Sample records for ultrasonic nebulization extraction

  1. Ultrasonic nebulization platforms for pulmonary drug delivery.

    PubMed

    Yeo, Leslie Y; Friend, James R; McIntosh, Michelle P; Meeusen, Els N T; Morton, David A V

    2010-06-01

    Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific requirements of a patient, taking into account the patient's breathing pattern, physiological profile and disease state. Nevertheless, owing to the difficulties and limitations associated with conventional designs and technologies, ultrasonic nebulizers have never been widely adopted, and have in recent years been in a state of decline. An overview is provided on the advances in new miniature ultrasonic nebulization platforms in which large increases in lung dose efficiency have been reported. In addition to a discussion of the underlying mechanisms governing ultrasonic nebulization, in which there appears to be widely differing views, the advantages and shortcomings of conventional ultrasonic nebulization technology are reviewed and advanced state-of-the-art technologies that have been developed recently are discussed. Recent advances in ultrasonic nebulization technology demonstrate significant potential for the development of smart, portable inhalation therapy platforms for the future. Nevertheless, there remain considerable challenges that need to be addressed before such personalized delivery systems can be realized. These have to be addressed across the spectrum from fundamental physics through to in vivo device testing and dealing with the relevant regulatory framework.

  2. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    PubMed

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The function profile of compressed-air and ultrasonic nebulizers.

    PubMed

    Wu, Hsin-Lin; Lin, Yung-Zen; Wu, Wei-Fong; Huang, Fu-Yuan

    2003-01-01

    In order to study the detailed function of two kinds of nebulizers commonly used in clinical asthma treatment, compressed-air and ultrasonic, this study was conducted. At the beginning, various flow rates were adjusted, paired with different volumes of solutions in the container. The changes of temperature, pH, and osmolality during the course of nebulization were examined. Normal saline, terbutaline, and fenoterol solutions were used as the nebulized solutions. The study was performed in an environment in ambient temperature around 20 degrees C and relative humidity around 70%. The results showed a minimal 6 L/min flow rate was required to nebulize the solution when using the compressed-air nebulizer. The dead volume was about 0.8 ml for compressed-air and 8.5 ml for the ultrasonic nebulizer. When using the compressed-air nebulizer, the temperature, both in the solution and at the mouthpiece site, dropped gradually. On the contrary, the temperatures at both sites increased a little bit when using the ultrasonic nebulizer. The pH values of pure terbutaline and fenoterol nebulized solutions were acidic (3.58 and 3.00 respectively). The osmolality of terbutaline and fenoterol nebulized solutions were isotonic. The osmolality increased gradually during the course of nebulization, to a greater extent in the compressed-air nebulizer. In conclusion, both types of nebulizers have their special features. The ultrasonic nebulizer displays less extent in change of temperature and osmolality during nebulization and is expected to be a better device in treating asthmatic patients in terms of lesser effect on cooling and changing the osmolality of airway mucosa.

  4. Apparatus for ultrasonic nebulization

    DOEpatents

    Olson, Kenneth W.; Haas, Jr., William J.; Fassel, Velmer A.

    1978-08-29

    An improved apparatus for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet.

  5. Ultrasonic nebulization extraction-heating gas flow transfer-headspace single drop microextraction of essential oil from pericarp of Zanthoxylum bungeanum Maxim.

    PubMed

    Wei, Shigang; Zhang, Huihui; Wang, Yeqiang; Wang, Lu; Li, Xueyuan; Wang, Yinghua; Zhang, Hanqi; Xu, Xu; Shi, Yuhua

    2011-07-22

    The ultrasonic nebulization extraction-heating gas flow transfer coupled with headspace single drop microextraction (UNE-HGFT-HS-SDME) was developed for the extraction of essential oil from Zanthoxylum bungeanum Maxim. The gas chromatography-mass spectrometry was applied to the determination of the constituents in the essential oil. The contents of the constituents from essential oil obtained by the proposed method were found to be more similar to those obtained by hydro-distillation (HD) than those obtained by ultrasonic nebulization extraction coupled with headspace single drop microextraction (UNE-HS-SDME). The heating gas flow was firstly used in the analysis of the essential oil to transfer the analytes from the headspace to the solvent microdrop. The relative standard deviations for determining the five major constituents were in the range from 1.5 to 6.7%. The proposed method is a fast, sensitive, low cost and small sample consumption method for the determination of the volatile and semivolatile constituents in the plant materials. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation.

    PubMed

    Loh, L C; Eg, K P; Puspanathan, P; Tang, S P; Yip, K S; Vijayasingham, P; Thayaparan, T; Kumar, S

    2004-03-01

    Airway inflammation can be demonstrated by the modem method of sputum induction using ultrasonic nebulizer and hypertonic saline. We studied whether compressed-air nebulizer and isotonic saline which are commonly available and cost less, are as effective in inducing sputum in normal adult subjects as the above mentioned tools. Sixteen subjects underwent weekly sputum induction in the following manner: ultrasonic nebulizer (Medix Sonix 2000, Clement Clarke, UK) using hypertonic saline, ultrasonic nebulizer using isotonic saline, compressed-air nebulizer (BestNeb, Taiwan) using hypertonic saline, and compressed-air nebulizer using isotonic saline. Overall, the use of an ultrasonic nebulizer and hypertonic saline yielded significantly higher total sputum cell counts and a higher percentage of cell viability than compressed-air nebulizers and isotonic saline. With the latter, there was a trend towards squamous cell contaminations. The proportion of various sputum cell types was not significantly different between the groups, and the reproducibility in sputum macrophages and neutrophils was high (Intraclass correlation coefficient, r [95%CI]: 0.65 [0.30-0.91] and 0.58 [0.22-0.89], p < 0.001). Overall changes in median FEV, were small and comparable between all groups. Induction using ultrasonic nebulizers together with hypertonic saline was generally less well tolerated than compressed-air nebulizers and isotonic saline. We conclude that in normal subjects, although both nebulizers and saline types can induce sputum with reproducible cellular profile, ultrasonic nebulizers and hypertonic saline are more effective but less well tolerated.

  7. [Analytical figures of merit of Hildebrand grid and ultrasonic nebulizations in inductively coupled plasma atomic emission].

    PubMed

    Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong

    2012-05-01

    Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.

  8. Applicability of an ultrasonic nebulization system for the airways delivery of beclomethasone dipropionate in a murine model of asthma.

    PubMed

    Hrvacić, Boska; Bosnjak, Berislav; Tudja, Marijan; Mesić, Milan; Merćep, Mladen

    2006-08-01

    We have assessed the use of an ultrasonic nebulization system (UNS), composed of ultrasonic nebulizer and diffusion dryer filled with charcoal, for the effective delivery of beclomethasone to the airways in a murine asthma model. Solution of beclomethasone in ethanol was aerosolized using an ultrasonic nebulizer. Passage of the aerosol through a drying column containing charcoal and deionizer produced dry beclomethasone particles. Particles were delivered to BALB/c mice placed in a whole-body exposition chamber 1 h before intranasal challenge with ovalbumine. Efficacy of beclomethasone delivery was evaluated by examining bronchoalveolar lavage fluid (BALF) cytology. Effect of three UNS system parameters on aerosol particle size was investigated. The critical parameter affecting the size of dry particles was beclomethasone concentration in aerosolized solution and solution flow rate while power level of ultrasonic nebulizer generator had no effect. Administration of beclomethasone at calculated dose of 150 microg/kg to mice significantly decreased total cell number and relative eosinophil number in BALF. The UNS system produces a monodisperse aerosol that can be used for inhalative delivery of poorly water soluble substances to experimental animals. The UNS system minimizes formulation requirements and allows rapid and relatively simple efficacy and toxicity testing in animals.

