; Zhang, Jiyong; Maruo, Tomoko; Date, Isao; Yoshino, Tadashi; Ohtsuka, Aiji; Otani, Naoki; Tomura, Satoshi; Shima, Katsuji; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Takahashi, Hideo K; Mori, Shuji; Nishibori, Masahiro

    2012-09-01

    High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1. Copyright © 2012 American Neurological Association.

  7. Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study

    PubMed Central

    Turgeon, Alexis F.; Lauzier, François; Simard, Jean-François; Scales, Damon C.; Burns, Karen E.A.; Moore, Lynne; Zygun, David A.; Bernard, Francis; Meade, Maureen O.; Dung, Tran Cong; Ratnapalan, Mohana; Todd, Stephanie; Harlock, John; Fergusson, Dean A.

    2011-01-01

    Background: Severe traumatic brain injury often leads to death from withdrawal of life-sustaining therapy, although prognosis is difficult to determine. Methods: To evaluate variation in mortality following the withdrawal of life-sustaining therapy and hospital mortality in patients with critical illness and severe traumatic brain injury, we conducted a two-year multicentre retrospective cohort study in six Canadian level-one trauma centres. The effect of centre on hospital mortality and withdrawal of life-sustaining therapy was evaluated using multivariable logistic regression adjusted for baseline patient-level covariates (sex, age, pupillary reactivity and score on the Glasgow coma scale). Results: We randomly selected 720 patients with traumatic brain injury for our study. The overall hospital mortality among these patients was 228/720 (31.7%, 95% confidence interval [CI] 28.4%–35.2%) and ranged from 10.8% to 44.2% across centres (χ2 test for overall difference, p < 0.001). Most deaths (70.2% [160/228], 95% CI 63.9%–75.7%) were associated with withdrawal of life-sustaining therapy, ranging from 45.0% (18/40) to 86.8% (46/53) (χ2 test for overall difference, p < 0.001) across centres. Adjusted odd ratios (ORs) for the effect of centre on hospital mortality ranged from 0.61 to 1.55 (p < 0.001). The incidence of withdrawal of life-sustaining therapy varied by centre, with ORs ranging from 0.42 to 2.40 (p = 0.001). About one half of deaths that occurred following the withdrawal of life-sustaining therapies happened within the first three days of care. Interpretation: We observed significant variation in mortality across centres. This may be explained in part by regional variations in physician, family or community approaches to the withdrawal of life-sustaining therapy. Considering the high proportion of early deaths associated with the withdrawal of life-sustaining therapy and the limited accuracy of current prognostic indicators, caution should be used

  8. Definitive Chemoradiation Therapy Following Surgical Resection or Radiosurgery Plus Whole-Brain Radiation Therapy in Non-Small Cell Lung Cancer Patients With Synchronous Solitary Brain Metastasis: A Curative Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlak, Cem, E-mail: cemparlak@gmail.com; Mertsoylu, Hüseyin; Güler, Ozan Cem

    2014-03-15

    Purpose/Objectives: The aim of this study was to evaluate the impact of definitive thoracic chemoradiation therapy following surgery or stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) on the outcomes of patients with non-small cell lung cancer (NSCLC) with synchronous solitary brain metastasis (SSBM). Methods and Materials: A total of 63 NSCLC patients with SSBM were retrospectively evaluated. Patients were staged using positron emission tomography-computed tomography in addition to conventional staging tools. Thoracic radiation therapy (TRT) with a total dose of 66 Gy in 2 Gy fractions was delivered along with 2 cycles of cisplatin-based chemotherapy following either surgery plus 30 Gy ofmore » WBRT (n=33) or SRS plus 30 Gy of WBRT (n=30) for BM. Results: Overall, the treatment was well tolerated. All patients received planned TRT, and 57 patients (90.5%) were also able to receive 2 cycles of chemotherapy. At a median follow-up of 25.3 months (7.1-52.1 months), the median months of overall, locoregional progression-free, neurological progression-free, and progression-free survival were 28.6, 17.7, 26.4, and 14.6, respectively. Both univariate and multivariate analyses revealed that patients with a T1-T2 thoracic disease burden (P=.001), a nodal stage of N0-N1 (P=.003), and no weight loss (P=.008) exhibited superior survival. Conclusions: In the present series, surgical and radiosurgical treatments directed toward SSBM in NSCLC patients were equally effective. The similarities between the present survival outcomes and those reported in other studies for locally advanced NSCLC patients indicate the potentially curative role of definitive chemoradiation therapy for highly selected patients with SSBM.« less

  9. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  10. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  11. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  12. LyP-1 ultrasonic microbubbles targeting to cancer cell as tumor bio-acoustics markers or drug carriers: targeting efficiency evaluation in, microfluidic channels.

    PubMed

    Li, Xiang; Jin, Qiaofeng; Chen, Tan; Zhang, Baoyue; Zheng, Rongqin; Wang, Zhanhui; Zheng, Hairong

    2009-01-01

    Using ultrasonic contrast microbubbles as acoustic biomarkers and drug carrier vehicles by conjugating tumor specific antibody to microbubbles has shown great potential in ultrasonic tumor molecular imaging or drug-delivery and therapy. Microbubble probe targeting efficiency is one of the major challenges. In this study, we developed a novel method to evaluate the targeting capability and efficiency of microbubbles to cells, and more specifically, microbubbles binding LyP-1 (a cyclic nonapeptide acid peptide) target to cancer cell within a microfluidic system. The micro cell sieves within the microfludic channels could trap the tumor cells and enhance the microbubble's interaction with the cell. Assisted with the controllable fluid shear stress, the microbubble's targeting to the cell and the corresponding affinity efficiency could be quantitatively evaluated under a florescent microscope. The system provides a useful low-cost high efficient in vitro platform for studying microbubble-cell interaction for ultrasonic tumor molecular imaging or drug-delivery and therapy.

  13. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations.

    PubMed

    Nizam-Uddin, N; Elshafiey, Ibrahim

    2017-01-01

    This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors.

  14. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations

    PubMed Central

    Elshafiey, Ibrahim

    2017-01-01

    This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors. PMID:28840125

  15. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  16. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  17. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  18. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    NASA Astrophysics Data System (ADS)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  19. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  20. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  1. Localized intestinal perforations as a potential complication of brain hypothermic therapy for perinatal asphyxia.

    PubMed

    Nishizaki, Naoto; Maiguma, Atsuko; Obinata, Kaoru; Okazaki, Tadaharu; Shimizu, Toshiaki

    2016-01-01

    Brain hypothermic therapy (BHT) is becoming a frequently used standard of care for perinatal asphyxia. Although cardiovascular side effects, coagulation disorders, renal impairment, electrolyte abnormalities, impaired liver function, opportunistic infections, and skin lesions are well-known adverse effects of BHT in newborns, little information is available on the clinical features of intestinal perforation-related BHT. We herein report a case of therapeutic brain cooling for perinatal asphyxia complicated by localized intestinal perforation. In practice, the neonatologist should be aware that intestinal perforation in an infant with perinatal asphyxia is possible, particularly following BHT.

  2. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  3. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  4. Creative music therapy to promote brain structure, function, and neurobehavioral outcomes in preterm infants: a randomized controlled pilot trial protocol.

    PubMed

    Haslbeck, Friederike Barbara; Bucher, Hans-Ulrich; Bassler, Dirk; Hagmann, Cornelia

    2017-01-01

    Preterm birth is associated with increased risk of neurological impairment and deficits in cognition, motor function, and behavioral problems. Limited studies indicate that multi-sensory experiences support brain development in preterm infants. Music appears to promote neurobiological processes and neuronal learning in the human brain. Creative music therapy (CMT) is an individualized, interactive therapeutic approach based on the theory and methods of Nordoff and Robbins. CMT may promote brain development in preterm infants via concurrent interaction and meaningful auditory stimulation. We hypothesize that preterm infants who receive creative music therapy during neonatal intensive care admission will have developmental benefits short- and long-term brain function. A prospective, randomized controlled single-center pilot trial involving 60 clinically stable preterm infants under 32 weeks of gestational age is conducted in preparation for a multi-center trial. Thirty infants each are randomized to either standard neonatal intensive care or standard care with CMT. Music therapy intervention is approximately 20 min in duration three times per week. A trained music therapist sings for the infants in lullaby style, individually entrained and adjusted to the infant's rhythm and affect. Primary objectives of this study are feasibility of protocol implementation and investigating the potential mechanism of efficacy for this new intervention. To examine the effect of this new intervention, non-invasive, quantitative magnetic resonance imaging (MRI) methods at corrected age and standardized neurodevelopmental assessments using the Bayley Scales of Infant and Toddler Development third edition at a corrected age of 24 months and Kaufman Assessment Battery for Children at 5 years will be performed. All assessments will be performed and analyzed by blinded experts. To our knowledge, this is the first randomized controlled clinical trial to systematically examine possible

  5. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  6. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  7. Laser-ultrasonic technologies for medicine

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Latyshev, Alexei S.

    1999-06-01

    This review tackles the problem of further developing laser- ultrasonic medical technologies and gives the comparison of different laser and ultrasound combinations. The features of combined influence on biotissue are explicated with due regard for mechanic, ultrasonic (US), and thermal effects. The review present the effect of self-cleaning an optical fiber tip from the laser destruction products of biotissue, the result of research on the possibility of laser-US technology applications in endoscopy, and the ways of suppressing unwanted bending oscillations. Various spheres and peculiarities of applying laser-US technologies are discussed, including microsurgery, cosmetology, transcutaneous drug delivery, and the treatment of chronic prostatitis and infected wounds. Furthermore, the analysis of transcutaneous drug delivery methods employing a portable pulsed Er:YAG laser is presented. Drug diffusion has been shown to be enhanced under acoustic and US effects. The photo-vacuum drug injection mechanism recently suggested is discussed. It turned out that laser-US technology can be suitable for both impregnating the photosensitizer in local photodynamic therapy procedures and conducting microsurgery operations involving drug injection. Treatment of infectious processes based on the bactericidal action of photosensitizers and ultrasound due to the cavitation effect in solutions is described. An additional therapeutic effect can be achieved via the US intermingling of solutions with their simulations illumination by a matrix of red lasers or light diodes. An outlook on further developing laser-US technology and the ways of its apparatus realization are considered.

  8. Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside

    PubMed Central

    Hu, Qin; Manaenko, Anatol; Xu, Ting; Guo, Zhenni; Tang, Jiping; Zhang, John H.

    2016-01-01

    Traumatic brain injury (TBI) is a serious public health problem in the United States. Survivors of TBI are often left with significant cognitive, behavioral, and communicative disabilities. So far there is no effective treatment/intervention in the daily clinical practice for TBI patients. The protective effects of hyperbaric oxygen therapy (HBOT) have been proved in stroke; however, its efficiency in TBI remains controversial. In this review, we will summarize the results of HBOT in experimental and clinical TBI, elaborate the mechanisms, and bring out our current understanding and opinions for future studies. PMID:27867476

  9. [Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors].

    PubMed

    Kanygin, V V; Kichigin, A I; Gubanova, N V; Taskaev, S Yu

    2015-01-01

    Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.

  10. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  11. The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy.

    PubMed Central

    Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.

    1996-01-01

    The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339

  12. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  13. Whole-Brain Radiotherapy With Simultaneous Integrated Boost to Multiple Brain Metastases Using Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerwaard, Frank J.; Hoorn, Elles A.P. van der; Verbakel, Wilko

    2009-09-01

    Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans weremore » measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.« less

  14. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases.

    PubMed

    Patil, Chirag G; Pricola, Katie; Sarmiento, J Manuel; Garg, Sachin K; Bryant, Andrew; Black, Keith L

    2012-09-12

    Historically, whole brain radiation therapy (WBRT) has been the main treatment for brain metastases. Stereotactic radiosurgery (SRS) delivers high-dose focused radiation and is being increasingly utilized to treat brain metastases. The benefit of adding SRS to WBRT is unclear. This is an updated version of the original Cochrane review published in Issue 6, 2010. To assess the efficacy of WBRT plus SRS versus WBRT alone in the treatment of brain metastases. In the original review we searched the following electronic databases: Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 2, 2009), MEDLINE (1966 to 2009), EMBASE (1980 to 2009), and CancerLit (1975 to 2009) in order to identify trials for inclusion in this review.In this update we searched the following electronic databases in May 2012: Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 5, 2012), MEDLINE (2009 to May week 4 2012), and EMBASE (2009 to 2012 week 21) in order to identify trials for inclusion in the review. The review was restricted to randomized controlled trials (RCTs) that compared use of WBRT plus SRS versus WBRT alone for upfront treatment of adult patients with newly diagnosed metastases (single or multiple) in the brain resulting from any primary, extracranial cancer. The Generic Inverse Variance method, random-effects model in RevMan 5 was used for the meta-analysis. A meta-analysis of two trials with a total of 358 participants, found no statistically significant difference in overall survival (OS) between WBRT plus SRS and WBRT alone groups (hazard ratio (HR) 0.82; 95% confidence interval (CI) 0.65 to 1.02). For patients with one brain metastasis median survival was significantly longer in WBRT plus SRS group (6.5 months) versus WBRT group (4.9 months; P = 0.04). Patients in the WBRT plus SRS group had decreased local failure compared to patients who received WBRT alone (HR 0.27; 95% CI 0.14 to 0.52). Furthermore, a statistically significant improvement in

  15. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  16. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  17. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer. (a) Identification. A diagnostic ultrasonic transducer is a device made of a piezoelectric material...

  18. Physical mechanism of ultrasonic machining

    NASA Astrophysics Data System (ADS)

    Isaev, A.; Grechishnikov, V.; Kozochkin, M.; Pivkin, P.; Petuhov, Y.; Romanov, V.

    2016-04-01

    In this paper, the main aspects of ultrasonic machining of constructional materials are considered. Influence of coolant on surface parameters is studied. Results of experiments on ultrasonic lathe cutting with application of tangential vibrations and with use of coolant are considered.

  19. Music-Based Cognitive Remediation Therapy for Patients with Traumatic Brain Injury

    PubMed Central

    Hegde, Shantala

    2014-01-01

    Traumatic brain injury (TBI) is one of the common causes of disability in physical, psychological, and social domains of functioning leading to poor quality of life. TBI leads to impairment in sensory, motor, language, and emotional processing, and also in cognitive functions such as attention, information processing, executive functions, and memory. Cognitive impairment plays a central role in functional recovery in TBI. Innovative methods such as music therapy to alleviate cognitive impairments have been investigated recently. The role of music in cognitive rehabilitation is evolving, based on newer findings emerging from the fields of neuromusicology and music cognition. Research findings from these fields have contributed significantly to our understanding of music perception and cognition, and its neural underpinnings. From a neuroscientific perspective, indulging in music is considered as one of the best cognitive exercises. With “plasticity” as its veritable nature, brain engages in producing music indulging an array of cognitive functions and the product, the music, in turn permits restoration and alters brain functions. With scientific findings as its basis, “neurologic music therapy” (NMT) has been developed as a systematic treatment method to improve sensorimotor, language, and cognitive domains of functioning via music. A preliminary study examining the effect of NMT in cognitive rehabilitation has reported promising results in improving executive functions along with improvement in emotional adjustment and decreasing depression and anxiety following TBI. The potential usage of music-based cognitive rehabilitation therapy in various clinical conditions including TBI is yet to be fully explored. There is a need for systematic research studies to bridge the gap between increasing theoretical understanding of usage of music in cognitive rehabilitation and application of the same in a heterogeneous condition such as TBI. PMID:24715887

  20. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  1. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  3. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  4. Spectroscopic investigation on sonodynamic and sonocatalytic damage of BSA molecules by Thymol Blue (TB) derivants under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Li, Ying; Gao, Jingqun; Wang, Baoxin

    2014-07-01

    In this paper, the Thymol Blue derivants including Thymol Blue (thymolsulfonphthalein), Thymol Blue-DA (3,3‧-Bis [N,N-bis (carboxymethyl) aminomethyl] thymolsulfonphthalein) and Thymol Blue-DA-Fe(III) (3,3‧-Bis [N,N-bis (carboxymethyl) aminomethyl] thymolsulfonphthalein-Ferrous(III)) were adopted as sonosensitizers to study the sonodynamic and sonocatalytic activities under ultrasonic irradiation. At first, the interaction of Thymol Blue derivants with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. On that basis, the sonodynamic and sonocatalytic damages of Thymol Blue derivants to BSA under ultrasonic irradiation were investigated by the combination of UV-vis, circular dichroism (CD) and fluorescence spectroscopy. Meanwhile, some influenced factors (ultrasonic irradiation time, Thymol Blue derivants concentration and ionic strength) on the damaging degree of BSA molecules were also reviewed. In addition, synchronous fluorescence spectra were used to estimate the binding and damage sites of Thymol Blue derivants to BSA. Finally, the generation of ROS during sonodynamic and sonocatalytic processes was confirmed by the method of Oxidation-Extraction Spectrometry (OEP). Perhaps, this paper may offer some important subjects for the study of Thymol Blue derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment and the effect of the amino acid and central metal.

