Sample records for ultrasonic elasticity imaging

  1. A new approach to ultrasonic elasticity imaging

    NASA Astrophysics Data System (ADS)

    Hoerig, Cameron; Ghaboussi, Jamshid; Fatemi, Mostafa; Insana, Michael F.

    2016-04-01

    Biomechanical properties of soft tissues can provide information regarding the local health status. Often the cells in pathological tissues can be found to form a stiff extracellular environment, which is a sensitive, early diagnostic indicator of disease. Quasi-static ultrasonic elasticity imaging provides a way to image the mechanical properties of tissues. Strain images provide a map of the relative tissue stiffness, but ambiguities and artifacts limit its diagnostic value. Accurately mapping intrinsic mechanical parameters of a region may increase diagnostic specificity. However, the inverse problem, whereby force and displacement estimates are used to estimate a constitutive matrix, is ill conditioned. Our method avoids many of the issues involved with solving the inverse problem, such as unknown boundary conditions and incomplete information about the stress field, by building an empirical model directly from measured data. Surface force and volumetric displacement data gathered during imaging are used in conjunction with the AutoProgressive method to teach artificial neural networks the stress-strain relationship of tissues. The Autoprogressive algorithm has been successfully used in many civil engineering applications and to estimate ocular pressure and corneal stiffness; here, we are expanding its use to any tissues imaged ultrasonically. We show that force-displacement data recorded with an ultrasound probe and displacements estimated at a few points in the imaged region can be used to estimate the full stress and strain vectors throughout an entire model while only assuming conservation laws. We will also demonstrate methods to parameterize the mechanical properties based on the stress-strain response of trained neural networks. This method is a fundamentally new approach to medical elasticity imaging that for the first time provides full stress and strain vectors from one set of observation data.

  2. Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.

    2009-12-01

    Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.

  3. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  4. Subsurface imaging of grain microstructure using picosecond ultrasonics

    DOE PAGES

    Khafizov, M.; Pakarinen, J.; He, L.; ...

    2016-04-21

    We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors GHz Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonicmore » propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. An image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this volumetric imaging capability using a polycrystalline UO 2 sample. As a result, cross section liftout analysis of the grain boundaries using electron microscopy were used to verify our imaging results.« less

  5. Determination of elastic modulus of ceramics using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  6. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  7. Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1987-01-01

    The theoretical treatment of linear and nonlinear elasticity in a unidirectionally fiber reinforced composite as well as measurements for a unidirectional graphite/epoxy composite (T300/5208) are presented. Linear elastic properties were measured by both ultrasonic and strain gage measurements. The nonlinear properties were determined by measuring changes in ultrasonic natural phase velocity with a pulsed phase locked loop interferometer as a function of stress and temperature. These measurements provide the basis for further investigations into the relationship between nonlinear elastic properties and other important properties such as strength and fiber-matrix interfacial stength in graphite/epoxy composites.

  8. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  9. Ultrasonic and elastic properties of Tl- and Hg-Based cuprate superconductors: a review

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.

    2018-01-01

    This review is regarding the ultrasonic and elastic properties of Tl- and Hg-based cuprate superconductors. The objectives of this paper were to review the ultrasonic attenuation above the transition temperature ?, and sound velocity and elastic anomalies at ? in the Tl- and Hg-based cuprate superconductors. A discontinuity in the sound velocity and elastic moduli is observed near ? for the Hg-based and other cuprate high temperature superconductor but not the Tl-based superconductor. Ultrasonic attenuation peaks are observed between 200 and 250 K in almost all Tl- and Hg-based cuprate superconductors reported. These peaks were attributed to lattice stepping and oxygen ordering in the Tl-O and Hg-O layers. Some Tl- and Hg-based superconductors show attenuation peak near ?. However, this is not a common feature for the cuprate superconductors. The ultrasonic attenuation decrease rate below ? is slower than that expected from a Bardeen-Cooper-Schrieffer (BCS) and pseudo-gapped superconductor.

  10. Development of Cad System for Diffuse Disease Based on Ultrasound Elasticity Images

    NASA Astrophysics Data System (ADS)

    Yamazaki, M.; Shiina, T.; Yamakawa, M.; Takizawa, H.; Tonomura, A.; Mitake, T.

    It is well known that as hepatic cirrhosis progresses, hepatocyte fibrosis spreads and nodule increases. However, it is not easy to diagnosis its early stage by conventional B-mode image because we have to read subtle change of speckle pattern which is not sensitive to the stage of fibrosis. Ultrasonic tissue elasticity imaging can provide us novel diagnostic information based on tissue hardness. We recently developed commercial-based equipment for tissue elasticity imaging. In this work, we investigated to develop the CAD system based on elasticity image for diagnosing defused type diseases such as hepatic cirrhosis. The results of clinical data analysis indicate that the CAD system is promising as means for diagnosis of diffuse disease with simple criterion.

  11. Ultrasonic Characterization of the Linear Elastic Properties of Myocardium and Other Anisotropic Soft Tissues

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Brentley Keith

    1995-01-01

    This thesis seeks to contribute to a better understanding of the physics of interaction of ultrasonic waves with inhomogeneous and anisotropic media, one example of which is the human heart. The clinical success of echocardiography has generated a considerable interest in the development of ultrasonic techniques to measure the elastic properties of heart tissue. It is hypothesized that the elastic properties of myocardium are influenced by the interstitial content and organization of collagen. Collagen, which is the main component of tendon, interconnects the muscle cells of the heart to form locally unidirectional myofibers. This thesis therefore employs ultrasonic techniques to characterize the linear elastic properties of both heart and tendon. The linear elastic properties of tissues possessing a unidirectional arrangement of fibers may be described in terms of five independent elastic stiffness coefficients. Three of these coefficients were determined for formalin fixed specimens of bovine Achilles tendon and human myocardium by measuring the velocity of longitudinal mode ultrasonic pulses as a function of angle of propagation relative to the fiber axis of the tissue. The remaining two coefficients were determined by measuring the velocity of transverse mode ultrasonic waves through these tissues. To overcome technical difficulties associated with the extremely high attenuation of transverse mode waves at low megahertz frequencies, a novel measurement system was developed based on the sampled continuous wave technique. Results of these measurements were used to assess the influence of interstitial collagen, and to model the mechanical properties of heart wall.

  12. Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.

    2018-01-01

    Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in

  13. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  14. Forward ultrasonic model validation using wavefield imaging methods

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.

    2018-04-01

    The validation of forward ultrasonic wave propagation models in a complex titanium polycrystalline material system is accomplished using wavefield imaging methods. An innovative measurement approach is described that permits the visualization and quantitative evaluation of bulk elastic wave propagation and scattering behaviors in the titanium material for a typical focused immersion ultrasound measurement process. Results are provided for the determination and direct comparison of the ultrasonic beam's focal properties, mode-converted shear wave position and angle, and scattering and reflection from millimeter-sized microtexture regions (MTRs) within the titanium material. The approach and results are important with respect to understanding the root-cause backscatter signal responses generated in aerospace engine materials, where model-assisted methods are being used to understand the probabilistic nature of the backscatter signal content. Wavefield imaging methods are shown to be an effective means for corroborating and validating important forward model predictions in a direct manner using time- and spatially-resolved displacement field amplitude measurements.

  15. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    PubMed

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  16. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method

    PubMed Central

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-01-01

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom. PMID:29758968

  17. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.

    PubMed

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-04-27

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom.

  18. Elastic-plastic cube model for ultrasonic friction reduction via Poisson's effect.

    PubMed

    Dong, Sheng; Dapino, Marcelo J

    2014-01-01

    Ultrasonic friction reduction has been studied experimentally and theoretically. This paper presents a new elastic-plastic cube model which can be applied to various ultrasonic lubrication cases. A cube is used to represent all the contacting asperities of two surfaces. Friction force is considered as the product of the tangential contact stiffness and the deformation of the cube. Ultrasonic vibrations are projected onto three orthogonal directions, separately changing contact parameters and deformations. Hence, the overall change of friction forces. Experiments are conducted to examine ultrasonic friction reduction using different materials under normal loads that vary from 40 N to 240 N. Ultrasonic vibrations are generated both in longitudinal and vertical (out-of-plane) directions by way of the Poisson effect. The tests show up to 60% friction reduction; model simulations describe the trends observed experimentally. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    PubMed

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  20. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro

    2014-03-01

    The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.

  1. Construction of Reference Data for Tissue Characterization of Arterial Wall Based on Elasticity Images

    NASA Astrophysics Data System (ADS)

    Inagaki, Jun; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2005-06-01

    Previously, we developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness during one heartbeat and the elasticity of the arterial wall. By comparing pathological images with elasticity images measured with ultrasound, elasticity distributions for respective tissues in the arterial wall were determined. We have already measured the elasticity distributions for lipids and fibrous tissues (mixtures of smooth-muscle and collagen fiber) [H. Kanai et al.: Circulation 107 (2003) 3018]. In this study, elasticity distributions were measured for blood clots and calcified tissues. We discuss whether these elasticity distributions, which were measuerd in vitro, can be used as reference data for classifying cross-sectional elasticity images measured in vivo into respective tissues. In addition to the measurement of elasticity distributions, correlations between collagen content and elasticity were investigated with respect to fibrous tissue to estimate the collagen and smooth-muscle content based on elasticity. Collagen and smooth-muscle content may be important factors in determining the stability of the fibrous cap of atherosclerotic plaque. Therefore, correlations between elasticity and elements of the tissue in the arterial wall may provide useful information for the noninvasive diagnosis of plaque vulnerability.

  2. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    NASA Astrophysics Data System (ADS)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  3. An Information-Based Machine Learning Approach to Elasticity Imaging

    PubMed Central

    Hoerig, Cameron; Ghaboussi, Jamshid; Insana, Michael. F.

    2016-01-01

    An information-based technique is described for applications in mechanical-property imaging of soft biological media under quasi-static loads. We adapted the Autoprogressive method that was originally developed for civil engineering applications for this purpose. The Autoprogressive method is a computational technique that combines knowledge of object shape and a sparse distribution of force and displacement measurements with finite-element analyses and artificial neural networks to estimate a complete set of stress and strain vectors. Elasticity imaging parameters are then computed from estimated stresses and strains. We introduce the technique using ultrasonic pulse-echo measurements in simple gelatin imaging phantoms having linear-elastic properties so that conventional finite-element modeling can be used to validate results. The Autoprogressive algorithm does not require any assumptions about the material properties and can, in principle, be used to image media with arbitrary properties. We show that by selecting a few well-chosen force-displacement measurements that are appropriately applied during training and establish convergence, we can estimate all nontrivial stress and strain vectors throughout an object and accurately estimate an elastic modulus at high spatial resolution. This new method of modeling the mechanical properties of tissue-like materials introduces a unique method of solving the inverse problem and is the first technique for imaging stress without assuming the underlying constitutive model. PMID:27858175

  4. Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.

    PubMed

    Colombi, Andrea; Ageeva, Victoria; Smith, Richard J; Clare, Adam; Patel, Rikesh; Clark, Matt; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V

    2017-07-28

    Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.

  5. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.

    PubMed

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-06-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.

  6. Ultrasound Backscatter Tensor Imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues

    PubMed Central

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-01-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662

  7. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not

  8. Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites

    NASA Astrophysics Data System (ADS)

    Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova

    This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.

  9. Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Poudel, Joemini; Matthews, Thomas P.; Mitsuhashi, Kenji; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-03-01

    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to a time-domain inverse source problem, where the initial pressure distribution is recovered from the measurements recorded on an aperture outside the support of the source. A major challenge in transcranial PACT brain imaging is to compensate for aberrations in the measured data due to the propagation of the photoacoustic wavefields through the skull. To properly account for these effects, a wave equation-based inversion method should be employed that can model the heterogeneous elastic properties of the medium. In this study, an iterative image reconstruction method for 3D transcranial PACT is developed based on the elastic wave equation. To accomplish this, a forward model based on a finite-difference time-domain discretization of the elastic wave equation is established. Subsequently, gradient-based methods are employed for computing penalized least squares estimates of the initial source distribution that produced the measured photoacoustic data. The developed reconstruction algorithm is validated and investigated through computer-simulation studies.

  10. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Automatic estimation of elasticity parameters in breast tissue

    NASA Astrophysics Data System (ADS)

    Skerl, Katrin; Cochran, Sandy; Evans, Andrew

    2014-03-01

    Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.

  12. Ultrasonic Imaging Techniques for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.

    2008-02-01

    Improving the resolution and specificity of current ultrasonic imaging technology is needed to enhance its relevance to breast cancer detection. A novel ultrasonic imaging reconstruction method is described that exploits classical straight-ray migration. This novel method improves signal processing for better image resolution and uses novel staging hardware options using a pulse-echo approach. A breast phantom with various inclusions is imaged using the classical migration method and is compared to standard computed tomography (CT) scans. These innovative ultrasonic methods incorporate ultrasound data acquisition, beam profile characterization, and image reconstruction. For an ultrasonic frequency of 2.25 MHz, imaged inclusions of approximately 1 cm are resolved and identified. Better resolution is expected with minor modifications. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors thus reducing the number of biopsies performed, increasing treatment options, and lowering remission percentages. Using these new techniques the inclusions in the phantom are resolved and compared to the results of standard methods. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also discussed.

  13. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner

    PubMed Central

    Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508

  14. Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi

    Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.

  15. Ultrasonic determination of the elastic constants of the stiffness matrix for unidirectional fiberglass epoxy composites

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The elastic constants of a fiberglass epoxy unidirectional composite are determined by measuring the phase velocities of longitudinal and shear stress waves via the through transmission ultrasonic technique. The waves introduced into the composite specimens were generated by piezoceramic transducers. Geometric lengths and the times required to travel those lengths were used to calculate the phase velocities. The model of the transversely isotropic medium was adopted to relate the velocities and elastic constants.

  16. Ultrasonic input-output for transmitting and receiving longitudinal transducers coupled to same face of isotropic elastic plate

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1982-01-01

    The quantitative understanding of ultrasonic nondestructive evaluation parameters such as the stress wave factor were studied. Ultrasonic input/output characteristics for an isotropic elastic plate with transmitting and receiving longitudinal transducers coupled to the same face were analyzed. The asymptotic normal stress is calculated for an isotropic elastic half space subjected to a uniform harmonic normal stress applied to a circular region at the surface. The radiated stress waves are traced within the plate by considering wave reflections at the top and bottom faces. The output voltage amplitude of the receiving transducer is estimated by considering only longitudinal waves. Agreement is found between the output voltage wave packet amplitudes and times of arrival due to multiple reflections of the longitudinal waves.

  17. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  18. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  19. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  20. Ultrasonic Tomography of Fractured Rocks to Characterize Elastic Weakening Induced by Finite-Amplitude Waves

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Roux, P.

    2017-12-01

    The use of seismic noise in seismology enables one to detect small velocity changes induced by earthquakes, earth tides or volcanic activity. In particular, co-seismic drops in velocity followed by a slow relaxation back (or partially back) to the original velocity have been observed across various tectonic regions. The co-seismic drop is typically attributed to the creation of damage within the fault zone, while the slow recovery is attributed to post-seismic healing processes. At the laboratory scale, a dynamic perturbation of strain amplitude as low as 10-6 in rocks also results in a transient elastic softening, followed by a log(t)-type relaxation back to the initial state once the perturbation is turned off. This suggests that radiated waves produced during unstable slip are partially responsible for the co-seismic velocity drops. The main objective of this work is to help interpret the elastic changes observed in the field and in particular to disentangle velocity drops that originate from damage creation along the slip surface from the ones produced during radiation of finite-amplitude waves. To do so, we use a technique called Dynamic Acousto-Elastic Testing that provides comprehensive details on the nonlinear elastic response of consolidated granular media (e.g. rocks), including tension/compression asymmetry, hysteretic behaviors as well as conditioning and relaxation effects. Such technique uses a pump-probe scheme where a high frequency, low amplitude wave probes the state of a sample that is dynamically disturbed by a low frequency, large amplitude pump wave. While previous work typically involved a single pair of probing transducers, here we use two dense arrays of ultrasonic transducers to image a sample of Westerly granite with a complex fracture. We apply double beamforming to disentangle complex arrivals and conduct ray-based and finite-frequency tomography using both travel time and amplitude information. By comparing images obtained before

  1. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    NASA Astrophysics Data System (ADS)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  2. Developments in GHz-ultrasonic interferometry for elasticity studies in geophysics and materials science: application to diamond

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Jacobsen, S. D.; Holl, C. M.; Bina, C. R.

    2009-12-01

    Elastic properties of solids are fundamentally important in Earth and materials science because they govern seismic wave propagation at the geophysical scale, but are controlled at the atomic scale by the nature of interatomic bonding. GHz-ultrasonic interferometry utilizes thin-film piezoelectric transducers driven by pulse modulated, microwave-range carrier frequencies at 0.5-2.0 GHz to measure sound wave travel times in sub-millimeter sized samples (Spetzler et al. 1993). Travel times are determined from the spacing of interference fringes produced by measuring the amplitude of overlapping echoes scanned in frequency (wavelength) from opposite polished faces of single crystals. The ultrasonic signals are near-optical in wavelength at 5-20 km/s in high-modulus materials, allowing study of samples as small as a few tens of micrometers in thickness, including micro-crystals loaded in diamond-anvil cells at high pressures and temperatures. Following Jacobsen et al. (2004), both longitudinal and shear-wave measurements are possible. Although relative changes in travel time on compression or heating are measured with standard deviation of about 0.02 nanoseconds out of 20-200 ns (depending on sample thickness), the absolute accuracy of ultrasonic measurements at standard conditions, required to anchor high P-T measurements, has been limited by our ability to measure sample thickness mechanically at STP, with only 1-2 micrometer accuracy out of 20-200 μm for typical samples. Thus, we have recently installed a commercial heterodyne optical interferometer to determine ultrasonic sample lengths at STP conditions. Using a double-pass laser interferometer we achieve λ/4 fundamental optical resolution with λ/128 (about 5 nm) system resolution through software-based interpolation. By adding real-time corrections for air temperature, humidity, and pressure applied to the laser wavelength, we achieve high accuracy with standard deviations of about 0.02 micrometers in the

  3. The parallel-sequential field subtraction techniques for nonlinear ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-04-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage and have sensitivity to particularly closed defects. This study utilizes two modes of focusing: parallel, in which the elements are fired together with a delay law, and sequential, in which elements are fired independently. In the parallel focusing, a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded; with elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images formed from the coherent component of the field and use this to characterize nonlinearity of closed fatigue cracks. In particular we monitor the reduction in amplitude at the fundamental frequency at each focal point and use this metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g., back wall or large scatters) and allow damage to be detected at an early stage.

  4. Ultrasonic imaging of textured alumina

    NASA Technical Reports Server (NTRS)

    Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.

    1989-01-01

    Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.

  5. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... determine stationary body tissue characteristics, such as depth or location of tissue interfaces or dynamic...

  6. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Payen, Thomas; Palermo, Carmine F.; Sastra, Stephen A.; Chen, Hong; Han, Yang; Olive, Kenneth P.; Konofagou, Elisa E.

    2016-08-01

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young’s moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  7. Elasticity mapping of murine abdominal organs in vivo using Harmonic Motion Imaging (HMI)

    PubMed Central

    Payen, Thomas; Palermo, Carmine F.; Sastra, Steve; Chen, Hong; Han, Yang; Olive, Kenneth P.; Konofagou, Elisa E.

    2016-01-01

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5-MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50-Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8-MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young’s moduli measured by rheometry compression tests. HMI was able to provide reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. HMI displacement was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo providing a crucial tool to understand pathologies affecting organ elasticity. PMID:27401609

  8. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI).

    PubMed

    Payen, Thomas; Palermo, Carmine F; Sastra, Stephen A; Chen, Hong; Han, Yang; Olive, Kenneth P; Konofagou, Elisa E

    2016-08-07

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young's moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  9. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  10. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  11. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  12. Ultrasonic evaluation of oxidation and reduction effects on the elastic behavior and global microstructure of YBa2Cu3O7-x

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct. of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.

  13. Elastic Moduli of Pyrolytic Boron Nitride Measured Using 3-Point Bending and Ultrasonic Testing

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.; Roth, D. J.

    1999-01-01

    Three-point bending and ultrasonic testing were performed on a flat plate of PBN. In the bending experiment, the deformation mechanism was believed to be shear between the pyrolytic layers, which yielded a shear modulus, c (sub 44), of 2.60 plus or minus .31 GPa. Calculations based on the longitudinal and shear wave velocity measurements yielded values of 0.341 plus or minus 0.006 for Poisson's ratio, 10.34 plus or minus .30 GPa for the elastic modulus (c (sub 33)), and 3.85 plus or minus 0.02 GPa for the shear modulus (c (sub 44)). Since free basal dislocations have been reported to affect the value of c (sub 44) found using ultrasonic methods, the value from the bending experiment was assumed to be the more accurate value.

  14. Three-dimensional imaging of biological cells with picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Danworaphong, Sorasak; Tomoda, Motonobu; Matsumoto, Yuki; Matsuda, Osamu; Ohashi, Toshiro; Watanabe, Hiromu; Nagayama, Masafumi; Gohara, Kazutoshi; Otsuka, Paul H.; Wright, Oliver B.

    2015-04-01

    We use picosecond ultrasonics to image animal cells in vitro—a bovine aortic endothelial cell and a mouse adipose cell—fixed to Ti-coated sapphire. Tightly focused ultrashort laser pulses generate and detect GHz acoustic pulses, allowing three-dimensional imaging (x, y, and t) of the ultrasonic propagation in the cells with ˜1 μm lateral and ˜150 nm depth resolutions. Time-frequency representations of the continuous-wavelet-transform amplitude of the optical reflectivity variations inside and outside the cells show GHz Brillouin oscillations, allowing the average sound velocities of the cells and their ultrasonic attenuation to be obtained as well as the average bulk moduli.

  15. Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the

  16. Studies on thermo-elastic heating of horns used in ultrasonic plastic welding.

    PubMed

    Roopa Rani, M; Prakasan, K; Rudramoorthy, R

    2015-01-01

    Ultrasonic welding horn is half wavelength section or tool used to focus the ultrasonic vibrations to the components being welded. The horn is designed in such a way that it maximizes the amplitude of the sound wave passing through it. The ends of the horn represent the displacement anti-nodes and the center the 'node' of the wave. As the horns perform 20,000 cycles of expansion and contraction per second, they are highly stressed at the nodes and are heated owing to thermo-elastic effects. Considerable temperature rise may be observed in the horn, at the nodal region when working at high amplitudes indicating high stress levels leading to failure of horns due to cyclic loading. The limits for amplitude must therefore be evaluated for the safe working of the horn. Horns made of different materials have different thermo-elastic behaviors and hence different temperatures at the nodes and antinodes. This temperature field can be used as a control mechanism for setting the amplitude/weld parameters. Safe stress levels can be predicted using modal and harmonic analyses followed by a stress analysis to study the effect of cyclic loads. These are achieved using 'Ansys'. The maximum amplitude level obtained from the stress analysis is used as input for 'Comsol' to predict the temperature field. The actual temperature developed in the horn during operation is measured using infrared camera and compared with the simulated temperature. From experiments, it is observed that horn made of titanium had the lowest temperature rise at the critical region and can be expected to operate at amplitudes up to 77 μm without suffering failure due to cyclic loading. The method of predicting thermo-elastic stresses and temperature may be adopted by the industry for operating the horn within the safe stress limits thereby extending the life of the horn. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Improved Ultrasonic Imaging of the Breast

    DTIC Science & Technology

    2003-08-01

    benign and malignant masses often exhibit only subtle image differences. We have invented a new technique that uses modified ultrasound equipment to form images of ultrasonic angular scatter. This method provides a new source of image contrast and should enhance the detectability of MCs and improve the differentiation of benign and malignant lesions. This method yields high resolution images with minimal statistical variability. In this first year 0 funding, we have formed images in tissue mimicking phantoms and found that

  18. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  19. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  20. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    PubMed

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  1. Ultrasonic Evaluation and Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.

    2015-10-01

    Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection ofmore » spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.« less

  2. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  3. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  4. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  5. Deep sub-wavelength ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Amireddy, Kiran Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2018-04-01

    There is much interest in improving the resolution of ultrasonic inspection, which suffers from large wavelengths typically in the range of millimeters, due to low value of speed of sound in solid media. The authors are interested in achieving this through holey structured metamaterial lenses, and have recently demonstrated an experimental subwavelength resolution of λ/25. However the previous work was in through-transmission mode with reception using Laser Doppler Vibrometer (LDV), which may not be suitable for practical applications. This paper discusses the use of optimized holey structured metalens to achieve a deep sub-wavelength imaging up to λ/18 in through-transmission mode, but using commercially available piezoelectric ultrasonic transducers for both generation and reception of ultrasound.

  6. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    PubMed

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Time reversal for ultrasonic transcranial surgery and echographic imaging

    NASA Astrophysics Data System (ADS)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  8. Ultrasonic image analysis and image-guided interventions.

    PubMed

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  9. In silico simulation and in vitro evaluation of an elastomeric scaffold using ultrasonic shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yu, Jiao; Nie, Erwei; Zhu, Yanying; Hong, Yi

    2018-03-01

    Biodegradable elastomeric scaffolds for soft tissue repair represent a growing area of biomaterials research. Mechanical strength is one of the key factors to consider in the evaluation of candidate materials and the designs for tissue scaffolds. It is desirable to develop non-invasive evaluation methods of the mechanical property of scaffolds which would provide options for monitoring temporal mechanical property changes in situ. In this paper, we conduct in silico simulation and in vitro evaluation of an elastomeric scaffold using a novel ultrasonic shear wave imaging (USWI). The scaffold is fabricated from a biodegradable elastomer, poly(carbonate urethane) urea using salt leaching method. A numerical simulation is performed to test the robustness of the developed inversion algorithm for the elasticity map reconstruction which will be implemented in the phantom experiment. The generation and propagation of shear waves in a homogeneous tissue-mimicking medium with a circular scaffold inclusion is simulated and the elasticity map is well reconstructed. A PVA phantom experiment is performed to test the ability of USWI combined with the inversion algorithm to non-invasively characterize the mechanical property of a porous, biodegradable elastomeric scaffold. The elastic properties of the tested scaffold can be easily differentiated from the surrounding medium in the reconstructed image. The ability of the developed method to identify the edge of the scaffold and characterize the elasticity distribution is demonstrated. Preliminary results in this pilot study support the idea of applying the USWI based method for non-invasive elasticity characterization of tissue scaffolds.

  10. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  11. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  12. Functional and morphological ultrasonic biomicroscopy for tissue engineers

    NASA Astrophysics Data System (ADS)

    Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.

    2006-03-01

    Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.

  13. Time-lapse ultrasonic imaging of elastic anisotropy in saturated sandstone under polyaxial stress state

    NASA Astrophysics Data System (ADS)

    Tabari, Mehdi Sherveen Ghofrani

    Although true-triaxial test (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity is not accounted for and usually simplified anisotropic models are used. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate our velocity imaging methodology. An anisotropic P wave velocity tomography method was developed using a geometrical approach based on an ellipsoidal P wavefront surface. During the two non-damaging phases of the experiment, saturation of the rock sample with water resulted in inaccurate tomographic images; however, during the final elasto-plastic phase of the experiment comprising major AE activities, tomographic images demonstrated reasonable anomalies. Thus, the P-S1-S2 velocity survey was utilized to obtain an accurate and reliable velocity image of the sample during the two non-damaging phases. This was accomplished using a numerical investigation by FLAC3D on the non-uniform distribution of stress over the sample to estimate the compaction pseudo-boundary surfaces within the rock. Thus, the problem of breakdown in the expected symmetry of shear wave velocities was resolved. It was discovered that a homogeneous anisotropic core in the center of the sample is formed under the standard polyaxial setup where elastic parameters could be computed. Off-diagonal elastic tensor parameters were obtained by a combination of various velocity survey data and justified the ellipsoidal model as being the most appropriate and facilitated the calculation of Thomsen parameters. The ellipsoidal heterogeneous velocity model was also verified by AE event location of transducer shots through the cubic rock specimen especially at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. AE of the rock during the whole experiment recorded by the surrounding transducers were investigated by location methods developed for anisotropic heterogeneous medium. AE events

  14. Ultrasonic and micromechanical study of damage and elastic properties of SiC/RBSN ceramic composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.