  9. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  10. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    NASA Astrophysics Data System (ADS)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  11. How to use a nebulizer

    MedlinePlus

    ... different kind, called an ultrasonic nebulizer, uses sound vibrations. This kind of nebulizer is quieter, but costs ... Chronic obstructive pulmonary disease Wheezing Patient Instructions Asthma - control drugs Asthma - quick-relief drugs Bronchiolitis - discharge COPD - ...

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; use of a modified ultrasonic nebulizer for the analysis of low ionic-strength water by inductively coupled optical emission spectrometry

    USGS Publications Warehouse

    Harris, Carl M.; Litteral, Charles J.; Damrau, Donna L.

    1997-01-01

    The U.S. Geological Survey National Water Quality Laboratory has developed a method for the determination of dissolved calcium, iron, magnesium, manganese, silica, and sodium using a modified ultrasonic nebulizer sample-introduction system to an inductively coupled plasma-optical emission spectrometer. The nebulizer's spray chamber has been modified to avoid carryover and memory effects common in some conventional ultrasonic designs. The modified ultrasonic nebulizer is equipped with a high-speed rinse cycle to remove previously analyzed samples from the spray chamber without excessive flush times. This new rinse cycle decreases sample washout times by reducing carryover and memory effects from salt or analytes in previously analyzed samples by as much as 45 percent. Plasma instability has been reduced by repositioning the argon carrier gas inlet on the spray chamber and by directly pumping waste from the chamber, instead of from open drain traps, thereby maintaining constant pressure to the plasma. The ultrasonic nebulizer improves signal intensities, which are 8 to 16 times greater than for a conventional cross-flow pneumatic nebulizer, without being sensitive to clogging from salt buildup as in cross-flow nebulizers. Detection limits for the ultrasonic nebulizer are 4 to 18 times less than detection limits achievable using a cross-flow pneumatic nebulizer, with equivalent sample analysis time.

  13. Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesis.

    PubMed

    Muñoz, Mariana; Goutier, Simon; Foucaud, Sylvie; Mariaux, Gilles; Poirier, Thierry

    2018-03-01

    Spray pyrolysis process has been used for the synthesis of non-oxide ceramic powders from liquid precursors in the Si/C/N system. Particles with a high thermal stability and with variable composition and size distribution have been obtained. In this process, the mechanisms involved in precursor decomposition and gas phase recombination of species are still unknown. The final aim of this work consists in improving the whole process comprehension by an experimental/modelling approach that helps to connect the synthesized particles characteristics to the precursor properties and process operating parameters. It includes the following steps: aerosol formation by a piezoelectric nebulizer, its transport and the chemical-physical phenomena involved in the reaction processes. This paper focuses on the aerosol characterization to understand the relationship between the liquid precursor properties and the liquid droplet diameter distribution. Liquids with properties close to the precursor of interest (hexamethyldisilazane) have been used. Experiments have been performed using a shadowgraphy technique to determine the drop size distribution of the aerosol. For all operating parameters of the nebulizer device and liquids used, bimodal droplet size distributions have been obtained. Correlations proposed in the literature for the droplet size prediction by ultrasonic nebulization were used and adapted to the specific nebulizer device used in this study, showing rather good agreement with experimental values. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  15. Residual gravimetric method to measure nebulizer output.

    PubMed

    Vecellio None, Laurent; Grimbert, Daniel; Bordenave, Joelle; Benoit, Guy; Furet, Yves; Fauroux, Brigitte; Boissinot, Eric; De Monte, Michele; Lemarié, Etienne; Diot, Patrice

    2004-01-01

    The aim of this study was to assess a residual gravimetric method based on weighing dry filters to measure the aerosol output of nebulizers. This residual gravimetric method was compared to assay methods based on spectrophotometric measurement of terbutaline (Bricanyl, Astra Zeneca, France), high-performance liquid chromatography (HPLC) measurement of tobramycin (Tobi, Chiron, U.S.A.), and electrochemical measurements of NaF (as defined by the European standard). Two breath-enhanced jet nebulizers, one standard jet nebulizer, and one ultrasonic nebulizer were tested. Output produced by the residual gravimetric method was calculated by weighing the filters both before and after aerosol collection and by filter drying corrected by the proportion of drug contained in total solute mass. Output produced by the electrochemical, spectrophotometric, and HPLC methods was determined after assaying the drug extraction filter. The results demonstrated a strong correlation between the residual gravimetric method (x axis) and assay methods (y axis) in terms of drug mass output (y = 1.00 x -0.02, r(2) = 0.99, n = 27). We conclude that a residual gravimetric method based on dry filters, when validated for a particular agent, is an accurate way of measuring aerosol output.

  16. Nebulization Reflux Concentrator

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Collins, V. G.

    1986-01-01

    Nebulization reflux concentrator extracts and concentrates trace quantities of water-soluble gases for subsequent chemical analysis. Hydrophobic membrane and nebulizing nozzles form scrubber for removing trace quantities of soluble gases or other contaminants from atmosphere. Although hydrophobic membrane virtually blocks all transport of droplets, it offers little resistance to gas flow; hence, device permits relatively large volumes of gas scrubbed efficiently with very small volumes of liquid. This means analyzable quantities of contaminants concentrate in extracting solutions in much shorter times than with conventional techniques.

  17. A history of nebulization.

    PubMed

    Dessanges, J F

    2001-01-01

    The simplest and most natural route of drug delivery to the lungs is the inhaled one. From the historical and medical point of view, it was a Greek, Pedanus Discorides, the father of the science of pharmacy, who, during the first century prescribed inhaled fumigation. Pipes were also used to inhale hallucinogenic substances. All shamans knew the psychotropic effects of poisonous plants such as Datura stramonium, especially Red Indians, in their peace calumets; but Indians of Madras used fumigations of Datura ferox to treat asthma. Since 1803, this therapeutic was imported in Great Britain and cigarettes with leaves of datura were used by asthmatics until 1992. In the middle of the nineteenth century, to treat grapevines diseases and in response to the fashion of inhaling thermal waters, spray technology was developed for the effervescent waters at the thermal spas. The onslaught of tuberculosis, similar to AIDS a century later, brought back into practice the inefficacious use of antiseptic aerosol therapy. With the discovery of adrenaline, ephedrine aerosols enjoyed a rebirth. The perfecting of jet nebulizers by R. Tiffeneau, father of FEV1 and M.B. Wright, father of peak-flow, allowed a better practice of inhalotherapy. In 1949, the United States, ultrasonic nebulizers made their first appearance in the form of humidifiers, but doctors were quick to add medications to produce therapeutic aerosols. After 150 years, with the improvement of nebulizer systems and new nebulized medications, the nebulization story is still not concluded.

  18. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    PubMed

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  19. Inhalation Properties and Stability of Nebulized Naked siRNA Solution for Pulmonary Therapy.

    PubMed

    Tahara, Kohei; Hashimoto, Wakana; Takeuchi, Hirofumi

    2016-01-01

    The use of naked unmodified small interfering RNA (N-siRNA) without vector has previously been investigated as a pulmonary therapy. However, little is known regarding stabilities and aerodynamic particle sizes of N-siRNA-containing droplets; nebulizers have not yet been optimized for N-siRNA solutions. Thus, in this study, we investigated the feasibility of inhaled N-siRNA solutions for pulmonary therapy using nebulization. Various nebulizers and N-siRNA concentrations were assessed in terms of siRNA integrity after nebulization, and inhalation properties including aerodynamic particle size were examined. In comparison with ultrasonic-, air-jet-, and vibrating-mesh nebulizers, N-siRNA integrity was not affected by nebulization. Thus, in further experiments, performances of N-siRNA aerosols with different nebulizers and N-siRNA concentrations were evaluated and screened using an aerodynamic particle sizer (APS) which employed the time-of-flight principle or a cascade impactor. Mean mass aerodynamic diameters of N-siRNA-containing droplets from vibrating-mesh nebulizers tended to decrease with increasing N-siRNA concentrations, reflecting the influence of N-siRNA solutions on surface tension, as indicated by contact angles. These data indicate the utility of APS instruments for investigating the nebulized characteristics of expensive drugs including siRNAs and may facilitate the development of N-siRNA inhalation formulations.