  5. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    NASA Astrophysics Data System (ADS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-05-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed

  6. Method and apparatus to characterize ultrasonically reflective contrast agents

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  7. Low-level light therapy of the eye and brain.

    PubMed

    Rojas, Julio C; Gonzalez-Lima, F

    2011-01-01

    Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual

  8. Low-level light therapy of the eye and brain

    PubMed Central

    Rojas, Julio C; Gonzalez-Lima, F

    2011-01-01

    Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual

  9. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  10. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  11. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  12. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  13. Photodynamic therapy associated with full-mouth ultrasonic debridement in the treatment of severe chronic periodontitis: a randomized-controlled clinical trial

    PubMed Central

    BALATA, Maybel Lages; de ANDRADE, Lyla Prates; SANTOS, David Barros Nunes; CAVALCANTI, Andrea Nóbrega; TUNES, Urbino da Rocha; RIBEIRO, Érica Del Peloso; BITTENCOURT, Sandro

    2013-01-01

    Background: Photodynamic therapy (PDT) is a method of microbial reduction which can benefit periodontal treatment in areas of difficult access, such as deep pockets and furcations. The aim of this randomized controlled clinical trial was to evaluate the effects of PDT as an adjunct to full-mouth ultrasonic debridement in the treatment of severe chronic periodontitis. Material and Methods: Twenty-two patients with at least one pocket with a probing depth (PD) of ≥7 mm and one pocket with a PD of ≥5 mm and bleeding on probing (BOP) on each side of the mouth were included, characterizing a split mouth design. The control group underwent full-mouth ultrasonic debridement and the test group received the same treatment associated with PDT. The PDT was performed on only one side of the mouth and the initial step consisted of subgingival irrigation with 0.005% methylene blue dye. Two minutes after applying the photosensitizer, the low power laser - AsGaAl (Photon Lase III - PL7336, DMC, São Carlos -São Paulo, Brazil) was applied (660 nm, 100 mW, 9 J, 90 seconds per site, 320 J/cm2, diameter tip 600 µm).The following clinical parameters were evaluated: plaque index, gingival index, BOP, gingival recession (GR), PD, and clinical attachment level (CAL). All parameters were collected before, 1, 3 and 6 months after treatment. Results: An improvement in BOP, PD and CAL was observed after treatment, in both groups, but without any difference between them. After 6 months, the PD decreased from 5.11±0.56 mm to 2.83±0.47 mm in the test group (p<0.05) and from 5.15±0.46 mm to 2.83±0.40 mm in the control group (p<0.05). The CAL changed, after 6 months, from 5.49±0.76 mm to 3.41±0.84 mm in the test group (p<0.05) and from 5.53±0.54 to 3.39±0.51 mm in the control group (p<0.05). Conclusion: Both approaches resulted in significant clinical improvements in the treatment of severe chronic periodontits, however, the PDT did not provide any additional benefit to those

  14. Systemic therapy of brain metastases: non–small cell lung cancer, breast cancer, and melanoma

    PubMed Central

    Baik, Christina S.; Gadi, Vijayakrishna K.; Bhatia, Shailender; Chow, Laura Q.M.

    2017-01-01

    Brain metastases (BM) occur frequently in many cancers, particularly non–small cell lung cancer (NSCLC), breast cancer, and melanoma. The development of BM is associated with poor prognosis and has an adverse impact on survival and quality of life. Commonly used therapies for BM such as surgery or radiotherapy are associated with only modest benefits. However, recent advances in systemic therapy of many cancers have generated considerable interest in exploration of those therapies for treatment of intracranial metastases. This review discusses the epidemiology of BM from the aforementioned primary tumors and the challenges of using systemic therapies for metastatic disease located within the central nervous system. Cumulative data from several retrospective and small prospective studies suggest that molecularly targeted systemic therapies may be an effective option for the treatment of BM from NSCLC, breast cancer, and melanoma, either as monotherapy or in conjunction with other therapies. Larger prospective studies are warranted to further characterize the efficacy and safety profiles of these targeted agents for the treatment of BM. PMID:28031389

  15. Ultrasonic propulsion of kidney stones.

    PubMed

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  16. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  17. Effects of assisted aquatic movement and horseback riding therapies on emotion and brain activation in patients with cerebral palsy.

    PubMed

    Ryu, Kwangmin; Ali, Asif; Kwon, Minji; Lee, Changyoung; Kim, Yujin; Lee, Gyusung; Kim, Jingu

    2016-12-01

    [Purpose] The purpose of this study was to determine the effects of assisted aquatic movement and horseback riding therapies on emotion and brain activation in patients with cerebral palsy. [Subjects and Methods] Thirty-two right-handed patients with cerebral palsy (18 male, 14 female) whose ages ranged from 8 to 48 years participated in this experiment. Their cerebral palsy levels ranged from 1 to 3. The participants were assigned to one of three groups according to the experimental conditions: an assisted aquatic movement therapy group, a horseback riding therapy group, or a control group. Electroencephalograms, the Feeling Scale and the Felt Arousal Scale were examined as dependent variables. [Results] Analysis of self-reported data demonstrated a significant positive improvement in the emotions of participants in the assisted aquatic movement therapy group in comparison with the control group. With regard to the electroencephalogram analysis, the results of this study showed increased alpha power in the assisted aquatic movement therapy group compared with the horseback riding and control groups. [Conclusion] The results of this study suggest that professionals can consider assisted aquatic movement therapy as an effective therapeutic intervention for the improvement of mental health and brain activation.

  18. Effects of assisted aquatic movement and horseback riding therapies on emotion and brain activation in patients with cerebral palsy

    PubMed Central

    Ryu, Kwangmin; Ali, Asif; Kwon, Minji; Lee, Changyoung; Kim, Yujin; Lee, Gyusung; Kim, Jingu

    2016-01-01

    [Purpose] The purpose of this study was to determine the effects of assisted aquatic movement and horseback riding therapies on emotion and brain activation in patients with cerebral palsy. [Subjects and Methods] Thirty-two right-handed patients with cerebral palsy (18 male, 14 female) whose ages ranged from 8 to 48 years participated in this experiment. Their cerebral palsy levels ranged from 1 to 3. The participants were assigned to one of three groups according to the experimental conditions: an assisted aquatic movement therapy group, a horseback riding therapy group, or a control group. Electroencephalograms, the Feeling Scale and the Felt Arousal Scale were examined as dependent variables. [Results] Analysis of self-reported data demonstrated a significant positive improvement in the emotions of participants in the assisted aquatic movement therapy group in comparison with the control group. With regard to the electroencephalogram analysis, the results of this study showed increased alpha power in the assisted aquatic movement therapy group compared with the horseback riding and control groups. [Conclusion] The results of this study suggest that professionals can consider assisted aquatic movement therapy as an effective therapeutic intervention for the improvement of mental health and brain activation. PMID:28174435

  19. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to

  20. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  1. Correction of biochemical and functional disorders in brain ischaemia with laser therapy

    NASA Astrophysics Data System (ADS)

    Musienko, Julia I.; Nechipurenko, Natalia I.; Vasilevskaya, Ludmila A.

    2005-08-01

    Application of intravenous laser irradiation of blood (ILIB) is considered to be the most effective method of laser therapy and its application is expedient pathogenetically in the ischemic disturbances. The aim of this study is to investigate ILIB influence with red helium-neon laser (HNL) with 630 nm wavelength and different powers on blood oxygen transport (BOT), cerebral and dermal microhaemodynamics (MGD), hydro-ion balance in normal rabbits and after modeling of local ischemia of brain (LIB). Experimental cerebral ischemia is characterized by development of BOT disturbance, ionic disbalance and edema in the ischemic brain region. Microcirculation disturbances with worsening of the cerebral and dermal MHD were revealed. ILIB with HNL radiation of 2.5 and 4.5 mW powers provokes dehydratation of brain structure alone with the K+, Na+ concentration decreasing and hemoglobin-oxygen affinity increasing in intact group of animals. There was not revealed marked changes of cerebral MHD condition here. Using of ILIB in rabbits after LIB contributes for improving function of BOT, normalizing of water content in all cerebral structures compared to operated animals. Preventive ILIB provoked improvement of speckl-optical parameters and marked protective effect on microhaemodynamics processes in superficial brain structures. HNL radiation with 1.0 mW power results in worsening of oxygen transport, cerebral and skin MHD, hydro-ion homeostasis in animals with LIB modeling. Thus, laser haemotherapy contributes for improving of hydro-ion status, blood oxygen transport and cerebral microcirculation in brain ischemia, what allows considering that helium-neon radiation with the pointed regimen is substantiated pathogenetically in brain ischaemia.

  2. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  3. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  4. Dose planning management of patients undergoing salvage whole brain radiation therapy after radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Cheng B., E-mail: cheng.saw@aol.com; Battin, Frank; McKeague, Janice

    2016-01-01

    Dose or treatment planning management is necessary for the re-irradiation of intracranial relapses after focal irradiation, radiosurgery, or stereotactic radiotherapy. The current clinical guidelines for metastatic brain tumors are the use of focal irradiation if the patient presents with 4 lesions or less. Salvage treatments with the use of whole brain radiation therapy (WBRT) can then be used to limit disease progression if there is an intracranial relapse. However, salvage WBRT poses a number of challenges in dose planning to limit disease progression and preserve neurocognitive function. This work presents the dose planning management that addresses a method of delineatingmore » previously treated volumes, dose level matching, and the dose delivery techniques for WBRT.« less

  5. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  6. Ultrasonic humidification for telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, F.

    1994-03-01

    This article examines two installations which demonstrate that ultrasonic humidification is an excellent option for large-scale commercial installations. Many existing telephone switching centers constructed 20 to 30 years ago were equipped with electro-mechanical switching equipment that was not sensitive to humidity. Today's sophisticated solid-state telecommunications equipment requires specific levels of relative humidity to operate properly. Over the last several years, Einhorn Yaffee Prescott (formerly Rose Beaton + Rose) designed two of the largest ultrasonic humidification systems at telecommunications buildings located in Cheshire, Conn., and White Plains, N.Y. The Cheshire project was a retrofit to the existing system in a 1960smore » building; the White Plains project involved an upgrade to a totally new air handling system, including an ultrasonic humidification component, in a 1950s building.« less

  7. Semiconductor measurement technology: Microelectronic ultrasonic bonding

    NASA Technical Reports Server (NTRS)

    Harman, G. G. (Editor)

    1974-01-01

    Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.

  8. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  9. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  10. Hydrogen sulfide therapy in brain diseases: from bench to bedside

    PubMed Central

    Zhang, Ju-yi; Ding, Yi-ping; Wang, Zhong; Kong, Yan; Gao, Rong; Chen, Gang

    2017-01-01

    Hydrogen sulfide (H2S) has been recognized and studied for nearly 300 years, but past researches mainly focus on its toxicity effect. During the past two decades, the majority of researches have reported that H2S is a novel endogenous gaseous signal molecule in organisms, and play an important role in various systems and diseases. H2S is mainly produced by three enzymes, including cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase. H2S had been firstly reported as a neuromodulator in the brain, because of its essential role in the facilitating hippocampal long-term potentiation at physiological concentration. It is subsequently reported that H2S may have relevance to neurologic disorders through antioxidative, anti-inflammatory, anti-apoptotic and additional effects. Recent basic medical studies and preclinical studies on neurologic diseases have demonstrated that the administration of H2S at physiological or pharmacological levels attenuates brain injury. However, the neuroprotective effect of H2S is concentration-dependent, only a comparatively low dose of H2S can provide beneficial effect. Herein, we review the neuroprotevtive role of H2S therapy in brain diseases from its mechanism to clinical application in animal and human subjects, and therefore provide the potential strategies for further clinical treatment. PMID:28744364

  11. Prediction of ultrasonic properties from grain angle

    Treesearch

    M.F. Kabir

    2001-01-01

    The ultrasonic properties of rubber wood were evaluated in three main symmetry axes – longitudinal (L), radial (R) and tangential direction and also at an angle rotating from the symmetry axes at different moisture content. The ultrasonic velocity were determined with a commercial ultrasonic tester of 45 kHz pulsed longitudinal waves. The experimental results were...

  12. Nanotherapeutic approaches for brain cancer management.

    PubMed

    Saenz del Burgo, Laura; Hernández, Rosa María; Orive, Gorka; Pedraz, Jose Luis

    2014-07-01

    Around the world, cancer remains one of the most important causes of morbidity and mortality. Worldwide, approximately 238,000 new cases of brain and other central nervous system tumors are diagnosed every year. Nanotherapeutic approaches hold tremendous potential for diagnosis and treatment of brain cancer, including the ability to target complex molecular cargoes to the tumor sites and the capacity of crossing the blood-brain barrier and accessing to the brain after systemic administration. A new generation of "smart" nanoparticles has been designed as novel targeted delivery devices for new therapies including gene therapy, anti-angiogenic and thermotherapy. This review highlights the latest research, opportunities and challenges for developing novel nanotherapeutics for treating brain cancers. This comprehensive review highlights the latest research results, opportunities and challenges for developing novel nanotherapeutics for treating brain cancers, with a special focus on "smart" nanoparticles as novel targeted delivery devices for new therapies including gene therapy, anti-angiogenic therapy and localized thermotherapy. © 2014.

  13. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  14. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  15. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  16. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  17. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  18. Lung Cancer Brain Metastases.

    PubMed

    Goldberg, Sarah B; Contessa, Joseph N; Omay, Sacit B; Chiang, Veronica

    2015-01-01

    Brain metastases are common among patients with lung cancer and have been associated with significant morbidity and limited survival. However, the treatment of brain metastases has evolved as the field has advanced in terms of central nervous system imaging, surgical technique, and radiotherapy technology. This has allowed patients to receive improved treatment with less toxicity and more durable benefit. In addition, there have been significant advances in systemic therapy for lung cancer in recent years, and several treatments including chemotherapy, targeted therapy, and immunotherapy exhibit activity in the central nervous system. Utilizing systemic therapy for treating brain metastases can avoid or delay local therapy and often allows patients to receive effective treatment for both intracranial and extracranial disease. Determining the appropriate treatment for patients with lung cancer brain metastases therefore requires a clear understanding of intracranial disease burden, tumor histology, molecular characteristics, and overall cancer prognosis. This review provides updates on the current state of surgery and radiotherapy for the treatment of brain metastases, as well as an overview of systemic therapy options that may be effective in select patients with intracranial metastases from lung cancer.

  19. Signal detection using support vector machines in the presence of ultrasonic speckle

    NASA Astrophysics Data System (ADS)

    Kotropoulos, Constantine L.; Pitas, Ioannis

    2002-04-01

    Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.