    1992-01-01

    Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.

  15. Inferring bread doneness with air-pulse/ultrasonic ranging measurements of the loaf elastic response

    NASA Astrophysics Data System (ADS)

    Faeth, Loren Elbert

    This research marks the discovery of a method by which bread doneness may be determined based on the elastic properties of the loaf as it bakes. The purpose of the study was to determine if changes in bread characteristics could be determined by non-contact methods during baking, as the basis for improved control of the baking process. Current control of the baking process is based on temperature and dwell time, which are determined by experience to produce a produce which is approximately ``done.'' There is no direct measurement of the property of interest, doneness. An ultrasonic measurement system was developed to measure the response of the loaf to an external stimulus. ``Doneness,'' as reflected in the internal elastic consistency of the bakery product, is assessed in less than 1/2 second, and requires no closer approach to the moving bakery product than about 2 inches. The system is designed to be compatible with strapped bread pans in a standard traveling-tray commercial oven.

  16. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  17. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  18. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  19. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: from structural vibration to ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2016-06-01

    Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.

  20. Performance evaluation of traveling wave ultrasonic motor based on a model with visco-elastic friction layer on stator.

    PubMed

    Qu, Jianjun; Sun, Fengyan; Zhao, Chunsheng

    2006-12-01

    A new visco-elastic contact model of traveling wave ultrasonic motor (TWUSM) is proposed. In this model, the rotor is assumed to be rigid body and the friction material on stator teeth surface to be visco-elastic body. Both load characteristics of TWUSM, such as rotation speed, torque and efficiency, and effects of interface parameters between stator and rotor on output characteristic of TWUSM can be calculated and simulated numerically by using MATLAB method based on this model. This model is compared with that one of compliant slider and rigid stator. The results show that this model can obtain bigger stall torque. The simulated results are compared with test results, and found that their load characteristics have good agreement.

  1. Ultrasonic Waves in Water Visualized With Schlieren Imaging

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey R.

    2000-01-01

    The Acoustic Liquid Manipulation project at the NASA Glenn Research Center at Lewis Field is working with high-intensity ultrasound waves to produce acoustic radiation pressure and acoustic streaming. These effects can be used to propel liquid flows to manipulate floating objects and liquid surfaces. Interest in acoustic liquid manipulation has been shown in acoustically enhanced circuit board electroplating, microelectromechanical systems (MEMS), and microgravity space experiments. The current areas of work on this project include phased-array ultrasonic beam steering, acoustic intensity measurements, and schlieren imaging of the ultrasonic waves.

  2. Ultrasonic imaging for non-destructive evaluation of standing trees: effect of anisotropy on image reconstruction

    NASA Astrophysics Data System (ADS)

    Espinosa, Luis; Prieto, Flavio; Brancheriau, Loïc.

    2017-03-01

    Trees play a major ecological and sanitary role in modern cities. Nondestructive imaging methods allow to analyze the inner structures of trees, without altering their condition. In this study, we are interested on evaluating the influence of anisotropy condition in wood on the tomography image reconstruction using ultrasonic waves, by time-of-flight (TOF) estimation using the raytracing approach, a technique used particularly in the field of exploration seismography to simulate wave fronts in elastic media. Mechanical parameters from six wood species and one isotropic material were defined and their wave fronts and corresponding TOF values were obtained, using the proposed raytracing method. If the material presented anisotropy, the ray paths between the emitter and the receivers were not straight; therefore, curved rays were obtained for wood and the TOF measurements were affected. To obtain the tomographic image from the TOF measurements, the filtered back-projection algorithm was applied, a widely used technique in applications of straight ray tomography, but also commonly used in wood acoustic tomography. First, discs without inner defects for isotropic and wood materials (Spruce sample) were tested. Isotropic material resulted in a flat color image; for wood material, a gradient of velocities was obtained. After, centric and eccentric defects were tested, both for isotropic and orthotropic cases. From the results obtained for wood, when using a reconstruction algorithm intended for straight ray tomography, the images presented velocity variations from the border to the center that made difficult the discrimination of possible defects inside the samples, especially for eccentric cases.

  3. Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.

    PubMed

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.

  4. Development of Multiple-Frequency Ultrasonic Imaging System Using Multiple Resonance Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Akiyama, Iwaki; Yoshizumi, Natsuki; Saito, Shigemi; Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-07-01

    The authors have developed a multiple frequency imaging system using a multiple resonance transducer (MRT) consisting of 1-3 composite materials with a low mechanical quality factor Q bonded together. The MRT has a structure consisting of thin and thick piezoelectric plates, two matching layers, and a backing layer. This makes it possible to obtain B-mode images of satisfactory resolution using ultrasonic pulses owing to their short duration. In this paper, the vibration property of the MRT derived through equivalent-circuit analysis is first shown. By utilizing the result, an MRT capable of transmitting ultrasonic pulses for generation of the images of biological tissues with satisfactory resolution is designed and prototyped. Setting the prototype transducer in the mechanical sector probe of commercial ultrasonic diagnosis equipment, the speckle reduction effect is demonstrated using images of various phantoms to mimic biological tissues and a human thyroid.

  5. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  6. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  7. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan

    2015-01-01

    Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987

  8. Ultrasonically modulated x-ray phase contrast and vibration potential imaging methods

    NASA Astrophysics Data System (ADS)

    Hamilton, Theron J.; Cao, Guohua; Wang, Shougang; Bailat, Claude J.; Nguyen, Cuong K.; Li, Shengqiong; Gehring, Stephan; Wands, Jack; Gusev, Vitalyi; Rose-Petruck, Christoph; Diebold, Gerald J.

    2006-02-01

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high resolution x-ray imaging of tissue. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging various tumor phantoms and tumors from mice. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. In a related effort we report progress on development of an imaging technique using and electrokinetic effect known as the ultrasonic vibration potential. The ultrasonic vibration potential refers to the voltage generated when ultrasound traverses a colloidal or ionic fluid. The theory of imaging based on the vibration potential is reviewed, and an expression given that describes the signal from an arbitrary object. The experimental apparatus consists of a pair of parallel plates connected to the irradiated body, a low noise preamplifier, a radio frequency lock-in amplifier, translation stages for the ultrasonic transducer that generates the ultrasound, and a computer for data storage and image formation. Experiments are reported where bursts of ultrasound are directed onto colloidal silica objects placed within inert bodies.

  9. Sensitivity images for multi-view ultrasonic array inspection

    NASA Astrophysics Data System (ADS)

    Budyn, Nicolas; Bevan, Rhodri; Croxford, Anthony J.; Zhang, Jie; Wilcox, Paul D.; Kashubin, Artem; Cawley, Peter

    2018-04-01

    The multi-view total focusing method (TFM) is an imaging technique for ultrasonic full matrix array data that typically exploits ray paths with zero, one or two internal reflections in the inspected object and for all combinations of longitudinal and transverse modes. The fusion of this vast quantity of views is expected to increase the reliability of ultrasonic inspection; however, it is not trivial to determine which views and which areas are the most suited for the detection of a given type and orientation of defect. This work introduces sensitivity images that give the expected response of a defect in any part of the inspected object and for any view. These images are based on a ray-based analytical forward model. They can be used to determine which views and which areas lead to the highest probability of detection of the defect. They can also be used for quantitatively analyzing the effects of the parameters of the inspection (probe angle and position, for example) on the overall probability of detection. Finally, they can be used to rescale TFM images so that the different views have comparable amplitudes. This methodology is applied to experimental data and discussed.

  10. Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Shi, Yujiao; Yang, Fen; Yang, Sihua

    2018-05-01

    Elasticity and viscosity assessments are essential for understanding and characterizing the physiological and pathological states of tissue. In this work, by establishing a photoacoustic (PA) shear wave model, an approach for quantitative PA elasticity imaging based on measurement of the rise time of the thermoelastic displacement was developed. Thus, using an existing PA viscoelasticity imaging method that features a phase delay measurement, quantitative PA elasticity imaging and viscosity imaging can be obtained in a simultaneous manner. The method was tested and validated by imaging viscoelastic agar phantoms prepared at different agar concentrations, and the imaging data were in good agreement with rheometry results. Ex vivo experiments on liver pathological models demonstrated the capability for cirrhosis detection, and the results were consistent with the corresponding histological results. This method expands the scope of conventional PA imaging and has potential to become an important alternative imaging modality.

  11. Echodentography based on nonlinear time reversal tomography: Ultrasonic nonlinear signature identification

    NASA Astrophysics Data System (ADS)

    Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek

    2012-05-01

    This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.

  12. Ultrasonic imaging of materials under unconventional circumstances

    NASA Astrophysics Data System (ADS)

    Declercq, Nico Felicien; McKeon, Peter; Slah, Yaacoubi; Liu, Jingfei; Shaw, Anurupa

    2015-03-01

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. "Ultrasonic Imaging of materials" covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America's and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD's to show rainbow patterns under sunlight, can cause spooky images and erroneous measurements of

  13. Ultrasonic imaging of materials under unconventional circumstances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Declercq, Nico Felicien, E-mail: declercqdepatin@gatech.edu; McKeon, Peter, E-mail: declercqdepatin@gatech.edu; Liu, Jingfei

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirectmore » images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous

  14. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spicer, James

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data andmore » do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have

  15. Three-Dimensional Ultrasonic Imaging Of The Cornea

    NASA Technical Reports Server (NTRS)

    Heyser, Rrichar C.; Rooney, James A.

    1988-01-01

    Proposed technique generates pictures of curved surfaces. Object ultrasonically scanned in raster pattern generated by scanning transmitter/receiver. Receiver turned on at frequent intervals to measure depth variations of scanned object. Used for medical diagnoses by giving images of small curved objects as cornea. Adaptable to other types of reflection measurementsystems such as sonar and radar.

  16. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  17. Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.

    PubMed

    Vyas, N; Dehghani, H; Sammons, R L; Wang, Q X; Leppinen, D M; Walmsley, A D

    2017-11-01

    Cavitation is a potentially effective and less damaging method of removing biofilm from biomaterial surfaces. The aim of this study is to characterise individual microbubbles around ultrasonic scaler tips using high speed imaging and image processing. This information will provide improved understanding on the disruption of dental biofilm and give insights into how the instruments can be optimised for ultrasonic cleaning. Individual cavitation microbubbles around ultrasonic scalers were analysed using high speed recordings up to a million frames per second with image processing of the bubble movement. The radius and rate of bubble growth together with the collapse was calculated by tracking multiple points on bubbles over time. The tracking method to determine bubble speed demonstrated good inter-rater reliability (intra class correlation coefficient: 0.993) and can therefore be a useful method to apply in future studies. The bubble speed increased over its oscillation cycle and a maximum of 27ms -1 was recorded during the collapse phase. The maximum bubble radii ranged from 40 to 80μm. Bubble growth was observed when the ultrasonic scaler tip receded from an area and similarly bubble collapse was observed when the tip moved towards an area, corresponding to locations of low pressure around the scaler tip. Previous work shows that this cavitation is involved in biofilm removal. Future experimental work can be based on these findings by using the protocols developed to experimentally analyse cavitation around various clinical instruments and comparing with theoretical calculations. This will help to determine the main cleaning mechanisms of cavitation and how clinical instruments such as ultrasonic scalers can be optimised. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  19. 21 CFR 884.2225 - Obstetric-gynecologic ultrasonic imager.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Obstetric-gynecologic ultrasonic imager. 884.2225 Section 884.2225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generic type of device may include the following: signal analysis and display equipment, electronic...

  20. 21 CFR 884.2225 - Obstetric-gynecologic ultrasonic imager.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Obstetric-gynecologic ultrasonic imager. 884.2225 Section 884.2225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generic type of device may include the following: signal analysis and display equipment, electronic...

  1. 21 CFR 884.2225 - Obstetric-gynecologic ultrasonic imager.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Obstetric-gynecologic ultrasonic imager. 884.2225 Section 884.2225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... generic type of device may include the following: signal analysis and display equipment, electronic...

  2. Nonlinear ultrasonic imaging with X wave

    NASA Astrophysics Data System (ADS)

    Du, Hongwei; Lu, Wei; Feng, Huanqing

    2009-10-01

    X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.

  3. Ultrasonic computed tomography imaging of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Azhari, Haim

    2017-02-01

    Iron oxide nanoparticles (IONPs) are becoming increasingly used and intensively investigated in the field of medical imaging. They are currently FDA approved for magnetic resonance imaging (MRI), and it would be highly desirable to visualize them by ultrasound as well. Previous reports using the conventional ultrasound B-scan (pulse-echo) imaging technique have shown very limited detectability of these particles. The aim of this study is to explore the feasibility of imaging IONPs using the through-transmission ultrasound methodology and demonstrate their detectability using ultrasonic computed tomography (UCT). Commercially available IONPs were acoustically analysed to quantify their effect on the speed of sound (SOS) and acoustic attenuation as a function of concentration. Next, through-transmission projection and UCT imaging were performed on a breast mimicking phantom and on an ex vivo tissue model, to which IONPs were injected. Finally, an MRI scan was performed to verify that the same particles examined in the ultrasound experiment can be imaged by magnetic resonance, using the same clinically relevant concentrations. The results have shown a consistent concentration dependent speed of sound increase (1.86 \\text{m}{{\\text{s}}^{-1}} rise per 100 µg · ml-1 IONPs). Imaging based on this property has shown a substantial contrast-to-noise ratio improvement (up to 5 fold, p  <  0.01). The SOS-related effect generated a well discernible image contrast and allowed the detection of the particles existence and location, in both raster-scan projection and UCT imaging. Conversely, no significant change in the acoustic attenuation coefficient was noted. Based on these findings, it is concluded that IONPs can be used as an effective SOS-based contrast agent, potentially useful for ultrasonic breast imaging. Furthermore, the particle offers the capacity of significantly enhancing diagnosis accuracy using multimodal MRI-ultrasound imaging capabilities.

  4. Method for Ultrasonic Imaging and Device for Performing the Method

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I. (Inventor)

    1997-01-01

    A method for ultrasonic imaging of interior structures and flaws in a test specimen with a smooth or irregular contact surfaces, in which an ultrasonic transducer is coupled acoustically to the contact surface via a plurality of ultrasonic wave guides with equal delay times. The wave guides are thin and bendable, so they adapt to variations in the distance between the transducer and different parts of the contact surface by bending more or less. All parts of the irregular contact surface accordingly receive sound waves that are in phase, even when the contact surface is irregular, so a coherent sound wave is infused in the test specimen. The wave guides can be arranged in the form of an ultrasonic brush, with a flat head for coupling to a flat transducer, and free bristles that can be pressed against the test specimen. By bevelling the bristle ends at a suitable angle, shear mode waves can be infused into the test specimen from a longitudinal mode transducer.

  5. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  6. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  7. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging.

    PubMed

    Jiang, J; Hall, T J

    2007-07-07

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s(-1)) that exceed our previous methods.

  8. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Hall, T. J.

    2007-07-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows® system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s-1) that exceed our previous methods.

  9. Ultrasonic imaging for concrete infrastructure condition assessment and quality assurance.

    DOT National Transportation Integrated Search

    2017-04-01

    This report describes work on laboratory and field performance reviews of an ultrasonic shear wave imaging device called MIRA : for application to plain and reinforced concrete infrastructure components. Potential applications investigated included b...

  10. Multi-scale imaging and elastic simulation of carbonates

    NASA Astrophysics Data System (ADS)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs

  11. Ultrasonic scanning system for imaging flaw growth in composites

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Meyn, E. H.

    1982-01-01

    A system for measuring and visually representing damage in composite specimens while they are being loaded was demonstrated. It uses a hobbiest grade microcomputer system to control data taking and image processing. The system scans operator selected regions of the specimen while it is under load in a tensile test machine and measures internal damage by the attenuation of a 2.5 MHz ultrasonic beam passed through the specimen. The microcomputer dynamically controls the position of ultrasonic transducers mounted on a two axis motor driven carriage. As many as 65,536 samples can be taken and filed on a floppy disk system in less than four minutes.

  12. Display Considerations For Intravascular Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Gessert, James M.; Krinke, Charlie; Mallery, John A.; Zalesky, Paul J.

    1989-08-01

    A display has been developed for intravascular ultrasonic imaging. Design of this display has a primary goal of providing guidance information for therapeutic interventions such as balloons, lasers, and atherectomy devices. Design considerations include catheter configuration, anatomy, acoustic properties of normal and diseased tissue, catheterization laboratory and operating room environment, acoustic and electrical safety, acoustic data sampling issues, and logistical support such as image measurement, storage and retrieval. Intravascular imaging is in an early stage of development so design flexibility and expandability are very important. The display which has been developed is capable of acquisition and display of grey scale images at rates varying from static B-scans to 30 frames per second. It stores images in a 640 X 480 X 8 bit format and is capable of black and white as well as color display in multiplevideo formats. The design is based on the industry standard PC-AT architecture and consists of two AT style circuit cards, one for high speed sampling and the other for scan conversion, graphics and video generation.

  13. Effect of a growth hormone treatment on bone orthotropic elasticity in dwarf rats

    NASA Technical Reports Server (NTRS)

    Kohles, S. S.; Martinez, D. A.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A refinement of the current ultrasonic elasticity technique was used to measure the orthotropic elastic properties of rat cortical bone as well as to quantify changes in elastic properties, density, and porosity of the dwarf rat cortex after a treatment with recombinant human growth hormone (rhGH). The ultrasonic elasticity technique was refined via optimized signal management of high-frequency wave propagation through cubic cortical specimens. Twenty dwarf rats (37 days old) were randomly assigned to two groups (10 rats each). The dwarf rat model (5-10% of normal GH) was given subcutaneous injections of either rhGH or saline over a 14-day treatment period. Density was measured using Archimedes technique. Porosity and other microstructural characteristics were also explored via scanning electron microscopy and image analysis. Statistical tests verified significant decreases in cortical orthotropic Young's (-26.7%) and shear (-16.7%) moduli and density (-2.42%) concomitant with an increase in porosity (+125%) after rhGH treatments to the dwarf model (p < 0.05). A change in material symmetry from orthotropy toward planar isotropy within the radial-circumferential plane after GH treatments was also noted. These results demonstrate some alteration in bone properties at this time interval. Structural implications of these changes throughout physiological loading regimens should be explored.

  14. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    PubMed

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  15. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  16. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  17. Application of Fuzzy Reasoning for Filtering and Enhancement of Ultrasonic Images

    NASA Technical Reports Server (NTRS)

    Sacha, J. P.; Cios, K. J.; Roth, D. J.; Berke, L.; Vary, A.

    1994-01-01

    This paper presents a new type of an adaptive fuzzy operator for detection of isolated abnormalities, and enhancement of raw ultrasonic images. Fuzzy sets used in decision rules are defined for each image based on empirical statistics of the color intensities. Examples of the method are also presented in the paper.

  18. Laser-Generated Ultrasonic Source for a Real-Time Dry-Contact Imaging System

    NASA Astrophysics Data System (ADS)

    Petculescu, G.; Zhou, Y.; Komsky, I.; Krishnaswamy, S.

    2006-03-01

    A laser-generated ultrasonic source, to be used with a real-time imaging device, was developed. The ultrasound is generated in the thermoelastic regime, in a composite layer composed of absorbing particles (carbon) and silicone rubber. The composite layer plays three roles: of absorption, constriction and dry-coupling. The central frequency of the generated pulse was controlled by varying the absorption depth of the generation layer. The maximum peak frequency obtained was 4MHz. When additional constriction was provided to the composite layer, the amplitude of the generated signal increased further, due to the large thermal expansion coefficient of the silicone. Images using the laser-generated ultrasonic source were taken.

  19. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  20. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  1. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  2. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  3. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... receiver. This generic type of device may include signal analysis and display equipment, patient and...

  4. Setting behaviour of luting cements monitored by an ultrasonic method.

    PubMed

    Tsubota, Keishi; Mori, Kentarou; Yasuda, Genta; Kawamoto, Ryo; Yoshida, Takeshi; Yamaguchi, Kanako; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2008-06-01

    The purpose of this study was to monitor the setting behaviour and elastic modulus of luting cements using an ultrasonic device. The ultrasonic equipment comprised a pulser-receiver, transducers and an oscilloscope. The transit time through the cement disk was multiplied by the thickness of the specimen, and the sonic velocity within the material was then calculated. The sonic velocities of the longitudinal and shear waves were used to determine the elastic modulus. Analysis of variance and the Tukey HSD test were used to compare the elastic moduli of the set cements. In the earliest stages of the setting process, most of the ultrasound energy was absorbed by the cements and the sound waves were relatively weak. As the cements hardened, the sound velocities increased and this tendency differed among the luting cements used. The mean elastic moduli of the specimens ranged from 2.9 to 9.9 GPa after 15 min, from 14.4 to 20.3 GPa after 24 h and from 12.1 to 15.9 GPa after 1 month. The setting processes of the luting cements were thus clearly defined by using the present ultrasonic method.

  5. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  6. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions

    NASA Astrophysics Data System (ADS)

    Perreard, I. M.; Pattison, A. J.; Doyley, M.; McGarry, M. D. J.; Barani, Z.; Van Houten, E. E.; Weaver, J. B.; Paulsen, K. D.

    2010-11-01

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  7. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.

    PubMed

    Perreard, I M; Pattison, A J; Doyley, M; McGarry, M D J; Barani, Z; Van Houten, E E; Weaver, J B; Paulsen, K D

    2010-11-21

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  8. A Novel Application of Ultrasonic Imaging to Study Smoldering Combustion

    NASA Technical Reports Server (NTRS)

    Tse, S. D.; Anthenien, R. A.; Fernandez-Pello, A. Carlos; Miyasaka, K.

    1997-01-01

    An ultrasonic imaging technique has been developed to examine the propagation of a smolder reaction within a porous combustible material. The technique provides information about the location of a propagating smolder front, as well as line-of-sight average permeability variations of the smoldering material. The method utilizes the observation that transmission of an ultrasonic signal through a porous material increases with permeability. Since a propagating smolder reaction leaves behind char with a higher permeability than the original material, ultrasound transmission can be employed to monitor smolder progress. The technique can also be used to track the char evolution as it continues to react. Experiments are presented where the technique is applied to smoldering combustion in a two-dimensional geometry. The results have furthered the understanding of two-dimensional smolder, especially in identifying the controlling mechanisms leading to the transition from smoldering to flaming. The applicability of ultrasonic tomography to smoldering combustion has also been investigated.

  9. A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography

    PubMed Central

    Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.

    2017-01-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291

  10. Probabilistic-driven oriented Speckle reducing anisotropic diffusion with application to cardiac ultrasonic images.

    PubMed

    Vegas-Sanchez-Ferrero, G; Aja-Fernandez, S; Martin-Fernandez, M; Frangi, A F; Palencia, C

    2010-01-01

    A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models that best fit the stastitical behavior of each tissue class in cardiac ultrasonic images. Then, the parameters of the diffusion tensor are defined taking into account the statistical properties of the image at each voxel. When the structure tensor of the probability of belonging to each tissue is included in the diffusion tensor definition, a better boundaries estimates can be obtained instead of calculating directly the boundaries from the image. This is the main contribution of this work. Additionally, the proposed method follows the statistical properties of the image in each iteration. This is considered as a second contribution since state-of-the-art methods suppose that noise or statistical properties of the image do not change during the filter process.

  11. Integrated ultrasonic and petrographical characterization of carbonate building materials

    NASA Astrophysics Data System (ADS)

    Ligas, Paola; Fais, Silvana; Cuccuru, Francesco

    2014-05-01

    This paper presents the application of non-destructive ultrasonic techniques in evaluating the conservation state and quality of monumental carbonate building materials. Ultrasonic methods are very effective in detecting the elastic characteristics of the materials and thus their mechanical behaviour. They are non-destructive and effective both for site and laboratory tests, though it should be pointed out that ultrasonic data interpretation is extremely complex, since elastic wave velocity heavily depends on moisture, heterogeneity, porosity and other physical properties of the materials. In our study, considering both the nature of the building materials and the constructive types of the investigated monuments, the ultrasonic investigation was carried out in low frequency ultrasonic range (24 kHz - 54 kHz) with the aim of detecting damages and degradation zones and assessing the alterability of the investigated stones by studying the propagation of the longitudinal ultrasonic pulses. In fact alterations in the materials generally cause a decrease in longitudinal pulse velocity values. Therefore starting from longitudinal velocity values the elasto-mechanical behaviour of the stone materials can be deduced. To this aim empirical and effective relations between longitudinal velocity and mechanical properties of the rocks can be used, by transferring the fundamental concepts of the studies of reservoir rocks in the framework of hydrocarbon research to the diagnostic process on stone materials. The ultrasonic measurements were performed both in laboratory and in situ using the Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT) by C.N.S. Electronics LTD. A number of experimental sessions were carried out choosing different modalities of data acquisition. On the basis of the results of the laboratory measurements, an in situ ultrasonic survey on significant monuments, have been carried out. The ultrasonic measurements were integrated by a

  12. Finite-Temperature Behavior of PdH x Elastic Constants Computed by Direct Molecular Dynamics

    DOE PAGES

    Zhou, X. W.; Heo, T. W.; Wood, B. C.; ...

    2017-05-30

    In this paper, robust time-averaged molecular dynamics has been developed to calculate finite-temperature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH 0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH 0.6 only match well with ultrasonic data at 10 K; whereas, atmore » 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH 0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Finally, literature mechanical testing experiments seem to support this hypothesis.« less

  13. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  14. Nanoscale Subsurface Imaging of Nanocomposites via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.

    2007-01-01

    A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. The method employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope engages the sample top surface. The cantilever is driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave at the sample surface generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create amplitude and phase-generated images of nanoscale near-surface and subsurface features. RDF-AFUM phase images of LaRC-CP2 polyimide polymer containing embedded nanostructures are presented. A RDF-AFUM micrograph of a 12.7 micrometer thick film of LaRC-CP2 containing a monolayer of gold nanoparticles embedded 7 micrometers below the specimen surface reveals the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer and a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles. A RDF-AFUM micrograph of LaRC-CP2 film containing randomly dispersed carbon nanotubes reveals the growth of an interphase region at certain nanotube-polymer interfaces.

  15. Evaluation of elastic properties of nanoporous silicon oxide thin films by picosecond laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Mechri, C.; Ruello, P.; Gusev, V.; Breteau, J. M.; Mounier, D.; Henderson, M.; Gibaud, A.; Dourdain, S.

    2008-01-01

    Picosecond laser ultrasonics uses femtosecond laser pulses for the generation and detection of acoustic pulses with a typical duration between few picoseconds and few hundreds of pico seconds. The shorter the duration of the acoustic pulse is, the more precisely could be made the measurements of the film thickness [C. Thomsen et al., Phys. Rev. B 34, 4129 (1986)] and the elastic modulus by pulse-echo method or through Brillouin scattering detection. In this short communication we report the results of the evaluation of the properties of nanoporous silicon oxide thin films which present potential low-k and thermal barrier properties and are also of great interest for the microelectronic industry to replace the traditional silicate glass films in order to decrease the resistance-capacitance transition delay in the VLSI circuits. Most of the studies that have been carried so far have treated the optical properties of such structures. We report the results of the evaluation of acoustic properties of nanoporous thin films.

  16. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  17. Quantitative analysis of ultrasonic images of fibrotic liver using co-occurrence matrix based on multi-Rayleigh model

    NASA Astrophysics Data System (ADS)

    Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.

  18. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The

  19. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    NASA Astrophysics Data System (ADS)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  20. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe

    PubMed Central

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-01-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42–1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue. PMID:29675327

  1. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe.

    PubMed

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-04-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42-1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.

  2. Pressure Dependences of Elastic Constants of AMg6 Aluminum-Magnesium Alloy and n-AMg6/C60 Nanocomposite Alloy

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. M.; Gromnitskaya, E. L.