  20. Ultrasonic-assisted extraction of essential oil from Botryophora geniculate using different extracting solvents

    NASA Astrophysics Data System (ADS)

    Habibullah, Wilfred, Cecilia Devi

    2016-11-01

    This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.

  1. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients.

    PubMed

    Rello, J; Rouby, J J; Sole-Lleonart, C; Chastre, J; Blot, S; Luyt, C E; Riera, J; Vos, M C; Monsel, A; Dhanani, J; Roberts, J A

    2017-09-01

    Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H 2 O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights

  2. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    PubMed

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  4. The ultrasonic-enhanced factor of mass-transfer coefficient in the supercritical carbon dioxide extraction

    NASA Astrophysics Data System (ADS)

    Luo, Benyi; Lu, Yigang

    2008-10-01

    Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link between the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced factor of mass-transfer coefficient is brought forward, which describes the mathematical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extraction of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.

  5. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higenbottam, T.; Jackson, M.; Woolman, P.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilledmore » distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.« less

  6. Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina.

    PubMed

    Gaete-Garretón, L; Vargas-Hernández, Yolanda; Cares-Pacheco, María G; Sainz, Javier; Alarcón, John

    2011-07-01

    A study of ultrasonic enhancement in the extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. The effects influencing the extraction process were studied through a two-level factorial design. The effects considered in the experimental design were: granulometry, extraction time, acoustic Power, raw matter/solvent ratio (concentration) and acoustic impedance. It was found that for aqueous extraction the main factors affecting the ultrasonically-assisted process were: granulometry, raw matter/solvent ratio and extraction time. The extraction ratio was increased by Ultrasonics effect and a reduction in extraction time was verified without any influence in the product quality. In addition the process can be carried out at lower temperatures than the conventional method. As the process developed uses chips from the branches of trees, and not only the bark, this research contributes to make the saponin exploitation process a sustainable industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Use of ICP/MS with ultrasonic nebulizer for routine determination of uranium activity ratios in natural water

    USGS Publications Warehouse

    Kraemer, T.F.; Doughten, M.W.; Bullen, T.D.

    2002-01-01

    A method is described that allows precise determination of 234U/238U activity ratios (UAR) in most natural waters using commonly available inductively coupled plasma/mass spectrometry (ICP/MS) instrumentation and accessories. The precision achieved by this technique (??0.5% RSD, 1 sigma) is intermediate between thermal ionization mass spectrometry (??0.25% RSID, 1 sigma) and alpha particle spectrometry (??5% RSD, 1 sigma). It is precise and rapid enough to allow analysis of a large number of samples in a short period of time at low cost using standard, commercially available quadrupole instrumentation with ultrasonic nebulizer and desolvator accessories. UARs have been analyzed successfully in fresh to moderately saline waters with U concentrations of from less than 1 ??g/L to nearly 100 ??g/L. An example of the uses of these data is shown for a study of surface-water mixing in the North Platte River in western Nebraska. This rapid and easy technique should encourage the wider use of uranium isotopes in surface-water and groundwater investigations, both for qualitative (e.g. identifying sources of water) and quantitative (e.g. determining end-member mixing ratios purposes.

  8. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger

    2016-08-01

    In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.

  9. [Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].

    PubMed

    Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan

    2015-05-01

    The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.

  10. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics.

    PubMed

    Lehofer, Bernhard; Bloder, Florian; Jain, Pritesh P; Marsh, Leigh M; Leitinger, Gerd; Olschewski, Horst; Leber, Regina; Olschewski, Andrea; Prassl, Ruth

    2014-11-01

    The objective of this study was to evaluate the impact of nebulization on liposomes with specific surface characteristics by applying three commercially available inhaler systems (air-jet, ultrasonic and vibrating-mesh). Conventional liposome formulations composed of phosphatidylcholine and cholesterol were compared to sterically stabilized PEGylated liposomes and cationic polymer coated liposomes.Liposomes of similar size (between 140 and 165 nm in diameter with polydispersity indices <0.1) were prepared by dry lipid film rehydration followed by size extrusion. Their stability upon nebulization was determined in terms of size, polydispersity index and leakage using a fluorescence quenching system. The transport efficiencies of the nebulizer devices and the influences of both salt and liposomes on the droplet size distribution of the aerosol were investigated. While the droplet size of the aerosol decreased with increasing salt concentration the liposomes had no influence on the droplet size distribution. The output of the nebulizers in terms of liposomal transport efficiencies differed significantly among the nebulizer principles (20–100%, p < 0.05), with the vibrating-mesh nebulizers being the most effective. The integrity of the conventional liposomes was almost unaffected by the atomization process, while polymer coated and especially positively charged liposomes showed enhanced leakage. The release rates for the hydrophilic model drug system were highest for the vibrating-mesh nebulizers regardless of the surface characteristics of the liposomes (increasing from 10% to 20% and 50% for the conventional, PEGylated and positively charged formulations, respectively). In view of surface modified liposomes our data suggest that drug delivery via nebulization necessitates the finding of a compromise between nebulizer efficiency, formulation stability and drug release profile to accomplish the development of tailored formulations suitable for advanced inhalation

  11. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil.

    PubMed

    Tian, Yuting; Xu, Zhenbo; Zheng, Baodong; Martin Lo, Y

    2013-01-01

    The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercriti cal fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies.

    PubMed

    Zhang, Lei; Zhou, Cunshan; Wang, Bei; Yagoub, Abu El-Gasim A; Ma, Haile; Zhang, Xiao; Wu, Mian

    2017-07-01

    The ultrasonic extraction of oils is a typical physical processing technology. The extraction process was monitored from the standpoint of the oil quality and efficiency of oil extraction. In this study, the ultrasonic cavitation fields were measured by polyvinylidene fluoride (PVDF) sensor. Waveform of ultrasonic cavitation fields was gained and analyzed. The extraction yield and oxidation properties were compared. The relationship between the fields and cavitation oxidation was established. Numerical calculation of oscillation cycle was done for the cavitation bubbles. Results showed that the resonance frequency, f r , of the oil extraction was 40kHz. At f r , the voltage amplitude was the highest; the time was the shortest as reaching the amplitude of the waveform. Accordingly, the cavitation effect worked most rapidly, resulting in the strongest cavitation intensity. The extraction yield and oxidation properties were closely related to the cavitation effect. It controlled the cavitation oxidation effectively from the viewpoint of chemical and physical aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves.

    PubMed

    Kulkarni, Vrushali M; Rathod, Virendra K

    2014-03-01

    The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3(-) liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Electrical, optical and structural properties of FTO thin films fabricated by spray ultrasonic nebulizer technique from SnCl4 precursor

    NASA Astrophysics Data System (ADS)

    Lalasari, Latifa Hanum; Arini, Tri; Andriyah, Lia; Firdiyono, F.; Yuwono, Akhmad Herman

    2018-05-01

    Thin films of fluorine-doped tin oxide on glass were prepared by spray ultrasonic nebulizer technique from an economic anhydrous tin (IV) chloride (SnCl4) precursor. The effect of deposition time on the structural, electrical and optical properties of tin oxide thin films was investigated. This research a purpose to find an optimum deposition time during spray pyrolysis technique in order to produce FTO with the desired characteristics. For this purpose, soda lime glasses are heated at 350 °C on deposition time of 10, 15, 20 and 25 minutes. NH4F was doped at a ratio of 2 wt% in the SnCl4 precursor and methanol solvent. The results revealed that longer deposition times created decreased the electrical resistivity and optical transmittance of FTO layers. The highest optical transmittance was 84.808% and the lowest resistivity was 4.01×10-5 Ω.cm, obtained from FTO glass subjected to a 15-minute deposition time at deposition temperature of 350 °C. This is accordance to the TCO conductive glass requirements for the minimum resistivity value on scale 10-4 Ω.cm and optical transmittance value of 80-85%.