  20. A Phase III Study of Conventional Radiation Therapy Plus Thalidomide Versus Conventional Radiation Therapy for Multiple Brain Metastases (RTOG 0118)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knisely, Jonathan P.S.; Berkey, Brian; Chakravarti, Arnab

    2008-05-01

    Purpose: To compare whole-brain radiation therapy (WBRT) with WBRT combined with thalidomide for patients with brain metastases not amenable to resection or radiosurgery. Patients and Methods: Patients with Zubrod performance status 0-1, MRI-documented multiple (>3), large (>4 cm), or midbrain brain metastases arising from a histopathologically confirmed extracranial primary tumor, and an anticipated survival of >8 weeks were randomized to receive WBRT to a dose of 37.5 Gy in 15 fractions with or without thalidomide during and after WBRT. Prerandomization stratification used Radiation Therapy Oncology Group (RTOG) Recursive Partitioning Analysis (RPA) Class and whether post-WBRT chemotherapy was planned. Endpoints includedmore » overall survival, progression-free survival, time to neurocognitive progression, the cause of death, toxicities, and quality of life. A protocol-planned interim analysis documented that the trial had an extremely low probability of ever showing a significant difference favoring the thalidomide arm given the results at the time of the analysis, and it was therefore closed on the basis of predefined statistical guidelines. Results: Enrolled in the study were 332 patients. Of 183 accrued patients, 93 were randomized to receive WBRT alone and 90 to WBRT and thalidomide. Median survival was 3.9 months for both arms. No novel toxicities were seen, but thalidomide was not well tolerated in this population. Forty-eight percent of patients discontinued thalidomide because of side effects. Conclusion: Thalidomide provided no survival benefit for patients with multiple, large, or midbrain metastases when combined with WBRT; nearly half the patients discontinued thalidomide due to side effects.« less

  1. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study.

    PubMed

    Li, Peng; Jing, Ri-Xing; Zhao, Rong-Jiang; Ding, Zeng-Bo; Shi, Le; Sun, Hong-Qiang; Lin, Xiao; Fan, Teng-Teng; Dong, Wen-Tian; Fan, Yong; Lu, Lin

    2017-05-11

    Previous studies suggested that electroconvulsive therapy can influence regional metabolism and dopamine signaling, thereby alleviating symptoms of schizophrenia. It remains unclear what patients may benefit more from the treatment. The present study sought to identify biomarkers that predict the electroconvulsive therapy response in individual patients. Thirty-four schizophrenia patients and 34 controls were included in this study. Patients were scanned prior to treatment and after 6 weeks of treatment with antipsychotics only (n = 16) or a combination of antipsychotics and electroconvulsive therapy (n = 13). Subject-specific intrinsic connectivity networks were computed for each subject using a group information-guided independent component analysis technique. Classifiers were built to distinguish patients from controls and quantify brain states based on intrinsic connectivity networks. A general linear model was built on the classification scores of first scan (referred to as baseline classification scores) to predict treatment response. Classifiers built on the default mode network, the temporal lobe network, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum achieved a cross-validated classification accuracy of 83.82%, with specificity of 91.18% and sensitivity of 76.47%. After the electroconvulsive therapy, psychosis symptoms of the patients were relieved and classification scores of the patients were decreased. Moreover, the baseline classification scores were predictive for the treatment outcome. Schizophrenia patients exhibited functional deviations in multiple intrinsic connectivity networks which were able to distinguish patients from healthy controls at an individual level. Patients with lower classification scores prior to treatment had better treatment outcome, indicating that the baseline classification scores before treatment is a good predictor for treatment outcome. CONNECTIVITY NETWORKS

  2. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant woman...

  3. Clinical research on intelligence seven needle therapy treated infants with brain damage syndrome.

    PubMed

    Liu, Zhen-Huan; Li, Ye-Rong; Lu, Yong-Lin; Chen, Jie-Kui

    2016-06-01

    To assess whether the intelligence seven needle therapy administered in infants with perinatal brain damage syndrome (BDS) as early intervention would improve patients' neural development. A randomized controlled trial was conducted. Sixty-four infants with BDS were randomly assigned to two groups: the comprehensive group and the control group. Both groups received routine early intervention; in addition, the comprehensive group received intelligence seven needle therapy. Before and after treatment, the Bayley Scale of Infant Development (BSID), Gesell Developmental Schedules, Gross Motor Function Measure (GMFM), transcranial doppler ultrasound (TCD), and cranial imaging examination were tested for contrast. After treatment, the comprehensive group showed significant difference in the Mental Development Index (MDI) scores of BSID compared with the control group (P<0.05), however, no significant discrepancy in psychomotor development index (PDI,P>0.05) was observed. The children's development quotients (DQ) of the comprehensive group exhibited a significant superiority in improving the social adaptation DQ of Gesell Developmental Schedules compared with the control group (P<0.01), as well as GMFM and linguistic and social intercourse (P<0.05). Again, no discrepancy in the fine movement DQ was found (P>0.05). The total scores of GMFM in the comprehensive group were higher than those in the control group (P<0.05). Comparing the two groups, the comprehensive group showed a significantly greater recovery rate than the control group on TCD after treatment (P<0.05). After 6-month follow-up, some recovery in both groups, specifically on broadening of brain outside space by cranial imaging examination were observed. The comprehensive group demonstrated a significantly greater recovery rate than the control group (P<0.05). The developmental level of intelligence, motion function, linguistic competence and social intercourse can be promoted for infants with perinatal BDS by

  4. Ultrasonic assisted hot metal powder compaction.

    PubMed

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  6. Lumber defect detection by ultrasonics

    Treesearch

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  7. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  8. Intensity Modulated Radiation Therapy With Simultaneous Integrated Boost in Patients With Brain Oligometastases: A Phase 1 Study (ISIDE-BM-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro, Marica; Chiesa, Silvia; Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it

    Purpose: To investigate the maximum tolerated dose of intensity modulated radiation therapy simultaneous integrated boost whole-brain radiation therapy for palliative treatment of patients with <5 brain metastases using a standard linear accelerator. Materials and Methods: The whole brain plus 3-mm margin was defined as the planning target volume (PTV{sub wb}), whereas each brain metastasis, defined as the contrast-enhancing tumor on MRI T1 scans, plus a 3-mm isotropic margin, was defined as metastases PTV (PTV{sub m}). Radiation therapy was delivered in 10 daily fractions (2 weeks). Only the dose to PTV{sub m} was progressively increased in the patient cohorts (35 Gy, 40 Gy, 45 Gy, 50 Gy),more » whereas the PTV{sub wb} was always treated with 30 Gy (3 Gy per fraction) in all patients. The dose-limiting toxicity was evaluated providing that 3 months of follow-up had occurred after the treatment of a 6-patient cohort. Results: Thirty patients were enrolled in the study (dose PTV{sub m}: 35 Gy, 8 patients; 40 Gy, 6 patients; 45 Gy, 6 patients; 50 Gy, 10 patients). The number of treated brain metastases was 1 in 18 patients, 2 in 5 patients, 3 in 6 patients, and 4 in 1 patient. Three patients experienced dose-limiting toxicity: 1 patient at dose level 2 presented grade 3 (G3) skin toxicity; 1 patient at dose level 4 presented G3 neurologic toxicity; and 1 patient at the same level showed brain hemorrhage. Most patients showed G1 to 2 acute toxicity, in most cases skin (n=19) or neurologic (n=10). Twenty-seven were evaluable for response: 6 (22%) stable disease, 18 (67%) partial response, and 3 (11%) complete response. Median survival and 1-year overall survival were 12 months and 53%, respectively. No patient showed late toxicity. Conclusions: In this first prospective trial on the use of intensity modulated radiation therapy simultaneous integrated boost delivered with a standard linear accelerator in patients with brain oligometastases, a boost dose

  9. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  10. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    PubMed

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  11. Use of Stereotactic Radiosurgery in Elderly and Very Elderly Patients With Brain Metastases to Limit Toxicity Associated With Whole Brain Radiation Therapy.

    PubMed

    Chen, Linda; Shen, Colette; Redmond, Kristin J; Page, Brandi R; Kummerlowe, Megan; Mcnutt, Todd; Bettegowda, Chetan; Rigamonti, Daniele; Lim, Michael; Kleinberg, Lawrence

    2017-07-15

    We evaluated the toxicity associated with stereotactic radiosurgery (SRS) and whole brain radiation therapy (WBRT) in elderly and very elderly patients with brain metastases, as the role of SRS in geriatric patients who would traditionally receive WBRT is unclear. We conducted a retrospective review of elderly patients (aged 70-79 years) and very elderly patients (aged ≥80 years) with brain metastases who underwent RT from 2010 to 2015 at Johns Hopkins Hospital. Patients received either upfront WBRT or SRS for metastatic solid malignancies, excluding small cell lung cancer. Acute central nervous system toxicity within 3 months of RT was graded using the Radiation Therapy Oncology Group acute radiation central nervous system morbidity scale. The toxicity data between age groups and treatment modalities were analyzed using Fisher's exact test and multivariate logistic regression analysis. Kaplan-Meier curves were used to estimate the median overall survival, and the Cox proportion hazard model was used for multivariate analysis. A total of 811 brain metastases received RT in 119 geriatric patients. The median overall survival from the diagnosis of brain metastases was 4.3 months for the patients undergoing WBRT and 14.4 months for the patients undergoing SRS. On multivariate analysis, WBRT was associated with worse overall survival in this cohort of geriatric patients (odds ratio [OR] 3.7, 95% confidence interval [CI] 1.9-7.0, P<.0001) and age ≥80 years was not. WBRT was associated with significantly greater rates of any grade 1 to 4 toxicity (OR 7.5, 95% CI 1.6-33.3, P=.009) and grade 2 to 4 toxicity (OR 2.8, 95% CI 1.0-8.1, P=.047) on multivariate analysis. Elderly and very elderly patients did not have significantly different statistically acute toxicity rates when stratified by age. WBRT was associated with increased toxicity compared with SRS in elderly and very elderly patients with brain metastases. SRS, rather than WBRT, should be prospectively

  12. Apparatus for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.

    2000-01-01

    An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.

  13. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  14. Catalytic effect on ultrasonic decomposition of cellulose

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Wakida, Kousuke; Mukasa, Shinobu; Toyota, Hiromichi

    2018-07-01

    Cellulase used as a catalyst is introduced into the ultrasonic welding method for cellulose decomposition in order to obtain glucose. By adding cellulase in the welding process, filter paper decomposes cellulose into glucose, 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharides. The amount of glucose from hydrolysis was increased by ultrasonic welding in filter paper immersed in water. Most glucose was obtained by 100 W ultrasonic irradiation; however, when was applied 200 W, the dehydration of the glucose itself occurred, and was converted into 5-HMF owing to the thermolysis of ultrasonics. Therefore, there is an optimum welding power for the production of glucose from cellulose decomposition.

  15. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  16. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  17. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  18. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  19. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.

    1975-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys were considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. Some RF and spectral data on ten sets of ultrasonic reference blocks were taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and microstructural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response.

  20. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  1. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    PubMed

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  3. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  5. Blood brain barrier: a challenge for effectual therapy of brain tumors.

    PubMed

    Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.

  6. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  7. Soluble FLT1 Gene Therapy Alleviates Brain Arteriovenous Malformation Severity

    PubMed Central

    Zhu, Wan; Shen, Fanxia; Mao, Lei; Zhan, Lei; Kang, Shuai; Sun, Zhengda; Nelson, Jeffrey; Zhang, Rui; Zou, Dingquan; McDougall, Cameron M.; Lawton, Michael T.; Vu, Thiennu H.; Wu, Zhijian; Scaria, Abraham; Colosi, Peter; Forsayeth, John; Su, Hua

    2017-01-01

    Background and Purpose Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current therapies are associated with high morbidities. Excessive vascular endothelial growth factor (VEGF) has been implicated in bAVM pathophysiology. Because soluble FLT1 binds to VEGF with high affinity, we tested intravenous (IV) delivery of an adeno-associated viral vector serotype 9 expressing soluble FLT1 (AAV9-sFLT1) to alleviate the bAVM phenotype. Methods Two mouse models were used. Model 1: bAVM was induced in R26CreER;Eng2f/2f mice through global Eng gene deletion and brain focal angiogenic stimulation; AAV2-sFLT02 (an AAV expressing a shorter form of sFLT1) was injected into the brain at the time of model induction, and AAV9-sFLT1, IV-injected eight weeks after. Model 2: SM22αCre;Eng2f/2f mice had a 90% occurrence of spontaneous bAVM at 5 weeks of age and 50% mortality at 6 weeks; AAV9-sFLT1 was IV-delivered into 4–5-week-old mice. Tissue samples were collected four weeks after AAV9-sFLT1 delivery. Results AAV2-sFLT02 inhibited bAVM formation and AAV9-sFLT1 reduced abnormal vessels in Model 1 (GFP vs sFLT1: 3.66 ± 1.58/200 vessels vs 1.98 ± 1.29, p<0.05). AAV9-sFLT1 reduced the occurrence of bAVM (GFP vs sFLT1: 100% vs 36%) and mortality [GFP vs sFLT1: 57% (12/22 mice) vs 24% (4/19 mice), p<0.05] in Model 2. Kidney and liver function did not change significantly. Minor liver inflammation was found in 56% of AAV9-sFLT1-treated Model 1 mice. Conclusion By applying a regulated mechanism to restrict sFLT1 expression to bAVM, AAV9-sFLT1 can potentially be developed into a safer therapy to reduce the bAVM severity. PMID:28325846

  8. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  9. The Dynamic Performance of Flexural Ultrasonic Transducers.

    PubMed

    Feeney, Andrew; Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-18

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  10. The Dynamic Performance of Flexural Ultrasonic Transducers

    PubMed Central

    Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-01

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems. PMID:29346297

  11. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors

    PubMed Central

    Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji

    2017-01-01

    High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345

  12. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  13. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  14. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  15. Predictors for long-term survival free from whole brain radiation therapy in patients treated with radiosurgery for limited brain metastases.

    PubMed

    Gorovets, Daniel; Rava, Paul; Ebner, Daniel K; Tybor, David J; Cielo, Deus; Puthawala, Yakub; Kinsella, Timothy J; DiPetrillo, Thomas A; Wazer, David E; Hepel, Jaroslaw T

    2015-01-01

    To identify predictors for prolonged survival free from salvage whole brain radiation therapy (WBRT) in patients with brain metastases treated with stereotactic radiosurgery (SRS) as their initial radiotherapy approach. Patients with brain metastases treated with SRS from 2001 to 2013 at our institution were identified. SRS without WBRT was typically offered to patients with 1-4 brain metastases, Karnofsky performance status ≥70, and life expectancy ≥3 months. Three hundred and eight patients met inclusion criteria for analysis. Medical records were reviewed for patient, disease, and treatment information. Two comparison groups were identified: those with ≥1-year WBRT-free survival (N = 104), and those who died or required salvage WBRT within 3 months of SRS (N = 56). Differences between these groups were assessed by univariate and multivariate analyses. Median survival for all patients was 11 months. Among patients with ≥1-year WBRT-free survival, median survival was 33 months (12-107 months) with only 21% requiring salvage WBRT. Factors significantly associated with prolonged WBRT-free survival on univariate analysis (p < 0.05) included younger age, asymptomatic presentation, RTOG RPA class I, fewer brain metastases, surgical resection, breast primary, new or controlled primary, absence of extracranial metastatic disease, and oligometastatic disease burden (≤5 metastatic lesions). After controlling for covariates, asymptomatic presentation, breast primary, single brain metastasis, absence of extracranial metastases, and oligometastatic disease burden remained independent predictors for favorable WBRT-free survival. A subset of patients with brain metastases can achieve long-term survival after upfront SRS without the need for salvage WBRT. Predictors identified in this study can help select patients that might benefit most from a treatment strategy of SRS alone.