    2018-04-01

    The ultrasonic study results for dependence of the elastic wave velocities and second-order elasticity coefficients of the polycrystalline aluminum alloy AMg6 and its nanocomposite n-AMg6/C60 on hydrostatic pressure up to 1.6 GPa have been described. The ultrasonic research has been carried out using a highpressure ultrasonic piezometer based on the piston-cylinder device. The pressure derivatives of the secondorder elastic constants of these materials established in the present study have been compared with the results of the third-order elastic constants measurements of the test alloys using the Thurston-Brugger method. Involving available literature data, we determined the relationships between the pressure derivatives of the second-order elastic constants of the AMg6 alloy and the Mg-content and nanostructuring.

  3. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine.

    PubMed

    Uitto, J; Paul, J L; Brockley, K; Pearce, R H; Clark, J G

    1983-10-01

    The elastic fibers in the skin and other organs can be affected in several disease processes. In this study, we have developed morphometric techniques that allow accurate quantitation of the elastic fibers in punch biopsy specimens of skin. In this procedure, the elastic fibers, visualized by elastin-specific stains, are examined through a camera unit attached to the microscope. The black and white images sensing various gray levels are then converted to binary images after selecting a threshold with an analog threshold selection device. The binary images are digitized and the data analyzed by a computer program designed to express the properties of the image, thus allowing determination of the volume fraction occupied by the elastic fibers. As an independent measure of the elastic fibers, alternate tissue sections were used for assay of desmosine, an elastin-specific cross-link compound, by a radioimmunoassay. The clinical applicability of the computerized morphometric analyses was tested by examining the elastic fibers in the skin of five patients with pseudoxanthoma elasticum or Buschke-Ollendorff syndrome. In the skin of 10 healthy control subjects, the elastic fibers occupied 2.1 +/- 1.1% (mean +/- SD) of the dermis. The volume fractions occupied by the elastic fibers in the lesions of pseudoxanthoma elasticum or Buschke-Ollendorff syndrome were increased as much as 6-fold, whereas the values in the unaffected areas of the skin in the same patients were within normal limits. A significant correlation between the volume fraction of elastic fibers, determined by computerized morphometric analyses, and the concentration of desmosine, quantitated by radioimmunoassay, was noted in the total material. These results demonstrate that computerized morphometric techniques are helpful in characterizing disease processes affecting skin. This methodology should also be applicable to other tissues that contain elastic fibers and that are affected in various heritable and

  4. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  5. Point spread functions and deconvolution of ultrasonic images.

    PubMed

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  6. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  7. Analytical ultrasonics for characterization of metallurgical microstructures and transformations

    NASA Technical Reports Server (NTRS)

    Rosen, M.

    1986-01-01

    The application of contact (piezoelectric) and noncontact (laser generation and detection) ultrasonic techniques for dynamic investigation of precipitation hardening processes in aluminum alloys, as well as crystallization and phase transformation in rapidly solidified amorphous and microcrystalline alloys is discussed. From the variations of the sound velocity and attenuation the precipitation mechanism and kinetics were determined. In addition, a correlation was established between the observed changes in the velocity and attenuation and the mechanical properties of age-hardenable aluminum alloys. The behavior of the elastic moduli, determined ultrasonically, were found to be sensitive to relaxation, crystallization and phase decomposition phenomena in rapidly solidified metallic glasses. Analytical ultrasonics enables determination of the activation energies and growth parameters of the reactions. Therefrom theoretical models can be constructed to explain the changes in mechanical and physical properties upon heat treatment of glassy alloys. The composition dependence of the elastic moduli in amorphous Cu-Zr alloys was found to be related to the glass transition temperature, and consequently to the glass forming ability of these alloys. Dynamic ultrasonic analysis was found to be feasible for on-line, real-time, monitoring of metallurgical processes.

  8. Physics-based elastic image registration using splines and including landmark localization uncertainties.

    PubMed

    Wörz, Stefan; Rohr, Karl

    2006-01-01

    We introduce an elastic registration approach which is based on a physical deformation model and uses Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which also includes landmark localization uncertainties. These uncertainties are characterized by weight matrices representing anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on 3D CT images from the Truth Cube experiment, 2D MR images of the brain, as well as 2D gel electrophoresis images. It turns out that the new scheme achieves more accurate results compared to previous approaches.

  9. Feasibility of Using Ultrasonic Nakagami Imaging for Monitoring Microwave-Induced Thermal Lesion in Ex Vivo Porcine Liver.

    PubMed

    Zhang, Siyuan; Han, Yuqiang; Zhu, Xingguang; Shang, Shaoqiang; Huang, Guojing; Zhang, Lei; Niu, Gang; Wang, Supin; He, Xijing; Wan, Mingxi

    2017-02-01

    The feasibility of using ultrasonic Nakagami imaging to evaluate thermal lesions induced by microwave ablation (MWA) in ex vivo porcine liver was explored. Dynamic changes in echo amplitudes and Nakagami parameters in the region of the MWA-induced thermal lesion, as well as the contrast-to-noise ratio (CNR) between the MWA-induced thermal lesion and the surrounding normal tissue, were calculated simultaneously during the MWA procedure. After MWA exposure, a bright hyper-echoic region appeared in ultrasonic B-mode and Nakagami parameter images as an indicator of the thermal lesion. Mean values of the Nakagami parameter in the thermal lesion region increased to 0.58, 0.71 and 0.91 after 1, 3 and 5 min of MVA. There were no significant differences in envelope amplitudes in the thermal lesion region among ultrasonic B-mode images obtained after different durations of MWA. Unlike ultrasonic B-mode images, Nakagami images were less affected by the shadow effect in monitoring of MWA exposure, and a fairly complete hyper-echoic region was observed in the Nakagami image. The mean value of the Nakagami parameter increased from approximately 0.47 to 0.82 during MWA exposure. At the end of the postablation stage, the mean value of the Nakagami parameter decreased to 0.55 and was higher than that before MWA exposure. CNR values calculated for Nakagami parameter images increased from 0.13 to approximately 0.61 during MWA and then decreased to 0.26 at the end of the post-ablation stage. The corresponding CNR values calculated for ultrasonic B-mode images were 0.24, 0.42 and 0.17. This preliminary study on ex vivo porcine liver suggested that Nakagami imaging have potential use in evaluating the formation of MWA-induced thermal lesions. Further in vivo studies are needed to evaluate the potential application. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  11. Active sensing of fatigue damage using embedded ultrasonics

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Kruse, Walter A.; Gigineishvili, Vlasi

    2009-03-01

    Embedded ultrasonics has demonstrated considerable utility in structural health monitoring of aeronautical vehicle. This active sensing approach has been widely used to detect and monitor cracks, delaminations, and disbonds in a broad spectrum of metallic and composite structures. However, application of the embedded ultrasonics for active sensing of incipient damage before fracture has received limited attention. The aim of this study was to investigate the suitability of embedded ultrasonics and nonlinear acoustic signatures for monitoring pre-crack fatigue damage in aerospace structural material. A harmonic load was applied to structural specimens in order to induce fatigue damage accumulation and growth. Specimens of simple geometry were considered and piezoelectric active sensors were employed for generation and reception of elastic waves. The elastic wave signatures were analyzed in the frequency domain using nonlinear impedance and nonlinear resonance methods. A relationship between fatigue severity and linear as well as nonlinear acoustic signatures was investigated and considered in the damage classification procedure. Practical aspects of the active sensing of the fatigue damage before fracture were discussed and prospective avenues for future research were suggested.

  12. Novel PMN-PT free standing film for high frequency (80MHz) intravascular ultrasonic imaging

    PubMed Central

    Li, Xiang; Zhou, Qifa; Shung, K. Kirk; Shih, Wei-Heng; Shih, Wan Y.

    2011-01-01

    [Pb(Mg1/3Nb2/3)O3]0.63[PbTiO3]0.37 (PMN-PT) free standing film of comparable piezoelectric property to bulk PMN-PT with a thickness of 33 μm has been fabricated using a modified precursor coating approach. At 1 KHz, the dielectric constant and loss were 4,160 and 0.0291, respectively. The remnant polarization and coercive field were 28 μC/cm2 and 18.43 kV/cm. The electromechanical coupling coefficient kt was measured to be 0.55, which was close to that of bulk PMN-PT single crystal material. A high frequency (80 MHz) miniature ultrasonic transducer with high sensitivity was fabricated from this film. In vitro imaging of a rabbit aorta was performed to demonstrate the application of this material to intravascular ultrasound imaging at 80 MHz. Compared to a 35 MHz ultrasonic image, the 80 MHz image showed superior resolution and contrast. PMID:22083761

  13. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    NASA Astrophysics Data System (ADS)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  14. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  15. Graphene-based ultrasonic detector for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  16. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  17. Single-Transducer, Ultrasonic Imaging Method for High-Temperature Structural Materials Eliminates the Effect of Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1998-01-01

    NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are

  18. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  19. Flextensional ultrasonic piezoelectric micro-motor.

    PubMed

    Leinvuo, Joni T; Wilson, Stephen A; Whatmore, Roger W; Cain, Markys G

    2006-12-01

    This paper presents the experimental design, construction, and operational characteristics of a new type of standing wave piezoelectric ultrasonic micro-motor. The motor uses a composite stator, consisting of a metallic flex-tensional mode converter, or "cymbal", bonded to a 2-mm-square piezoelectric plate. The cymbal converts contour-mode vibrations of the plate into oscillations in the cymbal, perpendicular to the stator plane. These are further converted into rotational movement in a rotor pressed against the cymbal by means of an elastic-fin friction drive to produce the required rotary actuation. The motor operates on a single-phase electrical supply, and direct control of the output speed and torque can be achieved by adjusting the amplitude and frequency of the supply voltage. Noncontact optical techniques were used to assess the performance of the developed micro-motor. The operational characteristics were developed from the acceleration and deceleration characteristics. No-load output speed (11 rev s(-1)) and stall torque (27 nNm) were derived using high-speed imaging and image analysis. Maximum efficiency was 0.6%.

  20. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  1. Ultrasonic velocity technique for monitoring property changes in fiber-reinforced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Bhatt, Ramakrishna T.

    1991-01-01

    A technique for measuring ultrasonic velocity was used to monitor changes that occur during processing and heat treatment of a SiC/RBSM composite. Results indicated that correlations exist between the ultrasonic velocity data and elastic modulus and interfacial shear strength data determined from mechanical tests. The ultrasonic velocity data can differentiate strength. The advantages and potential of this nondestructive evaluation method for fiber reinforced ceramic matrix composite applications are discussed.

  2. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.

    PubMed

    Cannata, Jonathan M; Ritter, Timothy A; Chen, Wo-Hsing; Silverman, Ronald H; Shung, K Kirk

    2003-11-01

    This paper discusses the design, fabrication, and testing of sensitive broadband lithium niobate (LiNbO3) single-element ultrasonic transducers in the 20-80 MHz frequency range. Transducers of varying dimensions were built for an f# range of 2.0-3.1. The desired focal depths were achieved by either casting an acoustic lens on the transducer face or press-focusing the piezoelectric into a spherical curvature. For designs that required electrical impedance matching, a low impedance transmission line coaxial cable was used. All transducers were tested in a pulse-echo arrangement, whereby the center frequency, bandwidth, insertion loss, and focal depth were measured. Several transducers were fabricated with center frequencies in the 20-80 MHz range with the measured -6 dB bandwidths and two-way insertion loss values ranging from 57 to 74% and 9.6 to 21.3 dB, respectively. Both transducer focusing techniques proved successful in producing highly sensitive, high-frequency, single-element, ultrasonic-imaging transducers. In vivo and in vitro ultrasonic backscatter microscope (UBM) images of human eyes were obtained with the 50 MHz transducers. The high sensitivity of these devices could possibly allow for an increase in depth of penetration, higher image signal-to-noise ratio (SNR), and improved image contrast at high frequencies when compared to previously reported results.

  3. Laboratory Tests of Bitumen Samples Elasticity

    NASA Astrophysics Data System (ADS)

    Ziganshin, E. R.; Usmanov, S. A.; Khasanov, D. I.; Khamidullina, G. S.

    2018-05-01

    This paper is devoted to the study of the elastic and acoustic properties of bitumen core samples. The travel velocities of the ultrasonic P- and S-waves were determined under in-situ simulation conditions. The resulting data were then used to calculate dynamic Young's modulus and Poisson's ratio. The authors studied the correlation between the elasticity and the permeability and porosity. In addition, the tests looked into how the acoustic properties had changed with temperature rise.

  4. FE Simulation of Ultrasonic Back Extrusion

    NASA Astrophysics Data System (ADS)

    Rosochowska, Malgorzata; Rosochowski, Andrzej

    2007-04-01

    The main benefit of using ultrasonic vibrations in metal forming arises from the reduction in the mean forming force. In order to examine mechanisms responsible for this effect FE simulations of ultrasonic back extrusion using ABAQUS/Explicit were carried out. In two analysed models, vibration of frequency of 20 kHz was imposed on the punch. In the first model, the die and the punch were defined as rigid bodies and in the second, the punch was modelled as an elastic body, this being the innovative feature of the research. The punch vibrated in a longitudinal mode. Simulations were performed for amplitude of vibrations of 8.5μm and different punch velocities for both friction and frictionless conditions. Results showed that the amplitude and the mean forming force depended on the process velocity. Further, the decrease in the mean forming force might be partly explained by the reduction in the friction force due to changes in the direction and magnitude of the frictional stress over the vibration period. A lower deflection of the elastic punch under oscillatory conditions was observed, which was an indirect evidence of the reduced forming force. It was also observed that amplitude of vibrations at the working surface of the elastic punch was smaller than the applied one.

  5. Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solodov, Igor; Busse, Gerd

    2007-12-17

    It is shown that low-frequency elastic vibrations of near-surface planar defects cause high-frequency ultrasonic radiation in surrounding air. The frequency conversion mechanism is concerned with contact nonlinearity of the defect vibrations and provides efficient generation of air-coupled higher-order ultraharmonics, ultrasubharmonics, and combination frequencies. The nonlinear air-coupled ultrasonic emission is applied for location and high-resolution imaging of damage-induced defects in a variety of solid materials.

  6. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco

    2015-10-19

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from themore » propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.« less

  7. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    NASA Astrophysics Data System (ADS)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  8. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  9. Acoustical imaging of high-frequency elastic responses of targets

    NASA Astrophysics Data System (ADS)

    Morse, Scot F.; Hefner, Brian T.; Marston, Philip L.

    2002-05-01

    Acoustical imaging was used to investigate high-frequency elastic responses to sound of two targets in water. The backscattering of broadband bipolar acoustic pulses by a truncated cylindrical shell was recorded over a wide range of tilt angles [S. F. Morse and P. L. Marston, ``Backscattering of transients by tilted truncated cylindrical shells: time-frequency identification of ray contributions from measurements,'' J. Acoust. Soc. Am. (in press)]. This data set was used to form synthetic aperture images of the target based on the data within different angular apertures. Over a range of viewing angles, the visibility of the cylinder's closest rear corner was significantly enhanced by the meridional flexural wave contribution to the backscattering. In another experiment, the time evolution of acoustic holographic images was used to explore the response of tilted elastic circular disks to tone bursts having frequencies of 250 and 300 kHz. For different tilt angles, specific responses that enhance the backscattering were identified from the time evolution of the images [B. T. Hefner and P. L. Marston, Acoust. Res. Lett. Online 2, 55-60 (2001)]. [Work supported by ONR.

  10. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  11. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  12. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    PubMed

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  13. Commercial Implementation of Ultrasonic Velocity Imaging Methods via Cooperative Agreement Between NASA Lewis Research Center and Sonix, Inc.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hendricks, J. Lynne; Whalen, Mike F.; Bodis, James R.; Martin, Katherine

    1996-01-01

    This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available.

  14. Non-contact ultrasonic defect imaging in composites

    NASA Astrophysics Data System (ADS)

    Tenoudji, F. Cohen; Citerne, J. M.; Dutilleul, H.; Busquet, D.

    2016-02-01

    In the situations where conventional NDT ultrasonic techniques using immersion of the part under inspection or its contact with the transducers cannot be used, in-air investigation presents an alternative. The huge impedance mismatch between the part material and air (transmission loss in the order of 80 dB for a thin metallic plate) induces having to deal very small signals and unfavorable signal to noise ratios. The approach adopted here is the use of the crack of a spark generated by an induction coil as a sound source and an electrostatic polyethylene membrane microphone as a receiver [1]. The advantage of this source is that the spark power is high (several kilowatts) and its power is directly coupled to air during the energy release. In some difficult situations, an elliptical mirror is used to concentrate the sound beam power on the surface of the part [2,3]. Stability and reproducibility of the sound generated by the spark, which are a necessity in order to perform quantitative evaluations, are achieved in our experiment. This permits also an increase of the signal to noise ratio by signal accumulation. The sound pulse duration of few microseconds allows operating in pulse echo in some circumstances. The bandwidth of the source is large, of several hundred of kilohertz, and that of the microphone above 100 kHz allow the flexibility to address different kinds of materials. The technique allows an easy, in-air, non contact, inspection of structural composite parts, with pulse waves, with an excellent signal to noise ratio. An X-Y ultrasonic scanning ultrasonic system for material inspection using this technique has been realized. Results obtained in transmission and reflection are presented. Defects in carbon composite plates and in honeycomb are imaged in transmission Echographic measurements show that defect detection can be performed in thin plates using Lamb waves propagation when only one sided inspection of the part is possible.

  15. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  16. Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.

    PubMed

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-29

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.

  17. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    PubMed Central

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  18. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  19. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  20. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    PubMed

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Elastic anisotropy of layered rocks: Ultrasonic measurements of plagioclase-biotite-muscovite (sillimanite) gneiss versus texture-based theoretical predictions (effective media modeling)

    NASA Astrophysics Data System (ADS)

    Ivankina, T. I.; Zel, I. Yu.; Lokajicek, T.; Kern, H.; Lobanov, K. V.; Zharikov, A. V.

    2017-08-01

    In this paper we present experimental and theoretical studies on a highly anisotropic layered rock sample characterized by alternating layers of biotite and muscovite (retrogressed from sillimanite) and plagioclase and quartz, respectively. We applied two different experimental methods to determine seismic anisotropy at pressures up to 400 MPa: (1) measurement of P- and S-wave phase velocities on a cube in three foliation-related orthogonal directions and (2) measurement of P-wave group velocities on a sphere in 132 directions The combination of the spatial distribution of P-wave velocities on the sphere (converted to phase velocities) with S-wave velocities of three orthogonal structural directions on the cube made it possible to calculate the bulk elastic moduli of the anisotropic rock sample. On the basis of the crystallographic preferred orientations (CPOs) of major minerals obtained by time-of-flight neutron diffraction, effective media modeling was performed using different inclusion methods and averaging procedures. The implementation of a nonlinear approximation of the P-wave velocity-pressure relation was applied to estimate the mineral matrix properties and the orientation distribution of microcracks. Comparison of theoretical calculations of elastic properties of the mineral matrix with those derived from the nonlinear approximation showed discrepancies in elastic moduli and P-wave velocities of about 10%. The observed discrepancies between the effective media modeling and ultrasonic velocity data are a consequence of the inhomogeneous structure of the sample and inability to perform long-wave approximation. Furthermore, small differences between elastic moduli predicted by the different theoretical models, including specific fabric characteristics such as crystallographic texture, grain shape and layering were observed. It is shown that the bulk elastic anisotropy of the sample is basically controlled by the CPO of biotite and muscovite and their volume

  2. Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.

    PubMed

    Ciampa, Francesco; Mankar, Akash; Marini, Andrea

    2017-11-07

    Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.

  3. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    PubMed

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  4. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    PubMed Central

    Khuri-Yakub, Butrus T.; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications. PMID:21860542

  5. Wireless ultrasonic wavefield imaging via laser for hidden damage detection inside a steel box girder bridge

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Song, Homin; Sohn, Hoon

    2014-09-01

    This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.

  6. Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors

    NASA Astrophysics Data System (ADS)

    Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.

    2005-09-01

    The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.

  7. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  8. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  9. High-speed laser photoacoustic imaging system combined with a digital ultrasonic imaging platform

    NASA Astrophysics Data System (ADS)

    Zeng, Lvming; Liu, Guodong; Ji, Xuanrong; Ren, Zhong; Huang, Zhen

    2009-07-01

    As a new field of combined ultrasound/photoacoustic imaging in biomedical photonics research, we present and demonstrate a high-speed laser photoacoustic imaging system combined with digital ultrasound imaging platform. In the prototype system, a new B-mode digital ultrasonic imaging system is modified as the hardware platform with 384 vertical transducer elements. The centre resonance frequency of the piezoelectric transducer is 5.0 MHz with greater than 70% pulse-echo -6dB fractional bandwidth. The modular instrument of PCI-6541 is used as the hardware control centre of the testing system, which features 32 high-speed channels to build low-skew and multi-channel system. The digital photoacoustic data is transported into computer for subsequent reconstruction at 25 MHz clock frequency. Meantime, the software system for controlling and analyzing is correspondingly explored with LabVIEW language on virtual instrument platform. In the breast tissue experiment, the reconstructed image agrees well with the original sample, and the spatial resolution of the system can reach 0.2 mm with multi-element synthetic aperture focusing technique. Therefore, the system and method may have a significant value in improving early detecting level of cancer in the breast and other organs.

  10. Estimation of the uncertainty of elastic image registration with the demons algorithm.

    PubMed

    Hub, M; Karger, C P

    2013-05-07

    The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration. The reproducibility is determined as the standard deviation of the displacement vector components obtained from multiple registrations. These registrations differ in predefined initial deformations. The proposed approach was tested with artificially deformed lung images, where the ground truth on the deformation is known. In voxels where the result of the registration was less reproducible, the registration turned out to have larger average registration errors as compared to locations of the same image, where the registration was more reproducible. The proposed method can show a clinician in which area of the image the elastic registration with the demons algorithm cannot be expected to be accurate.

  11. Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Green, Robert E., Jr.

    1990-01-01

    The normalized change in ultrasonic "natural" velocity as a function of stress and temperature was measured in a unidirectional laminate of T300/5208 graphite/epoxy composite using a pulsed phase locked loop ultrasonic interferometer. These measurements were used together with the linear (second order) elastic moduli to calculate some of the nonlinear (third order) moduli of this material.

  12. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    PubMed

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  13. Using Ultrasonic Lamb Waves To Measure Moduli Of Composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1995-01-01

    Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.

  14. Acoustic bubble dynamics in a microvessel surrounded by elastic material

    NASA Astrophysics Data System (ADS)

    Wang, S. P.; Wang, Q. X.; Leppinen, D. M.; Zhang, A. M.; Liu, Y. L.

    2018-01-01

    This paper is concerned with microbubble dynamics in a blood vessel surrounded by elastic tissue subject to ultrasound, which are associated with important applications in medical ultrasonics. Both the blood flow inside the vessel and the tissue flow external to the vessel are modeled using the potential flow theory coupled with the boundary element method. The elasticity of tissue is modeled through the inclusion of a pressure term in the dynamic boundary condition at the interface between the two fluids. Weakly viscous effects are considered using viscous potential flow theory. The numerical model is validated by comparison with the theoretical results of the Rayleigh-Plesset equation for spherical bubbles, the numerical results for acoustic bubbles in an unbounded flow, and the experimental images for a spark generated bubble in a rigid circular cylinder. Numerical analyses are then performed for the bubble oscillation, jet formation and penetration through the bubble, and the deformation of the vessel wall in terms of the ultrasound amplitude and the vessel radius.

  15. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography

    PubMed Central

    Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.

    2015-01-01

    Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225

  16. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    NASA Astrophysics Data System (ADS)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  17. Scaling up the Single Transducer Thickness-Independent Ultrasonic Imaging Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.

    1998-01-01

    Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.

  18. Simultaneous image reproduction on CRT screen: Moves ultrasonic sectional view and electrocardiogram curves

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A method for simultaneous reproduction of images, requiring different amounts of time to reproduce, on a cathode ray tube (CRT) screen is disclosed. Ultrasonic sectional views and electrocardiogram curves are simultaneously reproduced on the CRT screen by producing the images on different areas of a screen with two phosphors having different persistence times and luminous colors, within the times required for the appearance of the images. In front of the area on which is produced the image requiring the shorter time is a color filter which is permeable to the color of the phosphor with the shorter persistence time by which absorbs the color of the other phosphor.

  19. Temperature imaging with ultrasonic transmission tomography for treatment control

    NASA Astrophysics Data System (ADS)

    Chu, Zheqi; Pinter, Stephen. Z.; Yuan, Jie; Scarpelli, Matthew L.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Duric, Neb; Carson, Paul L.

    2017-03-01

    Hyperthermia is a promising method to enhance chemo- or radiation therapy of breast cancer and the time-temperature profile in the target and surrounding areas is the primary monitoring method. Unlike with thermal ablation of lesions, in hyperthermia there are not good alternative treatment monitoring quantities. However, there is less problem with non-monotonic thermal coefficients of speed of sound used with ultrasonic imaging of temperature. This paper tests a long discussed but little investigated method of imaging temperature using speed of sound and proposes methods of reducing edge enhancement artifacts in the temperature image. Normally, when directly using the speed of sound to reconstruct the temperature image around the tumor, there will be an abnormal bipolar edge enhancement along the boundary between two materials with different speeds of sound at a given temperature. This due to partial volume effects and can be diminished by regularized, weighted deconvolution. An initial, manual deconvolution is shown, as well as an EMD (Empirical Mode Decomposition) method. Here we use the continuity and other constraints to choose the coefficient, reprocess the temperature field image and take the mean variations of the temperature in the adjacent pixels as the judgment criteria. Both methods effectively reduce the edge enhancement and produce a more precise image of temperature.

  20. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  1. [The diagnostic value of ultrasonic elastography and ultrasonography comprehensive score in cervical lesions].

    PubMed

    Lu, R; Xiao, Y

    2017-07-18

    Objective: To evaluate the clinical value of ultrasonic elastography and ultrasonography comprehensive scoring method in the diagnosis of cervical lesions. Methods: A total of 116 patients were selected from the Department of Gynecology of the first hospital affiliated with Central South University from March 2014 to September 2015.All of the lesions were preoperatively examined by Doppler Ultrasound and elastography.The elasticity score was determined by a 5-point scoring method. Calculation of the strain ratio was based on a comparison of the average strain measured in the lesion with the adjacent tissue of the same depth, size, and shape.All these ultrasonic parameters were quantified, added, and arrived at ultrasonography comprehensive scores.To use surgical pathology as the gold standard, the sensitivity, specificity, accuracy of Doppler Ultrasound, elasticity score and strain ratio methods and ultrasonography comprehensive scoring method were comparatively analyzed. Results: (1) The sensitivity, specificity, and accuracy of Doppler Ultrasound in diagnosing cervical lesions were 82.89% (63/76), 85.0% (34/40), and 83.62% (97/116), respectively.(2) The sensitivity, specificity, and accuracy of the elasticity score method were 77.63% (59/76), 82.5% (33/40), and 79.31% (92/116), respectively; the sensitivity, specificity, and accuracy of the strain ratio measure method were 84.21% (64/76), 87.5% (35/40), and 85.34% (99/116), respectively.(3) The sensitivity, specificity, and accuracy of ultrasonography comprehensive scoring method were 90.79% (69/76), 92.5% (37/40), and 91.38% (106/116), respectively. Conclusion: (1) It was obvious that ultrasonic elastography had certain diagnostic value in cervical lesions. Strain ratio measurement can be more objective than elasticity score method.(2) The combined application of ultrasonography comprehensive scoring method, ultrasonic elastography and conventional sonography was more accurate than single parameter.

  2. Laser ultrasonic investigations of vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Queheillalt, Douglas Ted

    The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface

  3. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-08-04

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  4. Ultrasonic thickness measuring and imaging system and method

    DOEpatents

    Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.

    1992-01-01

    An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

  5. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.

    PubMed

    Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui

    2018-04-16

    A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

  6. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  7. Laser ultrasonics for measurements of high-temperature elastic properties and internal temperature distribution

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takahiro; Nagata, Yasuaki; Nose, Tetsuro; Kawashima, Katsuhiro

    2001-06-01

    We show two kinds of demonstrations using a laser ultrasonic method. First, we present the results of Young's modulus of ceramics at temperatures above 1600 °C. Second, we introduce the method to determine the internal temperature distribution of a hot steel plate with errors of less than 3%. We compare the results obtained by this laser ultrasonic method with conventional contact techniques to show the validity of this method.