  15. Optimization of focused ultrasonic extraction of propellant components determined by gas chromatography/mass spectrometry.

    PubMed

    Fryš, Ondřej; Česla, Petr; Bajerová, Petra; Adam, Martin; Ventura, Karel

    2012-09-15

    A method for focused ultrasonic extraction of nitroglycerin, triphenyl amine and acetyl tributyl citrate presented in double-base propellant samples following by the gas chromatography/mass spectrometry analysis was developed. A face-centered central composite design of the experiments and response surface modeling was used for optimization of the time, amplitude and sample amount. The dichloromethane was used as the extractant solvent. The optimal extraction conditions with respect to the maximum yield of the lowest abundant compound triphenyl amine were found at the 20 min extraction time, 35% amplitude of ultrasonic waves and 2.5 g of the propellant sample. The results obtained under optimal conditions were compared with the results achieved with validated Soxhlet extraction method, which is typically used for isolation and pre-concentration of compounds from the samples of explosives. The extraction yields for acetyl tributyl citrate using both extraction methods were comparable; however, the yield of ultrasonic extraction of nitroglycerin and triphenyl amine was lower than using Soxhlet extraction. The possible sources of different extraction yields are estimated and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Direct ultrasonic agitation for rapid extraction of organic matter from airborne particulate.

    PubMed

    Lee, S C; Zou, S C; Ho, K F; Chan, L Y

    2001-01-02

    Direct ultrasonic extraction (DUE) is proposed as simple and rapid sample pretreatment method. This new approach is applied to the extraction of particulate organic matter (POM) from airborne particulate by using dichloromethane (DCM) or DCM/methanol (90/10, v/v) as extractant. The analytical determination was carried out by weighing the extractable POM on an electrobalance. Total recovery for POM could be obtained when the sample was extracted three times with 25-50 mL extractant each for about 5 min at 50 W ultrasonic power. In comparison with conventional Soxhlet extraction, less extraction time (total 15 min only) and solvent consumption (100 mL) were required by DUE. The efficiency of the DUE was similar or even higher than the routine Soxhlet method. Additionally, the new extractor is very simple and easy to use and can accelerate the extraction procedures of organic components from various solid samples.

  17. Ultrasonic-assisted extraction, structure and antitumor activity of polysaccharide from Polygonum multiflorum.

    PubMed

    Zhu, Weili; Xue, Xiaoping; Zhang, Zhanjun

    2016-10-01

    Polygonum multiflorum is a popular Chinese herbal medicine with various pharmacological functions. In this study, the ultrasonic-assisted extraction condition, structural characterization and antitumor activity of a polysaccharide from roots of P. multiflorum were investigated. The ultrasonic-assisted extraction condition was optimized by single-factor experiments and response surface methodology. Results showed that the maximum extraction yield (5.49%) was obtained at ultrasonic power 158W, extraction temperature 62°C, extraction time 80min and ratio of water to material 20mL/g. The obtained crude polysaccharides were further purified to afford a neutral and an acidic fraction. The structure of the main neutral polysaccharide (named PPS with molecular weight of 3.26×10(5)Da) was characterized as a linear (1→6)-α-d-glucan by gas chromatography, Fourier transform-infrared spectroscopy, methylation analysis, 1D and 2D nuclear magnetic resonance. At the concentration of 400μg/mL, the inhibitory ratios of PPS on HepG-2 and BGC-823 cells were 53.35% and 38.58%, respectively. Results suggested this polysaccharide could be a potential natural antitumor agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electrostatic charge characteristics of jet nebulized aerosols.

    PubMed

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  19. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction.

    PubMed

    Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang

    2017-01-15

    This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo)
Seed Powder

    PubMed Central

    Tu, Gia Loi; Bui, Thi Hoang Nga; Tran, Thi Thu Tra; Ton, Nu Minh Nguyet

    2015-01-01

    Summary In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group) from defatted pumpkin (Cucurbita pepo) seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16% higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability. PMID:27904383

  1. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo)
Seed Powder.

    PubMed

    Tu, Gia Loi; Bui, Thi Hoang Nga; Tran, Thi Thu Tra; Ton, Nu Minh Nguyet; Man Le, Van Viet

    2015-12-01

    In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group) from defatted pumpkin ( Cucurbita pepo ) seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16% higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability.

  2. Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated Adults: A Systematic Review and Meta-analysis.

    PubMed

    Solé-Lleonart, Candela; Rouby, Jean-Jacques; Blot, Stijn; Poulakou, Garyfallia; Chastre, Jean; Palmer, Lucy B; Bassetti, Matteo; Luyt, Charles-Edouard; Pereira, Jose M; Riera, Jordi; Felton, Tim; Dhanani, Jayesh; Welte, Tobias; Garcia-Alamino, Jose M; Roberts, Jason A; Rello, Jordi

    2017-05-01

    Nebulization of antiinfective agents is a common but unstandardized practice in critically ill patients. A systematic review of 1,435 studies was performed in adults receiving invasive mechanical ventilation. Two different administration strategies (adjunctive and substitute) were considered clinically relevant. Inclusion was restricted to studies using jet, ultrasonic, and vibrating-mesh nebulizers. Studies involving children, colonized-but-not-infected adults, and cystic fibrosis patients were excluded. Five of the 11 studies included had a small sample size (fewer than 50 patients), and only 6 were randomized. Diversity of case-mix, dosage, and devices are sources of bias. Only a few patients had severe hypoxemia. Aminoglycosides and colistin were the most common antibiotics, being safe regarding nephrotoxicity and neurotoxicity, but increased respiratory complications in 9% (95% CI, 0.01 to 0.18; I = 52%), particularly when administered to hypoxemic patients. For tracheobronchitis, a significant decrease in emergence of resistance was evidenced (risk ratio, 0.18; 95% CI, 0.05 to 0.64; I = 0%). Similar findings were observed in pneumonia by susceptible pathogens, without improvement in mortality or ventilation duration. In pneumonia caused by resistant pathogens, higher clinical resolution (odds ratio, 1.96; 95% CI, 1.30 to 2.96; I = 0%) was evidenced. These findings were not consistently evidenced in the assessment of efficacy against pneumonia caused by susceptible pathogens. Performance of randomized trials evaluating the impact of nebulized antibiotics with more homogeneous populations, standardized drug delivery, predetermined clinical efficacy, and safety outcomes is urgently required. Infections by resistant pathogens might potentially have higher benefit from nebulized antiinfective agents. Nebulization, without concomitant systemic administration of the drug, may reduce nephrotoxicity but may also be associated with higher risk of respiratory

  3. In Vitro Comparison of a Vibrating Mesh Nebulizer Operating in Inspiratory Synchronized and Continuous Nebulization Modes During Noninvasive Ventilation.