  16. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases.

    PubMed

    Patil, Chirag G; Pricola, Katie; Sarmiento, J Manuel; Garg, Sachin K; Bryant, Andrew; Black, Keith L

    2017-09-25

    Historically, whole brain radiation therapy (WBRT) has been the main treatment for brain metastases. Stereotactic radiosurgery (SRS) delivers high-dose focused radiation and is being increasingly utilized to treat brain metastases. The benefit of adding SRS to WBRT is unclear. This is an updated version of the original Cochrane Review published in Issue 9, 2012. To assess the efficacy of WBRT plus SRS versus WBRT alone in the treatment of adults with brain metastases. For the original review, in 2009 we searched the following electronic databases: CENTRAL, MEDLINE, Embase, and CancerLit in order to identify trials for inclusion in this review. For the first update the searches were updated in May 2012.For this update, in May 2017 we searched CENTRAL, MEDLINE, and Embase in order to identify trials for inclusion in the review. We restricted the review to randomized controlled trials (RCTs) that compared use of WBRT plus SRS versus WBRT alone for upfront treatment of adults with newly diagnosed metastases (single or multiple) in the brain resulting from any primary, extracranial cancer. We used the generic inverse variance method, random-effects model in Review Manager 5 for the meta-analysis. We identified three studies and one abstract for inclusion but we could only include two studies, with a total of 358 participants in a meta-analysis. This found no difference in overall survival (OS) between the WBRT plus SRS and WBRT alone groups (hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.65 to 1.02; 2 studies, 358 participants; moderate-quality evidence). For participants with one brain metastasis median survival was significantly longer in the WBRT plus SRS group (6.5 months) versus WBRT group (4.9 months; P = 0.04). Participants in the WBRT plus SRS group had decreased local failure compared to participants who received WBRT alone (HR 0.27, 95% CI 0.14 to 0.52; 2 studies, 129 participants; moderate-quality evidence). Furthermore, we observed an improvement in

  18. Efficient Enhancement of Blood-Brain Barrier Permeability Using Acoustic Cluster Therapy (ACT).

    PubMed

    Åslund, Andreas K O; Snipstad, Sofie; Healey, Andrew; Kvåle, Svein; Torp, Sverre H; Sontum, Per C; Davies, Catharina de Lange; van Wamel, Annemieke

    2017-01-01

    The blood-brain barrier (BBB) is a major obstacle in drug delivery for diseases of the brain, and today there is no standardized route to surpass it. One technique to locally and transiently disrupt the BBB, is focused ultrasound in combination with gas-filled microbubbles. However, the microbubbles used are typically developed for ultrasound imaging, not BBB disruption. Here we describe efficient opening of the BBB using the promising novel Acoustic Cluster Therapy (ACT), that recently has been used in combination with Abraxane® to successfully treat subcutaneous tumors of human prostate adenocarcinoma in mice. ACT is based on the conjugation of microbubbles to liquid oil microdroplets through electrostatic interactions. Upon activation in an ultrasound field, the microdroplet phase transfers to form a larger bubble that transiently lodges in the microvasculature. Further insonation induces volume oscillations of the activated bubble, which in turn induce biomechanical effects that increase the permeability of the BBB. ACT was able to safely and temporarily permeabilize the BBB, using an acoustic power 5-10 times lower than applied for conventional microbubbles, and successfully deliver small and large molecules into the brain.

  19. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  20. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  1. Application of machine learning methods to describe the effects of conjugated equine estrogens therapy on region-specific brain volumes.

    PubMed

    Casanova, Ramon; Espeland, Mark A; Goveas, Joseph S; Davatzikos, Christos; Gaussoin, Sarah A; Maldjian, Joseph A; Brunner, Robert L; Kuller, Lewis H; Johnson, Karen C; Mysiw, W Jerry; Wagner, Benjamin; Resnick, Susan M

    2011-05-01

    Use of conjugated equine estrogens (CEE) has been linked to smaller regional brain volumes in women aged ≥65 years; however, it is unknown whether this results in a broad-based characteristic pattern of effects. Structural magnetic resonance imaging was used to assess regional volumes of normal tissue and ischemic lesions among 513 women who had been enrolled in a randomized clinical trial of CEE therapy for an average of 6.6 years, beginning at ages 65-80 years. A multivariate pattern analysis, based on a machine learning technique that combined Random Forest and logistic regression with L(1) penalty, was applied to identify patterns among regional volumes associated with therapy and whether patterns discriminate between treatment groups. The multivariate pattern analysis detected smaller regional volumes of normal tissue within the limbic and temporal lobes among women that had been assigned to CEE therapy. Mean decrements ranged as high as 7% in the left entorhinal cortex and 5% in the left perirhinal cortex, which exceeded the effect sizes reported previously in frontal lobe and hippocampus. Overall accuracy of classification based on these patterns, however, was projected to be only 54.5%. Prescription of CEE therapy for an average of 6.6 years is associated with lower regional brain volumes, but it does not induce a characteristic spatial pattern of changes in brain volumes of sufficient magnitude to discriminate users and nonusers. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Application of machine learning methods to describe the effects of conjugated equine estrogens therapy on region-specific brain volumes

    PubMed Central

    Casanova, Ramon; Espeland, Mark A.; Goveas, Joseph S.; Davatzikos, Christos; Gaussoin, Sarah A.; Maldjian, Joseph A.; Brunner, Robert L.; Kuller, Lewis H.; Johnson, Karen C.; Mysiw, W. Jerry; Wagner, Benjamin; Resnick, Susan M.

    2011-01-01

    Use of conjugated equine estrogens (CEE) has been linked to smaller regional brain volumes in women aged ≥65 years, however it is unknown whether this results in a broad-based characteristic pattern of effects. Structural MRI was used to assess regional volumes of normal tissue and ischemic lesions among 513 women who had been enrolled in a randomized clinical trial of CEE therapy for an average of 6.6 years, beginning at ages 65-80 years. A multivariate pattern analysis, based on a machine learning technique that combined Random Forest and logistic regression with L1 penalty, was applied to identify patterns among regional volumes associated with therapy and whether patterns discriminate between treatment groups. The multivariate pattern analysis detected smaller regional volumes of normal tissue within the limbic and temporal lobes among women that had been assigned to CEE therapy. Mean decrements ranged as high as 7% in the left entorhinal cortex and 5% in the left perirhinal cortex, which exceeded the effect sizes reported previously in frontal lobe and hippocampus. Overall accuracy of classification based on these patterns, however, was projected to be only 54.5%. Prescription of CEE therapy for an average of 6.6 years is associated with lower regional brain volumes, but it does not induce a characteristic spatial pattern of changes in brain volumes of sufficient magnitude to discriminate users and non-users. PMID:21292420

  3. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not

  4. Cerebral fat embolism syndrome causing brain death after long-bone fractures and acetazolamide therapy.

    PubMed

    Walshe, Criona M; Cooper, James D; Kossmann, Thomas; Hayes, Ivan; Iles, Linda

    2007-06-01

    A 19-year-old woman with multiple fractures and mild brain injury developed severe cerebral fat embolism syndrome after "damage control" orthopaedic surgery. Acetazolamide therapy to manage ocular trauma, in association with hyperchloraemia, caused a profound metabolic acidosis with appropriate compensatory hypocapnia. During ventilator weaning, unexpected brainstem coning followed increased sedation and brief normalisation of arterial carbon dioxide concentration. Autopsy found severe cerebral fat embolism and brain oedema. In patients with multiple trauma, cerebral fat embolism syndrome is difficult to diagnose, and may be more common after delayed fixation of long-bone fractures. Acetazolamide should be used with caution, as sudden restoration of normocapnia during compensated metabolic acidosis in patients with raised intracranial pressure may precipitate coning.

  5. Good Outcomes with the Intraventricular Vancomycin Therapy in a Patient with Ruptured Brain Abscesses

    PubMed Central

    Doan, Ninh; Nguyen, Ha; Luyuan, Li; Shabani, Saman; Gelsomino, Michael; Johnson, Vijay

    2018-01-01

    Brain abscesses are associated with high morbidity and mortality rates. In particular, patients with intraventricular rupture of brain abscess (IVROBA) exhibit mortality rates up to 85%. Treatment options are lacking for IVROBA, once patients become refractory to intravenous antibiotics and surgical drainage. Limited data exist regarding the risks and benefits of intraventricular therapy in such a scenario. We report a patient with IVROBA, who deteriorated while on systemic antibiotics; once intraventricular vancomycin was employed, the patient demonstrated remarkable improvement without perceivable side effects. This case suggests that intraventricular vancomycin may be a safe, effective, and viable option for the treatment of IVROBA, especially for patients becoming refractory to systemic antibiotics. PMID:29682042

  6. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    PubMed

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  7. CONSORT: May stereotactic intracavity administration of antibiotics shorten the course of systemic antibiotic therapy for brain abscesses?

    PubMed

    Yu, Xin; Liu, Rui; Wang, Yaming; Zhao, Hulin; Chen, Jinhui; Zhang, Jianning; Hu, Chenhao

    2017-05-01

    Despite advances in surgical techniques in the management of the brain abscess, continuous systemic long-term antibiotics are necessary and crucial. This study was designed to evaluate the effect of intracavity administration of high-dose antibiotics on the course of antibiotic therapy. Between 2003 and 2013, 55 patients with bacterial brain abscesses (83 abscesses) were treated with stereotactic aspiration and intracavity injection of high-dose antibiotics combined with a short course systemic antibiotic therapy. Antibiotics of one-eighth daily systemic dosage were injected into the abscess cavity after stereotactic aspiration and intravenous antibiotics were given in all patients for 3 to 4 weeks. The results of the group treated with stereotactic aspiration and intracavity injection of antibiotic solution were compared to the results of our previous patients treated by stereotactic aspiration only. Thirty-nine males and 16 females (age ranging from 1.5 to 76 years; mean age 38.7 years) were included in this study. During the follow-up (mean 26.2 months, ranging from 6 to 72 months), all the abscesses subsided with no recurrence. No adverse effects related to topical use of antibiotics occurred. At the end of follow-up, 38 patients had good outcomes, 11 had mild neurological deficits, 3 had moderate deficits, 1 was in vegetative state, and 2 died of accidents not related to brain abscesses. Compared with conventional stereotactic aspiration and drainage, intracavity injection of antibiotics shorted the course of consecutive systemic intravenous antibiotics by average 10.8 days without an increase of the recurrence rate of abscesses. Our results indicate that topical application of antibiotics into the brain abscess cavity helps to reduce the length of systemic antibiotic therapy, decreases the abscess recurrence rate, avoids the side effects of long-term high dose antibiotics, shortens the hospitalization and reduces treatment costs.

  8. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  9. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  10. Model Prediction Results for 2007 Ultrasonic Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Joon; Song, Sung-Jin

    2008-02-01

    The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.

  11. Brain Tumors (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  12. Effect of Insulin Therapy using Hyper-insulinemic Normoglycemic Clamp on Inflammatory Response in Brain Dead Organ Donors.

    PubMed

    Aljiffry, M; Hassanain, M; Schricker, T; Shaheen, M; Nouh, T; Lattermann, R; Salman, A; Wykes, L; Metrakos, P

    2016-05-01

    Brain death is a major stress that is associated with a massive inflammatory response and systemic hyperglycemia. Severe inflammation leads to increased graft immunogenicity and risk of graft dysfunction; while acute hyperglycemia aggravates the inflammatory response and increases the risk of morbidity and mortality. Insulin therapy not only controls hyperglycemia but also suppresses inflammation. The present study is to investigate the anti-inflammatory properties and the normoglycemia maintenance of high dose insulin on brain dead organ donors. 15 brain dead organ donors were divided into 2 groups, insulin treated (n=6) and controls (n=9). Insulin was provided for a minimum of 6 h using the hyperinsulinemic normoglycemic clamp technique. The changes of serum cytokines, including IL-6, IL-10, IL-1β, IL-8, TNFα, TGFα and MCP-1, were measured by suspension bead array immunoassay and glucose by a glucose monitor. Compared to controls, insulin treated donors had a significant lower blood glucose 4.8 (4-6.9) vs. 9 (5.6-11.7) mmol/L, p<0.01); the net decreases of pro-inflammatory cytokines, such as IL-6 and MCP-1, and the net increase of anti-inflammatory cytokine, such as IL-10, reached significant level in insulin treated donors compared with those in controls. High dose insulin therapy decreases the concentrations of inflammatory cytokines in brain dead donors and preserves normoglycemia. High dose of insulin may have anti-inflammatory effects in brain dead organ donors and therefore, improve the quality of donor organs and potentially improve outcomes. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Therapy-related longitudinal brain perfusion changes in patients with chronic pelvic pain syndrome.

    PubMed

    Weisstanner, Christian; Mordasini, Livio; Thalmann, George N; Verma, Rajeev K; Rummel, Christian; Federspiel, Andrea; Kessler, Thomas M; Wiest, Roland

    2017-08-03

    The imaging method most frequently employed to identify brain areas involved in neuronal processing of nociception and brain pain perception is blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI). Arterial spin labelling (ASL), in contrast, offers advantages when slow varying changes in brain function are investigated. Chronic pelvic pain syndrome (CPPS) is a disorder of, mostly, young males that leads to altered pain perceptions in structures related to the pelvis. We aimed to investigate the potential of ASL to monitor longitudinal cranial blood flow (CBF) changes in patients with CPPS. In a randomised, placebo-controlled, double-blind single centre trial, we investigated treatment effects in CPPS after 12 weeks in patients that underwent sono-electro-magnetic therapy vs placebo. We investigated changes of CBF related to treatment outcome using pseudo-continuous arterial spin labelling (pCASL)-MRI. We observed CBF downregulation in the prefrontal cortex and anterior cingulate cortex and upregulation in the dorsolateral prefrontal cortex in responders. Nonresponders presented with CBF upregulation in the hippocampus. In patients with a history of CPPS of less than 12 months, there were significant correlations between longitudinal CBF changes and the Chronic Prostatitis Symptom Index pain subscore within the joint clusters anterior cingulate cortex and left anterior prefrontal cortex in responders, and the right hippocampus in nonresponders. We demonstrated therapy-related and stimulus-free longitudinal CBF changes in core areas of the pain matrix using ASL. ASL may act as a complementary noninvasive method to functional MRI and single-photon emission computed tomography / positron emission tomography, especially in the longitudinal assessment of pain response in clinical trials.

  14. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  15. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics.

    PubMed

    Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-05-01

    Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.

  16. Comparison of doses received by the hippocampus in patients treated with single isocenter- vs multiple isocenter-based stereotactic radiation therapy to the brain for multiple brain metastases.

    PubMed

    Algan, Ozer; Giem, Jared; Young, Julie; Ali, Imad; Ahmad, Salahuddin; Hossain, Sabbir

    2015-01-01

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)-based or multiple isocenter (MI)-based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A total of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V100. All of the other measured dosimetric parameters including the V95, V99, and D100 were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment. Copyright © 2015 American Association of

  17. Comparison of doses received by the hippocampus in patients treated with single isocenter– vs multiple isocenter–based stereotactic radiation therapy to the brain for multiple brain metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algan, Ozer, E-mail: oalgan@ouhsc.edu; Giem, Jared; Young, Julie

    To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)–based or multiple isocenter (MI)–based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A totalmore » of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63 mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V{sub 100}. All of the other measured dosimetric parameters including the V{sub 95}, V{sub 99}, and D{sub 100} were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.« less

  18. Overview of the ultrasonic instrumentation research in the MYRRHA project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierckx, M.; Leysen, W.; Van Dyck, D.

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the requiredmore » ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  19. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  20. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  1. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  2. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  3. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  4. Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics

    NASA Astrophysics Data System (ADS)

    Olson, Meghan

    Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.