  8. AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhang; Chu, Futong; Liu, Xingzhao; Li, Yanrong; Rong, Jian; Jiang, Huabei

    2013-07-01

    We report on the fabrication of a piezoelectric micromachined ultrasonic transducer (pMUT) and its application to photoacoustic imaging. With c-axis orientation, AlN was grown on a 300 nm-thick SiO2 film and a 200 nm-thick bottom electrode at room temperature. The device consists of SiO2, bottom electrode, AlN films, upper electrode, and polyimide protective layer. An area ratio of 0.45 was used between the upper electrode and the vibration area of the pMUT to provide an optimal sensitivity of transducer. Its resonant frequency was measured to be 2.885 MHz, and the coupling coefficient in the range of 2.38%-3.71%. The fabricated pMUT was integrated with a photoacoustic imaging system and photoacoustic image of a phantom was obtained. The resolution of the system was measured to be about 240 μm.

  9. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D.; Ridley, C. J.

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a singlemore » crystal of the ferromagnetic superconductor UGe{sub 2}.« less

  10. Ultrasonic Investigations on Polonides of Ba, Ca, and Pb

    NASA Astrophysics Data System (ADS)

    Singh, Devraj; Bhalla, Vyoma; Bala, Jyoti; Wadhwa, Shikha

    2017-10-01

    The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along <100>, <110>, and <111> orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10-11 s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.

  11. Elastic Wave Velocity Measurements on Mantle Peridotite at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Mistler, G. W.; Ishikawa, M.; Li, B.

    2002-12-01

    With the success of conducting ultrasonic measurements at high pressure and high temperature in large volume high pressure apparatus with in-situ measurement of the sample length by X-ray imaging, it is now possible to measure elastic wave velocities on aggregate samples with candidate compositions of the mantle to the conditions of the Earth's transition zone in the laboratory. These data can be directly compared with seismic data to distinguish the compositional models in debate. In this work, we carried out velocity measurements on natural peridotite KLB-1 at the conditions of the Earth's upper mantle. Fine powered sample of natural KLB-1 was used as starting material. Specimens for ultrasonic measurements were hot-pressed and equilibrated at various pressure and temperature conditions along geotherm up to the transition zone. The recovered samples were characterized with density measurement, X-ray diffraction and microprobe analysis. Bench top P and S wave velocities of KLB-1 sample sintered at 3-4 GPa and 1400 degree centigrade showed a very good agreement with the VRH average of pyrolite. High pressure and high temperature measurements was conducted up to 7 GPa and 800 degree centigrade using ultrasonic interferometric method in a DIA-type high pressure apparatus in conjunction with X-ray diffraction and X-ray imaging. The utilization of X-ray imaging technique provides direct measurements of sample lengths at high pressure and high temperature, ensuring a precise determination of velocities. The results of P and S wave velocities at high pressure and high temperature as well as their comparison with calculated pyrolite model will be presented.

  12. An ultrasonic method for determination of elastic moduli, density, attenuation and thickness of a polymer coating on a stiff plate.

    PubMed

    Lavrentyev, A I; Rokhlin, S I

    2001-04-01

    An ultrasonic method proposed by us for determination of the complete set of acoustical and geometrical properties of a thin isotropic layer between semispaces (J. Acoust. Soc. Am. 102 (1997) 3467) is extended to determination of the properties of a coating on a thin plate. The method allows simultaneous determination of the coating thickness, density, elastic moduli and attenuation (longitudinal and shear) from normal and oblique incidence reflection (transmission) frequency spectra. Reflection (transmission) from the coated plate is represented as a function of six nondimensional parameters of the coating which are determined from two experimentally measured spectra: one at normal and one at oblique incidence. The introduction of the set of nondimensional parameters allows one to transform the reconstruction process from one search in a six-dimensional space to two searches in three-dimensional spaces (one search for normal incidence and one for oblique). Thickness, density, and longitudinal and shear elastic moduli of the coating are calculated from the nondimensional parameters determined. The sensitivity of the method to individual properties and its stability against experimental noise are studied and the inversion algorithm is accordingly optimized. An example of the method and experimental measurement for comparison is given for a polypropylene coating on a steel foil.

  13. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  14. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  15. Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure

    NASA Astrophysics Data System (ADS)

    Schindler, M.; Prasad, M.

    2017-12-01

    Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.

  16. Estimation of the Scatterer Distribution of the Cirrhotic Liver using Ultrasonic Image

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki

    1998-05-01

    In the B-mode image of the liver obtained by an ultrasonic imaging system, the speckled pattern changes with the progression of the disease such as liver cirrhosis.In this paper we present the statistical characteristics of the echo envelope of the liver, and the technique to extract information of the scatterer distribution from the normal and cirrhotic liver images using constant false alarm rate (CFAR) processing.We analyze the relationship between the extracted scatterer distribution and the stage of liver cirrhosis. The ratio of the area in which the amplitude of the processing signal is more than the threshold to the entire processed image area is related quantitatively to the stage of liver cirrhosis.It is found that the proposed technique is valid for the quantitative diagnosis of liver cirrhosis.

  17. pMUT+ASIC integrated platform for wide range ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Tillak, J.; Saeed, N.; Khazaaleh, S.; Viegas, J.; Yoo, J.

    2017-03-01

    We propose an integrated platform of Aluminum Nitrate (AlN) based Piezoelectric Micromachined Ultrasonic Transducer (pMUT) phased array with Application Specific Integrated Circuit (ASIC) for medical imaging and industrial diagnosis. The ASIC provides wide driving range for frequencies between 100 kHz and 5 MHz and channelscalable, programmable application adaptive transmitting beamformer. The system supports operation in various media, including gasses, liquids and biological tissue. The scan resolution for 5 MHz operation is 68 μm in air. The beamformer covers a test volume from -30° to +30° with a step of 3° and scan depth of 10 cm. The ASIC system features low noise receiver electronics, power saving transmission circuitry, and high-voltage drive of large capacitance transducer (up to 500 pF). Integrated pMUT phased array consists of 4 channels of single-membrane ultrasonic transducer of 400 nm deflection and 20 pF feed-thru capacitance, which produce 15 Pa pressure at 500 μm distance from the surface of the transducers. The active area of the ASIC is (700×1490) μm2, which includes channel scalable TX, 8-channale low noise RX, digital back end with autonomous beamformer and power management unit. The system is battery powered with 3.3V-5V standard supply, representing a truly portable solution for ultrasonic applications. Given the CMOS-compatible fabrication process for the AlN pMUTs, dense, miniaturized arrays are possible. Furthermore the smooth surface of dielectric AlN renders optical quality MEMS surfaces for integration in miniaturized photonic + ultrasound microsystems.

  18. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  19. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    NASA Astrophysics Data System (ADS)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  20. Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stipcich, M.; Manosa, L.; Planes, A.

    2004-01-01

    We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structuralmore » transitions.« less

  1. Effects of Iron and Pressure on the c11 Elastic Constant of (Mg,Fe)O Using a New GHz-Ultrasonic Diamond Cell With In-Situ X-ray Diffraction to 10 GPa

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Spetzler, H.; Reichmann, H.; Mackwell, S.; Smyth, J.

    2002-12-01

    (Mg,Fe)O may be one of the most elastically anisotropic cubic minerals likely to occur in Earth's interior. At ambient P-T, pure MgO exhibits ~10% P-wave and ~13% S-wave anisotropy. The landmark single-crystal ultrasonic experiment of Chen et al. (1998) showed that increasing pressure reduces this anisotropy, leading to either zero anisotropy or a switch in sign of the anisotropy factor (A=2c44+c12)/c11-1) expected at ~20 GPa. They also showed that on increasing temperature (at pressure) the value of A recovers to bench-top values at only 1000 K (at 8 GPa). The effects of pressure and iron in amounts relevant to Earth's interior on the anisotropic elastic properties of (Mg,Fe)O are not yet known. With this and other questions at hand, we are undertaking hydrostatic single-crystal elasticity measurements on (Mg,Fe)O using GHz-ultrasonic interferometry. Thus far, we have determined the pressure derivative of c11 to a maximum hydrostatic pressure of 9 GPa, resulting in linear derivatives (dc11/dP) = 9.4(1), 11.7(4), 9.8(4), and 9.4(2) for MgO, and (Mg,Fe)O with 15, 24, and 56 mol% FeO, respectively. This behavior is consistent with our previous results on the compositional dependence of the bulk modulus, which we observed to increase between MgO and (Mg,Fe)O with 25 mol% FeO, before decreasing towards non-stoichiometric Fe0.95O. Therefore we speculate that the decrease in dc11/dP for the highest Fe-content sample is due at least in part to defects. The experiments were carried out in a new GHz-ultrasonic diamond cell modeled after the classic three-pin Merrill-Bassett design. The cell is capable of pressures >10 GPa and features a 60° opening for in-situ single-crystal X-ray diffraction. The anvil seats contain no glue or epoxy so the entire frame (Vascomax 250) may be heated, as we have done readily up to 300°C for annealing. Perhaps most notably, the ultrasonic measurements were made without the use of a bonding agent (such as glue or gold) between the sample and

  2. Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions

    NASA Astrophysics Data System (ADS)

    Ogiela, M. R.; Bodzioch, S.

    2011-06-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards automatic detection and interpretation of disease symptoms on processed US images. First, in this paper, there is presented a new heuristic method of filtering gallbladder contours from images. A major stage in this filtration is to segment and section off areas occupied by the said organ. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours, based on rank filtration, as well as on the analysis of line profile sections on tested organs. The second part concerns detecting the most important lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. The methodology of computer analysis of US gallbladder images presented here is clearly utilitarian in nature and after standardising can be used as a technique for supporting the diagnostics of selected gallbladder disorders using the images of this organ.

  3. Segmentation-based L-filtering of speckle noise in ultrasonic images

    NASA Astrophysics Data System (ADS)

    Kofidis, Eleftherios; Theodoridis, Sergios; Kotropoulos, Constantine L.; Pitas, Ioannis

    1994-05-01

    We introduce segmentation-based L-filters, that is, filtering processes combining segmentation and (nonadaptive) optimum L-filtering, and use them for the suppression of speckle noise in ultrasonic (US) images. With the aid of a suitable modification of the learning vector quantizer self-organizing neural network, the image is segmented in regions of approximately homogeneous first-order statistics. For each such region a minimum mean-squared error L- filter is designed on the basis of a multiplicative noise model by using the histogram of grey values as an estimate of the parent distribution of the noisy observations and a suitable estimate of the original signal in the corresponding region. Thus, we obtain a bank of L-filters that are corresponding to and are operating on different image regions. Simulation results on a simulated US B-mode image of a tissue mimicking phantom are presented which verify the superiority of the proposed method as compared to a number of conventional filtering strategies in terms of a suitably defined signal-to-noise ratio measure and detection theoretic performance measures.

  4. Ultrasonic Imaging in Solids Using Wave Mode Beamforming.

    PubMed

    di Scalea, Francesco Lanza; Sternini, Simone; Nguyen, Thompson Vu

    2017-03-01

    This paper discusses some improvements to ultrasonic synthetic imaging in solids with primary applications to nondestructive testing of materials and structures. Specifically, the study proposes new adaptive weights applied to the beamforming array that are based on the physics of the propagating waves, specifically the displacement structure of the propagating longitudinal (L) mode and shear (S) mode that are naturally coexisting in a solid. The wave mode structures can be combined with the wave geometrical spreading to better filter the array (in a matched filter approach) and improve its focusing ability compared to static array weights. This paper also proposes compounding, or summing, images obtained from the different wave modes to further improve the array gain without increasing its physical aperture. The wave mode compounding can be performed either incoherently or coherently, in analogy with compounding multiple frequencies or multiple excitations. Numerical simulations and experimental testing demonstrate the potential improvements obtainable by the wave structure adaptive weights compared to either static weights in conventional delay-and-sum focusing, or adaptive weights based on geometrical spreading alone in minimum-variance distortionless response focusing.

  5. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces

    PubMed Central

    Zhu, Xuan; Li, Xiaoshi; Chen, Zeyu; Chen, Yimu; Lei, Yusheng; Li, Yang; Nomoto, Akihiro; Zhou, Qifa; di Scalea, Francesco Lanza

    2018-01-01

    Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an “island-bridge” layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces. PMID:29740603

  6. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging

    PubMed Central

    Luo, Binhua; Liang, Huageng; Zhang, Shengwei; Qin, Xiaojuan; Liu, Xuhan; Liu, Wei; Zeng, Fuqing; Wu, Yun; Yang, Xiangliang

    2015-01-01

    In the study reported here, a novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer was synthesized by ring-opening polymerization reaction. The perfluoropentane-filled PAEEP-PLLA nanobubbles (NBs) were prepared using the O1/O2/W double-emulsion and solvent-evaporation method, with the copolymer as the shell and liquid perfluoropentane as the core of NBs. The prepared NBs were further conjugated with lactoferrin (Lf) for tumor-cell targeting. The resulting Lf-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) nanobubbles (Lf-PAEEP-PLLA NBs) were characterized by photon correlation spectroscopy, polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy, and transmission electron microscopy. The average size of the Lf-PAEEP-PLLA NBs was 328.4±5.1 nm, with polydispersity index of 0.167±0.020, and zeta potential of −12.6±0.3 mV. Transmission electron microscopy imaging showed that the Lf-PAEEP-PLLA NBs had a near-spherical structure, were quite monodisperse, and there was a clear interface between the copolymer shell and the liquid core inside the NBs. The Lf-PAEEP-PLLA NBs also exhibited good biocompatibility in cytotoxicity and hemolysis studies and good stability during storage. The high cellular uptake of Lf-PAEEP-PLLA NBs in C6 cells (low-density lipoprotein receptor-related protein 1-positive cells) at concentrations of 0–20 µg/mL indicated that the Lf provided effective targeting for brain-tumor cells. The in vitro acoustic behavior of Lf-PAEEP-PLLA NBs was evaluated using a B-mode clinical ultrasound imaging system. In vivo ultrasound imaging was performed on tumor-bearing BALB/c nude mice, and compared with SonoVue® microbubbles, a commercial ultrasonic contrast agent. Both in vitro and in vivo ultrasound imaging indicated that the Lf-PAEEP-PLLA NBs possessed strong, long-lasting, and tumor-enhanced ultrasonic contrast ability. Taken together, these results indicate that

  7. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging.

    PubMed

    Luo, Binhua; Liang, Huageng; Zhang, Shengwei; Qin, Xiaojuan; Liu, Xuhan; Liu, Wei; Zeng, Fuqing; Wu, Yun; Yang, Xiangliang

    2015-01-01

    In the study reported here, a novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer was synthesized by ring-opening polymerization reaction. The perfluoropentane-filled PAEEP-PLLA nanobubbles (NBs) were prepared using the O1/O2/W double-emulsion and solvent-evaporation method, with the copolymer as the shell and liquid perfluoropentane as the core of NBs. The prepared NBs were further conjugated with lactoferrin (Lf) for tumor-cell targeting. The resulting Lf-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) nanobubbles (Lf-PAEEP-PLLA NBs) were characterized by photon correlation spectroscopy, polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy, and transmission electron microscopy. The average size of the Lf-PAEEP-PLLA NBs was 328.4±5.1 nm, with polydispersity index of 0.167±0.020, and zeta potential of -12.6±0.3 mV. Transmission electron microscopy imaging showed that the Lf-PAEEP-PLLA NBs had a near-spherical structure, were quite monodisperse, and there was a clear interface between the copolymer shell and the liquid core inside the NBs. The Lf-PAEEP-PLLA NBs also exhibited good biocompatibility in cytotoxicity and hemolysis studies and good stability during storage. The high cellular uptake of Lf-PAEEP-PLLA NBs in C6 cells (low-density lipoprotein receptor-related protein 1-positive cells) at concentrations of 0-20 µg/mL indicated that the Lf provided effective targeting for brain-tumor cells. The in vitro acoustic behavior of Lf-PAEEP-PLLA NBs was evaluated using a B-mode clinical ultrasound imaging system. In vivo ultrasound imaging was performed on tumor-bearing BALB/c nude mice, and compared with SonoVue(®) microbubbles, a commercial ultrasonic contrast agent. Both in vitro and in vivo ultrasound imaging indicated that the Lf-PAEEP-PLLA NBs possessed strong, long-lasting, and tumor-enhanced ultrasonic contrast ability. Taken together, these results indicate that Lf

  8. In Vivo Determination of the Complex Elastic Moduli of Cetacean Head Tissue

    DTIC Science & Technology

    2013-09-30

    of an ultrasonic Doppler vibration measurement system called NVMS developed at Georgia Tech iii. Algorithms have been developed to enable the...magnitude and phase of vibration to be determined as a function of range (tissue depth) along the ultrasonic beam. By measuring the differential phase of...The frequency dependence of the propagation speed is then used to determine the shear loss factor. The elastic properties of tissue phantoms

  9. In Vivo Determination of the Complex Elastic Moduli of Cetacean Head Tissue

    DTIC Science & Technology

    2009-09-30

    remotely generated elastic waves can be detected remotely using a modified version of an ultrasonic Doppler vibration measurement system called NIVMS...developed at Georgia Techiii. Algorithms are being developed to enable the magnitude and phase of vibration to be determined, as well as the range (tissue...depth) along the ultrasonic beam at which the vibration is being measured. By measuring the amplitude and arrival time of the shear wave at two

  10. NDE application of ultrasonic tomography to a full-scale concrete structure.

    PubMed

    Choi, Hajin; Popovics, John S

    2015-06-01

    Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.

  11. Hard tissue as a composite material. I - Bounds on the elastic behavior.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.

    1971-01-01

    Recent determination of the elastic moduli of hydroxyapatite by ultrasonic methods permits a re-examination of the Voigt or parallel model of the elastic behavior of bone, as a two phase composite material. It is shown that such a model alone cannot be used to describe the behavior of bone. Correlative data on the elastic moduli of dentin, enamel and various bone samples indicate the existence of a nonlinear dependence of elastic moduli on composition of hard tissue. Several composite models are used to calculate the bounds on the elastic behavior of these tissues. The limitations of these models are described, and experiments to obtain additional critical data are discussed.

  12. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  13. The use of ultrasonic properties of CR-39 track detectors in neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Afifi, H.; El-Sersy, A.; Khaled, N.

    2004-01-01

    The longitudinal and shear wave ultrasonic velocities have been measured before and after exposing 5-mm thick CR-39 solid state nuclear track detectors to both a mixed field of gamma-rays and fast neutrons from an Am-Be source in the ranges from 0 to 10 4 mSv. The change in the intermolecular structure as caused by the fast neutron exposure was studied by the ultrasonic pulse echo method at a frequency of 2 MHz and at room temperature. The elastic coefficients, Poisson's ratio, microhardness, ultrasonic absorption coefficient and internal friction have been determined. The study shows that the gamma-ray irradiation had no effect on the ultrasonic properties of CR-39 at least at the used doses. However, all the ultrasonic properties are influenced by the fast neutrons at doses up to 10 4 mSv. Our experimental results confirmed that the ultrasonic technique is useful for fast neutron detection, by exploiting the differences in mechanical properties of CR-39.

  14. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  15. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  16. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile

    NASA Astrophysics Data System (ADS)

    Zarubin, V.; Bychkov, A.; Simonova, V.; Zhigarkov, V.; Karabutov, A.; Cherepetskaya, E.

    2018-05-01

    In this paper, a technique for reflection mode immersion 2D laser-ultrasound tomography of solid objects with piecewise linear 2D surface profiles is presented. Pulsed laser radiation was used for generation of short ultrasonic probe pulses, providing high spatial resolution. A piezofilm sensor array was used for detection of the waves reflected by the surface and internal inhomogeneities of the object. The original ultrasonic image reconstruction algorithm accounting for refraction of acoustic waves at the liquid-solid interface provided longitudinal resolution better than 100 μm in the polymethyl methacrylate sample object.

  17. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  18. GPU Accelerated Ultrasonic Tomography Using Propagation and Back Propagation Method

    DTIC Science & Technology

    2015-09-28

    the medical imaging field using GPUs has been done for many years. In [1], Copeland et al. used 2D images , obtained by X - ray projections, to...Index Terms— Medical Imaging , Ultrasonic Tomography, GPU, CUDA, Parallel Computing I. INTRODUCTION GRAPHIC Processing Units (GPUs) are computation... Imaging Algorithm The process of reconstructing images from ultrasonic infor- mation starts with the following acoustical wave equation: ∂2 ∂t2 u ( x

  19. Portable apparatus with CRT display for nondestructive testing of concrete by the ultrasonic pulse method

    NASA Technical Reports Server (NTRS)

    Manta, G.; Gurau, Y.; Nica, P.; Facacaru, I.

    1974-01-01

    The development of methods for the nondestructive study of concrete structures is discussed. The nondestructive test procedure is based on the method of ultrasonic pulse transmission through the material. The measurements indicate that the elastic properties of concrete or other heterogeneous materials are a function of the rate of ultrasonic propagation. Diagrams of the test equipment are provided. Mathematical models are included to support the theoretical aspects.

  20. Sub-micron elastic property characterization of materials using a near-field scanning optical microscope

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Spicer, James B.

    2001-12-01

    The ability to characterize the sub-surface mechanical properties of a bulk or thin film material at the sub-micron level has applications in the microelectronics and thin film industries. In the microelectronics industry, with the decrease of line widths and the increase of component densities, sub-surface voids have become increasingly detrimental. Any voids along an integrated circuit (IC) line can lead to improper electrical connections between components and can cause failure of the device. In the thin film industry, the detection of impurities is also important. Any impurities can detract from the film's desired optical, electrical, or mechanical properties. Just as important as the detection of voids and impurities, is the measurement of the elastic properties of a material on the nanometer scale. These elastic measurements provide insight into the microstructural properties of the material. We have been investigating a technique that couples the high-resolution surface imaging capabilities of the apertureless near-field scanning optical microscope (ANSOM) with the sub-surface characterization strengths of high-frequency ultrasound. As an ultrasonic wave propagates, the amplitude decreases due to geometrical spreading, attenuation from absorption, and scattering from discontinuities. Measurement of wave speeds and attenuation provides the information needed to quantify the bulk or surface properties of a material. The arrival of an ultrasonic wave at or along the surface of a material is accompanied with a small surface displacement. Conventional methods for the ultrasound detection rely on either a contact transducer or optical technique (interferometric, beam deflection, etc.). However, each of these methods is limited by the spatial resolution dictated by the detection footprint. As the footprint size increases, variations across the ultrasonic wavefront are effectively averaged, masking the presence of any nanometer-scale sub-surface or surface

  1. Yield and ultrasonic modulus of elasticity of red maple veneer

    Treesearch

    Robert J. Ross; Steven Verhey; John R. Erickson; John W. Forsman; Brian K. Brashaw; Crystal L. Pilon; Xiping Wang

    2004-01-01

    The purpose of the study was to assess the potential for using red maple sawlogs to manufacture laminated veneer lumber (LVL). The primary objective was to determine the yield of ultrasonically graded veneer from red maple logs. A sample of 48 logs was obtained from six Eastern and Lake States in the United States. The logs were visually graded and shipped to a plywood...

  2. Shear wave elasticity imaging based on acoustic radiation force and optical detection.

    PubMed

    Cheng, Yi; Li, Rui; Li, Sinan; Dunsby, Christopher; Eckersley, Robert J; Elson, Daniel S; Tang, Meng-Xing

    2012-09-01

    Tissue elasticity is closely related to the velocity of shear waves within biologic tissue. Shear waves can be generated by an acoustic radiation force and tracked by, e.g., ultrasound or magnetic resonance imaging (MRI) measurements. This has been shown to be able to noninvasively map tissue elasticity in depth and has great potential in a wide range of clinical applications including cancer and cardiovascular diseases. In this study, a highly sensitive optical measurement technique is proposed as an alternative way to track shear waves generated by the acoustic radiation force. A charge coupled device (CCD) camera was used to capture diffuse photons from tissue mimicking phantoms illuminated by a laser source at 532 nm. CCD images were recorded at different delays after the transmission of an ultrasound burst and were processed to obtain the time of flight for the shear wave. A differential measurement scheme involving generation of shear waves at two different positions was used to improve the accuracy and spatial resolution of the system. The results from measurements on both homogeneous and heterogeneous phantoms were compared with measurements from other instruments and demonstrate the feasibility and accuracy of the technique for imaging and quantifying elasticity. The relative error in estimation of shear wave velocity can be as low as 3.3% with a spatial resolution of 2 mm, and increases to 8.8% with a spatial resolution of 1 mm for the medium stiffness phantom. The system is shown to be highly sensitive and is able to track shear waves propagating over several centimetres given the ultrasound excitation amplitude and the phantom material used in this study. It was also found that the reflection of shear waves from boundaries between regions with different elastic properties can cause significant bias in the estimation of elasticity, which also applies to other shear wave tracking techniques. This bias can be reduced at the expense of reduced spatial

  3. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  4. Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Dodd, Stirling Scott

    1995-01-01

    Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.

  5. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1986-01-01

    The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.

  6. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping

    2017-05-01

    Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.

  7. Theory and application of laser ultrasonic shear wave birefringence measurements to the determination of microstructure orientation in transversely isotropic, polycrystalline graphite materials

    DOE PAGES

    Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.; ...

    2016-12-18

    Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less

  8. Using an Elastic Band Device After a Severe Obstetric Pubic Symphyseal Separation: Clinical and Imaging Evaluation.

    PubMed

    Lasbleiz, Jeremy; Sevestre, François-Xavier; Moquet, Pierre-Yves

    2017-09-01

    Severe separation of the pubic symphysis is a rare delivery complication. Facing this pathology, we decided to study a new elastic band device. To evaluate the elastic band device, clinical (pain-rated) and imaging (magnetic resonance imaging and radiography) evaluations with and without the device were performed. The elastic band device is a European Conformity-certified medical device, which is made of neoprene straps, that reduces the mobility of the pelvis and the use of the internal rotator muscles. Once the elastic band device was in place, on postpartum day 1, radiography showed a decrease of the pubic width from 41 to 12 mm. Furthermore, pain decreased from 10 of 10 to 2 of 10 in 2 days, allowing the patient to ambulate and avoid surgery. After 1 month, the pubic width (6 mm) and anatomy were recovered but minor pain was still present with hip rotatory movements. The elastic band device was worn 24 hours a day from postpartum days 1-90 and 12 hours a day from postpartum days 90 to 150; afterward, the patient returned to normal life without the elastic band device. Use of an elastic band device was associated with a reduction of the pubic width and pain associated after obstetric pubic symphysis separation.

  9. Self-bending elastic waves and obstacle circumventing in wireless power transfer

    NASA Astrophysics Data System (ADS)

    Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.

    2017-04-01

    We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.

  10. Elasticity imaging of speckle-free tissue regions with moving acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew

    2016-03-01

    Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.

  11. High-frequency ultrasonic imaging of growth and development in manufactured engineered oral mucosal tissue surfaces.

    PubMed

    Winterroth, Frank; Kato, Hiroko; Kuo, Shiuhyang; Feinberg, Stephen E; Hollister, Scott J; Fowlkes, J Brian; Hollman, Kyle W

    2014-09-01

    This study uses high-resolution ultrasound to examine the growth and development of engineered oral mucosal tissues manufactured under aseptic conditions. The specimens are a commercially available natural tissue scaffold, AlloDerm, and oral keratinocytes seeded onto AlloDerm to form an ex vivo-produced oral mucosal equivalent (EVPOME) suitable for intra-oral grafting. The seeded cells produce a keratinized protective upper layer that smooths out any remaining surface irregularities on the underlying AlloDerm. Two-dimensional acoustic imaging of unseeded AlloDerm and developing EVPOMEs was performed on each day of their growth and development, each tissue specimen being imaged under aseptic conditions (total time from seeding to maturation: 11 d). Ultrasonic monitoring offers us the ability to determine the constituents of the EVPOME that are responsible for changes in its mechanical behavior during the manufacturing process. Ultrasonic monitoring affords us an opportunity to non-invasively assess, in real time, tissue-engineered constructs before release for use in patient care. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garra, B.