    PubMed

    Michotte, Jean-Bernard; Staderini, Enrico; Le Pennec, Deborah; Dugernier, Jonathan; Rusu, Rares; Roeseler, Jean; Vecellio, Laurent; Liistro, Giuseppe; Reychler, Grégory

    2016-08-01

    Backround: Coupling nebulization with noninvasive ventilation (NIV) has been shown to be effective in patients with respiratory diseases. However, a breath-synchronized nebulization option that could potentially improve drug delivery by limiting drug loss during exhalation is currently not available on bilevel ventilators. The aim of this in vitro study was to compare aerosol delivery of amikacin with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. Using an adult lung bench model of NIV, we tested a vibrating mesh device coupled with a bilevel ventilator in both nebulization modes. Inspi-Neb delivered aerosol only during the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. The nebulizer was charged with amikacin solution (250 mg/3 mL) and placed at two different positions: between the lung and exhalation port and between the ventilator and exhalation port. Inhaled, expiratory wasted and circuit lost doses were assessed by residual gravimetric method. Particle size distribution of aerosol delivered at the outlet of the ventilator circuit during both nebulization modes was measured by laser diffraction method. Regardless of the nebulizer position, Inspi-Neb produced higher inhaled dose (p < 0.01; +6.3% to +16.8% of the nominal dose), lower expiratory wasted dose (p < 0.05; -2.7% to -42.6% of the nominal dose), and greater respirable dose (p < 0.01; +8.4% to +15.2% of the nominal dose) than Conti-Neb. The highest respirable dose was found with the nebulizer placed between the lung and exhalation port (48.7% ± 0.3% of the nominal dose). During simulated NIV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization improves respirable dose and reduces drug loss of amikacin compared with continuous vibrating mesh nebulization.

  4. Binary solvent extraction system and extraction time effects on phenolic antioxidants from kenaf seeds (Hibiscus cannabinus L.) extracted by a pulsed ultrasonic-assisted extraction.

    PubMed

    Wong, Yu Hua; Lau, Hwee Wen; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.

  5. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus cannabinus L.) Extracted by a Pulsed Ultrasonic-Assisted Extraction

    PubMed Central

    Lau, Hwee Wen; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β-carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry. PMID:24592184

  6. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    PubMed

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  7. Health resource utilization for inpatients with COPD treated with nebulized arformoterol or nebulized formoterol

    PubMed Central

    Ganapathy, Vaidyanathan; Stensland, Michael D

    2017-01-01

    Objective Arformoterol is the (R,R)-enantiomer of formoterol. Preclinical studies suggest that it is a stronger bronchodilator than the racemic (R,R/S,S)-formoterol; however, its potential clinical advantages have not been demonstrated. This study compared the length of stay (LOS), 30-day readmission rates, and doses of rescue medication administered in hospitalized patients with COPD who were treated with nebulized arformoterol or nebulized formoterol. Methods This retrospective analysis utilized data from Premier, Inc. (Charlotte, NC, USA), the largest nationwide hospital-based administrative database. COPD patients ≥40 years of age were included if they were hospitalized between January 2011 and July 2014, had no asthma diagnoses, and were treated with nebulized arformoterol or nebulized formoterol. LOS was measured from the day the patients initiated the study medication (index day). Rescue medications were defined as short-acting bronchodilators used from the index day onward. Multivariate statistical models included a random effect for hospital and controlled for patient demographics, hospital characteristics, admission characteristics, prior hospitalizations, comorbidities, pre-index service use, and pre-index medication use. Results A total of 7,876 patients received arformoterol, and 3,612 patients received nebulized formoterol. There was no significant difference in 30-day all-cause (arformoterol =11.9%, formoterol =12.1%, odds ratio [OR] =0.981, P=0.82) or COPD-related hospital readmission rates (arformoterol =8.0%, formoterol =8.0%, OR =1.002, P=0.98) after adjusting for covariates. The adjusted mean LOS was significantly shorter for arformoterol-treated vs formoterol-treated patients (4.6 vs 4.9 days, P=0.039), and arformoterol-treated patients used significantly fewer doses of rescue medications vs formoterol-treated patients (5.9 vs 6.6 doses, P=0.006). Conclusion During inpatient stays, treating with arformoterol instead of nebulized formoterol

  8. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes.

    PubMed

    Teh, Sue-Siang; Birch, Edward John

    2014-01-01

    The effectiveness of ultrasonic extraction of phenolics and flavonoids from defatted hemp, flax and canola seed cakes was compared to the conventional extraction method. Ultrasonic treatment at room temperature showed increased polyphenol extraction yield and antioxidant capacity by two-fold over the conventional extraction method. Different combinations of ultrasonic treatment parameters consisting of solvent volume (25, 50, 75 and 100 mL), extraction time (20, 30 and 40 min) and temperature (40, 50, 60 and 70 °C) were selected for polyphenol extractions from the seed cakes. The chosen parameters had a significant effect (p<0.05) on the polyphenol extraction yield and subsequent antioxidant capacity from the seed cakes. Application of heat during ultrasonic extraction yielded higher polyphenol content in extracts compared to the non-heated extraction. From an orthogonal design test, the best combination of parameters was 50 mL of solvent volume, 20 min of extraction time and 70 °C of ultrasonic temperature. Copyright © 2013. Published by Elsevier B.V.

  9. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    PubMed

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  10. Effect of ultrasonic treatment on total phenolic extraction from Lavandula pubescens and its application in palm olein oil industry.

    PubMed

    Rashed, Marwan M A; Tong, Qunyi; Abdelhai, Mandour H; Gasmalla, Mohammed A A; Ndayishimiye, Jean B; Chen, Long; Ren, Fei

    2016-03-01

    The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 μg/mL), and higher inhibition of β-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 μg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Glass frit nebulizer for atomic spectrometry

    USGS Publications Warehouse

    Layman, L.R.

    1982-01-01

    The nebuilizatlon of sample solutions Is a critical step In most flame or plasma atomic spectrometrlc methods. A novel nebulzatlon technique, based on a porous glass frit, has been Investigated. Basic operating parameters and characteristics have been studied to determine how thte new nebulizer may be applied to atomic spectrometrlc methods. The results of preliminary comparisons with pneumatic nebulizers Indicate several notable differences. The frit nebulizer produces a smaller droplet size distribution and has a higher sample transport efficiency. The mean droplet size te approximately 0.1 ??m, and up to 94% of the sample te converted to usable aerosol. The most significant limitations In the performance of the frit nebulizer are the stow sample equMbratton time and the requirement for wash cycles between samples. Loss of solute by surface adsorption and contamination of samples by leaching from the glass were both found to be limitations only In unusual cases. This nebulizer shows great promise where sample volume te limited or where measurements require long nebullzatlon times.

  12. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    PubMed

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  13. Study of the use of axial viewed inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization for the determination of select elemental impurities in oral drug products.

    PubMed

    Menoutis, James; Parisi, Angela; Verma, Natasha

    2018-04-15

    In efforts to control the potential presence of heavy metals in pharmaceuticals, the United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and guidelines for their control. The new requirements and guidelines establish specific daily exposures (PDE) for 24 heavy metals/elemental impurities (EI) based upon their toxicological properties. USP General Chapter 〈233〉 provides a general reference procedure for preparing pharmaceutical samples for analysis employing microwave assisted digestion (MWAD). It also provides two Compendial Procedures, Procedure 1 employing ICP-AES, and Procedure 2 employing ICP-MS. Given the extremely low detection limits afforded by ICP-MS, much work has been done in developing and evaluating analytical methods to support the analysis of elemental impurities in finished pharmaceutical products, active pharmaceutical ingredients, and excipients by this analytical technique. In this study, we have evaluated the use of axial ICP-AES. This employs ultrasonic nebulization (UN) for the determination of Class 1 and 2 EI, instead of traditional pneumatic nebulization. The study also employed closed vessel MWAD to prepare samples for analysis. Limits of quantitation were element specific and significantly lower than the PDEs for oral drugs. Spike recoveries for the elements studied ranged between 89.3% and 109.25%, except for Os, which was subject to OsO4 formation during MWAD. The use of axial ICP-AES UN provides an alternative to ICP-MS in the analysis of EI requiring low detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. COPD -- how to use a nebulizer

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000699.htm COPD - how to use a nebulizer To use the ... page, please enable JavaScript. A nebulizer turns your COPD medicine into a mist. It is easier to ...