  5. Air-jet power ultrasonic field applied to electrical discharge

    NASA Astrophysics Data System (ADS)

    Balek, Rudolf; Pekarek, Stanislav

    2010-01-01

    We describe a new setup of the Hartmann air-jet ultrasonic generator combined with electrical discharge in the nozzle-resonator gap. Using the schlieren visualization of air jet and ultrasonic field we investigated the shape and structure of the discharge and we determined relationship among the acoustic field in the nozzle-resonator gap, generator ultrasonic emission and discharge behavior. Apart of the fact that the discharge in the nozzle-resonator gap is stabilized and becomes more uniform, it increases its volume when the generator works in the regime of ultrasonic emission. At the same time the discharge light emission distribution is more over uniform in the gap. In the regime without the ultrasonic emission the discharge light emission is fragmented. We also found that the impedance of the discharge is decreased in case when the generator works in the regime of ultrasonic emission.

  6. I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.

    NASA Astrophysics Data System (ADS)

    Jafari, Farhad

    The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the

  7. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  8. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.; Sushinsky, G. F.; Chwirut, D. J.; Bechtoldt, C. J.; Ruff, A. W.

    1976-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized.

  9. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  10. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  11. Catatonia after deep brain stimulation successfully treated with lorazepam and right unilateral electroconvulsive therapy: a case report.

    PubMed

    Quinn, Davin K; Rees, Caleb; Brodsky, Aaron; Deligtisch, Amanda; Evans, Daniel; Khafaja, Mohamad; Abbott, Christopher C

    2014-09-01

    The presence of a deep brain stimulator (DBS) in a patient who develops neuropsychiatric symptoms poses unique diagnostic challenges and questions for the treating psychiatrist. Catatonia has been described only once, during DBS implantation, but has not been reported in a successfully implanted DBS patient. We present a case of a patient with bipolar disorder and renal transplant who developed catatonia after DBS for essential tremor. The patient was successfully treated for catatonia with lorazepam and electroconvulsive therapy after careful diagnostic workup. Electroconvulsive therapy has been successfully used with DBS in a handful of cases, and certain precautions may help reduce potential risk. Catatonia is a rare occurrence after DBS but when present may be safely treated with standard therapies such as lorazepam and electroconvulsive therapy.

  12. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  13. Occupational, Physical, and Speech Therapy Treatment Activities during Inpatient Rehabilitation for Traumatic Brain Injury

    PubMed Central

    Beaulieu, Cynthia L.; Dijkers, Marcel P.; Barrett, Ryan S.; Horn, Susan D.; Giuffrida, Clare G.; Timpson, Misti L.; Carroll, Deborah M.; Smout, Randy J.; Hammond, Flora M.

    2015-01-01

    Objective To describe use of Occupational Therapy (OT), Physical Therapy (PT) and Speech Therapy (ST) treatment activities throughout the acute rehabilitation stay of patients with traumatic brain injuries (TBI). Design Multi-site prospective observational cohort study. Setting 9 U.S. and 1 Canadian inpatient rehabilitation settings. Participants 2130 patients admitted for initial acute rehabilitation following TBI. Patients were categorized based on admission FIM cognitive scores, resulting in 5 fairly homogenous groups. Interventions Not applicable. Main Outcome Measures Percentage of patients engaged in specific activities and mean time patients engaged in the activities, per 10-hour block of time for OT, PT, and ST combined. Results Therapy activities in OT, PT, and ST across all 5 cognitive groups had a primary focus on basic activities. While advanced activities occurred in each discipline and within each cognitive group, these advanced activities occurred with fewer patients and usually only toward the end of the rehabilitation stay. Conclusions The pattern of activities engaged in was both similar to and different from patterns seen in previous PBE studies with different rehabilitation diagnostic groups. PMID:26212399

  14. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    PubMed

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  15. Digital ultrasonic signal processing: Primary ultrasonics task and transducer characterization use and detailed description

    NASA Technical Reports Server (NTRS)

    Hammond, P. L.

    1979-01-01

    This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.

  16. Stem cells and combination therapy for the treatment of traumatic brain injury.

    PubMed

    Dekmak, AmiraSan; Mantash, Sarah; Shaito, Abdullah; Toutonji, Amer; Ramadan, Naify; Ghazale, Hussein; Kassem, Nouhad; Darwish, Hala; Zibara, Kazem

    2018-03-15

    TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Recent advances in ultrasound-triggered therapy.

    PubMed

    Yang, Chaopin; Li, Yue; Du, Meng; Chen, Zhiyi

    2018-04-27

    As a non-invasive and real-time diagnostic technique, ultrasound has provided a novel strategy for targeted treatment. With the rapid development of ultrasonic technique and ultrasound contrast agents (UCAs), spatiotemporally controllable application of ultrasound with or without UCAs makes it possible for site-specific delivery of therapeutic agents and targeted modulation with minimal side effects, which indicated a promising therapy in clinical use. This review will describe the main mechanism of targeted therapy induced by ultrasound briefly, then focus on the current application of ultrasound mediated targeted therapy in various fields including tumour, cardiovascular disease, central nervous system, skeletal muscle system diseases and stem cells therapy. In addition, ongoing challenges of ultrasound-mediated targeted therapy for further research and its clinical use are reviewed.

  18. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  19. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  20. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  1. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Subsurface imaging of grain microstructure using picosecond ultrasonics

    DOE PAGES

    Khafizov, M.; Pakarinen, J.; He, L.; ...

    2016-04-21

    We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors GHz Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonicmore » propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. An image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this volumetric imaging capability using a polycrystalline UO 2 sample. As a result, cross section liftout analysis of the grain boundaries using electron microscopy were used to verify our imaging results.« less

  3. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  4. In vivo studies of low level laser (light) therapy for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Xuan, Weijun; Wu, Qiuhe; Huang, Ying-Ying; Ando, Takahiro; Huang, Liyi; Hamblin, Michael R.

    2012-03-01

    Low-level laser (or light) therapy (LLLT) is attracting growing interest to treat both stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain allows non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. It is proposed that red and NIR light is absorbed by chromophores in the mitochondria of cells leading to changes in gene transcription and upregulation of proteins involved in cell survival, antioxidant production, collagen synthesis, reduction of chronic inflammation and cell migration and proliferation. We developed a mouse model of controlled cortical impact (CCI) TBI and examined the effect of 0, 1, 3, and 14 daily 810-nm CW laser treatments in the CCI model as measured by neurological severity score and wire grip and motion test. 1 laser Tx gave a significant improvement while 3 laser Tx was even better. Surprisingly 14 laser Tx was no better than no treatment. Histological studies at necropsy suggested that the neurodegeneration was reduced at 14 days and that the cortical lesion was repaired by BrdU+ve neural progenitor (stem) cells at 28 days. Transcranial laser therapy is a promising treatment for acute (and chronic TBI) and the lack of side-effects and paucity of alternative treatments encourages early clinical trials.

  5. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  6. Digital Signal Processing Methods for Ultrasonic Echoes.

    PubMed

    Sinding, Kyle; Drapaca, Corina; Tittmann, Bernhard

    2016-04-28

    Digital signal processing has become an important component of data analysis needed in industrial applications. In particular, for ultrasonic thickness measurements the signal to noise ratio plays a major role in the accurate calculation of the arrival time. For this application a band pass filter is not sufficient since the noise level cannot be significantly decreased such that a reliable thickness measurement can be performed. This paper demonstrates the abilities of two regularization methods - total variation and Tikhonov - to filter acoustic and ultrasonic signals. Both of these methods are compared to a frequency based filtering for digitally produced signals as well as signals produced by ultrasonic transducers. This paper demonstrates the ability of the total variation and Tikhonov filters to accurately recover signals from noisy acoustic signals faster than a band pass filter. Furthermore, the total variation filter has been shown to reduce the noise of a signal significantly for signals with clear ultrasonic echoes. Signal to noise ratios have been increased over 400% by using a simple parameter optimization. While frequency based filtering is efficient for specific applications, this paper shows that the reduction of noise in ultrasonic systems can be much more efficient with regularization methods.

  7. Mapping cavitation activity around dental ultrasonic tips.

    PubMed

    Walmsley, A Damien; Lea, Simon C; Felver, Bernhard; King, David C; Price, Gareth J

    2013-05-01

    Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.

  8. Effects of animal-assisted therapy on concentration and attention span in patients with acquired brain injury: A randomized controlled trial.

    PubMed

    Gocheva, Vanya; Hund-Georgiadis, Margret; Hediger, Karin

    2018-01-01

    Previous studies have reported that brain-injured patients frequently suffer from cognitive impairments such as attention and concentration deficits. Numerous rehabilitation clinics offer animal-assisted therapy (AAT) to address these difficulties. The authors' aim was to investigate the immediate effects of AAT on the concentration and attention span of brain-injured patients. Nineteen patients with acquired brain injury were included in a randomized, controlled, within-subject trial. The patients alternately received 12 standard therapy sessions (speech therapy, physiotherapy, occupational therapy) and 12 paralleled AAT sessions with comparable content. A total of 429 therapy sessions was analyzed consisting of 214 AAT and 215 control sessions. Attention span and instances of distraction were assessed via video coding in Noldus Observer. The Mehrdimensionaler Befindlichkeitsbogen ([Multidimensional Affect Rating Scale] MDBF questionnaire; Steyer, Schwenkmezger, Notz, & Eid, 1997) was used to measure the patient's self-rated alertness. Concentration was assessed through Visual Analogue Scale (VAS) via self-assessment and therapist's ratings. The patients' attention span did not differ whether an animal was present or not. However, patients displayed more instances of distraction during AAT. Moreover, patients rated themselves more concentrated and alert during AAT sessions. Further, therapists' evaluation of patients' concentration indicated that patients were more concentrated in AAT compared with the control condition. Although the patients displayed more instances of distraction while in the presence of an animal, it did not have a negative impact on their attention span. In addition, patients reported to be more alert and concentrated when an animal was present. Future studies should examine other attentional processes such as divided attention and include neurobiological correlates of attention. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Mingming; Zhang, Lei; Wang, Jun; Wang, Qi; Gao, Jingqun; Fan, Ping

    2013-06-01

    The fluorescein derivants (Fluorescein: (2-(6-Hydroxy-3-oxo-(3H)-xanthen-9-yl) benzoic acid), Fluorescein-DA: (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein) and Fluorescein-DAsbnd Fe(III): (Bis [N,N-bis (carboxymethyl) aminomethyl] fluoresceinsbnd Ferrous(III)) with a tricyclic plane structure were used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) under ultrasonic irradiation through fluorospectrometry and UV-vis spectrophotometry. Besides, because of the existence of Fe(III) ion in Fluorescein-DAsbnd Fe(III), under ultrasonic irradiation the sonocatalytic activity in the damage of BSA molecules was also found. Three-dimensional fluorescence spectra and three-dimensional fluorescence contour profile spectra were mentioned to determine the fluorescence quenching and the conformation change of BSA in the absence and presence of these fluorescein derivants. As judged from the experimental results, the fluorescence quenching of BSA in aqueous solution caused by these fluorescein derivants were all attributed to static quenching process. The damage degree and mode were related to some factors such as ultrasonic irradiation time, fluorescein derivant concentration and ionic strength. Finally, several quenchers were used to determine the amount and kind of generated reactive oxygen species (ROS) during sonodynamic and sonocatalytic reaction processes. It suggests that these fluorescein derivants induce protein damage via various ROS, at least, including singlet oxygen (1O2) and hydroxyl radicals (rad OH). Perhaps, this paper may offer some important subjects for broadening the application of these fluorescein derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment.

  10. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  11. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P.; Posakony, Gerald J.; Bond, Leonard J.; Bruckner-Lea, Cynthia J.

    2006-04-04

    The present invention is an apparatus for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  12. Preference for Progressive Delays and Concurrent Physical Therapy Exercise in an Adult with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Falcomata, Terry S.

    2004-01-01

    The purpose of this study was to increase self-control and engagement in a physical therapy task (head holding) for a man with acquired traumatic brain injury. Once impulsivity was observed (i.e., repeated impulsive choices), an experimental condition was introduced that consisted of choices between a small immediate reinforcer, a large…

  13. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  14. Gain-Compensating Circuit For NDE and Ultrasonics

    NASA Technical Reports Server (NTRS)

    Kushnick, Peter W.

    1987-01-01

    High-frequency gain-compensating circuit designed for general use in nondestructive evaluation and ultrasonic measurements. Controls gain of ultrasonic receiver as function of time to aid in measuring attenuation of samples with high losses; for example, human skin and graphite/epoxy composites. Features high signal-to-noise ratio, large signal bandwidth and large dynamic range. Control bandwidth of 5 MHz ensures accuracy of control signal. Currently being used for retrieval of more information from ultrasonic signals sent through composite materials that have high losses, and to measure skin-burn depth in humans.

  15. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion.

    PubMed

    Jin, Yiying; Li, Huan; Mahar, Rasool Bux; Wang, Zhiyu; Nie, Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment > NaOH treatment followed by ultrasonic treatment > ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  16. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    PubMed Central

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  17. Brain necrosis after fractionated radiation therapy: Is the halftime for repair longer than we thought?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.

    Purpose: To derive a radiobiological model that enables the estimation of brain necrosis and spinal cord myelopathy rates for a variety of fractionation schemes, and to compare repair effects between brain and spinal cord. Methods: Sigmoidal dose response relationships for brain radiation necrosis and spinal cord myelopathy are derived from clinical data using nonlinear regression. Three different repair models are considered and the repair halftimes are included as regression parameters. Results: For radiation necrosis, a repair halftime of 38.1 (range 6.9-76) h is found with monoexponential repair, while for spinal cord myelopathy, a repair halftime of 4.1 (range 0-8) hmore » is found. The best-fit alpha beta ratio is 0.96 (range 0.24-1.73)Conclusions: A radiobiological model that includes repair corrections can describe the clinical data for a variety of fraction sizes, fractionation schedules, and total doses. Modeling suggests a relatively long repair halftime for brain necrosis. This study suggests that the repair halftime for late radiation effects in the brain may be longer than is currently thought. If confirmed in future studies, this may lead to a re-evaluation of radiation fractionation schedules for some CNS diseases, particularly for those diseases where fractionated stereotactic radiation therapy is used.« less

  18. Ultrasonic Apparatus and Method to Assess Compartment Syndrome

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)

    2009-01-01

    A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.

  19. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    NASA Astrophysics Data System (ADS)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  20. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  1. Eyes as fenestrations to the ears: a novel mechanism for high-frequency and ultrasonic hearing.

    PubMed

    Lenhardt, Martin L

    2007-01-01

    Intense airborne ultrasound has been associated with hearing loss, tinnitus, and various nonauditory subjective effects, such as headaches, dizziness, and fullness in the ear. Yet, when people detect ultrasonic components in music, ultrasound adds to the pleasantness of the perception and evokes changes in the brain as measured in electroencephalograms, behavior, and imaging. How does the airborne ultrasound get into the ear to create such polar-opposite human effects? Surprisingly, ultrasound passes first through the eyes; thus, the eye becomes but another window into the inner ear.

  2. A Phase 3 Trial of Whole Brain Radiation Therapy and Stereotactic Radiosurgery Alone Versus WBRT and SRS With Temozolomide or Erlotinib for Non-Small Cell Lung Cancer and 1 to 3 Brain Metastases: Radiation Therapy Oncology Group 0320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperduto, Paul W., E-mail: psperduto@mropa.com; Wang, Meihua; Robins, H. Ian

    2013-04-01

    Background: A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the blood-brain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. Methods and Materials: NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy × 15 tomore » 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m{sup 2}/day × 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150-200 mg/m{sup 2}/day × 5 days/month) could be continued for as long as 6 months after WBRT + SRS. The primary endpoint was OS. Results: After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT + SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). Conclusion: The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms.« less

  3. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320.