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative

  13. Mode-converted diffuse ultrasonic backscatter.

    PubMed

    Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A

    2013-08-01

    Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.

  14. WE-E-9A-01: Ultrasound Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Hall, T; Bouchard, R

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitativemore » Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity

  15. In vivo ultrasound imaging of the bone cortex

    NASA Astrophysics Data System (ADS)

    Renaud, Guillaume; Kruizinga, Pieter; Cassereau, Didier; Laugier, Pascal

    2018-06-01

    Current clinical ultrasound scanners cannot be used to image the interior morphology of bones because these scanners fail to address the complicated physics involved for exact image reconstruction. Here, we show that if the physics is properly addressed, bone cortex can be imaged using a conventional transducer array and a programmable ultrasound scanner. We provide in vivo proof for this technique by scanning the radius and tibia of two healthy volunteers and comparing the thickness of the radius bone with high-resolution peripheral x-ray computed tomography. Our method assumes a medium that is composed of different homogeneous layers with unique elastic anisotropy and ultrasonic wave-speed values. The applicable values of these layers are found by optimizing image sharpness and intensity over a range of relevant values. In the algorithm of image reconstruction we take wave refraction between the layers into account using a ray-tracing technique. The estimated values of the ultrasonic wave-speed and anisotropy in cortical bone are in agreement with ex vivo studies reported in the literature. These parameters are of interest since they were proposed as biomarkers for cortical bone quality. In this paper we discuss the physics involved with ultrasound imaging of bone and provide an algorithm to successfully image the first segment of cortical bone.

  16. Biomechanically based simulation of brain deformations for intraoperative image correction: coupling of elastic and fluid models

    NASA Astrophysics Data System (ADS)

    Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried

    2000-06-01

    In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.

  17. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  18. Geometric Limitations Of Ultrasonic Measurements

    NASA Astrophysics Data System (ADS)

    von Nicolai, C.; Schilling, F.

    2006-12-01

    Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.

  19. Simulation-Based Joint Estimation of Body Deformation and Elasticity Parameters for Medical Image Analysis

    PubMed Central

    Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.

    2014-01-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381

  20. Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    PubMed Central

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r 2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced. PMID:24511286

  1. Prediction of building limestone physical and mechanical properties by means of ultrasonic P-wave velocity.

    PubMed

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r(2) between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.

  2. On multiple crack identification by ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Brigante, M.; Sumbatyan, M. A.

    2018-04-01

    The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.

  3. High-speed biometrics ultrasonic system for 3D fingerprint imaging

    NASA Astrophysics Data System (ADS)

    Maev, Roman G.; Severin, Fedar

    2012-10-01

    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  4. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  5. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  6. (abstract) Oblique Insonification Ultrasonic NDE of Composite Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Lih, S. S.; Mal, A. K.

    1997-01-01

    In recent years, a great deal of research has been exerted to developing NDE methods for the characterization of the material properties of composites as well as other space structural materials. The need for information about such parameters as the elastic properties, density, and thickness are critical to the safe design and operation of such structural materials. Ultrasonics using immersion methods has played an important role in these efforts due to its capability, cost effectiveness, and ease of use. The authors designed a series of ultrasonic oblique insonification experiments in order to develop a practical field applicable NDE method for space structures.

  7. Pulse-echo ultrasonic imaging method for eliminating sample thickness variation effects

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1995-01-01

    A pulse-echo, immersion method for ultrasonic evaluation of a material is discussed. It accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer, automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjusments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.

  8. Pulse-Echo Ultrasonic Imaging Method for Eliminating Sample Thickness Variation Effects

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1997-01-01

    A pulse-echo, immersion method for ultrasonic evaluation of a material which accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer and automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjustments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.

  9. Threshold Setting for Likelihood Function for Elasticity-Based Tissue Classification of Arterial Walls by Evaluating Variance in Measurement of Radial Strain

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Kentaro; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2008-05-01

    Pathologic changes in arterial walls significantly influence their mechanical properties. We have developed a correlation-based method, the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791], for measurement of the regional elasticity of the arterial wall. Using this method, elasticity distributions of lipids, blood clots, fibrous tissue, and calcified tissue were measured in vitro by experiments on excised arteries (mean±SD: lipids 89±47 kPa, blood clots 131 ±56 kPa, fibrous tissue 1022±1040 kPa, calcified tissue 2267 ±1228 kPa) [H. Kanai et al.: Circulation 107 (2003) 3018; J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2005) 4593]. It was found that arterial tissues can be classified into soft tissues (lipids and blood clots) and hard tissues (fibrous tissue and calcified tissue) on the basis of their elasticity. However, there are large overlaps between elasticity distributions of lipids and blood clots and those of fibrous tissue and calcified tissue. Thus, it was difficult to differentiate lipids from blood clots and fibrous tissue from calcified tissue by simply thresholding elasticity value. Therefore, we previously proposed a method by classifying the elasticity distribution in each region of interest (ROI) (not a single pixel) in an elasticity image into lipids, blood clots, fibrous tissue, or calcified tissue based on a likelihood function for each tissue [J. Inagaki et al.: Jpn. J. Appl. Phys. 44 (2006) 4732]. In our previous study, the optimum size of an ROI was determined to be 1,500 µm in the arterial radial direction and 1,500 µm in the arterial longitudinal direction [K. Tsuzuki et al.: Ultrasound Med. Biol. 34 (2008) 573]. In this study, the threshold for the likelihood function used in the tissue classification was set by evaluating the variance in the ultrasonic measurement of radial strain. The recognition rate was improved from 50 to 54% by the proposed thresholding.

  10. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2006-06-01

    1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in Medicine and Biology 24... elastography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...Body Figure 2 shows the results of a set of experiments involving a simulated breast . The phantom (purchased from CIR, Inc.) was designed to

  11. Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young

    2018-03-01

    The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.

  12. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  13. New approach to gallbladder ultrasonic images analysis and lesions recognition.

    PubMed

    Bodzioch, Sławomir; Ogiela, Marek R

    2009-03-01

    This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards detection of disease symptoms on processed images. First, in this paper, there is presented a new method of filtering gallbladder contours from USG images. A major stage in this filtration is to segment and section off areas occupied by the said organ. In most cases this procedure is based on filtration that plays a key role in the process of diagnosing pathological changes. Unfortunately ultrasound images present among the most troublesome methods of analysis owing to the echogenic inconsistency of structures under observation. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours. The algorithm is based on rank filtration, as well as on the analysis of histogram sections on tested organs. The second part concerns detecting lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. Usually the final stage is to make a diagnosis based on the detected symptoms. This last stage can be carried out through either dedicated expert systems or more classic pattern analysis approach like using rules to determine illness basing on detected symptoms. This paper discusses the pattern analysis algorithms for gallbladder image interpretation towards classification of the most frequent illness symptoms of this organ.

  14. [Development of a system for ultrasonic three-dimensional reconstruction of fetus].

    PubMed

    Baba, K

    1989-04-01

    We have developed a system for ultrasonic three-dimensional (3-D) fetus reconstruction using computers. Either a real-time linear array probe or a convex array probe of an ultrasonic scanner was mounted on a position sensor arm of a manual compound scanner in order to detect the position of the probe. A microcomputer was used to convert the position information to what could be recorded on a video tape as an image. This image was superimposed on the ultrasonic tomographic image simultaneously with a superimposer and recorded on a video tape. Fetuses in utero were scanned in seven cases. More than forty ultrasonic section image on the video tape were fed into a minicomputer. The shape of the fetus was displayed three-dimensionally by means of computer graphics. The computer-generated display produced a 3-D image of the fetus and showed the usefulness and accuracy of this system. Since it took only a few seconds for data collection by ultrasonic inspection, fetal movement did not adversely affect the results. Data input took about ten minutes for 40 slices, and 3-D reconstruction and display took about two minutes. The system made it possible to observe and record the 3-D image of the fetus in utero non-invasively and therefore is expected to make it much easier to obtain a 3-D picture of the fetus in utero.

  15. Elastic models: a comparative study applied to retinal images.

    PubMed

    Karali, E; Lambropoulou, S; Koutsouris, D

    2011-01-01

    In this work various methods of parametric elastic models are compared, namely the classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive snake (t-snake), as well as the method of self-affine mapping system as an alternative to elastic models. We also give a brief overview of the methods used. The self-affine mapping system is implemented using an adapting scheme and minimum distance as optimization criterion, which is more suitable for weak edges detection. All methods are applied to glaucomatic retinal images with the purpose of segmenting the optical disk. The methods are compared in terms of segmentation accuracy and speed, as these are derived from cross-correlation coefficients between real and algorithm extracted contours and segmentation time, respectively. As a result, the method of self-affine mapping system presents adequate segmentation time and segmentation accuracy, and significant independence from initialization.

  16. Alignment theory of parallel-beam computed tomography image reconstruction for elastic-type objects using virtual focusing method.

    PubMed

    Jun, Kyungtaek; Kim, Dongwook

    2018-01-01

    X-ray computed tomography has been studied in various fields. Considerable effort has been focused on reconstructing the projection image set from a rigid-type specimen. However, reconstruction of images projected from an object showing elastic motion has received minimal attention. In this paper, a mathematical solution to reconstructing the projection image set obtained from an object with specific elastic motions-periodically, regularly, and elliptically expanded or contracted specimens-is proposed. To reconstruct the projection image set from expanded or contracted specimens, methods are presented for detection of the sample's motion modes, mathematical rescaling of pixel values, and conversion of the projection angle for a common layer.

  17. Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.

    2017-02-01

    Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.

  18. Application of nonlinear phenomena induced by focused ultrasound to bone imaging.

    PubMed

    Callé, Samuel; Remenieras, Jean-Pierre; Bou Matar, Olivier; Defontaine, Marielle; Patat, Frederic

    2003-03-01

    A tissue deformability image is obtained with the vibroacoustography imaging method using mechanical low-frequency (LF) excitation. This ultrasonic excitation is created locally by means of a focused annular array emitting two primary beams at two close frequencies, f(1) and f(2) (f(2) = f(1) + f(LF)). The LF acoustic emission resulting from the vibration of the medium is detected by a sensitive hydrophone and then used to form the image. This noninvasive imaging method was demonstrated in this study to be suitable for bone imaging, with x and y transverse resolutions less than 300 micro m. Two bone sites susceptible to demineralization were tested: the calcaneus and the neck of the femur. The vibroacoustic method provides valuable ultrasonic images regarding the structure and the elastic properties of bone tissue. Correlation was made between vibroacoustic bone images, performed in vitro, and images acquired by other imaging methods (i.e., bone ultrasound attenuation and x-ray computerized tomography (CT)). Moreover, the amplitudes of vibroacoustic signals radiating from phosphocalcic ceramic samples (bone substitute) of different porosity were evaluated. The good correlation between these results and the description of our images and the quality of vibroacoustic images indicate that bone decalcification could be detected using vibroacoustography.

  19. High pressure elasticity and thermal properties of depleted uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N., E-mail: nenad@lanl.gov

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties ofmore » depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  20. High pressure elasticity and thermal properties of depleted uranium

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-28

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. Lastly, this work presents the first high pressure studies of the elasticity and thermalmore » properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less

  1. Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

    PubMed Central

    Yin, Feng; Koskinen, Pekka; Kulju, Sampo; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. elastic atomic manipulation, and reflects the ultrasoft properties of the surface under strain. The method may be generally applicable to other soft e.g. molecular or biomolecular systems. PMID:25651973

  2. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative

  3. Laser ultrasonic multi-component imaging

    DOEpatents

    Williams, Thomas K [Federal Way, WA; Telschow, Kenneth [Des Moines, WA

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  4. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  5. Ultrasonic influence on evolution of disordered dislocation structures

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.

    2017-12-01

    Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.

  6. Ex vivo detection of macrophages in atherosclerotic plaques using intravascular ultrasonic-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Quang Bui, Nhat; Hlaing, Kyu Kyu; Lee, Yong Wook; Kang, Hyun Wook; Oh, Junghwan

    2017-01-01

    Macrophages are excellent imaging targets for detecting atherosclerotic plaques as they are involved in all the developmental stages of atherosclerosis. However, no imaging technique is currently capable of visualizing macrophages inside blood vessel walls. The current study develops an intravascular ultrasonic-photoacoustic (IVUP) imaging system combined with indocyanine green (ICG) as a contrast agent to provide morphological and compositional information about the targeted samples. Both tissue-mimicking vessel phantoms and atherosclerotic plaque-mimicking porcine arterial tissues are used to demonstrate the feasibility of mapping macrophages labeled with ICG by endoscopically applying the proposed hybrid technique. A delay pulse triggering technique is able to sequentially acquire photoacoustic (PA) and ultrasound (US) signals from a single scan without using any external devices. The acquired PA and US signals are used to reconstruct 2D cross-sectional and 3D volumetric images of the entire tissue with the ICG-loaded macrophages injected. Due to high imaging contrast and sensitivity, the IVUP imaging vividly reveals structural information and detects the spatial distribution of the ICG-labeled macrophages inside the samples. ICG-assisted IVUP imaging can be a feasible imaging modality for the endoscopic detection of atherosclerotic plaques.

  7. Research and development of ultrasonic tomography technology for three-dimensional imaging of internal rail flaws : modeling and simulation.

    DOT National Transportation Integrated Search

    2013-04-01

    This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...

  8. Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system

    NASA Technical Reports Server (NTRS)

    Popp, R. L.; Brown, O. R.; Harrison, D. C.

    1975-01-01

    An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.

  9. Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2014-12-01

    Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.

  10. Biomechanical implications of cortical elastic properties of the macaque mandible.

    PubMed

    Dechow, Paul C; Panagiotopoulou, Olga; Gharpure, Poorva

    2017-10-01

    Knowledge of the variation in the elastic properties of mandibular cortical bone is essential for modeling bone function. Our aim was to characterize the elastic properties of rhesus macaque mandibular cortical bone and compare these to the elastic properties from mandibles of dentate humans and baboons. Thirty cylindrical samples were harvested from each of six adult female rhesus monkey mandibles. Assuming orthotropy, axes of maximum stiffness in the plane of the cortical plate were derived from ultrasound velocity measurements. Further velocity measurements with longitudinal and transverse ultrasonic transducers along with measurements of bone density were used to compute three-dimensional cortical elastic properties using equations based on Hooke's law. Results showed regional variations in the elastic properties of macaque mandibular cortical bone that have both similarities and differences with that of humans and baboons. So far, the biological and structural basis of these differences is poorly understood. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. One-sided ultrasonic determination of third order elastic constants using angle-beam acoustoelasticity measurements

    NASA Astrophysics Data System (ADS)

    Muir, Dave D.

    This thesis describes procedures and theory for a family of one-sided ultrasonic methods for determining third order elastic constants (TOEC) using sets of angle-beam wedges mounted on one side of a specimen. The methods are based on the well-known acoustoelastic effect, which is the change of wave speed with applied loads and is a consequence of the mechanical nonlinearity of a material. Increases in material nonlinearity have been correlated to the progression of damage, indicating that tracking changes in TOECs may provide a practical means of monitoring damage accumulation at the microstructural level prior to formation of macroscopic defects. Ultrasonic methods are one of the only ways to measure TOECs, and most prior techniques have utilized wave propagation paths parallel and perpendicular to the loading directions. A few additional ultrasonic techniques reported in the literature have employed oblique paths but with immersion coupling. These reported techniques are generally unsuitable for field implementation. The one-sided contact approach described here is applicable for in situ measurements of TOECs and thus lays the foundation for tracking of TOECs with damage. Theory is reviewed and further developed for calculating predicted velocity changes, and thus time shifts, as a function of uniaxial tensile loading for longitudinal, shear vertical, and shear horizontal waves in the context of angle-beam transducers mounted on the surface of the specimen. A comparison is made to published results where possible. The inverse problem of determining the three TOECs of an isotropic material from three measurements employing three different angle beam configurations is comprehensively analyzed. Four configurations providing well-posed solutions are identified and examined. A detailed sensitivity analysis is carried out to identify the best mounting configuration, wave mode combinations, refracted angles and geometry requirements for recovering the three TOECs. Two

  12. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis.

    PubMed

    Venderink, Wulphert; de Rooij, Maarten; Sedelaar, J P Michiel; Huisman, Henkjan J; Fütterer, Jurgen J

    2016-07-29

    The main difference between the available magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion platforms for prostate biopsy is the method of image registration being either rigid or elastic. As elastic registration compensates for possible deformation caused by the introduction of an ultrasound probe for example, it is expected that it would perform better than rigid registration. The aim of this meta-analysis is to compare rigid with elastic registration by calculating the detection odds ratio (OR) for both subgroups. The detection OR is defined as the ratio of the odds of detecting clinically significant prostate cancer (csPCa) by MRI-TRUS fusion biopsy compared with systematic TRUS biopsy. Secondary objectives were the OR for any PCa and the OR after pooling both registration techniques. The electronic databases PubMed, Embase, and Cochrane were systematically searched for relevant studies according to the Preferred Reporting Items for Systematic Review and Meta-analysis Statement. Studies comparing MRI-TRUS fusion and systematic TRUS-guided biopsies in the same patient were included. The quality assessment of included studies was performed using the Quality Assessment of Diagnostic Accuracy Studies version 2. Eleven papers describing elastic and 10 describing rigid registration were included. Meta-analysis showed an OR of csPCa for elastic and rigid registration of 1.45 (95% confidence interval [CI]: 1.21-1.73, p<0.0001) and 1.40 (95% CI: 1.13-1.75, p=0.002), respectively. No significant difference was seen between the subgroups (p=0.83). Pooling subgroups resulted in an OR of 1.43 (95% CI: 1.25-1.63, p<0.00001). No significant difference was identified between rigid and elastic registration for MRI-TRUS fusion-guided biopsy in the detection of csPCa; however, both techniques detected more csPCa than TRUS-guided biopsy alone. We did not identify any significant differences in prostate cancer detection between two distinct magnetic resonance

  13. Statistical ultrasonics: the influence of Robert F. Wagner

    NASA Astrophysics Data System (ADS)

    Insana, Michael F.

    2009-02-01

    An important ongoing question for higher education is how to successfully mentor the next generation of scientists and engineers. It has been my privilege to have been mentored by one of the best, Dr Robert F. Wagner and his colleagues at the CDRH/FDA during the mid 1980s. Bob introduced many of us in medical ultrasonics to statistical imaging techniques. These ideas continue to broadly influence studies on adaptive aperture management (beamforming, speckle suppression, compounding), tissue characterization (texture features, Rayleigh/Rician statistics, scatterer size and number density estimators), and fundamental questions about how limitations of the human eye-brain system for extracting information from textured images can motivate image processing. He adapted the classical techniques of signal detection theory to coherent imaging systems that, for the first time in ultrasonics, related common engineering metrics for image quality to task-based clinical performance. This talk summarizes my wonderfully-exciting three years with Bob as I watched him explore topics in statistical image analysis that formed a rational basis for many of the signal processing techniques used in commercial systems today. It is a story of an exciting time in medical ultrasonics, and of how a sparkling personality guided and motivated the development of junior scientists who flocked around him in admiration and amazement.

  14. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  15. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  16. The wavenumber algorithm for full-matrix imaging using an ultrasonic array.

    PubMed

    Hunter, Alan J; Drinkwater, Bruce W; Wilcox, Paul D

    2008-11-01

    Ultrasonic imaging using full-matrix capture, e.g., via the total focusing method (TFM), has been shown to increase angular inspection coverage and improve sensitivity to small defects in nondestructive evaluation. In this paper, we develop a Fourier-domain approach to full-matrix imaging based on the wavenumber algorithm used in synthetic aperture radar and sonar. The extension to the wavenumber algorithm for full-matrix data is described and the performance of the new algorithm compared with the TFM, which we use as a representative benchmark for the time-domain algorithms. The wavenumber algorithm provides a mathematically rigorous solution to the inverse problem for the assumed forward wave propagation model, whereas the TFM employs heuristic delay-and-sum beamforming. Consequently, the wavenumber algorithm has an improved point-spread function and provides better imagery. However, the major advantage of the wavenumber algorithm is its superior computational performance. For large arrays and images, the wavenumber algorithm is several orders of magnitude faster than the TFM. On the other hand, the key advantage of the TFM is its flexibility. The wavenumber algorithm requires a regularly sampled linear array, while the TFM can handle arbitrary imaging geometries. The TFM and the wavenumber algorithm are compared using simulated and experimental data.

  17. Topology preserving non-rigid image registration using time-varying elasticity model for MRI brain volumes.

    PubMed

    Ahmad, Sahar; Khan, Muhammad Faisal

    2015-12-01

    In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total

  19. Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor

    NASA Astrophysics Data System (ADS)

    Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso

    2018-04-01

    Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.

  20. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  1. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  2. Ultrasonic NDE and mechanical testing of fiber placement composites

    NASA Astrophysics Data System (ADS)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  3. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    NASA Astrophysics Data System (ADS)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (< 10-6), the nonlinear classical theory issued from a Taylor decomposition can explain the harmonic content. For higher strain, harmonic content becomes richer and the material exhibits more hysteretic behaviors, i.e. strain rate dependencies. Such observations have been made in the past (e.g., Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  4. Elastic and mechanical softening in boron-doped diamond

    PubMed Central

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-01-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808

  5. Elastic and mechanical softening in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.

    2017-02-01

    Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.

  6. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  7. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    PubMed

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  8. Assessing Impact of High-Dose Pitavastatin on Carotid Artery Elasticity with Speckle-Tracking Strain Imaging.

    PubMed

    Kim, Chee Hae; Wang, Shuang; Park, Jun-Bean; Jung, Keun-Hwa; Yoon, Yeonyee E; Lee, Seung-Pyo; Kim, Hyung-Kwan; Kim, Yong-Jin; Cho, Goo-Yeong; Sohn, Dae-Won

    2018-03-07

    Speckle-tracking imaging has been introduced for the precise assessment of vessel mechanics. However, there are no data on the role of this imaging tool in assessing the changes in vasculature with statin therapy, which is known to enhance vascular elasticity. This study was a prospective study including 48 statin-naïve patients (age, 58.2±8.4 years; 29.2% male) with hypercholesterolemia. Circumferential carotid artery strain (CAS) and stiffness index (β 2 ) were measured using speckle-tracking imaging before and after 3 months of high-dose pitavastatin treatment (4 mg daily). For the comparison, we measured conventional carotid elasticity parameters and intima-media thickness using B-mode ultrasound at the same time points. Compared with baseline, there was significant improvement in circumferential CAS (2.98%±1.18% to 3.40%±1.43%, p=0.008) and β 2 (0.19±0.07 to 0.17±0.08, p=0.047) after statin therapy. Contrariwise, there were no significant changes in all conventional carotid elasticity metrics and intima-media thickness. When stratifying patients into two subgroups by 10 year atherosclerotic cardiovascular disease (ASCVD) risk, speckle-tracking-derived circumferential CAS and β 2 improved significantly only in patients with ASCVD risk ≥ 7.5%. Short-term treatment with high-dose pitavastatin improved carotid artery elasticity measured by speckle-tracking method, but not conventional parameters by B-mode ultrasound. Speckle-tracking-based measurements may allow the early noninvasive assessment of statin effects on vascular function in hypercholesterolemic patients.

  9. Ultrasound Elasticity Imaging Predicts Therapeutic Outcomes of Patients With Crohn's Disease Treated With Anti-Tumour Necrosis Factor Antibodies.

    PubMed

    Orlando, Stefania; Fraquelli, Mirella; Coletta, Marina; Branchi, Federica; Magarotto, Andrea; Conti, Clara Benedetta; Mazza, Stefano; Conte, Dario; Basilisco, Guido; Caprioli, Flavio

    2018-01-05

    Ultrasound elasticity imaging is a non-invasive technique developed to evaluate fibrosis. Measuring tissue strain by ultrasound elasticity imaging can reliably detect severe ileal fibrosis in patients with Crohn's disease [CD]. We have hypothesised that a more severe range of fibrosis might influence the therapeutic response to anti-tumour necrosis factor [TNF] treatment. The aim of this study was to assess the ability of ultrasound elasticity imaging to predict the therapeutic outcome for CD patients. Consecutive patients with ileal/ileocolonic CD, starting anti-TNF treatment, were enrolled for the study. These patients underwent bowel ultrasound and ultrasound elasticity imaging at baseline and at 14 and 52 weeks after anti-TNF treatment. Bowel wall stiffness was quantified by calculating the strain ratio between the mesenteric tissue and the bowel wall. Strain ratio ≥ 2 was used to identify severe ileal fibrosis. Transmural healing at 14 and 52 weeks was defined as bowel wall thickness ≤ 3 mm. Thirty patients with CD were enrolled. Five patients underwent surgery for bowel obstruction. The frequency of surgeries was significantly greater in patients with a strain ratio ≥ 2 at baseline [p = 0.003]. A significant reduction of the bowel thickness was observed after 14 and 52 weeks of anti-TNF treatment [p < 0.005]. A significant inverse correlation was observed between the strain ratio values at baseline and the thickness variations following anti-TNF therapy [p = 0.007]; 27% of patients achieved transmural healing at 14 weeks. The baseline strain ratio was significantly lower in patients with transmural healing [p < 0.05]. This study shows that ultrasound elasticity imaging predicts therapeutic outcomes for CD patients treated with anti-TNF. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  10. Carotid lesion characterization by synthetic-aperture-imaging techniques with multioffset ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina

    1992-06-01

    This paper explores the applications of a high-resolution imaging technique to vascular ultrasound diagnosis, with emphasis on investigation of the carotid vessel. With the present diagnostic systems, it is difficult to measure quantitatively the extension of the lesions and to characterize the tissue; quantitative images require enough spatial resolution and dynamic to reveal fine high-risk pathologies. A broadband synthetic aperture technique with multi-offset probes is developed to improve the lesion characterization by the evaluation of local scattering parameters. This technique works with weak scatterers embedded in a constant velocity medium, large aperture, and isotropic sources and receivers. The features of this technique are: axial and lateral spatial resolution of the order of the wavelength, high dynamic range, quantitative measurements of the size and scattering intensity of the inhomogeneities, and capabilities of investigation of inclined layer. The evaluation of the performances in real condition is carried out by a software simulator in which different experimental situations can be reproduced. Images of simulated anatomic test-objects are presented. The images are obtained with an inversion process of the synthesized ultrasonic signals, collected on the linear aperture by a limited number of finite size transducers.

  11. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed

  12. Image-based overlay measurement using subsurface ultrasonic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Tamer, M. S.; van der Lans, M. J.; Sadeghian, H.

    2018-03-01

    Image Based Overlay (IBO) measurement is one of the most common techniques used in Integrated Circuit (IC) manufacturing to extract the overlay error values. The overlay error is measured using dedicated overlay targets which are optimized to increase the accuracy and the resolution, but these features are much larger than the IC feature size. IBO measurements are realized on the dedicated targets instead of product features, because the current overlay metrology solutions, mainly based on optics, cannot provide sufficient resolution on product features. However, considering the fact that the overlay error tolerance is approaching 2 nm, the overlay error measurement on product features becomes a need for the industry. For sub-nanometer resolution metrology, Scanning Probe Microscopy (SPM) is widely used, though at the cost of very low throughput. The semiconductor industry is interested in non-destructive imaging of buried structures under one or more layers for the application of overlay and wafer alignment, specifically through optically opaque media. Recently an SPM technique has been developed for imaging subsurface features which can be potentially considered as a solution for overlay metrology. In this paper we present the use of Subsurface Ultrasonic Resonance Force Microscopy (SSURFM) used for IBO measurement. We used SSURFM for imaging the most commonly used overlay targets on a silicon substrate and photoresist. As a proof of concept we have imaged surface and subsurface structures simultaneously. The surface and subsurface features of the overlay targets are fabricated with programmed overlay errors of +/-40 nm, +/-20 nm, and 0 nm. The top layer thickness changes between 30 nm and 80 nm. Using SSURFM the surface and subsurface features were successfully imaged and the overlay errors were extracted, via a rudimentary image processing algorithm. The measurement results are in agreement with the nominal values of the programmed overlay errors.