  15. 21 CFR 868.5640 - Medicinal nonventilatory nebulizer (atomizer).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medicinal nonventilatory nebulizer (atomizer). 868.5640 Section 868.5640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... nonventilatory nebulizer (atomizer). (a) Identification. A medicinal nonventilatory nebulizer (atomizer) is a...

  16. 21 CFR 868.5640 - Medicinal nonventilatory nebulizer (atomizer).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medicinal nonventilatory nebulizer (atomizer). 868.5640 Section 868.5640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... nonventilatory nebulizer (atomizer). (a) Identification. A medicinal nonventilatory nebulizer (atomizer) is a...

  17. Comparison of numerical simulations to experiments for atomization in a jet nebulizer.

    PubMed

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and

  18. Comparison of Numerical Simulations to Experiments for Atomization in a Jet Nebulizer

    PubMed Central

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and

  19. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco.

    PubMed

    Shen, Jinchao; Shao, Xueguang

    2005-11-01

    The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.

  20. [Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of the Artocarpus heterophyllus by response surface methodology].

    PubMed

    Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong

    2011-07-01

    To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.

  1. Ultrasonic-assisted Aqueous Extraction and Physicochemical Characterization of Oil from Clanis bilineata.

    PubMed

    Sun, Mingmei; Xu, Xiao; Zhang, Qiuqin; Rui, Xin; Wu, Junjun; Dong, Mingsheng

    2018-02-01

    Ultrasound-assisted aqueous extraction (UAAE) was used to extract oil from Clanis bilineata (CB), a traditional edible insect that can be reared on a large scale in China, and the physicochemical property and antioxidant capacity of the UAAE-derived oil (UAAEO) were investigated for the first time. UAAE conditions of CB oil was optimized using response surface methodology (RSM) and the highest oil yield (19.47%) was obtained under optimal conditions for ultrasonic power, extraction temperature, extraction time, and ultrasonic interval time at 400 W, 40°C, 50 min, and 2 s, respectively. Compared with Soxhlet extraction-derived oil (SEO), UAAEO had lower acid (AV), peroxide (PV) and p-anisidine values (PAV) as well as higher polyunsaturated fatty acids contents and thermal stability. Furthermore, UAAEO showed stronger antioxidant activities than those of SEO, according to DPPH radical scavenging and β-carotene bleaching tests. Therefore, UAAE is a promising process for the large-scale production of CB oil and CB has a developing potential as functional oil resource.

  2. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    PubMed Central

    Tsai, Chen S.; Mao, Rong W.; Tsai, Shirley C.; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K.; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C.

    2017-01-01

    An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery. PMID:29250438

  3. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.

    PubMed

    Tsai, Chen S; Mao, Rong W; Tsai, Shirley C; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C

    2017-01-01

    An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  4. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel

    2010-01-01

    Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.

  5. Effect of inhaled furosemide and torasemide on bronchial response to ultrasonically nebulized distilled water in asthmatic subjects.

    PubMed

    Foresi, A; Pelucchi, A; Mastropasqua, B; Cavigioli, G; Carlesi, R M; Marazzini, L

    1992-08-01

    Inhaled furosemide has been shown to reduce the bronchoconstriction induced by several indirect stimuli, including ultrasonically nebulized distilled water (UNDW). Because the protective effect could be due to the inhibition of the Na(+)-2Cl(-)-K+ cotransport system of bronchial epithelium, we have compared the protective effect of inhaled furosemide with that of inhaled torasemide, a new and more potent loop diuretic, on UNDW-induced bronchoconstriction in a group of 12 asthmatic subjects. UNDW challenge was performed by constructing a stimulus-response curve with five increasing volume outputs of distilled water (from 0.5 to 5.2 ml/min) and the bronchial response expressed as the provocative output causing a 20% fall in FEV1 (PO20UNDW). On different days, each subject inhaled an equal dose (28 mg) of furosemide and torasemide in a randomized, double-blind, placebo-controlled study 5 min prior to an UNDW challenge. Furosemide and torasemide had no significant effect on resting lung function. The geometric mean value of PO20UNDW measured after placebo was 1.73 ml/min. This was significantly lower than that recorded after furosemide (4.25 ml/min; p < 0.025), but not after torasemide (3.05 ml/min; p = 0.07). Inhaled furosemide totally blocked bronchial response to UNDW in five subjects. In two of five subjects the response was also blocked by inhaled torasemide. A remarkable increase in diuresis was noted only after torasemide in most subjects. We conclude that inhaled furosemide has a better protective effect than does inhaled torasemide against UNDW-induced bronchoconstriction. However, the protective effect of furosemide is variable, with some asthmatic patients showing no change in bronchial response to UNDW.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf.

    PubMed

    Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad

    2015-03-01

    The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Concentric micro-nebulizer for direct sample insertion

    DOEpatents

    Fassel, V.A.; Rice, G.W.; Lawrence, K.E.

    1984-03-06

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05mm. The dead volume of the inner tube is less than about 5 microliters.

  8. Concentric micro-nebulizer for direct sample insertion

    DOEpatents

    Fassel, Velmer A.; Rice, Gary W.; Lawrence, Kimberly E.

    1986-03-11

    A concentric micro-nebulizer and method for introducing liquid samples into a plasma established in a plasma torch including a first tube connected to a source of plasma gas. The concentric micro-nebulizer has inner and outer concentric tubes extending upwardly within the torch for connection to a source of nebulizer gas and to a source of liquid solvent and to a source of sample liquid. The inner tube is connected to the source of liquid solvent and to the source of sample liquid and the outer tube is connected to the source of nebulizer gas. The outer tube has an orifice positioned slightly below the plasma when it is established, with the inner and outer tubes forming an annulus therebetween with the annular spacing between the tubes at said orifice being less than about 0.05 mm. The dead volume of the inner tube is less than about 5 microliters.

  9. SPECT-CT Comparison of Lung Deposition using a System combining a Vibrating-mesh Nebulizer with a Valved Holding Chamber and a Conventional Jet Nebulizer: a Randomized Cross-over Study.

    PubMed

    Dugernier, Jonathan; Hesse, Michel; Vanbever, Rita; Depoortere, Virginie; Roeseler, Jean; Michotte, Jean-Bernard; Laterre, Pierre-François; Jamar, François; Reychler, Gregory

    2017-02-01

    To compare in vivo the total and regional pulmonary deposition of aerosol particles generated by a new system combining a vibrating-mesh nebulizer with a specific valved holding chamber and constant-output jet nebulizer connected to a corrugated tube. Cross-over study comparing aerosol delivery to the lungs using two nebulizers in 6 healthy male subjects: a vibrating-mesh nebulizer combined with a valved holding chamber (Aerogen Ultra®, Aerogen Ltd., Galway, Ireland) and a jet nebulizer connected to a corrugated tube (Opti-Mist Plus Nebulizer®, ConvaTec, Bridgewater, NJ). Nebulizers were filled with diethylenetriaminepentaacetic acid labelled with technetium-99 m ( 99m Tc-DTPA, 2 mCi/4 mL). Pulmonary deposition of 99m Tc-DTPA was measured by single-photon emission computed tomography combined with a low dose CT-scan (SPECT-CT). Pulmonary aerosol deposition from SPECT-CT analysis was six times increased with the vibrating-mesh nebulizer as compared to the jet nebulizer (34.1 ± 6.0% versus 5.2 ± 1.1%, p < 0.001). However, aerosol penetration expressed as the three-dimensional normalized ratio of the outer and the inner regions of the lungs was similar between both nebulizers. This study demonstrated the high superiority of the new system combining a vibrating-mesh nebulizer with a valved holding chamber to deliver nebulized particles into the lungs as comparted to a constant-output jet nebulizer with a corrugated tube.