    PubMed

    Sperduto, Paul W; Wang, Meihua; Robins, H Ian; Schell, Michael C; Werner-Wasik, Maria; Komaki, Ritsuko; Souhami, Luis; Buyyounouski, Mark K; Khuntia, Deepak; Demas, William; Shah, Sunjay A; Nedzi, Lucien A; Perry, Gad; Suh, John H; Mehta, Minesh P

    2013-04-01

    A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the blood-brain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy × 15 to 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m(2)/day × 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150-200 mg/m(2)/day × 5 days/month) could be continued for as long as 6 months after WBRT + SRS. The primary endpoint was OS. After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT + SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Optimization of Treatment Geometry to Reduce Normal Brain Dose in Radiosurgery of Multiple Brain Metastases with Single-Isocenter Volumetric Modulated Arc Therapy.

    PubMed

    Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Wen, Ning

    2016-09-30

    Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly.

  5. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain.

    PubMed

    Alves, Sandro; Bode, Julia; Bemelmans, Alexis-Pierre; von Kalle, Christof; Cartier, Nathalie; Tews, Björn

    2016-06-20

    Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer's disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain.

  6. Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.

    PubMed

    Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta

    2015-01-01

    Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning. © The Author(s) 2014.

  7. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  8. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Daw; J. Rempe; J. Palmer

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature ofmore » in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.« less

  9. Effect of ultrasonic tip designs on intraradicular post removal.

    PubMed

    Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti

    2014-11-01

    To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.

  10. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.

    PubMed

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing

    2018-04-01

    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. State of the Art for Deep Brain Stimulation Therapy in Movement Disorders: A Clinical and Technological Perspective.

    PubMed

    Wagle Shukla, Aparna; Okun, Michael S

    2016-01-01

    Deep brain stimulation (DBS) therapy is a widely used brain surgery that can be applied for many neurological and psychiatric disorders. DBS is American Food and Drug Administration approved for medication refractory Parkinson's disease, essential tremor and dystonia. Although DBS has shown consistent success in many clinical trials, the therapy has limitations and there are well-recognized complications. Thus, only carefully selected patients are ideal candidates for this surgery. Over the last two decades, there have been significant advances in clinical knowledge on DBS. In addition, the surgical techniques and technology related to DBS has been rapidly evolving. The goal of this review is to describe the current status of DBS in the context of movement disorders, outline the mechanisms of action for DBS in brief, discuss the standard surgical and imaging techniques, discuss the patient selection and clinical outcomes in each of the movement disorders, and finally, introduce the recent advancements from a clinical and technological perspective.

  12. The role of stereotactic radiosurgery and whole brain radiation therapy as primary treatment in the treatment of patients with brain oligometastases — A systematic review

    PubMed Central

    Sheehan, Jason P.

    2016-01-01

    The management of patients presenting with a limited number of brain metastases (BM) (oligo-metastases, defined as less than 3 BM) has evolved from Whole-Brain Radiotherapy (WBRT) alone to more aggressive strategies adding surgical resection and Stereotactic Radiosurgery (SRS) to the armamentarium. In choosing treatment modalities, the relative importance of the patient’s age and clinical parameters, the number or volume of BM and the potential treatment related adverse-effects has been a matter of much debate. For patients with oligometastatic BM, local therapy using SRS in addition to WBRT was shown to improve time to neurologic deterioration, relapse rate and Overall Survival (OS). In patients who receive local therapy (SRS or surgery), adjuvant WBRT was shown to improve regional (brain) relapse rate. In the contemporary era, the beneficial effect of WBRT on lengthening the time of neurologic independence or OS when compared to no further treatment is unclear. One Meta-analysis pooling of information from several reports concluded that for younger patients (<50 years), SRS alone favored survival and that the initial omission of WBRT did not impact distant brain relapse rates. Other recent reports demonstrated on the contrary an OS benefit, more pronounced in good prognosis patients (diagnosis-specific Graded Prognostic Assessment 2.4–4.0) treated with SRS+WBRT compared to those who received SRS alone. As of today, there remains a role for both SRS and WBRT in the management of patients with oligo-metastatic BM but consensus about when to employ one or both is lacking. The exact patient selection criteria to benefit from either or both are still a matter of active research and heated debate. PMID:29296432

  13. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  14. Geometric Limitations Of Ultrasonic Measurements

    NASA Astrophysics Data System (ADS)

    von Nicolai, C.; Schilling, F.

    2006-12-01

    Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.

  15. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P [Richland, WA; Posakony, Gerald J [Richland, WA; Bond, Leonard J [Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA

    2003-01-14

    The present invention is an apparatus and method for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  16. The efficiency of ultrasonic oscillations transfer into the load

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Abramov, V. O.; Mullakaev, M. S.; Artem'ev, V. V.

    2009-11-01

    The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.

  17. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  18. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    PubMed

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  19. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of hormone therapy on brain structure: A randomized controlled trial.

    PubMed

    Kantarci, Kejal; Tosakulwong, Nirubol; Lesnick, Timothy G; Zuk, Samantha M; Gunter, Jeffrey L; Gleason, Carey E; Wharton, Whitney; Dowling, N Maritza; Vemuri, Prashanthi; Senjem, Matthew L; Shuster, Lynne T; Bailey, Kent R; Rocca, Walter A; Jack, Clifford R; Asthana, Sanjay; Miller, Virginia M

    2016-08-30

    To investigate the effects of hormone therapy on brain structure in a randomized, double-blinded, placebo-controlled trial in recently postmenopausal women. Participants (aged 42-56 years, within 5-36 months past menopause) in the Kronos Early Estrogen Prevention Study were randomized to (1) 0.45 mg/d oral conjugated equine estrogens (CEE), (2) 50 μg/d transdermal 17β-estradiol, or (3) placebo pills and patch for 48 months. Oral progesterone (200 mg/d) was given to active treatment groups for 12 days each month. MRI and cognitive testing were performed in a subset of participants at baseline, and at 18, 36, and 48 months of randomization (n = 95). Changes in whole brain, ventricular, and white matter hyperintensity volumes, and in global cognitive function, were measured. Higher rates of ventricular expansion were observed in both the CEE and the 17β-estradiol groups compared to placebo; however, the difference was significant only in the CEE group (p = 0.01). Rates of ventricular expansion correlated with rates of decrease in brain volume (r = -0.58; p ≤ 0.001) and with rates of increase in white matter hyperintensity volume (r = 0.27; p = 0.01) after adjusting for age. The changes were not different between the CEE and 17β-estradiol groups for any of the MRI measures. The change in global cognitive function was not different across the groups. Ventricular volumes increased to a greater extent in recently menopausal women who received CEE compared to placebo but without changes in cognitive performance. Because the sample size was small and the follow-up limited to 4 years, the findings should be interpreted with caution and need confirmation. This study provides Class I evidence that brain ventricular volume increased to a greater extent in recently menopausal women who received oral CEE compared to placebo. © 2016 American Academy of Neurology.

  1. Sparse signal representation and its applications in ultrasonic NDE.

    PubMed

    Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M

    2012-03-01

    Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  3. Predictors of neurologic and nonneurologic death in patients with brain metastasis initially treated with upfront stereotactic radiosurgery without whole-brain radiation therapy

    PubMed Central

    Johnson, Adam G.; Ruiz, Jimmy; Isom, Scott; Lucas, John T.; Hinson, William H.; Watabe, Kounosuke; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.

    2017-01-01

    Abstract Background. In this study we attempted to discern the factors predictive of neurologic death in patients with brain metastasis treated with upfront stereotactic radiosurgery (SRS) without whole brain radiation therapy (WBRT) while accounting for the competing risk of nonneurologic death. Methods. We performed a retrospective single-institution analysis of patients with brain metastasis treated with upfront SRS without WBRT. Competing risks analysis was performed to estimate the subdistribution hazard ratios (HRs) for neurologic and nonneurologic death for predictor variables of interest. Results. Of 738 patients treated with upfront SRS alone, neurologic death occurred in 226 (30.6%), while nonneurologic death occurred in 309 (41.9%). Multivariate competing risks analysis identified an increased hazard of neurologic death associated with diagnosis-specific graded prognostic assessment (DS-GPA) ≤ 2 (P = .005), melanoma histology (P = .009), and increased number of brain metastases (P<.001), while there was a decreased hazard associated with higher SRS dose (P = .004). Targeted agents were associated with a decreased HR of neurologic death in the first 1.5 years (P = .04) but not afterwards. An increased hazard of nonneurologic death was seen with increasing age (P =.03), nonmelanoma histology (P<.001), presence of extracranial disease (P<.001), and progressive systemic disease (P =.004). Conclusions. Melanoma, DS-GPA, number of brain metastases, and SRS dose are predictive of neurologic death, while age, nonmelanoma histology, and more advanced systemic disease are predictive of nonneurologic death. Targeted agents appear to delay neurologic death. PMID:27571883

  4. Efficacy, Dosage, and Duration of Action of Branched Chain Amino Acid Therapy for Traumatic Brain Injury

    PubMed Central

    Elkind, Jaclynn A.; Lim, Miranda M.; Johnson, Brian N.; Palmer, Chris P.; Putnam, Brendan J.; Kirschen, Matthew P.; Cohen, Akiva S.

    2015-01-01

    Traumatic brain injury (TBI) results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI), shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs), which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study, mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5, and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM nor BCAAs when dosed 5 days on then 5 days off was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function, which underlie and contribute to hippocampal cognitive impairment, which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy. PMID:25870584

  5. SU-E-T-493: Analysis of the Impact of Range and Setup Uncertainties On the Dose to Brain Stem and Whole Brain in the Passively Scattered Proton Therapy Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, N; Zhu, X; Zhang, X

    Purpose: To quantify the impact of range and setup uncertainties on various dosimetric indices that are used to assess normal tissue toxicities of patients receiving passive scattering proton beam therapy (PSPBT). Methods: Robust analysis of sample treatment plans of six brain cancer patients treated with PSPBT at our facility for whom the maximum brain stem dose exceeded 5800 CcGE were performed. The DVH of each plan was calculated in an Eclipse treatment planning system (TPS) version 11 applying ±3.5% range uncertainty and ±3 mm shift of the isocenter in x, y and z directions to account for setup uncertainties. Worst-casemore » dose indices for brain stem and whole brain were compared to their values in the nominal plan to determine the average change in their values. For the brain stem, maximum dose to 1 cc of volume, dose to 10%, 50%, 90% of volume (D10, D50, D90) and volume receiving 6000, 5400, 5000, 4500, 4000 CcGE (V60, V54, V50, V45, V40) were evaluated. For the whole brain, maximum dose to 1 cc of volume, and volume receiving 5400, 5000, 4500, 4000, 3000 CcGE (V54, V50, V45, V40 and V30) were assessed. Results: The average change in the values of these indices in the worst scenario cases from the nominal plan were as follows. Brain stem; Maximum dose to 1 cc of volume: 1.1%, D10: 1.4%, D50: 8.0%, D90:73.3%, V60:116.9%, V54:27.7%, V50: 21.2%, V45:16.2%, V40:13.6%,Whole brain; Maximum dose to 1 cc of volume: 0.3%, V54:11.4%, V50: 13.0%, V45:13.6%, V40:14.1%, V30:13.5%. Conclusion: Large to modest changes in the dosiemtric indices for brain stem and whole brain compared to nominal plan due to range and set up uncertainties were observed. Such potential changes should be taken into account while using any dosimetric parameters for outcome evaluation of patients receiving proton therapy.« less

  6. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  7. Mechanisms and Therapy for Cancer Metastasis to the Brain.

    PubMed

    Franchino, Federica; Rudà, Roberta; Soffietti, Riccardo

    2018-01-01

    Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60-70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a "piecemeal" resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer

  8. Ultrasonic irradiation enhanced the ability of Fluorescein-DA-Fe(III) on sonodynamic and sonocatalytic damages of DNA molecules.

    PubMed

    Wu, Qiong; Chen, Xia; Jia, Lizhen; Wang, Yi; Sun, Ying; Huang, Xingjun; Shen, Yuxiang; Wang, Jun

    2017-11-01

    The interaction of DNA with Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein-Ferrous(III) (Fluorescein-DA-Fe(III)) with dual functional (sonodynamic and sonocatalytic) activity was studied by UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, circular dichroism (CD) spectroscopy and viscosity measurements. And then, the damage of DNA caused by Fluorescein-DA-Fe(III) under ultrasonic irradiation (US) was researched by agarose gel electrophoresis and cytotoxicity assay. Meanwhile, some influenced factors such as ultrasonic irradiation time and Fluorescein-DA-Fe(III) concentration on the damage degree of DNA molecules were also examined. As a control, for Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein (Fluorescein-DA), the same experiments were carried out. The results showed that both Fluorescein-DA-Fe(III) and Fluorescein-DA can interact with DNA molecules. Under ultrasonic irradiation, Fluorescein-DA shows sonodynamic activity, which can damage DNA molecules. While, in the presence of Fe(III) ion, the Fluorescein-DA-Fe(III) displays not only sonodynamic activity but also sonocatalytic activity under ultrasonic irradiation, which injures DNA more serious than Fluorescein-DA. The researches confirmed the dual function (sonodynamic activity and sonocatalytic activity) of Fluorescein-DA-Fe(III) and expanded the usage of Fluorescein-DA-Fe(III) as a sonosensitizer in sonodynamic therapy (SDT). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The feasibility and benefits of using volumetric arc therapy in patients with brain metastases: a systematic review.

    PubMed

    Andrevska, Adriana; Knight, Kellie A; Sale, Charlotte A

    2014-12-01

    Radiotherapy management of patients with brain metastases most commonly involve a whole-brain radiation therapy (WBRT) regime, as well as newer techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). The long treatment times incurred by these techniques indicates the need for a novel technique that has shorter treatment times, whilst still producing highly conformal treatment with the potential to deliver escalated doses to the target area. Volumetric modulated arc therapy (VMAT) is a dynamic, highly conformal technique that may deliver high doses of radiation through a single gantry arc and reduce overall treatment times. The aim of this systematic review is to determine the feasibility and benefits of VMAT treatment in regard to overall survival rates and local control in patients with brain metastases, in comparison with patients treated with WBRT, SRS and IMRT. A search of the literature identified 23 articles for the purpose of this review. Articles were included on the basis they were human-based studies, with sample sizes of more than five patients who were receiving treatment for 1-10 metastatic brain lesions. VMAT was found to be highly conformal, have a reduced treatment delivery time and incurred no significant toxicities in comparison with WBRT, SRS and IMRT. Compared to other treatment techniques, VMAT proved to have fewer toxicities than conventional WBRT, shorter treatment times than SRS and similar dose distributions to IMRT plans. Future prospective studies are needed to accurately assess the prognostic benefits of VMAT as well as the occurrence of late toxicities.

  10. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section 892.1570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer...

  11. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  12. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  13. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-04-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  14. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed

  15. Blood-Brain Barrier Permeable Gold Nanoparticles: An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging

    PubMed Central

    Cheng, Yu; Dai, Qing; Morshed, Ramin; Fan, Xiaobing; Wegscheid, Michelle L.; Wainwright, Derek A.; Han, Yu; Zhang, Lingjiao; Auffinger, Brenda; Tobias, Alex L.; Rincón, Esther; Thaci, Bart; Ahmed, Atique U.; Warnke, Peter; He, Chuan

    2014-01-01

    The blood-brain barrier (BBB) remains a formidable obstacle in medicine, preventing efficient penetration of chemotherapeutic and diagnostic agents to malignant gliomas. Here, we demonstrate that a transactivator of transcription (TAT) peptide-modified gold nanoparticle platform (TAT-Au NP) with a 5 nm core size is capable of crossing the BBB efficiently and delivering cargoes such as the anticancer drug doxorubicin (Dox) and Gd3+ contrast agents to brain tumor tissues. Treatment of mice bearing intracranial glioma xenografts with pH-sensitive Dox-conjugated TAT-Au NPs via a single intravenous administration leads to significant survival benefit when compared to the free Dox. Furthermore, we demonstrate that TAT-Au NPs are capable of delivering Gd3+ chelates for enhanced brain tumor imaging with a prolonged retention time of Gd3+ when compared to the free Gd3+ chelates. Collectively, these results show promising applications of the TAT-Au NPs for enhanced malignant brain tumor therapy and non-invasive imaging. PMID:25104165

  16. Group Therapy Use and Its Impact on the Outcomes of Inpatient Rehabilitation After Traumatic Brain Injury: Data From Traumatic Brain Injury-Practice Based Evidence Project.