  13. An ultrasonic technique for measuring stress in fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, K. J.; Day, P.; Byron, D.

    1999-12-02

    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less

  14. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  15. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging.

    PubMed

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tu, Zhui; Li, Lang; Tong, Haipeng; Xu, Yang; Li, Rui; Fang, Kejing

    2015-01-01

    To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen) nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The "targeted" nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration) were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45), and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles.

  16. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging

    PubMed Central

    Guo, Yanli; Tu, Zhui; Li, Lang; Tong, Haipeng; Xu, Yang; Li, Rui; Fang, Kejing

    2015-01-01

    To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen) nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The “targeted” nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration) were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45), and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles. PMID:26111008

  17. Thermo-elastic optical coherence tomography.

    PubMed

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  18. In silico simulation of liver crack detection using ultrasonic shear wave imaging.

    PubMed

    Nie, Erwei; Yu, Jiao; Dutta, Debaditya; Zhu, Yanying

    2018-05-16

    Liver trauma is an important source of morbidity and mortality worldwide. A timely detection and precise evaluation of traumatic liver injury and the bleeding site is necessary. There is a need to develop better imaging modalities of hepatic injuries to increase the sensitivity of ultrasonic imaging techniques for sites of hemorrhage caused by cracks. In this study, we conduct an in silico simulation of liver crack detection and delineation using an ultrasonic shear wave imaging (USWI) based method. We simulate the generation and propagation of the shear wave in a liver tissue medium having a crack using COMSOL. Ultrasound radio frequency (RF) signal synthesis and the two-dimensional speckle tracking algorithm are applied to simulate USWI in a medium with randomly distributed scatterers. Crack detection is performed using the directional filter and the edge detection algorithm rather than the conventional inversion algorithm. Cracks with varied sizes and locations are studied with our method and the crack localization results are compared with the given crack. Our pilot simulation study shows that, by using USWI combined with a directional filter cum edge detection technique, the near-end edge of the crack can be detected in all the three cracks that we studied. The detection errors are within 5%. For a crack of 1.6 mm thickness, little shear wave can pass through it and the far-end edge of the crack cannot be detected. The detected crack lengths using USWI are all slightly shorter than the actual crack length. The robustness of our method in detecting a straight crack, a curved crack and a subtle crack of 0.5 mm thickness is demonstrated. In this paper, we simulate the use of a USWI based method for the detection and delineation of the crack in liver. The in silico simulation helps to improve understanding and interpretation of USWI measurements in a physical scattered liver medium with a crack. This pilot study provides a basis for improved insights in future

  19. Ultrasonic bubbles in medicine: influence of the shell.

    PubMed

    Postema, Michiel; Schmitz, Georg

    2007-04-01

    Ultrasound contrast agents consist of microscopically small bubbles encapsulated by an elastic shell. These microbubbles oscillate upon ultrasound insonification, and demonstrate highly nonlinear behavior, ameliorating their detectability. (Potential) medical applications involving the ultrasonic disruption of contrast agent microbubble shells include release-burst imaging, localized drug delivery, and noninvasive blood pressure measurement. To develop and enhance these techniques, predicting the cracking behavior of ultrasound-insonified encapsulated microbubbles has been of importance. In this paper, we explore microbubble behavior in an ultrasound field, with special attention to the influence of the bubble shell. A bubble in a sound field can be considered a forced damped harmonic oscillator. For encapsulated microbubbles, the presence of a shell has to be taken into account. In models, an extra damping parameter and a shell stiffness parameter have been included, assuming that Hooke's Law holds for the bubble shell. At high acoustic amplitudes, disruptive phenomena have been observed, such as microbubble fragmentation and ultrasonic cracking. We analyzed the occurrence of ultrasound contrast agent fragmentation, by simulating the oscillating behavior of encapsulated microbubbles with various sizes in a harmonic acoustic field. Fragmentation occurs exclusively during the collapse phase and occurs if the kinetic energy of the collapsing microbubble is greater than the instantaneous bubble surface energy, provided that surface instabilities have grown big enough to allow for break-up. From our simulations it follows that the Blake critical radius is not a good approximation for a fragmentation threshold. We demonstrated how the phase angle differences between a damped radially oscillating bubble and an incident sound field depend on shell parameters.

  20. Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.

    PubMed

    Sagers, Jason D; Haberman, Michael R; Wilson, Preston S

    2013-09-01

    Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.

  1. Ultrasonic transmission at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wadley, Haydn N. G.; Queheillalt, Douglas T.; Lu, Yichi

    1996-11-01

    New non-invasive solid-liquid interface sensing technologies are a key element in the development of improved Bridman growth techniques for synthesizing single crystal semiconductor materials. Laser generated and optically detect ultrasonic techniques have the potential to satisfy this need. Using an anisotropic 3D ray tracing methodology combined with elastic constant data measured near the melting point, ultrasonic propagation in cylindrical single crystal bodies containing either a convex, flat, or concave solid-liquid interface has been simulated. Ray paths, wavefronts and the time-of-flight (TOF) of rays that travel from a source to an arbitrarily positioned receiver have all been calculated. Experimentally measured TOF data have been collected using laser generated, optically detected ultrasound on model systems with independently known interface shapes. Both numerically simulated and experimental data have shown that the solidification region can be easily identified from transmission TOF measurements because the velocity of the liquid is much smaller than that of the solid. Since convex and concave solid-liquid interfaces result in distinctively different TOF data profiles, the interface shape can also be readily determined from the TOF data. When TOF data collected in the diametral plane is used in conjunction with a nonlinear least squares algorithm, the interface geometry has been successfully reconstructed and ultrasonic velocities of both the solid and liquid obtained with reconstruction errors less than 5 percent.

  2. A new method for the visualization and quantification of internal skin elasticity by ultrasound imaging.

    PubMed

    Osanai, Osamu; Ohtsuka, Mayumi; Hotta, Mitsuyuki; Kitaharai, Takashi; Takema, Yoshinori

    2011-08-01

    Skin elasticity has been assessed previously only in the surface layer. We developed a new method that uses tissue strain imaging (TSI) technology, and the aim of this study was to test this new method to assess internal skin elasticity. Using a pressure device with a 12 MHz ultrasound transducer, constant and linear compressions were applied to the cheek skin of 35 volunteers (aged: 20-60 years). The elasticity of each layer (dermis, subcutaneous and muscle) was measured and analyzed using the TSI application software incorporated into the Toshiba Aplio(™) XV ultrasound system. A skin tissue-equivalent phantom, which is a block of material with the acoustic velocity (1530 m/s) of human skin, was collaboratively developed by OST Inc. This phantom was placed between the skin and the transducer as a reference material. Skin elasticity was clearly visualized and quantified in each layer of the skin. Age-dependent decreases in elasticity were determined in all layers of the skin. Among the three internal skin layers, the highest elasticity was determined in the subcutaneous layer followed by the muscle layer. These findings support the validity and sensitivity of the TSI method to assess the elasticity of various layers of skin. © 2011 John Wiley & Sons A/S.

  3. Ultrasonic model and system for measurement of corneal biomechanical properties and validation on phantoms.

    PubMed

    Liu, Jun; He, Xiaoyin; Pan, Xueliang; Roberts, Cynthia J

    2007-01-01

    Non-invasive measurement of biomechanical properties of corneas may provide important information for ocular disease management and therapeutic procedures. An ultrasonic non-destructive evaluation method with a wave propagation model was developed to determine corneal biomechanical properties in vivo. In this study, we tested the feasibility of the approach in differentiating the mechanical properties of soft contact lenses as corneal phantoms. Three material types of soft contact lenses (six samples in each group) were measured using a broadband ultrasound transducer. The ultrasonic reflections from the contact lenses were recorded by a 500MHz/8-bit digitizer, and displayed and processed by a PC. A reference signal was recorded to compute the normalized power spectra using Fast Fourier Transformation. An inverse algorithm based on least-squares minimization was used to reconstruct three parameters of the contact lenses: density, thickness, and elastic constants lambda+2micro. The thickness of each sample was verified using an electronic thickness gauge, and the averaged density for each type of lenses was verified using Archimedes' principle and manufacturer's report. Our results demonstrated that the ultrasonic system was able to differentiate the elastic properties of the three types of the soft contact lenses with statistical significance (P-value<0.001). The reconstructed thicknesses and densities agreed well with the independent measurements. Our studies on corneal phantoms indicated that the ultrasonic system was sensitive and accurate in measuring the material properties of cornea-like structures. It is important to optimize the system for in vivo measurements.

  4. Comparison of Static and Dynamic Elastic Modules of Different Strength Concretes

    NASA Astrophysics Data System (ADS)

    Uyanık, Osman; Sabbaǧ, Nevbahar

    2016-04-01

    In this study, the static and dynamic elastic (Young) modules of concrete with different strength was intended to compare. For this purpose 150mm dimensions 9 for each design cubic samples prepared and they were subjected to water cure during 28 days. After Seismic Ultrasonic P and S wave travel time measurements of samples, P and S wave velocities and taking advantage of elasticity theory the dynamic elastic modules were calculated. Concrete strength was obtained from the uniaxial compression tests in order to calculate the static elastic modules of the samples. The static elastic modulus is calculated by using the empirical relationships used in international standards. The obtained static and dynamic elastic modules have been associated. A curve was obtained from this association result that approximately similar to the stress-strain curve of obtaining at failure criterion of the sample. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete Strength, P and S wave Velocities, Static, Dynamic, Young Modules

  5. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Habib, Anowarul; Melandsø, Frank

    2017-07-01

    High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.

  6. MIMO nonlinear ultrasonic tomography by propagation and backpropagation method.

    PubMed

    Dong, Chengdong; Jin, Yuanwei

    2013-03-01

    This paper develops a fast ultrasonic tomographic imaging method in a multiple-input multiple-output (MIMO) configuration using the propagation and backpropagation (PBP) method. By this method, ultrasonic excitation signals from multiple sources are transmitted simultaneously to probe the objects immersed in the medium. The scattering signals are recorded by multiple receivers. Utilizing the nonlinear ultrasonic wave propagation equation and the received time domain scattered signals, the objects are to be reconstructed iteratively in three steps. First, the propagation step calculates the predicted acoustic potential data at the receivers using an initial guess. Second, the difference signal between the predicted value and the measured data is calculated. Third, the backpropagation step computes updated acoustical potential data by backpropagating the difference signal to the same medium computationally. Unlike the conventional PBP method for tomographic imaging where each source takes turns to excite the acoustical field until all the sources are used, the developed MIMO-PBP method achieves faster image reconstruction by utilizing multiple source simultaneous excitation. Furthermore, we develop an orthogonal waveform signaling method using a waveform delay scheme to reduce the impact of speckle patterns in the reconstructed images. By numerical experiments we demonstrate that the proposed MIMO-PBP tomographic imaging method results in faster convergence and achieves superior imaging quality.

  7. Zernike ultrasonic tomography for fluid velocity imaging based on pipeline intrusive time-of-flight measurements.

    PubMed

    Besic, Nikola; Vasile, Gabriel; Anghel, Andrei; Petrut, Teodor-Ion; Ioana, Cornel; Stankovic, Srdjan; Girard, Alexandre; d'Urso, Guy

    2014-11-01

    In this paper, we propose a novel ultrasonic tomography method for pipeline flow field imaging, based on the Zernike polynomial series. Having intrusive multipath time-offlight ultrasonic measurements (difference in flight time and speed of ultrasound) at the input, we provide at the output tomograms of the fluid velocity components (axial, radial, and orthoradial velocity). Principally, by representing these velocities as Zernike polynomial series, we reduce the tomography problem to an ill-posed problem of finding the coefficients of the series, relying on the acquired ultrasonic measurements. Thereupon, this problem is treated by applying and comparing Tikhonov regularization and quadratically constrained ℓ1 minimization. To enhance the comparative analysis, we additionally introduce sparsity, by employing SVD-based filtering in selecting Zernike polynomials which are to be included in the series. The first approach-Tikhonov regularization without filtering, is used because it is the most suitable method. The performances are quantitatively tested by considering a residual norm and by estimating the flow using the axial velocity tomogram. Finally, the obtained results show the relative residual norm and the error in flow estimation, respectively, ~0.3% and ~1.6% for the less turbulent flow and ~0.5% and ~1.8% for the turbulent flow. Additionally, a qualitative validation is performed by proximate matching of the derived tomograms with a flow physical model.

  8. Preliminary study of ultrasonic structural quality control of Swiss-type cheese.

    PubMed

    Eskelinen, J J; Alavuotunki, A P; Haeggström, E; Alatossava, T

    2007-09-01

    There is demand for a new nondestructive cheese-structure analysis method for Swiss-type cheese. Such a method would provide the cheese-making industry the means to enhance process control and quality assurance. This paper presents a feasibility study on ultrasonic monitoring of the structural quality of Swiss cheese by using a single-transducer 2-MHz longitudinal mode pulse-echo setup. A volumetric ultrasonic image of a cheese sample featuring gas holes (cheese-eyes) and defects (cracks) in the scan area is presented. The image is compared with an optical reference image constructed from dissection images of the same sample. The results show that the ultrasonic method is capable of monitoring the gas-solid structure of the cheese during the ripening process. Moreover, the method can be used to detect and to characterize cheese-eyes and cracks in ripened cheese. Industrial application demands were taken into account when conducting the measurements.

  9. An initial investigation into pseudo-coloring for ultrasonic NDE of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Brett, C. R.; Lowe, M. J. S.

    2015-03-01

    Ultrasonic imaging for NDE is limited by the challenge of detection, which relies on discriminating between objects based on their intensity. Whilst this works well in ultrasonically transparent media, in polycrystalline materials however, a host where scatterers are abundant, this is no longer the case. In such media, intensity information, as a means of interpreting an image, is compromised by the background of coherent microstructural noise. In a bid to improve this, it is suggested here to use pseudo-coloring to consider frequency information and distinguish objects based on their emitted frequency spectra. This approach exploits the frequency diversity; namely the difference in frequency dependence of the noise stemming from the material's microstructure, or backscatter, and that exhibited by the targets of interest: defects. Whereas established frequency diversity techniques exploit this additional information to reconvert it into amplitude data, color enables encoding frequency and intensity information independently. This article serves as an initial exploration of pseudo-coloring ultrasonic images for ultrasonic NDE of polycrystalline materials.

  10. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  11. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  12. Coded excitation ultrasonic needle tracking: An in vivo study.

    PubMed

    Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E

    2016-07-01

    Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded

  13. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  14. Sex structure and potential female fecundity in a Epinephelus guttatus spawning aggregation: Applying ultrasonic imaging

    USGS Publications Warehouse

    Whiteman, E.A.; Jennings, C.A.; Nemeth, R.S.

    2005-01-01

    Ultrasonic imaging was used to determine the spawning population structure and develop a fecundity estimation model for a red hind Epinephelus guttatus spawning aggregation within the Red Hind Bank Marine Conservation District, St Thomas, U.S.V.I. The spawning population showed considerable within-month and between-month variation in population size- and sex-structure. In the spawning season studied, males appeared to arrive at the aggregation site first in December although females represented a large proportion of the catch early in the aggregation periods in January and February. Spawning occurred in January and February, and size frequency distributions suggested that an influx of small females occurred during the second spawning month. An overall sex ratio of 2.9:1 (female:male) was recorded for the whole reproductive season. The sex ratio, however, differed between months and days within months. More females per male were recorded in January than in February when the sex ratio was male biased. Fecundity estimates for this species predicted very high potential fecundities (2.4 ?? 105-2.4 ?? 106 oocytes). The ultrasound model also illustrated a rapid increase in potential female fecundity with total length. Ultrasonic imaging may prove a valuable tool in population assessment for many species and locations in which invasive fishing methods are clearly undesirable. ?? 2005 The Fisheries Society of the British Isles.

  15. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  16. Simultaneous Concentration and Velocity Maps in Particle Suspensions under Shear from Rheo-Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Saint-Michel, Brice; Bodiguel, Hugues; Meeker, Steven; Manneville, Sébastien

    2017-07-01

    We extend a previously developed ultrafast ultrasonic technique [T. Gallot et al., Rev. Sci. Instrum. 84, 045107 (2013), 10.1063/1.4801462] to concentration-field measurements in non-Brownian particle suspensions under shear. The technique provides access to time-resolved concentration maps within the gap of a Taylor-Couette cell simultaneously to local velocity measurements and standard rheological characterization. Benchmark experiments in homogeneous particle suspensions are used to calibrate the system. We then image heterogeneous concentration fields that result from centrifugation effects, from the classical Taylor-Couette instability, and from sedimentation or shear-induced resuspension.

  17. Ultrasonic Fingerprint Sensor With Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry.

    PubMed

    Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A

    2017-09-01

    In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.

  18. High Resolution Anatomic and Elastographic Transrectal Ultrasound for Improved Diagnosis of Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    Pesavento , A., and A. Lorenz., Real time strain imaging and in vivo applications in prostate cancer. In IEEE Ultrasonics Symposium, l2, pp.1251-1253...hardening of tissue to increase contrast in elasticity imaging. In IEEE Ultrasonics Symposium. 2: pp. 1833-1836, 2000. [6] Pesavento A, L.A., Ermert H

  19. Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey.

    PubMed

    Wang, Qian; Dechow, Paul C

    2006-11-01

    Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling. (c) 2006 Wiley-Liss, Inc.

  20. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy

    PubMed Central

    Ma, Teng; Zhang, Xiangyang; Chiu, Chi Tat; Chen, Ruimin; Kirk Shung, K.; Zhou, Qifa; Jiao, Shuliang

    2014-01-01

    Abstract. Photoacoustic ophthalmoscopy (PAOM) is a high-resolution in vivo imaging modality that is capable of providing specific optical absorption information for the retina. A high-frequency ultrasonic transducer is one of the key components in PAOM, which is in contact with the eyelid through coupling gel during imaging. The ultrasonic transducer plays a crucial role in determining the image quality affected by parameters such as spatial resolution, signal-to-noise ratio, and field of view. In this paper, we present the results of a systematic study on a high-frequency ultrasonic transducer design for PAOM. The design includes piezoelectric material selection, frequency selection, and the fabrication process. Transducers of various designs were successfully applied for capturing images of biological samples in vivo. The performances of these designs are compared and evaluated. PMID:24441942

  1. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy.

    PubMed

    Ma, Teng; Zhang, Xiangyang; Chiu, Chi Tat; Chen, Ruimin; Kirk Shung, K; Zhou, Qifa; Jiao, Shuliang

    2014-01-01

    Photoacoustic ophthalmoscopy (PAOM) is a high-resolution in vivo imaging modality that is capable of providing specific optical absorption information for the retina. A high-frequency ultrasonic transducer is one of the key components in PAOM, which is in contact with the eyelid through coupling gel during imaging. The ultrasonic transducer plays a crucial role in determining the image quality affected by parameters such as spatial resolution, signal-to-noise ratio, and field of view. In this paper, we present the results of a systematic study on a high-frequency ultrasonic transducer design for PAOM. The design includes piezoelectric material selection, frequency selection, and the fabrication process. Transducers of various designs were successfully applied for capturing images of biological samples in vivo. The performances of these designs are compared and evaluated.

  2. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  3. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Laser ultrasonic evaluation of human dental enamel during remineralization treatment

    PubMed Central

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Swain, Michael; Law, Susan; Xue, Jing

    2011-01-01

    In this work a non-destructive laser ultrasonic technique is used to quantitatively evaluate the progressive change in the elastic response of human dental enamel during a remineralization treatment. The condition of the enamel was measured during two weeks treatment using laser generated and detected surface acoustic waves in sound and demineralized enamel. Analysis of the acoustic velocity dispersion confirms the efficacy, as well as illuminating the progress, of the treatment. PMID:21339879

  5. Analytical reverse time migration: An innovation in imaging of infrastructures using ultrasonic shear waves.

    PubMed

    Asadollahi, Aziz; Khazanovich, Lev

    2018-04-11

    The emergence of ultrasonic dry point contact (DPC) transducers that emit horizontal shear waves has enabled efficient collection of high-quality data in the context of a nondestructive evaluation of concrete structures. This offers an opportunity to improve the quality of evaluation by adapting advanced imaging techniques. Reverse time migration (RTM) is a simulation-based reconstruction technique that offers advantages over conventional methods, such as the synthetic aperture focusing technique. RTM is capable of imaging boundaries and interfaces with steep slopes and the bottom boundaries of inclusions and defects. However, this imaging technique requires a massive amount of memory and its computation cost is high. In this study, both bottlenecks of the RTM are resolved when shear transducers are used for data acquisition. An analytical approach was developed to obtain the source and receiver wavefields needed for imaging using reverse time migration. It is shown that the proposed analytical approach not only eliminates the high memory demand, but also drastically reduces the computation time from days to minutes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator

    NASA Astrophysics Data System (ADS)

    Li, Jinbang; Liu, Shuo; Zhou, Ningning; Yu, Aibing; Cui, Yuguo; Chen, Pengfei

    2018-01-01

    This study proposes a traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator. The stator is composed of a metal ring and polymer-matrix teeth. The resonance frequency of the stator with different structural dimensions was analyzed by the finite element method. From the results, the structure parameters of the metal ring were obtained. The effects of the density and elastic modulus of the tooth material on the resonance frequency were also investigated. A viscoelastic contact model was built to explore the contact state between the compound stator and rotor. Considering the density, elastic modulus and tribological properties, the tooth material was prepared by a molding process. The load-torque and efficiency-torque characteristics of the motor with different tooth thicknesses were measured under different preloads using a preload controlled ultrasonic motor test device. The maximum no-load speed of the motor was about 85 r min-1 with a tooth thickness of 3 mm and a preload of 100 N, the maximum stall torque of the motor was about 0.5 N · m with a tooth thickness of 4 mm and a preload of 125 N, and a maximum efficiency of about 5.5% occurred with a tooth thickness of 4 mm, a preload of 100 N and a torque of 0.3 N · m. The main merits of the proposed ultrasonic motor are low cost, light weight, high processing efficiency and long life.

  7. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    PubMed Central

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  8. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  9. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  10. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    PubMed

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. System and method for ultrasonic tomography

    DOEpatents

    Haddad, Waleed Sami

    2002-01-01

    A system and method for doing both transmission mode and reflection mode three-dimensional ultrasonic imagining. The multimode imaging capability may be used to provide enhanced detectability of cancer tumors within human breast, however, similar imaging systems are applicable to a number of other medical problems as well as a variety of non-medical problems in non-destructive evaluation (NDE).

  12. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization.

    PubMed

    Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich

    2017-01-01

    A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials

  13. Elastic fibres in the vesicourethral junction and urethra of the guinea pig: quantification with computerised image analysis

    PubMed Central

    DASS, NARINDER; McMURRAY, GORDON; BRADING, ALISON F.

    1999-01-01

    Elastic fibres, which are intimately associated with collagen, a major component of the urethra, have been assumed to contribute to the resting urethral closure pressure. The Miller stain for elastin was used to demonstrate elastic fibres in cryostat sections of guinea pig bladder base, vesicourethral junction (VUJ) and urethra. Computerised image analysis was employed to objectively quantify these fibres. Both male and female guinea pigs showed significantly greater amounts of circularly disposed elastic fibres in the VUJ than in the other 2 regions examined. This particular disposition of fibres may be responsible for imparting resiliency and plasticity to the VUJ, allowing it to distend and recoil repeatedly in response to urine outflow. Furthermore, the elastic fibres may be partly responsible for the passive occlusive force in this region. Elastic fibres in the distal urethra were not quantified because of their relative paucity. Sagittal sections of the urethra revealed a mass of longitudinally arranged elastic fibres localised almost exclusively within the mucosa, submucosa and longitudinal smooth muscle layer. Functionally, this arrangement may exist to facilitate urethral length changes that occur in micturition. PMID:10580860

  14. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  15. Air-Coupled Ultrasonic Measurements in Composites

    NASA Astrophysics Data System (ADS)

    Kommareddy, V.; Peters, J. J.; Dayal, V.; Hsu, D. K.

    2004-02-01

    Air-coupled ultrasound is a non-contact technique and has clear advantages over water-coupled testing. Research of air-coupled ultrasonics, especially using capacitance and micromachined transducers, has been extensively reported in the literature. This paper reports our experience of applying piezoceramic air-coupled transducers for nondestructive evaluation of composites. The beam profiles of air-coupled piezoceramic transducers, with and without apodization, were mapped out. The transmission of air-coupled ultrasonic energy through composite plates of different thickness was measured experimentally; model calculation of the transmission coefficient, taking into account the frequency bandwidth of the transducer, agreed with the measurement results. The occurrence of diffraction phenomenon ("Poisson bright spot") while imaging flaws in composite laminates was investigated. The resolution of scanned images obtained with air-coupled transducers was investigated for different frequency, focusing, and apodization conditions.

  16. Sparse signal representation and its applications in ultrasonic NDE.

    PubMed

    Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M

    2012-03-01

    Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  18. Ultrasonic measurements of breast viscoelasticity.

    PubMed

    Sridhar, Mallika; Insana, Michael F

    2007-12-01

    In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1-20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10(-2) < or = omega < or = 10(0) rad/s (0.0016-0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2 +/- 0.8 and 42.0 +/- 28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging.

  19. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  20. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  1. Effect of pathological heterogeneity on shear wave elasticity imaging in the staging of deep venous thrombosis

    PubMed Central

    Liu, Xiaona; Li, Na; Wen, Chaoyang

    2017-01-01

    Background We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. Methods A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. Results DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Conclusions Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of

  2. Effect of pathological heterogeneity on shear wave elasticity imaging in the staging of deep venous thrombosis.

    PubMed

    Liu, Xiaona; Li, Na; Wen, Chaoyang

    2017-01-01

    We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus may be

  3. Structural investigations of bismuth lead borosilicate glasses under the influence of gamma irradiation through ultrasonic studies

    NASA Astrophysics Data System (ADS)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Laopaiboon, Raewat

    2012-04-01

    The ultrasonic velocity measurements for different compositions of irradiated bismuth lead borosilicate glasses xBi2O3-(50-x)PbO-20B2O3-30SiO2 (x=2, 4, 6, 8, and 10 mol.%) were performed at room temperature using pulse-echo technique. Densities of glass samples were measured by Archimedes' principle using n-hexane as the immersion liquid. The results from the studies show that ultrasonic velocity, elastic moduli, Poisson's ratio, microhardness, and the Debye temperature increase with increasing bismuth oxide content and increasing gamma-radiation dose (3-12 Gy).

  4. Development and Implementation of an Ultrasonic Method to Characterize Acoustic and Mechanical Fingernail Properties

    NASA Astrophysics Data System (ADS)

    Vacarescu, Rares Anthony

    The human fingernail is a vital organ used by humans on a daily basis and can provide an immense supply of information based on the biological feedback of the body. By studying the quantitative mechanical and acoustic properties of fingernails, a better understanding of the scarcely-investigated field of ungual research can be explored. Investigating fingernail properties with the use of pulse-echo ultrasound is the aim of this thesis. This thesis involves the application of a developed portable ultrasonic device in a hospital-based data collection and the advancement of ultrasonic methodology to include the calculation of acoustic impedance, density and elasticity. The results of the thesis show that the reflectance method can be utilized to determine fingernail properties with a maximum 17% deviation from literature. Repeatability of measurements fell within a 95% confidence interval. Thus, the ultrasonic reflectance method was validated and may have potential clinical and cosmetic applications.

  5. On the origin of nonlinear elasticity in disparate rocks

    DOE PAGES

    Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; ...

    2015-03-31

    Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10 -7 < ϵ < 10 -5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis usingmore » model independent statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.« less

  6. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  7. Ultrafast imaging of cell elasticity with optical microelastography

    PubMed Central

    Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan

    2018-01-01

    Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488

  8. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  9. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  10. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed

  11. A new ultrasonic transducer for improved contrast nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Bouakaz, Ayache; ten Cate, Folkert; de Jong, Nico

    2004-08-01

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  12. Least-squares reverse time migration in elastic media

    NASA Astrophysics Data System (ADS)

    Ren, Zhiming; Liu, Yang; Sen, Mrinal K.