  10. Development of ultrasonic-assisted extraction of antioxidant compounds from Petai (Parkia speciosa Hassk.) leaves

    NASA Astrophysics Data System (ADS)

    Buanasari; Palupi, P. D.; Serang, Y.; Pramudono, B.; Sumardiono, S.

    2018-04-01

    Research on Petai (Parkia speciosa Hassk.) suggests it has an antihypertension, antidiabetic, analgesic, and antiulcer effects. In the present study, an ultrasonic-assisted extraction method was developed for the effective extraction of active compound from petai leaves. Some parameters such as ethanol concentration (0, 20, 40, 60, 70, 80, 100 %v), solid-to-liquid ratio (1:5; 1:10; 1:15; 1:20; 1:25; 1:30; 1:35; 1:40; 1:50 g/mL), extraction time (15, 20, 25, 30, 35, 40, 50 minutes) and extraction temperature (40, 45, 50, 55, 60, 65, 70°C) were studied and evaluated base on extract yield and 1,1-diphenyl-2-picry hydrazyl (DPPH) scavenging activity. The result showed that the highest extract yield was obtained at 40% ethanol concentration, 1:30 (%w/v) of solid-to-liquid ratio, 30 minutes and 65°C of temperature with DPPH scavenging activity 92.53 ± 0.87% and extract yield 21.25 ± 2.38%. The result obtained is helpful for the utilization of Petai leaves, and also indicated that ultrasonic-assisted extraction is a very recommended method for the extraction of active compounds from plant material.

  11. Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran.

    PubMed

    Kumar, Pramod; Yadav, Devbrat; Kumar, Pradyuman; Panesar, Paramjeet Singh; Bunkar, Durga Shankar; Mishra, Diwaker; Chopra, H K

    2016-04-01

    In present study, conventional, ultrasonic and microwave assisted extraction methods were compared with the aim of optimizing best fitting solvent and method, solvent concentration and digestion time for high yield of γ-oryzanol from rice bran. Petroleum ether, hexane and methanol were used to prepare extracts. Extraction yield were evaluated for giving high crude oil yield, total phenolic content (TPC) and γ-oryzanol content. Gas chromatography-mass spectrophotometry was used for the determination of γ-oryzanol concentration. The highest concentration of γ-oryzanol was detected in methanolic extracts of microwave treatment (85.0 ppm) followed by ultrasonication (82.0 ppm) and conventional extraction method (73.5 ppm). Concentration of γ-oryzanol present in the extracts was found to be directly proportional to the total phenolic content. A combination of 80 % methanolic concentration and 55 minutes digestion time of microwave treatment yielded the best extraction method for TPC and thus γ-oryzanol (105 ppm).

  12. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: formulation aspects and nanoparticle stability to nebulization.

    PubMed

    Beck-Broichsitter, Moritz; Kleimann, Pia; Gessler, Tobias; Seeger, Werner; Kissel, Thomas; Schmehl, Thomas

    2012-01-17

    Polymeric nanoparticles meet the increasing interest for drug delivery applications and hold great promise to improve controlled drug delivery to the lung. Here, we present a series of investigations that were carried out to understand the impact of formulation variables on the nebulization performance of novel biodegradable sildenafil-loaded nanoparticles designed for targeted aerosol therapy of life-threatening pulmonary arterial hypertension. Narrowly distributed poly(D,L-lactide-co-glycolide) nanoparticles (size: ∼200 nm) were prepared by a solvent evaporation technique using poly(vinyl alcohol) (PVA) as stabilizer. The aerodynamic and output characteristics using the Aeroneb Pro nebulizer correlated well with the dynamic viscosity of the employed fluids for nebulization. The nebulization performance was mainly affected by the amount of employed stabilizer, rather than by the applied nanoparticle concentration. Nanoparticles revealed physical stability against forces generated during aerosolization, what is attributed to the adsorbed PVA layer around the nanoparticles. Sildenafil was successfully encapsulated into nanoparticles (encapsulation efficiency: ∼80%). Size, size distribution and sildenafil content of nanoparticles were not affected by nebulization and the in vitro drug release profile demonstrated a sustained sildenafil release over ∼120 min. The current study suggests that the prepared sildenafil-loaded nanoparticles are a promising pharmaceutical for the therapy of pulmonary arterial hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Identification and validation of nebulized aerosol devices for sputum induction

    PubMed Central

    Davidson, Warren J; Dennis, John; The, Stephanie; Litoski, Belinda; Pieron, Cora; Leigh, Richard

    2014-01-01

    Induced sputum cell count measurement has proven reliability for evaluating airway inflammation in patients with asthma and other airway diseases. Although the use of nebulizer devices for sputum induction is commonplace, they are generally labelled as single-patient devices by the manufacturer and, therefore, cannot be used for multiple patients in large clinical sputum induction programs due to infect ion-control requirements. Accordingly, this study investigated the aerosol characteristics of alternative devices that could be used in such programs. BACKGROUND: Induced sputum cell counts are a noninvasive and reliable method for evaluating the presence, type and degree of airway inflammation in patients with asthma. Currently, standard nebulizer devices used for sputum induction in multiple patients are labelled as single-patient devices by the manufacturer, which conflicts with infection prevention and control requirements. As such, these devices cannot feasibly be used in a clinical sputum induction program. Therefore, there is a need to identify alternative nebulizer devices that are either disposable or labelled for multi-patient use. OBJECTIVE: To apply validated rigorous, scientific testing methods to identify and validate commercially available nebulizer devices appropriate for use in a clinical sputum induction program. METHODS: Measurement of nebulized aerosol output and size for the selected nebulizer designs followed robust International Organization for Standardization methods. Sputum induction using two of these nebulizers was successfully performed on 10 healthy adult subjects. The cytotechnologist performing sputum cell counts was blinded to the type of nebulizer used. RESULTS: The studied nebulizers had variable aerosol outputs. The AeroNeb Solo (Aerogen, Ireland), Omron NE-U17 (Omron, Japan) and EASYneb II (Flaem Nuova, Italy) systems were found to have similar measurements of aerosol size. There was no significant difference in induced sputum

  14. Pulmonary Drug Delivery Following Continuous Vibrating Mesh Nebulization and Inspiratory Synchronized Vibrating Mesh Nebulization During Noninvasive Ventilation in Healthy Volunteers.

    PubMed

    Michotte, Jean-Bernard; Staderini, Enrico; Aubriot, Anne-Sophie; Jossen, Emilie; Dugernier, Jonathan; Liistro, Giuseppe; Reychler, Gregory

    2018-02-01

    A breath-synchronized nebulization option that could potentially improve drug delivery during noninvasive positive pressure ventilation (NIPPV) is currently not available on single-limb circuit bilevel ventilators. The aim of this study was to compare urinary excretion of amikacin following aerosol delivery with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. A crossover clinical trial involving 6 noninvasive ventilated healthy volunteers (mean age of 32.3 ± 9.5 y) randomly assigned to both vibrating mesh nebulization modes was conducted: Inspi-Neb delivered aerosol during only the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. All subjects inhaled amikacin solution (500 mg/4 mL) during NIPPV using a single-limb bilevel ventilator (inspiratory positive airway pressure: 12 cm H 2 O, and expiratory positive airway pressure: 5 cm H 2 O). Pulmonary drug delivery of amikacin following both nebulization modes was compared by urinary excretion of drug for 24 hours post-inhalation. The total daily amount of amikacin excreted in the urine was significantly higher with Inspi-Neb (median: 44.72 mg; interquartile range [IQR]: 40.50-65.13) than with Conti-Neb (median: 40.07 mg; IQR: 31.00-43.73), (p = 0.02). The elimination rate constant of amikacin (indirect measure of the depth of drug penetration into the lungs) was significantly higher with Inspi-Neb (median: 0.137; IQR: 0.113-0.146) than with Conti-Neb (median: 0.116; IQR: 0.105-0.130), (p = 0.02). However, the mean pulmonary drug delivery rate, expressed as the ratio between total daily urinary amount of amikacin and nebulization time, was significantly higher with Conti-Neb (2.03 mg/min) than with Inspi-Neb (1.09 mg/min) (p < 0.01). During NIPPV with a single-limb circuit bilevel ventilator, the use of inspiratory