    PubMed

    Hammond, Flora M; Barrett, Ryan; Dijkers, Marcel P; Zanca, Jeanne M; Horn, Susan D; Smout, Randall J; Guerrier, Tami; Hauser, Elizabeth; Dunning, Megan R

    2015-08-01

    To describe the amount and content of group therapies provided during inpatient rehabilitation for traumatic brain injury (TBI), and to assess the relations of group therapy with patient, injury, and treatment factors and outcomes. Prospective observational cohort. Inpatient rehabilitation. Consecutive admissions (N=2130) for initial TBI rehabilitation at 10 inpatient rehabilitation facilities (9 in the United States, 1 in Canada) from October 2008 to September 2011. Not applicable. Proportion of sessions that were group therapy (≥2 patients were treated simultaneously by ≥1 clinician); proportion of patients receiving group therapy; type of activity performed and amount of time spent in group therapy, by discipline; rehabilitation length of stay; discharge location; and FIM cognitive and motor scores at discharge. Of the patients, 79% received at least 1 session of group therapy, with group therapy accounting for 13.7% of all therapy sessions and 15.8% of therapy hours. On average, patients spent 2.9h/wk in group therapy. The greatest proportion of treatment time in group format was in therapeutic recreation (25.6%), followed by speech therapy (16.2%), occupational therapy (10.4%), psychology (8.1%), and physical therapy (7.9%). Group therapy time and type of treatment activities varied among admission FIM cognitive subgroups and treatment sites. Several factors appear to be predictive of receiving group therapy, with the treatment site being a major influence. However, group therapy as a whole offered little explanation of differences in the outcomes studied. Group therapy is commonly used in TBI rehabilitation, to varying degrees among disciplines, sites, and cognitive impairment subgroups. Various therapeutic activities take place in group therapy, indicating its perceived value in addressing many domains of functioning. Variation in outcomes is not explained well by overall percentage of therapy time delivered in groups. Copyright © 2015 American Congress

  17. Energy characterisation of ultrasonic systems for industrial processes.

    PubMed

    Al-Juboori, Raed A; Yusaf, Talal; Bowtell, Leslie; Aravinthan, Vasantha

    2015-03-01

    Obtaining accurate power characteristics of ultrasonic treatment systems is an important step towards their industrial scalability. Calorimetric measurements are most commonly used for quantifying the dissipated ultrasonic power. However, accuracy of these measurements is affected by various heat losses, especially when working at high power densities. In this work, electrical power measurements were conducted at all locations in the piezoelectric ultrasonic system equipped with ½″ and ¾″ probes. A set of heat transfer calculations were developed to estimate the convection heat losses from the reaction solution. Chemical dosimeters represented by the oxidation of potassium iodide, Fricke solution and 4-nitrophenol were used to chemically correlate the effect of various electrical amplitudes and treatment regimes. This allowed estimation of sonochemical-efficiency (SE) and energy conversion (XUS) of the ultrasonic system. Results of this study showed overall conversion efficiencies of 60-70%. This correlated well with the chemical dosimeter yield curves of both organic and inorganic aqueous solutions. All dosimeters showed bubble shielding and coalescence effects at higher ultrasonic power levels, less pronounced for the ½″ probe case. SE and XUS values in the range of 10(-10) mol/J and 10(-3) J/J respectively confirmed that conversion of ultrasonic power to chemical yield declined with amplitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Stress measurement in thick plates using nonlinear ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less

  19. Integrated ultrasonic and petrographical characterization of carbonate building materials

    NASA Astrophysics Data System (ADS)

    Ligas, Paola; Fais, Silvana; Cuccuru, Francesco

    2014-05-01

    This paper presents the application of non-destructive ultrasonic techniques in evaluating the conservation state and quality of monumental carbonate building materials. Ultrasonic methods are very effective in detecting the elastic characteristics of the materials and thus their mechanical behaviour. They are non-destructive and effective both for site and laboratory tests, though it should be pointed out that ultrasonic data interpretation is extremely complex, since elastic wave velocity heavily depends on moisture, heterogeneity, porosity and other physical properties of the materials. In our study, considering both the nature of the building materials and the constructive types of the investigated monuments, the ultrasonic investigation was carried out in low frequency ultrasonic range (24 kHz - 54 kHz) with the aim of detecting damages and degradation zones and assessing the alterability of the investigated stones by studying the propagation of the longitudinal ultrasonic pulses. In fact alterations in the materials generally cause a decrease in longitudinal pulse velocity values. Therefore starting from longitudinal velocity values the elasto-mechanical behaviour of the stone materials can be deduced. To this aim empirical and effective relations between longitudinal velocity and mechanical properties of the rocks can be used, by transferring the fundamental concepts of the studies of reservoir rocks in the framework of hydrocarbon research to the diagnostic process on stone materials. The ultrasonic measurements were performed both in laboratory and in situ using the Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT) by C.N.S. Electronics LTD. A number of experimental sessions were carried out choosing different modalities of data acquisition. On the basis of the results of the laboratory measurements, an in situ ultrasonic survey on significant monuments, have been carried out. The ultrasonic measurements were integrated by a

  20. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers.

    PubMed

    Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François

    2018-01-16

    The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N  =  3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.

  1. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers

    NASA Astrophysics Data System (ADS)

    Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François

    2018-01-01

    The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N  =  3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.

  2. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy.

    PubMed

    Roger, Mathilde; Clavreul, Anne; Huynh, Ngoc Trinh; Passirani, Catherine; Schiller, Paul; Vessières, Anne; Montero-Menei, Claudia; Menei, Philippe

    2012-02-14

    The prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. Thus, treatment strategies that specifically target these tumors have the potential to greatly improve therapeutic outcomes. "Marrow-isolated adult multilineage inducible" cells (MIAMI cells) are a subpopulation of mesenchymal stromal cells (MSCs) which possess the ability to migrate to brain tumors. We have previously shown that MIAMI cells were able to efficiently incorporate lipid nanocapsules (LNCs) without altering either their stem cell properties or their migration capacity. In this study, we assessed whether the cytotoxic effects of MIAMI cells loaded with LNCs containing an organometallic complex (ferrociphenol or Fc-diOH) could be used to treat brain tumors. The results showed that MIAMI cells internalized Fc-diOH-LNCs and that this internalization did not induce MIAMI cell death. Furthermore, Fc-diOH-LNC-loaded MIAMI cells produced a cytotoxic effect on U87MG glioma cells in vitro. This cytotoxic effect was validated in vivo after intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells in a heterotopic U87MG glioma model in nude mice. These promising results open up a new field of treatment in which cellular vehicles and nanoparticles can be combined to treat brain tumors. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  4. A traveling wave ultrasonic motor of high torque.

    PubMed

    Chen, Y; Liu, Q L; Zhou, T Y

    2006-12-22

    A traveling wave ultrasonic motor of high torque with a new configuration is proposed in this paper. In the new design, a part of the motor serves as the stator. The rotor is the vibrator consisting of a toothed metal ring with piezoelectric ceramic bonded, which generates ultrasonic vibration. The rotor is in contact with the shell of motor and is driven by the friction between the rotor and the stator. This configuration not only removes the rotor in a conventional type of traveling wave ultrasonic motor but also changes the interaction between the rotor and the stator of the motor so that it improves the output performance of the motor. Although an electric brush is added to the ultrasonic motor, it is easy to be fabricated because of the low speed of motor. The finite element method was used to compute the vibration modes of an ultrasonic motor with a diameter of 100mm to optimize the design of the motor. A 9th mode was chosen as the operation mode with a resonance frequency about 25 kHz. According to the design, a prototype was fabricated. Its performance was measured. The rotation speed-torque curves for various frequencies were obtained. The result shows that its stall torque is greater than 4 Nm within a range of 400 Hz. This ultrasonic motor was used to drive the window glass of a mobile car and the result was satisfactory. In the further the research on the friction material between the stator and the rotor is under way to improve the efficiency of the ultrasonic motor.

  5. [Evaluation of postoperative pain comparing manual and ultrasonic endodontic instrumentation in patients with cleft lip and palate].

    PubMed

    Brosco, H B; Pimentel, P A; Lacerda, A G; Nishiyama, C K; de Moraes, I G

    1989-01-01

    Our purpose was to compare incidence of post-surgical pain associated to the endodontic therapy where the instrumentation on the root canal was performed by the method of Marshall & Pappin and the method of Marshall & Pappin complemented by the ultrasonic. Seventy patients with only one tooth needing endodontic treatment were treated by one of the methods and, posteriorly, evaluated. The endodontic treatment was performed at one time and from the seventy teeth, thirty have been instrumented by the manual method complemented by the ultrasonic and forty by the manual instrumentation. The patients were clinically controlled after the endodontic treatment was finished during periods of 24, 48 and 72 hours to evaluate their post-surgical condition. The results suggest that were no statistically significant differences (p less than 0.05) in the incidence of pain between the employed methods or according to the pulpar semiologic condition in any of the observed periods. However, we have realized that there was a tendency for a smaller percentage of a postoperative pain in those cases of necropulpectamy treated by the endosonic ultrasonic synergistic system. In those cases of biopulpectomy this has been not observed.

  6. Ultrasonic fingerprinting by phased array transducer

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.

    2016-06-01

    Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.

  7. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  8. External Validity of a Risk Stratification Score Predicting Early Distant Brain Failure and Salvage Whole Brain Radiation Therapy After Stereotactic Radiosurgery for Brain Metastases.

    PubMed

    Press, Robert H; Boselli, Danielle M; Symanowski, James T; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Burri, Stuart H; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-07-01

    A scoring system using pretreatment factors was recently published for predicting the risk of early (≤6 months) distant brain failure (DBF) and salvage whole brain radiation therapy (WBRT) after stereotactic radiosurgery (SRS) alone. Four risk factors were identified: (1) lack of prior WBRT; (2) melanoma or breast histologic features; (3) multiple brain metastases; and (4) total volume of brain metastases <1.3 cm 3 , with each factor assigned 1 point. The purpose of this study was to assess the validity of this scoring system and its appropriateness for clinical use in an independent external patient population. We reviewed the records of 247 patients with 388 brain metastases treated with SRS between 2010 at 2013 at Levine Cancer Institute. The Press (Emory) risk score was calculated and applied to the validation cohort population, and subsequent risk groups were analyzed using cumulative incidence. The low-risk (LR) group had a significantly lower risk of early DBF than did the high-risk (HR) group (22.6% vs 44%, P=.004), but there was no difference between the HR and intermediate-risk (IR) groups (41.2% vs 44%, P=.79). Total lesion volume <1.3 cm 3  (P=.004), malignant melanoma (P=.007), and multiple metastases (P<.001) were validated as predictors for early DBF. Prior WBRT and breast cancer histologic features did not retain prognostic significance. Risk stratification for risk of early salvage WBRT were similar, with a trend toward an increased risk for HR compared with LR (P=.09) but no difference between IR and HR (P=.53). The 3-level Emory risk score was shown to not be externally valid, but the model was able to stratify between 2 levels (LR and not-LR [combined IR and HR]) for early (≤6 months) DBF. These results reinforce the importance of validating predictive models in independent cohorts. Further refinement of this scoring system with molecular information and in additional contemporary patient populations is warranted. Copyright © 2017

  9. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  10. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  11. Ultrasonic imaging of textured alumina

    NASA Technical Reports Server (NTRS)

    Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.

    1989-01-01

    Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.

  12. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  13. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  14. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  15. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  16. Ultrasonic enhancing amorphization during synthesis of calcium phosphate.

    PubMed

    He, Kun; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2014-03-01

    Amorphous calcium phosphate (ACP) has great application potential in biomaterials field due to its non-cytotoxicity, high bioactivity, good cytocompatibility, and so on. The results of this research demonstrated that ultrasonic obviously enhanced amorphization during synthesis of calcium phosphate. The ACP phase was relatively ideal when the solvent of Ca(NO3)2·4H2O was ethanol and the solvent of (NH4)2HPO4 was a mixture of water and ethanol, under ultrasonic. In-situ crystallization of ACP could be observed by HRTEM. The mechanism on the effects of ultrasonic on amorphization of the synthesized calcium phosphate was discussed. It was suggested that ultrasonic synthesis might be a facile method to prepare pure and safe ACP related biomaterials. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  18. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  19. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    NASA Astrophysics Data System (ADS)

    Corona, E.; García-Pérez, J. V.; Santacatalina, J. V.; Peña, R.; Benedito, J.

    2012-12-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  1. New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.

  2. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    PubMed

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  3. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    NASA Astrophysics Data System (ADS)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  4. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org; Paravati, Anthony J.; Spire, William J.

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, formore » time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for

  5. Photodynamic therapy in the treatment of brain tumours. A feasibility study.

    PubMed

    Vanaclocha, Vicente; Sureda, Manuel; Azinovic, Ignacio; Rebollo, Joseba; Cañón, Rosa; Sapena, Nieves Saiz; Cases, Francisco García; Brugarolas, Antonio

    2015-09-01

    Photodynamic therapy (PDT) constitutes a treatment modality that combines a photosensitizing agent with exposure to laser light in order to elicit phototoxic reactions that selectively destroy tumor cells and spare normal cells. PDT is a local treatment modality without long-term systemic effects. Its application can be repeated more than once to the same area without accumulative effects. Patients diagnosed with primary brain tumors were treated with PDT. Treatment consisted in administration of the photosensitizer followed by craniotomy, surgical resection and laser illumination of the surgical bed. Primary brain tumors received also temozolomide-based chemotherapy and radiotherapy (RT). From May 2000 to December 2010, 41 patients (27 male, 14 female) with a median age of 49 years (range 13-70) diagnosed of primary brain tumors were included in the study. In 7 patients PDT was repeated at the time of the relapse. In 22 episodes PDT was part of the initial treatment of primary brain tumors and in 26 episodes was part of the treatment at relapse. Median PFS observed was 10 months for GBM (95% confidence interval 5.7-14.3), 26 months for AA (95% CI 4.5-47.5), and 43 months for OD (95% CI 4.5-47.5). Median OS was 9 months for GBM (95% CI 2.3-15.7), 20 months for AA (95% CI 0.0-59) and 50 months for OD (95% CI 32.5-67.5). The apparent discrepancy between PFS and OS data is due to patients not censored for PFS because they die from causes other than tumor progression. Median OS since first diagnosis was 17 months for GBM (95% CI 15.2-17.8), 66 months for AA (95% CI 2.9-129.1) and 122 months for OD (95% CI 116.1-127.8). Side effects were mild and manageable. This study confirms that PDT can be considered as an adjunctive to surgery and/or RT and chemotherapy in the treatment of brain tumors, excluding those patients with thalamic or brain stem locations. It adds therapeutic effect without adding significant toxicity. In order to improve its contribution, it is essential

  6. Self-Reported Cognitive Outcomes in Patients With Brain Metastases Before and After Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Ansa Maer; Scherwath, Angela; Ernst, Gundula

    Purpose: Patients with brain metastases may experience treatment-related cognitive deficits. In this study, we prospectively assessed the self-reported cognitive abilities of patients with brain metastases from any solid primary cancer before and after irradiation of the brain. Methods and Materials: The treatment group (TG) consisted of adult patients (n=50) with brain metastases who received whole or partial irradiation of the brain without having received prior radiation therapy (RT). The control group (CG) consisted of breast cancer patients (n=27) without cranial involvement who were treated with adjuvant RT. Patients were recruited between May 2008 and December 2010. Self-reported cognitive abilities weremore » acquired before RT and 6 weeks, 3 months, and 6 months after irradiation. The information regarding the neurocognitive status was collected by use of the German questionnaires for self-perceived deficits in attention (FEDA) and subjectively experienced everyday memory performance (FEAG). Results: The baseline data showed a high proportion of self-perceived neurocognitive deficits in both groups. A comparison between the TG and the CG regarding the course of self-reported outcomes after RT showed significant between-group differences for the FEDA scales 2 and 3: fatigue and retardation of daily living activities (P=.002) and decrease in motivation (P=.032) with an increase of attention deficits in the TG, but not in the CG. There was a trend towards significance in FEDA scale 1: distractibility and retardation of mental processes (P=.059) between the TG and the CG. The FEAG assessment presented no significant differences. An additional subgroup analysis within the TG was carried out. FEDA scale 3 showed significant differences in the time-related progress between patients with whole-brain RT and those receiving hypofractionated stereotactic RT (P=.025), with less decrease in motivation in the latter group. Conclusion: Self-reported attention declined

  7. Non-destructive ultrasonic measurements of case depth. [in steel

    NASA Technical Reports Server (NTRS)

    Flambard, C.; Lambert, A.