    2017-02-01

    Elastic reverse time migration (RTM) can yield accurate subsurface information (e.g. PP and PS reflectivity) by imaging the multicomponent seismic data. However, the existing RTM methods are still insufficient to provide satisfactory results because of the finite recording aperture, limited bandwidth and imperfect illumination. Besides, the P- and S-wave separation and the polarity reversal correction are indispensable in conventional elastic RTM. Here, we propose an iterative elastic least-squares RTM (LSRTM) method, in which the imaging accuracy is improved gradually with iteration. We first use the Born approximation to formulate the elastic de-migration operator, and employ the Lagrange multiplier method to derive the adjoint equations and gradients with respect to reflectivity. Then, an efficient inversion workflow (only four forward computations needed in each iteration) is introduced to update the reflectivity. Synthetic and field data examples reveal that the proposed LSRTM method can obtain higher-quality images than the conventional elastic RTM. We also analyse the influence of model parametrizations and misfit functions in elastic LSRTM. We observe that Lamé parameters, velocity and impedance parametrizations have similar and plausible migration results when the structures of different models are correlated. For an uncorrelated subsurface model, velocity and impedance parametrizations produce fewer artefacts caused by parameter crosstalk than the Lamé coefficient parametrization. Correlation- and convolution-type misfit functions are effective when amplitude errors are involved and the source wavelet is unknown, respectively. Finally, we discuss the dependence of elastic LSRTM on migration velocities and its antinoise ability. Imaging results determine that the new elastic LSRTM method performs well as long as the low-frequency components of migration velocities are correct. The quality of images of elastic LSRTM degrades with increasing noise.

  13. Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2013-11-01

    Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24mm·s-1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.

  14. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  15. Dental hard tissue characterization using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  16. Ultrasound elasticity imaging of human posterior tibial tendon

    NASA Astrophysics Data System (ADS)

    Gao, Liang

    Posterior tibial tendon dysfunction (PTTD) is a common degenerative condition leading to a severe impairment of gait. There is currently no effective method to determine whether a patient with advanced PTTD would benefit from several months of bracing and physical therapy or ultimately require surgery. Tendon degeneration is closely associated with irreversible degradation of its collagen structure, leading to changes to its mechanical properties. If these properties could be monitored in vivo, it could be used to quantify the severity of tendonosis and help determine the appropriate treatment. Ultrasound elasticity imaging (UEI) is a real-time, noninvasive technique to objectively measure mechanical properties in soft tissue. It consists of acquiring a sequence of ultrasound frames and applying speckle tracking to estimate displacement and strain at each pixel. The goals of my dissertation were to 1) use acoustic simulations to investigate the performance of UEI during tendon deformation with different geometries; 2) develop and validate UEI as a potentially noninvasive technique for quantifying tendon mechanical properties in human cadaver experiments; 3) design a platform for UEI to measure mechanical properties of the PTT in vivo and determine whether there are detectable and quantifiable differences between healthy and diseased tendons. First, ultrasound simulations of tendon deformation were performed using an acoustic modeling program. The effects of different tendon geometries (cylinder and curved cylinder) on the performance of UEI were investigated. Modeling results indicated that UEI accurately estimated the strain in the cylinder geometry, but underestimated in the curved cylinder. The simulation also predicted that the out-of-the-plane motion of the PTT would cause a non-uniform strain pattern within incompressible homogeneous isotropic material. However, to average within a small region of interest determined by principal component analysis (PCA

  17. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  18. Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.

    PubMed

    Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John

    2010-01-01

    Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.

  19. Elastic Properties of Synthetic Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C

    NASA Astrophysics Data System (ADS)

    Gwanmesia, G. D.; Zhang, J.; Li, B.; Darling, K.; Kung, J.; Neuville, D.; Raterron, P.; Sullivan, S.; Liebermann, R. C.

    2003-04-01

    We have measured the elastic wave velocities of polycrystalline pyrope (Mg_3Al_2Si_3O12) to 9 GPa and 1000^oC by ultrasonic interferometry, combined with in-situ synchrotron x-ray diffraction and imaging techniques. Fine-grained polycrystalline specimens (99.5% of theoretical density) were hot-pressed from a homogeneous glass starting material in the USSA-2000 apparatus at Stony Brook; the physical properties of the recovered specimens were characterized with density measurements, x-ray diffraction and transmission electron microscopy. Bench-top elastic wave velocities were in excellent agreement with the isotropic averages calculated from single-crystal elastic moduli of Leitner et al. (1980) by the Hashin-Shtrikman method. Travel times of acoustic compressional (P) and shear (S) waves, specimen lengths and PVT equations of state for the specimen and a NaCl standard were measured to 9 GPa and 1000^oC in a DIA-type high pressure apparatus (SAM-85), installed on the superconducting wiggler beamline (X17B) at the National Synchrotron Light Source of the Brookhaven National Laboratory. These data enabled us to determine the pressure and temperature derivatives of the elastic wave velocities and moduli for isotropic pyrope. We compare our new values with those of previous investigators and discuss the implications of these data for interpreting the seismic velocity gradients in the transition zone of the Earth's mantle.

  20. Effective-medium theory of elastic waves in random networks of rods.

    PubMed

    Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G

    2012-06-01

    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.

  1. Design of motion adjusting system for space camera based on ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan

    2011-08-01

    Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.

  2. Quantitative Mapping of Pore Fraction Variations in Silicon Nitride Using an Ultrasonic Contact Scan Technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  3. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    PubMed

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Transmission mode adaptive beamforming for planar phased arrays and its application to 3D ultrasonic transcranial imaging

    NASA Astrophysics Data System (ADS)

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.

    2013-03-01

    A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).

  5. pH induced contrast in viscoelasticity imaging of biopolymers

    PubMed Central

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  6. Low-temperature elastic properties of YbSbPt probed by ultrasound measurements

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.

    2018-03-01

    The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.

  7. Generation of narrowband elastic waves with a fiber laser and its application to the imaging of defects in a plate.

    PubMed

    Hayashi, Takahiro; Ishihara, Ken

    2017-05-01

    Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Response of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ge, Lifeng

    2008-10-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for airborne ultrasonic applications, acoustic imaging, and chemical and biological detections. Much attention is also paid how to optimize their performance, so that the accurate simulation of the transmitting response of the CMUTs becomes extremely significant. This paper focuses on determining the total input mechanical impedance accountings for damping, and its resistance part is obtained by the calculated natural frequency and equivalent lumped parameters, and the typical 3-dB bandwidth. Thus, the transmitting response can be calculated by using the input mechanical impedance. Moreover, the equivalent electrical circuit can be also established by the determined lumped parameters.

  9. Comb-push Ultrasound Shear Elastography (CUSE): A Novel Method for Two-dimensional Shear Elasticity Imaging of Soft Tissues

    PubMed Central

    Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao

    2012-01-01

    Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690

  10. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-04-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  11. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

    PubMed Central

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Samwer, Konrad

    2015-01-01

    Summary The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k * are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α′- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM. PMID:25977847

  12. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy.

    PubMed

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Arnold, Walter; Samwer, Konrad

    2015-01-01

    The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k (*) are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α'- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.

  13. Ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several aerospace materials

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun

    2008-03-01

    The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.

  14. Analysis and an image recovery algorithm for ultrasonic tomography system

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1994-01-01

    The problem of an ultrasonic reflectivity tomography is similar to that of a spotlight-mode aircraft Synthetic Aperture Radar (SAR) system. The analysis for a circular path spotlight mode SAR in this paper leads to the insight of the system characteristics. It indicates that such a system when operated in a wide bandwidth is capable of achieving the ultimate resolution; one quarter of the wavelength of the carrier frequency. An efficient processing algorithm based on the exact two dimensional spectrum is presented. The results of simulation indicate that the impulse responses meet the predicted resolution performance. Compared to an algorithm previously developed for the ultrasonic reflectivity tomography, the throughput rate of this algorithm is about ten times higher.

  15. Development of pulse-echo ultrasonic propagation imaging system and its delivery to Korea Air Force

    NASA Astrophysics Data System (ADS)

    Ahmed, Hasan; Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon; Ihn, Jeong-Beom

    2017-04-01

    This paper proposes a full-field pulse-echo ultrasonic propagation imaging (FF-PE-UPI) system for non-destructive evaluation of structural defects. The system works by detection of bulk waves that travel through the thickness of a specimen. This is achieved by joining the laser beams for the ultrasonic wave generation and sensing. This enables accurate and clear damage assessment and defect localization in the thickness with minimum signal processing since bulk waves are less susceptible to dispersion during short propagation through the thickness. The system consists of a Qswitched laser for generating the aforementioned waves, a laser Doppler vibrometer (LDV) for sensing, optical elements to combine the generating and sensing laser beams, a dual-axis automated translation stage for raster scanning of the specimen and a digitizer to record the signals. A graphical user interface (GUI) is developed to control all the individual blocks of the system. Additionally, the software also manages signal acquisition, processing, and display. The GUI is created in C++ using the QT framework. In view of the requirements posed by the Korean Air Force(KAF), the system is designed to be compact and portable to allow for in situ inspection of a selected area of a larger structure such as radome or rudder of an aircraft. The GUI is designed with a minimalistic approach to promote usability and adaptability while masking the intricacies of actual system operation. Through the use of multithreading the software is able to show the results while a specimen is still being scanned. This is achieved by real-time and concurrent acquisition, processing, and display of ultrasonic signal of the latest scan point in the scan area.

  16. Micromachined capacitive ultrasonic immersion transducer array

    NASA Astrophysics Data System (ADS)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  17. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  18. A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis

    NASA Astrophysics Data System (ADS)

    Chillara, Vamshi Krishna

    2017-11-01

    We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.

  19. Influence of elastic parameters on the evolution of elasticity modulus of thin films

    NASA Astrophysics Data System (ADS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z.; Beldi, I.; Doghmane, M.

    2012-09-01

    In recent years, it appears many structures in the form of thin films or multilayers, used as coatings for surface protection, or to provide materials with new properties different from those of substrates. These properties are the subject of a growing number of studies in order to produce Nano or micro structures with different degrees of quality, and cost as well as the manufacture of thin film properties more functional and more controllable. As the thicknesses are close to micrometric or nanometric scales, the modulus of elasticity are difficult to measure and experimental results are rarely published in the literature. In this context, we propose an analytical qualitative methodology to describe the influence of acoustic parameters of thin films on the evolution of elastic moduli the most used. This method is based on the determination of the acoustic signature V(z) of several thin layers deposited on different substrates, as well the information on the propagation velocity of ultrasonic waves are obtained. Thus, the dispersion curves representing the variation of the modulus of elasticity (Young and the shear), were determined. We have noticed that, according to the type of substrate (light, medium or heavy), we observed the appearance of some anomalies in curves that are generally associated with changes in the acoustic properties of each of the examined layers. We have shown that these anomalies are mainly due to the effect loading, and represent one of the fundamental parameters determining the appearance or disappearance of a phenomenon and represent one of the basic parameters determining the appearance or disappearance of phenomena. Finally, we determine the Poisson ratio of thin films in order to calculate other elastic parameters such as the compressor modulus.

  20. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    PubMed Central

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the −6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the −3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and −8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery. PMID:27353347

  1. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU

  2. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU

  3. Ultrasonic Seismic Wave Elastic Moduli and Attenuation, Petro physical Models and Work Flows for Better Subsurface Imaging Related to Monitoring of Sequestrated Supercritical CO2 and Geothermal Energy Exploration

    NASA Astrophysics Data System (ADS)

    Harbert, W.; Delaney, D.; Mur, A. J.; Purcell, C.; Zorn, E.; Soong, Y.; Crandall, D.; Haljasmaa, I.

    2016-12-01

    To better understand the petrophysical response at ultrasonic frequencies in rhyolite and carbonate (relevant to CO2 storage and CO2 enhanced oil recovery) lithologies we conducted core analysis incorporating variation in temperature, effective pressure and pore filling fluid. Ultrasonic compressive and shear wave (VP, VS1 and VS2) velocities were measured allowing calculation of the Bulk modulus (K), Young's modulus (E), Lamè's first parameter (λ), Shear modulus (G), Poisson's ratio (ν), and P-wave modulus (M). In addition, from the ultrasonic waveform data collected, we employed the spectral ratio method to estimate the quality factor. Carbonate samples were tested dry, using atmospheric gas as the pore phase, and with deionized water, oil, and supercritical CO2. We observed that Qp was directly proportional to effective pressure in our rhyolite samples. In addition, we observed effects of core anisotropy on Qp, however this was not apparent in higher porosity samples. Increasing effective pressure seems to decrease the effects of ultrasonic P-wave anisotropy. Qp was inversely proportional to temperature, however this was not observed for higher porosity samples. Qp was highly dependent on the rock porosity. Higher porosity samples displayed significantly lower values of Qp. In our experiments we observed that ultrasonic wave scattering due to heterogeneities in the carbonate samples was dominant. Although we observed lower μρ values, trends in our data strongly agreed with the model proposed workers interpreting AVO trends in a LMR cross plot space. We found that μρ was proportional to temperature while λρ was temperature independent and that λρ-μρ trends were extremely dependent on porosity. Higher porosity results in lower values for both λρ and μρ. The presence of fluids causes a distinct shift in λρ values, an observation which could provide insight into subsurface exploration using amplitude variation with offset (AVO) classification. We

  4. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro.

    PubMed

    Halford, Andrew; Ohl, Claus-Dieter; Azarpazhooh, Amir; Basrani, Bettina; Friedman, Shimon; Kishen, Anil

    2012-11-01

    Irrigation dynamics and antibacterial activity determine the efficacy of root canal disinfection. Sonic or ultrasonic agitation of irrigants is expected to improve irrigation dynamics. This study examined the effects of microbubble emulsion (ME) combined with sonic or ultrasonic agitation on irrigation dynamics and reduction of biofilm bacteria within root canal models. Two experiments were conducted. First, high-speed imaging was used to characterize the bubble dynamics generated in ME by sonic or ultrasonic agitation within canals of polymer tooth models. Second, 5.25% NaOCl irrigation or ME was sonically or ultrasonically agitated in canals of extracted teeth with 7-day-grown Enterococcus faecalis biofilms. Dentinal shavings from canal walls were sampled at 1 mm and 3 mm from the apical terminus, and colony-forming units (CFUs) were enumerated. Mean log CFU/mL values were analyzed with analysis of variance and post hoc tests. High-speed imaging demonstrated strongly oscillating and vaporizing bubbles generated within ME during ultrasonic but not sonic agitation. Compared with CFU counts in controls, NaOCl-sonic and NaOCl-ultrasonic yielded significantly lower counts (P < .05) at both measurement levels. ME-sonic yielded significantly lower counts (P = .002) at 3 mm, whereas ME-ultrasonic yielded highly significantly lower counts (P = .000) at both measurement levels. At 3 mm, ME-ultrasonic yielded significantly lower CFU counts (P = .000) than ME-sonic, NaOCl-sonic, and NaOCl-ultrasonic. Enhanced bubble dynamics and reduced E. faecalis biofilm bacteria beyond the level achieved by sonic or ultrasonic agitation of NaOCl suggested a synergistic effect of ME combined with ultrasonic agitation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Ultrasonic measurements of breast viscoelasticity

    PubMed Central

    Sridhar, Mallika; Insana, Michael F.

    2009-01-01

    In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1–20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10−2 ≤ ω ≤ 100 rad/s (0.0016–0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2±0.8 and 42.0±28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging. PMID:18196803

  6. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  7. Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses

    NASA Astrophysics Data System (ADS)

    Abd elfadeel, G.; Saddeek, Yasser B.; Mohamed, Gehan Y.; Mostafa, A. M. A.; Shokry Hassan, H.

    2017-03-01

    Glass samples with the chemical formula x CKD-(100 - x) (5Na2O-65 B2O3-9 Bi2O3-21PbO), (0 ⩽ x ⩽ 32 mol%) were prepared. The density and the ultrasonic estimations of the investigated glasses were analyzed at room temperature before and after the impact of two dosages of gamma irradiation to study the effect of both CKD and gamma radiation. It was found that the density, and the ultrasonic parameters are sensitive to the variety of the content of CKD and the effect of γ-radiation. Replacement of oxides with higher atomic weights such as Bi2O3 and PbO by CKD decreases the density. Analysis of the behavior of the ultrasonic parameters demonstrates that creation of CaO6 and SiO4 on one hand and an alternate transformation between BO4 and BO3 structural units, on the other hand, affect the increase of the ultrasonic velocities and the elastic moduli. Moreover, the density and the ultrasonic parameters decrease somewhat with the increase of the doses of γ-irradiation. The variations of the previous physical parameters can be referred to the creation of radiation imperfections, which occupied the voids inside the glass structure.

  8. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-06-01

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  9. Shear-wave elasticity measurements of three-dimensional cell cultures for mechanobiology

    PubMed Central

    Kuo, Po-Ling; Charng, Ching-Che; Wu, Po-Chen

    2017-01-01

    ABSTRACT Studying mechanobiology in three-dimensional (3D) cell cultures better recapitulates cell behaviors in response to various types of mechanical stimuli in vivo. Stiffening of the extracellular matrix resulting from cell remodeling potentiates many pathological conditions, including advanced cancers. However, an effective tool for measuring the spatiotemporal changes in elastic properties of such 3D cell cultures without directly contacting the samples has not been reported previously. We describe an ultrasonic shear-wave-based platform for quantitatively evaluating the spatiotemporal dynamics of the elasticity of a matrix remodeled by cells cultured in 3D environments. We used this approach to measure the elasticity changes of 3D matrices grown with highly invasive lung cancer cells and cardiac myoblasts, and to delineate the principal mechanism underlying the stiffening of matrices remodeled by these cells. The described approach can be a useful tool in fields investigating and manipulating the mechanotransduction of cells in 3D contexts, and also has potential as a drug-screening platform. PMID:27505887

  10. Ultrasonic tissue characterization for monitoring nanostructured TiO2-induced bone growth

    NASA Astrophysics Data System (ADS)

    Rus, G.; García-Martínez, J.

    2007-07-01

    The use of bioactive nanostructured TiO2 has recently been proposed for improving orthopaedic implant adhesion due to its improved biocompatibility with bone, since it induces: (i) osteoblast function, (ii) apatite nucleation and (iii) protein adsorption. The present work focuses on a non-ionizing radiation emitting technique for quantifying in real time the improvement in terms of mechanical properties of the surrounding bone due to the presence of the nanostructured TiO2 prepared by controlled precipitation and acid ageing. The mechanical strength is the ultimate goal of a bone implant and is directly related to the elastic moduli. Ultrasonics are high frequency mechanical waves and are therefore suited for characterizing elastic moduli. As opposed to echographic techniques, which are not correlated to elastic properties and are not able to penetrate bone, a low frequency ultrasonic transmission test is proposed, in which a P-wave is transmitted through the specimen and recorded. The problem is posed as an inverse problem, in which the unknown is a set of parameters that describe the mechanical constants of the sequence of layers. A finite element numerical model that depends on these parameters is used to predict the transformation of the waveform and compare to the measurement. The parameters that best describe the real tissue are obtained by minimizing the discrepancy between the real and numerically predicted waveforms. A sensitivity study to the uncertainties of the model is performed for establishing the feasibility of using this technique to investigate the macroscopic effect on bone growth of nanostructured TiO2 and its beneficial effect on implant adhesion.

  11. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging

    PubMed Central

    Hettiarachchi, Kanaka; Talu, Esra; Longo, Marjorie L.; Dayton, Paul A.; Lee, Abraham P.

    2007-01-01

    This paper presents a new manufacturing method to generate monodisperse microbubble contrast agents with polydispersity index (σ) values of <2% through microfluidic flow-focusing. Micron-sized lipid shell-based perfluorocarbon (PFC) gas microbubbles for use as ultrasound contrast agents were produced using this method. The poly(dimethylsiloxane) (PDMS)-based devices feature expanding nozzle geometry with a 7 μm orifice width, and are robust enough for consistent production of microbubbles with runtimes lasting several hours. With high-speed imaging, we characterized relationships between channel geometry, liquid flow rate Q, and gas pressure P in controlling bubble sizes. By a simple optimization of the channel geometry and Q and P, bubbles with a mean diameter of <5 μm can be obtained, ideal for various ultrasonic imaging applications. This method demonstrates the potential of microfluidics as an efficient means for custom-designing ultrasound contrast agents with precise size distributions, different gas compositions and new shell materials for stabilization, and for future targeted imaging and therapeutic applications. PMID:17389962

  12. Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, T.; Prabhakar Reddy, P.

    2017-08-01

    Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the

  13. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  14. Ultrasonic investigation of the superconducting properties of the Nb-Mo system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.

    1972-01-01

    The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.

  15. Direct and ultrasonic measurements of macroscopic piezoelectricity in sintered hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Tofail, S. A. M.; Haverty, D.; Cox, F.; Erhart, J.; Hána, P.; Ryzhenko, V.

    2009-03-01

    Macroscopic piezoelectricity in hydroxyapatite (HA) ceramic was measured by a direct quasistatic method and an ultrasonic interference technique. The effective symmetry of polycrystalline aggregate was established and a detailed theoretical analysis was carried out to determine by these two methods the shear piezoelectric coefficient, d14, of HA. Piezoelectric nature of HA was proved qualitatively although a specific quantitative value for the d14 coefficient could not be established. Ultrasound method was also employed to anisotropic elastic constants, which agreed well with those measured from the first principles.

  16. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  17. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    NASA Astrophysics Data System (ADS)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  18. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    NASA Astrophysics Data System (ADS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V.

    2013-07-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy.

  19. Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Subochev, Pavel V.; Orlova, Anna G.; Turchin, Ilya V.

    2017-03-01

    We will present reflection-mode bioimaging system providing complementary optical, photoacsoutic and acoustic measurements by acoustic detector after each laser pulse with 2kHz repetition rate. The photons absorbed within the biological tissue provide optoacoustic (OA) signals, the photons absorbed by the external electrode of a detector provide the measurable diffuse reflectance (DR) from the sample and the probing ultrasonic (US) pulse. To demonstrate the in vivo capabilities of the system we performed complementary DR/OA/US imaging of small laboratory animals and human palm with 3.5mm/50μm/35μm lateral resolution at up to 3 mm diagnostic depth. Functional OA and DR imaging demonstrated the levels of tissue vascularization and blood supply. Structural US imaging was essential for understanding the position of vessels and zones with different perfusion. Before BiOS-2017 we plan to accomplish more in vivo experiments validating the developed triple-modality system as diagnostic tool to detect vascularization as well as mechanisms of vascular changes when monitoring response to therapy.

  20. Experimental and simulated ultrasonic characterization of complex damage in fused silica.

    PubMed

    Martin, L Peter; Chambers, David H; Thomas, Graham H

    2002-02-01

    The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.

  1. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  2. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  3. Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.

    PubMed

    Berry, Gearóid P; Bamber, Jeffrey C; Armstrong, Cecil G; Miller, Naomi R; Barbone, Paul E

    2006-04-01

    The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.

  4. Quantitative estimation of muscle shear elastic modulus of the upper trapezius with supersonic shear imaging during arm positioning.

    PubMed

    Leong, Hio-Teng; Ng, Gabriel Yin-Fat; Leung, Vivian Yee-Fong; Fu, Siu Ngor

    2013-01-01

    Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87-0.97) and inter-observer (ICC = 0.78-0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.

  5. Quantitative Estimation of Muscle Shear Elastic Modulus of the Upper Trapezius with Supersonic Shear Imaging during Arm Positioning

    PubMed Central

    Leong, Hio-Teng; Ng, Gabriel Yin-fat; Leung, Vivian Yee-fong; Fu, Siu Ngor

    2013-01-01

    Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87–0.97) and inter-observer (ICC = 0.78–0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders. PMID:23825641

  6. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Biswas, S. K.; Briggs, G. A. D.; Kolosov, O. V.

    2000-05-01

    Ultrasonic force microscopy (UFM) was introduced to probe nanoscale mechanical properties of stiff materials. This was achieved by vibrating the sample far above the first resonance of the probing atomic force microscope cantilever where the cantilever becomes dynamically rigid. By operating UFM at different set force values, it is possible to directly measure the absolute values of the tip-surface contact stiffness. From this an evaluation of surface elastic properties can be carried out assuming a suitable solid-solid contact model. In this paper we present curves of stiffness as a function of the normal load in the range of 0-300 nN. The dependence of stiffness on the relative humidity has also been investigated. Materials with different elastic constants (such as sapphire lithium fluoride, and silicon) have been successfully differentiated. Continuum mechanics models cannot however explain the dependence of stiffness on the normal force and on the relative humidity. In this high-frequency regime, it is likely that viscous forces might play an important role modifying the tip-surface interaction. Plastic deformation might also occur due to the high strain rates applied when ultrasonically vibrating the sample. Another possible cause of these discrepancies might be the presence of water in between the two bodies in contact organizing in a solidlike way and partially sustaining the load.

  7. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    PubMed Central

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  8. Overview of the ultrasonic instrumentation research in the MYRRHA project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierckx, M.; Leysen, W.; Van Dyck, D.

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the requiredmore » ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  9. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities

    PubMed Central

    Guan, Liming; Xu, Gang

    2017-01-01

    Objectives To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. Materials and Methods Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion. SPSS 19.0 software was used for statistical analyses. Results Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. Conclusion High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer. PMID:28121624

  10. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities.

    PubMed

    Guan, Liming; Xu, Gang

    2017-03-21

    To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion.SPSS 19.0 software was used for statistical analyses. Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer.

  11. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOEpatents

    Perkins, Richard W.; Fuller, James L.; Doctor, Steven R.; Good, Morris S.; Heasler, Patrick G.; Skorpik, James R.; Hansen, Norman H.

    1995-01-01

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision.

  12. High energy, low frequency, ultrasonic transducer

    DOEpatents

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  13. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ultrasonic constraint of the microfracture anisotropy of flysch rocks from the Podhale Synclinorium (Poland)

    NASA Astrophysics Data System (ADS)

    Kłopotowska, Agnieszka

    2018-01-01

    This paper attempts to show the relationship between joints observed in flysch formations in the field and microfracture fabrics invisible to the naked eye in hand specimens. Ultrasonic measurements demonstrate that the intensity and orientations of domains "memorised" by rock specimens are associated with the historical stresses within the rock mass rather than the rock lamination. The spatial orientations of these microfractures have been measured, and their dynamic-elastic properties have been found to correlate with the orientation of macroscopic joint sets measured in the field. The elastic properties measured vary because of sedimentary diagenetic processes that occured during the tectonic deformations of these flysch rocks in the Podhale Synclinorium of Poland. The structural discontinuities detected by ultrasonic measurements can be perceived as an incipient phase of the macroscopic joints already visible in the field and are attributed to the in situ residual tectonic stresses. Such historical stresses impart a hidden mechanical anisotropy to the entire flysch sequence. The microfractures will develop into macroscopic joints during future relaxation of the exposed rock mass. Understanding the nature and orientation of the invisible microfracture anisotropy that will become macroscopic in the future is vital for the safe and efficient engineering of any rock mass.

  15. Piezoelectric parametric effects on wave vibration and contact mechanics of traveling wave ultrasonic motor.

    PubMed

    Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie

    2017-11-01

    Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  17. Design of signal reception and processing system of embedded ultrasonic endoscope

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  18. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this

  19. a 2d Model of Ultrasonic Testing for Cracks Near a Nonplanar Surface

    NASA Astrophysics Data System (ADS)

    Westlund, Jonathan; Boström, Anders

    2010-02-01

    2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The wave scattering problem is solved in the frequency domain using a combination of the boundary element method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.

  20. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOEpatents

    Perkins, R.W.; Fuller, J.L.; Doctor, S.R.; Good, M.S.; Heasler, P.G.; Skorpik, J.R.; Hansen, N.H.

    1995-09-26

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision. 15 figs.

  1. Ultrasonic Data Display and Analysis System Developed (Including Fuzzy Logic Analysis) for the Windows-Based PC

    NASA Technical Reports Server (NTRS)

    Lovelace, Jeffrey J.; Cios, Kryzsztof J.; Roth, Don J.; cAO, wEI n.