    1978-01-01

    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described.

  8. Analysis of ultrasonic vocalizations emitted by infant rodents.

    PubMed

    Branchi, Igor; Santucci, Daniela; Alleva, Enrico

    2006-01-01

    Altricial rodent pups emit ultrasonic vocalizations (USVs), which are whistle-like sounds with frequencies between 30 and 90 kHz. These signals play an important communicative role in mother-offspring interaction because they elicit in the dam a prompt response as concerning care-giving behaviors. To investigate neurobehavioral development, the analysis of the number of USVs presents several advantages: (1) USVs are one of the few responses produced by very young rodents that can be quantitatively analyzed and elicited by quantifiable stimuli; (2) USV emission follows a clear ontogenetic profile from birth to the second to third week of life, thus allowing longitudinal analysis during very early post-natal ontogeny. The reported role played by several receptor agonists and antagonists in modulating the USV rate makes this measure highly informative in investigating the effects of toxicants and, more generally, psychoactive compounds on the development of selected brain systems.

  9. Decomposition of cellulose by ultrasonic welding in water

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Miyagawa, Seiya; Mukasa, Shinobu; Toyota, Hiromichi

    2016-07-01

    The use of ultrasonic welding in water to decompose cellulose placed in water was examined experimentally. Filter paper was used as the decomposition material with a horn-type transducer 19.5 kHz adopted as the ultrasonic welding power source. The frictional heat at the point where the surface of the tip of the ultrasonic horn contacts the filter paper decomposes the cellulose in the filter paper into 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharide through hydrolysis and thermolysis that occurs in the welding process.

  10. Clinical tests of an ultrasonic periodontal probe

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.

    2002-05-01

    A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.

  11. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy.

    PubMed

    Wang, Nan; Sun, Pei; Lv, Mingming; Tong, Gangsheng; Jin, Xin; Zhu, Xinyuan

    2017-05-02

    Effective penetration through the blood-brain barrier (BBB) remains a challenge for the treatment of many brain diseases. In this study, a small molecule, sinapic acid (SA), extracted from mustard, was selected as a novel bioinspired BBB-permeable ligand for efficient drug delivery in glioma treatment. SA was conjugated on the surface of zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-encapsulated bovine serum albumin (BSA)-based nanoparticles, yielding nBSA-SA. The PMPC shell serves as a protective layer to prolong the in vivo blood circulation time with a better chance to cross the BBB. Furthermore, temozolomide (TMZ), which can be loaded onto the nanoparticles via electrostatic interactions with acrylic acid (AA) to generate AA-nBSA-SA-TMZ, was applied as an excellent chemotherapeutic drug for glioma therapy. The obtained nanoparticles with a distinct size show great BBB permeability. Through the mechanism study, it was found that the cell internalization of the SA-conjugated nanoparticles is an energy-dependent process with only transient disruption of the BBB. The biological evaluation results unambiguously suggest that drug-loaded nanoparticles can lead to strong apoptosis on the tumor site and increase the median survival time of glioma-bearing mice. Overall, this novel BBB-permeable ligand SA paves the way for the delivery of cargo into the brain and provides a powerful nanoplatform for glioma therapy via intravenous administration.

  12. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  13. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  14. Development of an Ultrasonic Resonator for Ballast Water Disinfection

    NASA Astrophysics Data System (ADS)

    Osman, Hafiiz; Lim, Fannon; Lucas, Margaret; Balasubramaniam, Prakash

    Ultrasonic disinfection involves the application of low-frequency acoustic energy in a water body to induce cavitation. The implosion of cavitation bubbles generates high speed microjets >1 km/s, intense shock wave >1 GPa, localized hot spots >1000 K, and free-radicals, resulting in cell rupture and death of micro-organisms and pathogens. Treatment of marine ballast water using power ultrasonics is an energy-intensive process. Compared with other physical treatment methods such as ultraviolet disinfection, ultrasonic disinfection require 2 to 3 orders of magnitude more energy to achieve similar rate of micro-organism mortality. Current technology limits the amount of acoustic energy that can be transferred per unit volume of fluid and presents challenges when it comes to high-flow applications. Significant advancements in ultrasonic processing technology are needed before ultrasound can be recognized as a viable alternative disinfection method. The ultrasonic resonator has been identified as one of the areas of improvement that can potentially contribute to the overall performance of an ultrasonic disinfection system. The present study focuses on the design of multiple-orifice resonators (MOR) for generating a well-distributed cavitation field. Results show that the MOR resonator offers significantly larger vibrational surface area to mass ratio. In addition, acoustic pressure measurements indicate that the MOR resonators are able to distribute the acoustic energy across a larger surface area, while generating 2-4 times higher pressures than existing ultrasonic probes.

  15. Effects of active music therapy on the normal brain: fMRI based evidence.

    PubMed

    Raglio, Alfredo; Galandra, Caterina; Sibilla, Luisella; Esposito, Fabrizio; Gaeta, Francesca; Di Salle, Francesco; Moro, Luca; Carne, Irene; Bastianello, Stefano; Baldi, Maurizia; Imbriani, Marcello

    2016-03-01

    The aim of this study was to investigate the neurophysiological bases of Active Music Therapy (AMT) and its effects on the normal brain. Twelve right-handed, healthy, non-musician volunteers were recruited. The subjects underwent 2 AMT sessions based on the free sonorous-music improvisation using rhythmic and melodic instruments. After these sessions, each subject underwent 2 fMRI scan acquisitions while listening to a Syntonic (SP) and an A-Syntonic (AP) Production from the AMT sessions. A 3 T Discovery MR750 scanner with a 16-channel phased array head coil was used, and the image analysis was performed with Brain Voyager QX 2.8. The listening to SP vs AP excerpts mainly activated: (1) the right middle temporal gyrus and right superior temporal sulcus, (2) the right middle frontal gyrus and in particular the right precentral gyrus, (3) the bilateral precuneus, (4) the left superior temporal sulcus and (5) the left middle temporal gyrus. These results are consistent with the psychological bases of the AMT approach and with the activation of brain areas involved in memory and autobiographical processes, and also in personal or interpersonal significant experiences. Further studies are required to confirm these findings and to explain possible effects of AMT in clinical settings.

  16. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes.

    PubMed

    Ellinwood, N Matthew; Ausseil, Jérôme; Desmaris, Nathalie; Bigou, Stéphanie; Liu, Song; Jens, Jackie K; Snella, Elizabeth M; Mohammed, Eman E A; Thomson, Christopher B; Raoul, Sylvie; Joussemet, Béatrice; Roux, Françoise; Chérel, Yan; Lajat, Yaouen; Piraud, Monique; Benchaouir, Rachid; Hermening, Stephan; Petry, Harald; Froissart, Roseline; Tardieu, Marc; Ciron, Carine; Moullier, Philippe; Parkes, Jennifer; Kline, Karen L; Maire, Irène; Vanier, Marie-Thérèse; Heard, Jean-Michel; Colle, Marie-Anne

    2011-02-01

    Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.

  17. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  18. Ultrasonically assisted drilling of rocks

    NASA Astrophysics Data System (ADS)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  19. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  20. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  1. Calibration of ultrasonic power output in water, ethanol and sodium polytungstate

    NASA Astrophysics Data System (ADS)

    Mentler, Axel; Schomakers, Jasmin; Kloss, Stefanie; Zechmeister-Boltenstern, Sophie; Schuller, Reinhard; Mayer, Herwig

    2017-10-01

    Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm-3 and 1.8 g cm-3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.

  2. Chemical coloring on stainless steel by ultrasonic irradiation.

    PubMed

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Brain Stimulation in Addiction

    PubMed Central

    Salling, Michael C; Martinez, Diana

    2016-01-01

    Localized stimulation of the human brain to treat neuropsychiatric disorders has been in place for over 20 years. Although these methods have been used to a greater extent for mood and movement disorders, recent work has explored brain stimulation methods as potential treatments for addiction. The rationale behind stimulation therapy in addiction involves reestablishing normal brain function in target regions in an effort to dampen addictive behaviors. In this review, we present the rationale and studies investigating brain stimulation in addiction, including transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Overall, these studies indicate that brain stimulation has an acute effect on craving for drugs and alcohol, but few studies have investigated the effect of brain stimulation on actual drug and alcohol use or relapse. Stimulation therapies may achieve their effect through direct or indirect modulation of brain regions involved in addiction, either acutely or through plastic changes in neuronal transmission. Although these mechanisms are not well understood, further identification of the underlying neurobiology of addiction and rigorous evaluation of brain stimulation methods has the potential for unlocking an effective, long-term treatment of addiction. PMID:27240657

  4. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    DOEpatents

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  5. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    NASA Astrophysics Data System (ADS)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  6. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  7. Ultrasonic Nondestructive Evaluation of Damage in Continuous Fiber Composites

    DTIC Science & Technology

    1989-01-01

    Security Classification) Ultrasonic Nondestructive Evalustion of Damage in Continuous Fiber Composites 12. PERSONAL AUTHOR(S) Vikram K. Kinra 13a...Attenuatiorn Composites , Damage / " UltrasonicNondestructive Evaluation. \\ ’k 19. ABSTRACT (Continue on reverse if necessary and identify by block n,,ber) A...n SIrIE -~ 2 4IiCUi’.ZIEfEi Ultrasonic nondestructive evaluation of fibre-reinforced composite materials - a review VIKRAM K KINRA and VINAY DAYAL

  8. Ultrasonic weld testing.

    DOT National Transportation Integrated Search

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  9. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  10. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light

    PubMed Central

    Ruan, Haowen; Brake, Joshua; Robinson, J. Elliott; Liu, Yan; Jang, Mooseok; Xiao, Cheng; Zhou, Chunyi; Gradinaru, Viviana; Yang, Changhuei

    2017-01-01

    Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-μm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses. PMID:29226248

  11. System and technique for ultrasonic determination of degree of cooking

    DOEpatents

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  12. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    PubMed

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull.

    PubMed

    Tanter, M; Thomas, J L; Fink, M

    1998-05-01

    The time-reversal process is applied to focus pulsed ultrasonic waves through the human skull bone. The aim here is to treat brain tumors, which are difficult to reach with classical surgery means. Such a surgical application requires precise control of the size and location of the therapeutic focal beam. The severe ultrasonic attenuation in the skull reduces the efficiency of the time reversal process. Nevertheless, an improvement of the time reversal process in absorbing media has been investigated and applied to the focusing through the skull [J.-L. Thomas and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1122-1129 (1996)]. Here an extension of this technique is presented in order to focus on a set of points surrounding an initial artificial source implanted in the tissue volume to treat. From the knowledge of the Green's function matched to this initial source location a new Green's function matched to various points of interest is deduced in order to treat the whole volume. In a homogeneous medium, conventional steering consists of tilting the wave front focused on the acoustical source. In a heterogeneous medium, this process is only valid for small angles or when aberrations are located in a layer close to the array. It is shown here how to extend this method to aberrating and absorbing layers, like the skull bone, located at any distance from the array of transducers.

  14. Errors in measurements by ultrasonic thickness gauges caused by the variation in ultrasonic velocity in constructional steels and metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, V.A.; Tarasenko, V.L.; Tselser, L.B.

    1988-09-01

    Numerical values of the variation in ultrasonic velocity in constructional metal alloys and the measurement errors related to them are systematized. The systematization is based on the measurement results of the group ultrasonic velocity made in the All-Union Scientific-Research Institute for Nondestructive Testing in 1983-1984 and also on the measurement results of the group velocity made by various authors. The variations in ultrasonic velocity were systematized for carbon, low-alloy, and medium-alloy constructional steels; high-alloy iron base alloys; nickel-base heat-resistant alloys; wrought aluminum constructional alloys; titanium alloys; and cast irons and copper alloys.

  15. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  16. Ultrasonic probe for inspecting double-wall tube

    DOEpatents

    Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  17. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  18. Ultrasonic Method for Measuring Internal Temperature Profile in Heated Materials

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Takahashi, M.

    2008-02-01

    A new ultrasonic method for internal temperature measurement is presented. The principle of the method is based on temperature dependence of the velocity of the ultrasonic wave propagating through the material. An inverse analysis to determine the temperature profile in a heated material is developed and an experiment is carried out to verify the validity of the developed method. A single side of a silicone rubber plate of 30 mm thickness is heated and ultrasonic pulse-echo measurements are then performed during heating. A change in transit time of ultrasonic wave in the heated rubber plate is monitored and used to determine the transient variation in internal temperature distribution of the rubber. The internal temperature distribution determined ultrasonically agrees well with both obtained using commercial thermocouples installed in the rubber and estimated theoretically.

  19. Greater efficacy of chemotherapy plus bevacizumab compared to chemo- and targeted therapy alone on non-small cell lung cancer patients with brain metastasis.

    PubMed

    Tang, Ning; Guo, Jun; Zhang, Qianqian; Wang, Yali; Wang, Zhehai

    2016-01-19

    Control of non-small-cell lung cancer (NSCLC) with brain metastasis is clinically challenging. This study retrospectively evaluated the efficacy of different adjuvant therapies for 776 cases of advanced NSCLCs with brain metastasis who treated with chemotherapy, chemotherapy plus bevacizumab, tyrosine kinase inhibitor (TKI) alone, or supportive care. The median progression-free survival (mPFS) and median overall survival (mOS) of patients treated with chemotherapy plus bevacizumab were 8.5 and 10.5 months, respectively, which were better than those of patients treated with other three therapies(P < 0.01). For patients with EGFR-mutated NSCLC, the efficacy of TKI treatment was not statistically better than that of chemotherapy plus bevacizumab but was significantly better than that of other therapies. Moreover, for patients with EGFR wild-type NSCLC, the mPFS and mOS after chemotherapy plus bevacizumab were greater than those with other two therapies (P < 0.01). The local response rate (RR)and disease control rate (DCR)with regimen including pemetrexed were greater than those with regimen including paclitaxel (P < 0.05). Chemotherapy plus bevacizumab was more effective for NSCLC patients with brain metastasis. Further studies will investigate the benefit of TKI alone for patients with EGFR-mutated. For patients with EGFR wild-type, chemotherapy plus bevacizumab did improve PFS and OS. Furthermore, regimens including pemetrexed led to a greater RR.

  20. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a