    2001-01-01

    Post-Scan Interactive Data Display (PSIDD) III is a user-oriented Windows-based system that facilitates the display and comparison of ultrasonic contact measurement data obtained at NASA Glenn Research Center's Ultrasonic Nondestructive Evaluation measurement facility. The system is optimized to compare ultrasonic measurements made at different locations within a material or at different stages of material degradation. PSIDD III provides complete analysis of the primary waveforms in the time and frequency domains along with the calculation of several frequency-dependent properties including phase velocity and attenuation coefficient and several frequency-independent properties, like the cross correlation velocity. The system allows image generation on all the frequency-dependent properties at any available frequency (limited by the bandwidth used in the scans) and on any of the frequency-independent properties. From ultrasonic contact scans, areas of interest on an image can be studied with regard to underlying raw waveforms and derived ultrasonic properties by simply selecting the point on the image. The system offers various modes of indepth comparison between scan points. Up to five scan points can be selected for comparative analysis at once. The system was developed with Borland Delphi software (Visual Pascal) and is based on an SQL data base. It is ideal for the classification of material properties or the location of microstructure variations in materials. Along with the ultrasonic contact measurement software that it is partnered with, this system is technology ready and can be transferred to users worldwide.

  2. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    NASA Astrophysics Data System (ADS)

    Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.

    2015-03-01

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  3. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Fung, S.; Wang, Q.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less

  4. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    PubMed

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  6. X-radiography, XRD and Ultrasonic Data Transfer Function Technique - Simultaneous Measurements Under Simulated Mantle Conditions in a Multi-Anvil Device

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lathe, C.

    2004-05-01

    The interpretation of seismic data from the Earth's deep interior requires measurements of the physical properties of Earth materials under experimental simulated mantle conditions. Elastic wave velocity measurement is an important tool for the determination of the elastic properties. Ultrasonic interferometry allows the highly precise travel time measurement at a sample enclosed in a high-pressure multi-anvil device. But the calculation of wave velocities requires the exact sample length under in situ conditions. There are two options - scanning the interfaces of the sample by XRD (Mueller et al., 2003) and X-radiography (Li et al., 2001). The multi-anvil apparatus MAX80 is equipped for both methods. Only the X-radiography is fast enough for transient measurements. Contrary to XRD measurements, imaging the sample by X-rays requires a beam diameter larger than the sample length. Therefore the fixed primary slits of Max80 were exchanged by 4-blade high precision slits of Advanced Design Consulting, Inc. A Ce-YAG-crystal converts the X-ray image to an optical one, redirected by a mirror and captured by a CCD-camera. To derive the sample length, the different brightness of sample, buffer rod and reflector at the electronic image is evaluated. Classical ultrasonic interferometry is very time consuming, because the ultrasonic waves of the frequency range under study are generated and detected one after another with a given step rate. A 60 MHz frequency sweep with 100 kHz steps lasts for more than 30 minutes. This is a serious limitation for all transient measurements, but also limits the data collection at elevated temperatures to prevent the pressure transmitting boron epoxy cubes and the anvils from overheating. The ultrasonic transfer function technique (UTF), first described by Li et al. (2002), generates all the frequencies simultaneously. Related to the results and experiences of Li the UTF-technique was developed independently at GFZ. This version allows to

  7. Elasticity and wave velocity in fcc iron (austenite) at elevated temperatures - Experimental verification of ab-initio calculations.

    PubMed

    Hutchinson, Bevis; Malmström, Mikael; Lönnqvist, Johan; Bate, Pete; Ehteshami, Hossein; Korzhavyi, Pavel A

    2018-07-01

    High temperature crystal elasticity constants for face centred cubic austenite are important for interpreting the ultrasonic properties of iron and steels but cannot be determined by normal single crystal methods. Values of these constants have recently been calculated using an ab-initio approach and the present work was carried out to test their applicability using laser-ultrasonic measurements. Steel samples having a known texture were examined at temperatures between 800 °C and 1100 °C to measure the velocity of longitudinal P-waves which were found to be in good agreement with modelled values. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  9. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  10. Hardware implementation of hierarchical volume subdivision-based elastic registration.

    PubMed

    Dandekar, Omkar; Walimbe, Vivek; Shekhar, Raj

    2006-01-01

    Real-time, elastic and fully automated 3D image registration is critical to the efficiency and effectiveness of many image-guided diagnostic and treatment procedures relying on multimodality image fusion or serial image comparison. True, real-time performance will make many 3D image registration-based techniques clinically viable. Hierarchical volume subdivision-based image registration techniques are inherently faster than most elastic registration techniques, e.g. free-form deformation (FFD)-based techniques, and are more amenable for achieving real-time performance through hardware acceleration. Our group has previously reported an FPGA-based architecture for accelerating FFD-based image registration. In this article we show how our existing architecture can be adapted to support hierarchical volume subdivision-based image registration. A proof-of-concept implementation of the architecture achieved speedups of 100 for elastic registration against an optimized software implementation on a 3.2 GHz Pentium III Xeon workstation. Due to inherent parallel nature of the hierarchical volume subdivision-based image registration techniques further speedup can be achieved by using several computing modules in parallel.

  11. Texture and Elastic Anisotropy of Mantle Olivine

    NASA Astrophysics Data System (ADS)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  12. Traveling wave ultrasonic motor: coupling effects in free stator.

    PubMed

    Frayssignes, H; Briot, R

    2003-03-01

    Generally a stator of traveling wave ultrasonic motor (TWUM) consists of piezoelectric transducers (annular plate or rods) coupled by the way of a metallic ring. These transducers divided into halves are excited independently by two electrical signals with different phases of about 90 degrees. So an elastic traveling wave propagates along the circumference of the ring and a rotor pressed on this vibrating surface is then driven by the stator via contact forces. Many difficulties appear in developing TWUM because the contact between the stator and the rotor via a frictional material is very important. However that may be, the first stage consists in obtaining a vibrating stator with optimum characteristics with two symmetrical phases. The aim of this paper is to discuss some coupling effects in a free stator through an enhanced equivalent circuit model. A simple experimental method based on impedance measurements is performed to estimate the coupling characteristics at a low driving voltage. This paper reports results obtained with the free stator of the well known piezoelectric ultrasonic motor "USR60" by Shinsei Co. Ltd. Since the stator behaves as an elastic body, interactions between the two electrical inputs might be described by the introduction of a coupling oscillator. The comparison of experimental and theoretical results leads to validate the new equivalent circuit of the free stator. The presence of coupling impedance could imply a change of electrical supply condition to optimize the TWUM efficiency. The effects of unbalanced features for each electrical input and the applicability of the proposed model to actual operating condition are discussed in the paper. Copyright 2002 Elsevier Science B.V.

  13. Physical interpretation and application of principles of ultrasonic nondestructive evaluation of high-performance materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1990-01-01

    An ultrasonic measurement system employed in the experimental interrogation of the anisotropic properties (through the measurement of the elastic stiffness constants) of the uniaxial graphite-epoxy composites is presented. The continuing effort for the development of improved visualization techniques for physical parameters is discussed. The background is set for the understanding and visualization of the relationship between the phase and energy/group velocity for propagation in high-performance anisotropic materials by investigating the general requirements imposed by the classical wave equation. The consequences are considered when the physical parameters of the anisotropic material are inserted into the classical wave equation by a linear elastic model. The relationship is described between the phase velocity and the energy/group velocity three dimensional surfaces through graphical techniques.

  14. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  15. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  16. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    PubMed

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  17. Ultrasonic Phased Array Compressive Imaging in Time and Frequency Domain: Simulation, Experimental Verification and Real Application

    PubMed Central

    Bai, Zhiliang; Chen, Shili; Jia, Lecheng; Zeng, Zhoumo

    2018-01-01

    Embracing the fact that one can recover certain signals and images from far fewer measurements than traditional methods use, compressive sensing (CS) provides solutions to huge amounts of data collection in phased array-based material characterization. This article describes how a CS framework can be utilized to effectively compress ultrasonic phased array images in time and frequency domains. By projecting the image onto its Discrete Cosine transform domain, a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time and frequency domain CS can accurately reconstruct array images using samples less than the minimum requirements of the Nyquist theorem. For experimental verification of three types of artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved, it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an engine cylinder cavity containing different pit defects and the results show that orthogonal matching pursuit (OMP)-based CS guarantees the performance for real application. PMID:29738452

  18. Ultrasonic Characterization of Fatigue Cracks in Composite Materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Watson, Jason; Johnson, Devin; Walker, James; Russell, Sam; Thom, Robert (Technical Monitor)

    2002-01-01

    Microcracking in composite structures due to combined fatigue and cryogenic loading can cause leakage and failure of the structure and can be difficult to detect in-service. In aerospace systems, these leaks may lead to loss of pressure/propellant, increased risk of explosion and possible cryo-pumping. The success of nondestructive evaluation to detect intra-ply microcracking in unlined pressure vessels fabricated from composite materials is critical to the use of composite structures in future space systems. The work presented herein characterizes measurements of intraply fatigue cracking through the thickness of laminated composite material by means of correlation with ultrasonic resonance. Resonant ultrasound spectroscopy provides measurements which are sensitive to both the microscopic and macroscopic properties of the test article. Elastic moduli, acoustic attenuation, and geometry can all be probed. The approach is based on the premise of half-wavelength resonance. The method injects a broadband ultrasonic wave into the test structure using a swept frequency technique. This method provides dramatically increased energy input into the test article, as compared to conventional pulsed ultrasonics. This relative energy increase improves the ability to measure finer details in the materials characterization, such as microcracking and porosity. As the microcrack density increases, more interactions occur with the higher frequency (small wavelength) components of the signal train causing the spectrum to shift toward lower frequencies. Several methods are under investigation to correlate the degree of microcracking from resonance ultrasound measurements on composite test articles including self organizing neural networks, chemometric techniques used in optical spectroscopy and other clustering algorithms.

  19. High Pressure Elastic Constants of High-Pressure Iron Analog Osmium

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Geballe, Z.; Jeanloz, R.

    2011-12-01

    Understanding the elasticity of hcp iron is important both for ascertaining the stable phase and for explaining the observed seismic anomalies of Earth's inner core. A systematic experimental study of analog materials is warranted because experiments at inner-core conditions remain exceptionally challenging and theory has yielded conflicting results for iron. The deformation of hexagonal close-packed (hcp) Os, an analog for the high-pressure hcp form of Fe, has been characterized under non-hydrostatic stresses using synchrotron-based angular-dispersive radial x-ray diffraction to pressures of 60 GPa at room temperature. Starting with published ultrasonic values of elastic constants and previous measurements of linear and volume compressibilities, we estimate the single-crystal elasticity tensor of osmium to 60 GPa and find that the crystal orientation with the largest shear modulus, (002), accommodates the largest shear stress (10 GPa) and a differential strain surpassing the Voigt iso-strain limit. We find the conventional elastic model, bounded by Reuss (iso-stress) and Voigt limits, inadequate for explaining our measurements. Instead, we infer that plastic deformation limits the amount of shear stress supported by the crystal planes near the a-axis, causing the more elastically strong c-axis to support the majority of the differential strain. This conclusion is consistent with the elasto-plastic self-consistent approach used to model the effect of plasticity on the high-pressure deformation of hcp-Co (Merkel et al, PRB 79, 064110 (2009)). Importantly, we document a strength anisotropy so large that the Voigt (elastic) limit is clearly surpassed.

  20. Aortic elasticity and left ventricular function after arterial switch operation: MR imaging--initial experience.

    PubMed

    Grotenhuis, Heynric B; Ottenkamp, Jaap; Fontein, Duveken; Vliegen, Hubert W; Westenberg, Jos J M; Kroft, Lucia J M; de Roos, Albert

    2008-12-01

    To prospectively assess aortic dimensions, aortic elasticity, aortic valve competence, and left ventricular (LV) systolic function in patients after the arterial switch operation (ASO) by using magnetic resonance (MR) imaging. Informed consent was obtained from all participants for this local ethics committee-approved study. Fifteen patients (11 male patients, four female patients; mean age, 16 years +/- 4 [standard deviation]; imaging performed 16.1 years after surgery +/- 3.7) and 15 age- and sex-matched control subjects (11 male subjects, four female subjects; mean age, 16 years +/- 4) were evaluated. Velocity-encoded MR imaging was used to assess aortic pulse wave velocity (PWV), and a balanced turbo-field-echo sequence was used to assess aortic root distensibility. Standard velocity-encoded and multisection-multiphase imaging sequences were used to assess aortic valve function, systolic LV function, and LV mass. The two-tailed Mann-Whitney U test and Spearman rank correlation coefficient were used for statistical analysis. Patients treated with the ASO showed aortic root dilatation at three predefined levels (mean difference, 5.7-9.4 mm; P < or = .007) and reduced aortic elasticity (PWV of aortic arch, 5.1 m/sec +/- 1.2 vs 3.9 m/sec +/- 0.7, P = .004; aortic root distensibility, [2.2 x 10(-3)] x mm Hg(-1) +/- 1.8 vs [4.9 x 10(-3)] x mm Hg(-1) +/- 2.9, P < .01) compared with control subjects. Minor degrees of aortic regurgitation (AR) were present (AR fraction, 5% +/- 3 in patients vs 1% +/- 1 in control subjects; P < .001). Patients had impaired systolic LV function (LV ejection fraction [LVEF], 51% +/- 6 vs 58% +/- 5 in control subjects; P = .003), in addition to enlarged LV dimensions (end-diastolic volume [EDV], 112 mL/m(2) +/- 13 vs 95 mL/m(2) +/- 16, P = .007; end-systolic volume [ESV], 54 mL/m(2) +/- 11 vs 39 mL/m(2) +/- 7, P < .001). Degree of AR predicted decreased LVEF (r = 0.41, P = .026) and was correlated with increased LV dimensions (LV EDV: r = 0

  1. Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator

    NASA Astrophysics Data System (ADS)

    Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David

    2015-11-01

    We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.

  2. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  3. Light-scattering analysis of ultrasonic wave's influence on the RBC agglutination in vitro

    NASA Astrophysics Data System (ADS)

    Doubrovski, Valeri A.; Dvoretski, Costanten N.

    1999-04-01

    Elastic light scattering is one of the most often used optical methods to analyze the cells agglutination reaction - the base of a great number of medical diagnostic test and biomedical investigations. The increase of the resolution of methods and apparatus towards the induced cells aggregation - the foundation of the reaction of agglutination, is quite an actual problem. The solution of this problem increases the reliability of the diagnostic test and gives an opportunity to achieve the diagnostic information in the cases when the traditional approaches do not lead to the diagnostic results. The attempt to increase the resolution of the immune reaction analyzer by means of ultrasonic waves action on the reagent mixture in vitro is taken in this paper. The RBC agglutination reaction which is usually used for the blood group type examination is chosen as an example of an object of the investigation. Different laser optical trains of the devices based on the turbidimetric and nephelometric methods and their combination are analyzed here. The influence of the ultrasonic wave time interval action and of the features of the sample preparation procedure on the resolution towards the agglutination process was investigated in this work. It is shown that the ultrasonic wave action on the reagent mixture leads to a large gain in the resolution of the device towards the RBC agglutination process. The experiments showed that the resolution of the device was enough to register the agglutination process even for the erythrocytes with weak agglutination ability when the reaction was invisible without ultrasonic action. It occurred that the diagnostic test time was more than by an order shortened due to the ultrasonic wave action. The optimal ultrasonic time interval action, the sample preparation technology and experimental technique were defined. The principle of the ultrasonic wave action on the cells agglutination process suggested here can be spread out on the immune

  4. Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Gang, Tingting; Hu, Manli; Qiao, Xueguang; Li, JiaCheng; Shao, Zhihua; Tong, Rongxin; Rong, Qiangzhou

    2017-01-01

    A fiber-optic interferometer is proposed and demonstrated experimentally for ultrasonic detection. The sensor consists of a compact Michelson interferometer (MI), which is fixed in a tilted-tube end-face (45°). Thin gold films are used for the reflective coatings of two arms and one of the interference arms is etched serving as the sensing arm. The spectral sideband filter technique is used to interrogate the continuous and pulse ultrasonic signals (with frequency of 300 KHz). Furthermore, because of the asymmetrical structure of the sensor, it presents strong direction-dependent ultrasonic sensitivity, such that the sensor can be considered a vector detector. The experimental results show that the sensor is highly sensitive to ultrasonic signals, and thus it can be a candidate for ultrasonic imaging of seismic physical models.

  5. Ultrasonic Determination of Combinations of Third-Order Elastic Constants of Small Cubic Single Crystals

    DTIC Science & Technology

    1981-05-01

    crystals Cesium cadmium fluoride Ultrasonic wave propagation Potassium zinc fluoride Nonlinear acoustics 20. A’?S1 RACT (Continue on reverse side If...is the stray capacitance of the detector, L is the inductance of the wire leading from the banana jack to the BNC connector (shown in Figure 111-2). Z...The samples on which measurements were made included [lO0] and [1111 copper samples, a sample of potassium zinc fluoride (KZnF 3 ) and a sample of

  6. Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Suzuki, Takashi; Mizuno, Takuyou; Takezawa, Kohki; Kamikawa, Shuhei; Andreev, Alexander V.; Gorbunov, Denis I.; Henriques, Margarida S.; Ishii, Isao

    2018-05-01

    The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature TC = 39 K . The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.

  7. Inspection Correlation Study of Ultrasonic-Based In Situ Structural Health Monitoring Monthly Report for December 2014-January 2015

    DTIC Science & Technology

    2015-05-01

    fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF

  8. Ultrasonic Estimation of Mechanical Properties of Pulmonary Arterial Wall Under Normoxic and Hypoxic Conditions

    NASA Astrophysics Data System (ADS)

    Waters, Kendall R.; Mukdadi, Osama M.

    2005-04-01

    Secondary pediatric pulmonary hypertension is a disease that could benefit from improved ultrasonic diagnostic techniques. We perform high-frequency in vitro ultrasound measurements (25 MHz to 100 MHz) on fresh and fixed pulmonary arterial walls excised from normoxic and hypoxic Long-Evans rat models. Estimates of the elastic stiffness coefficients are determined from measurements of the speed of sound. Preliminary results indicate that hypoxia leads to up to increase of 20 % in stiffening of the pulmonary arterial wall.

  9. Verification of elastic-wave static displacement in solids. [using ultrasonic techniques on Ge single crystals

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.; Winfree, W. P.

    1980-01-01

    The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.

  10. Ultrasonic nondestructive evaluation of graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1990-01-01

    Quantitative ultrasonic techniques are summarized with applications to the measurement of frequency-dependent attenuation and backscatter and to the NDE of composite laminates. Results are listed for the ultrasonic NDE of graphite-epoxy composite laminates including impact and fatigue damage as well as porosity. The methods reviewed include transmission measurements of attenuation, reconstructive tomography based on attenuation, estimating attenuation from backscattered ultrasound, and backscatter approaches. Phase-sensitive and -insensitive detection techniques are mentioned such as phase cancellation at piezoelectric receiving transducers and acoustoelectric effects. The techniques permit the NDE of the parameters listed in inhomogeneous media and provide both images from the transmission mode and in the reflection mode.

  11. Self-consistent Modeling of Elastic Anisotropy in Shale

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  12. Quantum revival for elastic waves in thin plate

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick

    2017-05-01

    Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.

  13. Design of an ultrasonic micro-array for near field sensing during retinal microsurgery.

    PubMed

    Clarke, Clyde; Etienne-Cummings, Ralph

    2006-01-01

    A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.

  14. Ultrasonic Surface Measurements for the investigation of superficial alteration of natural stones

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Auras, Michael; Bilgili, Filiz; Christen, Sandra; Cristiano, Luigia; Krompholz, Rolf; Mosca, Ilaria; Rose, David

    2013-04-01

    Seismic waveform analysis is applicable also to the centimeter and decimeter scale for non-destructive testing of pavement, facades, plaster, sculptures, or load-bearing structures like pillars. Mostly transmission measurements are performed and travel-times of first arriving P-waves are considered that have limited resolution for the upper centimeters of an object. In contrast, surface measurements are well suited to quantify superficial alterations of material properties e.g. due to weathering. A number of surface measurements have been carried out in the laboratory as well as on real structures in order to study systematically the information content of ultrasonic waveforms and their variability under real conditions. As a preposition for ultrasonic waveform analysis, reproducible, broad-band measurements have to be carried out with a definite radiation pattern and an about 1 mm accuracy of the measurement geometry. We used special coupling devices for effective ultrasonic surface measurements in the laboratory as well as at real objects. Samples of concrete with varying composition and samples of natural stone - marble, tuff, and sandstone - were repeatedly weathered and tested by ultrasonic measurements. The resistance of the samples to weathering and the penetration depth of the weathering are analyzed. Furthermore, material specific calibration curves for changes in velocities of elastic waves due to weathering can be obtained by these tests. Tests on real structures have been carried out for marble (Schlossbrücke, Berlin) and sandstone (Porta Nigra, Trier). Altogether, these test measurements show clearly that despite of the internal inhomogeneity of many real objects, their surface roughness and topography especially ultrasonic Rayleigh waves are well suited to study material alterations in the upper centimeters. Dispersion of Rayleigh waves may be inverted for shear-wave velocity as a function of depth.

  15. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    NASA Astrophysics Data System (ADS)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  16. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  17. Elastic least-squares reverse time migration with velocities and density perturbation

    NASA Astrophysics Data System (ADS)

    Qu, Yingming; Li, Jinli; Huang, Jianping; Li, Zhenchun

    2018-02-01

    Elastic least-squares reverse time migration (LSRTM) based on the non-density-perturbation assumption can generate false-migrated interfaces caused by density variations. We perform an elastic LSRTM scheme with density variations for multicomponent seismic data to produce high-quality images in Vp, Vs and ρ components. However, the migrated images may suffer from crosstalk artefacts caused by P- and S-waves coupling in elastic LSRTM no matter what model parametrizations used. We have proposed an elastic LSRTM with density variations method based on wave modes separation to reduce these crosstalk artefacts by using P- and S-wave decoupled elastic velocity-stress equations to derive demigration equations and gradient formulae with respect to Vp, Vs and ρ. Numerical experiments with synthetic data demonstrate the capability and superiority of the proposed method. The imaging results suggest that our method promises imaging results with higher quality and has a faster residual convergence rate. Sensitivity analysis of migration velocity, migration density and stochastic noise verifies the robustness of the proposed method for field data.

  18. Preparation of emulsions by rotor-stator homogenizer and ultrasonic cavitation for the cosmeceutical industry.

    PubMed

    Han, Ng Sook; Basri, Mahiran; Abd Rahman, Mohd Basyaruddin; Abd Rahman, Raja Noor Zaliha Raja; Salleh, Abu Bakar; Ismail, Zahariah

    2012-01-01

    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.

  19. Study of a novel ultrasonically triggered drug vehicle with magnetic resonance properties.

    PubMed

    Liu, Tse-Ying; Huang, Hsin-Hui; Chen, Yen-Ju; Chen, Yu-Jen

    2011-02-01

    We developed a novel ultrasonically triggered drug vehicle with magnetic resonance (MR) properties by encapsulating superparamagnetic iron oxide (SPIO) nanoparticles in hydroxyapatite (HA)-coated liposomes. The effects of HA coating on the background leakage, ultrasound response and MR signal were investigated. HA coating of liposomes significantly reduced the background leakage of liposome. It also enhanced their sensitivity to ultrasound regardless of HA thickness or ultrasound frequency, even under sonication conditions of high frequency (1 and 3 MHz) and low power density (0.2-0.4 Wcm(-2)) used for diagnosis. However, it was found that the ultrasonically triggered vehicle could exhibit T(2) contrast in MR images by encapsulating SPIO. However, HA coating reduced the r(2) value of SPIO encapsulated in liposomes, but had no significant effect on the r(2)(∗) value, implying that MR images of HA-coated liposomes encapsulating SPIO could be probed by the T(2)(∗) signal. Most importantly, the r(2)(∗)-r(2) value of HA-coated liposomes encapsulating SPIO decreased after sonication, suggesting that the proposed vehicle could be used not only as a MR-guided drug vehicle capable of ultrasonically triggered release but also as a MR reporter to probe ultrasonic triggering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems.

    PubMed

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco

    2017-01-07

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

  1. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    PubMed

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  3. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  4. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  5. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.

    2015-03-31

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less

  6. Application of time dependent Green's function method to scattering of elastic waves in anisotropic solids

    NASA Astrophysics Data System (ADS)

    Tewary, Vinod K.; Fortunko, Christopher M.

    The present, time-dependent 3D Green's function method resembles that used to study the propagation of elastic waves in a general, anisotropic half-space in the lattice dynamics of crystals. The method is used to calculate the scattering amplitude of elastic waves from a discontinuity in the half-space; exact results are obtained for 3D pulse propagation in a general, anisotropic half-space that contains either an interior point or a planar scatterer. The results thus obtained are applicable in the design of ultrasonic scattering experiments, especially as an aid in the definition of the spatial and time-domain transducer responses that can maximize detection reliability for specific categories of flaws in highly anisotropic materials.

  7. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  8. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  9. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  10. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  11. Field deployable processing methods for stay-in-place ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Malarich, Nathan; Lissenden, Cliff J.; Tittmann, Bernhard R.

    2018-04-01

    Condition monitoring provides key data for managing the operation and maintenance of mechanical equipment in the power generation, chemical processing, and manufacturing industries. Ultrasonic transducers provide active monitoring capabilities by wall thickness measurements, elastic property determination, crack detection, and other means. In many cases the components operate in harsh environments that may include high temperature, radiation, and hazardous chemicals. Thus, it is desirable to have permanently affixed ultrasonic transducers for condition monitoring in harsh environments. Spray-on transducers provide direct coupling between the active element and the substrate, and can be applied to curved surfaces. We describe a deposition methodology for ultrasonic transducers that can be applied in the field. First, piezoceramic powders mixed into a sol-gel are air-spray deposited onto the substrate. Powder constituents are selected based on the service environment in which the condition monitoring will be performed. Then the deposited coating is pyrolyzed and partially densified using an induction heating system with a custom work coil designed to match the substrate geometry. The next step, applying the electrodes, is more challenging than might be expected because of the porosity of the piezoelectric coating and the potential reactivity of elements in the adjacent layers. After connecting lead wires to the electrodes the transducer is poled and a protective coating can be applied prior to use. Processing of a PZT-bismuth titanate transducer on a large steel substrate is described along with alternate methods.

  12. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  13. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    PubMed

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  14. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  15. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  16. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  17. Novel Image Quality Control Systems(Add-On). Innovative Computational Methods for Inverse Problems in Optical and SAR Imaging

    DTIC Science & Technology

    2007-02-28

    Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex Medium Response, International Journal of Imaging Systems and...1767-1782, 2006. 31. Z. Mu, R. Plemmons, and P. Santago. Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex...rigorous mathematical and computational research on inverse problems in optical imaging of direct interest to the Army and also the intelligence agencies

  18. PSIDD (2): A Prototype Post-Scan Interactive Data Display System for Detailed Analysis of Ultrasonic Scans

    NASA Technical Reports Server (NTRS)

    Cao, Wei; Roth, Don J.

    1997-01-01

    This article presents the description of PSIDD(2), a post-scan interactive data display system for ultrasonic contact scan and single measurement analysis. PSIDD(2) was developed in conjunction with ASTM standards for ultrasonic velocity and attenuation coefficient contact measurements. This system has been upgraded from its original version PSIDD(1) and improvements are described in this article. PSIDD(2) implements a comparison mode where the display of time domain waveforms and ultrasonic properties versus frequency can be shown for up to five scan points on one plot. This allows the rapid contrasting of sample areas exhibiting different ultrasonic properties as initially indicated by the ultrasonic contact scan image. This improvement plus additional features to be described in the article greatly facilitate material microstructural appraisal.

  19. Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media.

    PubMed

    Voinovich, Peter; Merlen, Alain

    2005-12-01

    The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.

  20. Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media

    NASA Astrophysics Data System (ADS)

    Voinovich, Peter; Merlen, Alain

    2005-12-01

    The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.