  15. Pharmacokinetics of nebulized terbinafine in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Emery, Lee C; Cox, Sherry K; Souza, Marcy J

    2012-09-01

    Aspergillosis is one of the most difficult diseases to treat successfully in avian species. Terbinafine hydrochloride offers numerous potential benefits over traditionally used antifungals for treatment of this disease. Adding nebulized antifungals to treatment strategies is thought to improve clinical outcomes in lung diseases. To determine plasma concentrations of terbinafine after nebulization, 6 adult Hispaniolan Amazon parrots were randomly divided into 2 groups of 3. Each bird was nebulized for 15 minutes with 1 of 2 terbinafine solutions, one made with a crushed tablet and the second with raw drug powder. Blood samples were collected at baseline and at multiple time points up to 720 minutes after completing nebulization. Plasma and nebulization solutions were analyzed by high-performance liquid chromatography. The terbinafine concentration of the solution made with a crushed tablet (0.87 +/- 0.05 mg/mL) was significantly lower than was that made with raw powder (1.02 +/- 0.09 mg/mL). Plasma concentrations of terbinafine did not differ significantly between birds in the 2 groups. Plasma terbinafine concentrations in birds were maintained above in vitro minimum inhibitory concentrations for approximately 1 hour in birds nebulized with the crushed tablet solution and 4 hours in birds nebulized with the raw powder solution. Higher concentrations of solution, longer nebulization periods, or more frequent administration are likely needed to reach therapeutic plasma concentrations of terbinafine for clinically relevant periods in Hispaniolan Amazon parrots.

  16. Inhalers and nebulizers: basic principles and preliminary measurements

    NASA Astrophysics Data System (ADS)

    Misik, Ondrej; Lizal, Frantisek; Asl, Vahid Farhikhteh; Belka, Miloslav; Jedelsky, Jan; Elcner, Jakub; Jicha, Miroslav

    2018-06-01

    Inhalers are hand-held devices which are used for administration of therapeutic aerosols via inhalation. Nebulizers are larger devices serving for home and hospital care using inhaled medication. This contribution describes the basic principles of dispersion of aerosol particles used in various types of inhalers and nebulizers, and lists the basic physical mechanisms contributing to the deposition of inhaled particles in the human airways. The second part of this article presents experimental setup, methodology and preliminary results of particle size distributions produced by several selected inhalers and nebulizers.

  17. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges.

    PubMed

    Poulakou, G; Siakallis, G; Tsiodras, S; Arfaras-Melainis, A; Dimopoulos, G

    2017-03-01

    Nebulized antibiotics use has become common practice in the therapeutics of pneumonia in cystic fibrosis patients. There is an increasing interest in their use for respiratory infections in mechanically ventilated (MV) patients in order to a) overcome pharmacokinetic issues in the lung compartment with traditional systemic antibiotic use and b) prevent the emergence of multi-drug-resistant (MDR) pathogens. Areas covered: The beneficial effects of antibiotic nebulization in MV patients e.g. increasing efficacy, reduced toxicity and prevention of resistance are described. Physicochemical parameters of optimal lung deposition, characteristics of currently available nebulizers, practical aspects of the procedure, including drug preparation and adjustments of ventilator and circuit parameter are presented. Antibiotics used in nebulized route, along with efficacy in various clinical indications and safety issues are reviewed. Expert commentary: The safety of nebulization of antibiotics has been proven in numerous studies; efficacy as adjunctive treatment to intravenous regimens or as monotherapy has been demonstrated in ventilator-associated pneumonia or ventilator-associated tracheobronchitis due to MDR or susceptible pathogens. However, due to the heterogeneity of studies, multiple meta-analyses fail to demonstrate a clear effect. Clarification of indications, standardization of technique and implementation of clinical practice guidelines, based on new large-scale trials will lead to the optimal use of nebulized antibiotics.

  18. Ultrasonic extraction of polysaccharides from Laminaria japonica and their antioxidative and glycosidase inhibitory activities

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Yang, Xiaoman; Cai, Bingna; Chen, Hua; Sun, Huili; Chen, Deke; Pan, Jianyu

    2015-08-01

    In the present study, ultrasonic extraction technique (UET) is used to improve the yield of polysaccharides from Laminaria japonica (LJPs). And their antioxidative as well as glycosidase inhibitory activities are investigated. Box-Behnken design (BBD) combined with response surface methodology (RSM) is applied to optimize ultrasonic extraction for polysaccharides. The optimized conditions are obtained as extraction time at 54 min, ultrasonic power at 1050 W, extraction temperature at 80°C and ratio of material to solvent at 1:50 (g mL-1). Under these optimal ultrasonic extraction conditions, an actual experimental yield (5.75% ± 0.3%) is close to the predicted result (5.67%) with no significant difference ( P > 0.05). Vitro antioxidative and glycosidase inhibitory activities tests indicate that the crude polysaccharides (LJP) and two major ethanol precipitated fractions (LJP1 and LJP2) are in a concentration-dependent manner. LJP2 (30%-60% ethanol precipitated polysaccharides) possesses the strongest α-glucosidase inhibitory activity and moderate scavenging activity against hydroxyl radicals (66.09% ± 2.19%, 3.0 mg mL-1). Also, the inhibitory activity against α-glucosidase (59.08% ± 3.79%, 5.0 mg mL-1) is close to that of acarbose (63.99% ± 3.27%, 5.0 mg mL-1). LJP1 (30% ethanol precipitated polysaccharides) exhibits the strongest scavenging activity against hydroxyl radicals (99.80% ± 0.00%, 3.0 mg mL-1) and moderate α-glucosidase inhibitory activity (47.76% ± 1.92%, 5.0 mg mL-1). LJP shows the most remarkable DPPH scavenging activity (66.20% ± 0.11%, 5.0 mg mL-1) but weakest α-glucosidase inhibitory activity (37.77% ± 1.30%, 5.0 mg mL-1). However, all these LJPs exert weak inhibitory effects against α-amylase. These results show that UET is an effective method for extracting bioactive polysaccharides from seaweed materials. LJP1 and LJP2 can be developed as a potential ingredient in hypoglycemic agents or functional food for the management of

  19. Optimization of Ultrasonic-Microwave Synergistic Extraction of Ricinine from Castor Cake by Response Surface Methodology.

    PubMed

    Xu, Wei; Yan, Xiuhua; Shao, Rong; Chen, Ligen; Ke, Zengguang

    Castor cake is the residue in castor oil production in which many active components exist and the major one among them is ricinine. In this study, optimization of extraction of ricinine from castor cake using ultrasonic-microwave synergistic extraction (UMSE) was investigated to obtain high yield and purity by Box-Behnken design (BBD) response surface design. The optimal conditions of extraction were: ultrasound power 342 W, extracting time 5 min, microwave power 395 W, and non-significant factor of liquid/solid ratio 1:10. The crude extraction was recrystallized from ethanol. As a result, the maximum yield of ricinine was approximately 67.52%. The purity of ricinine was 99.39% which was determined by high performance liquid chromatography (HPLC). Additionally, the structure of purified ricinine was identified by fourier transforms infrared (FTIR) and liquid chromatography-mass spectrometry (LC-MS). Scanning electron microscope (SEM) was used to characterize the prismatic crystals morphology of ricinine. Results demonstrated that the present method combined the advantages of ultrasonic extraction and microwave extraction, which is time-saving with high extraction yield. Our results offer a suitable method for large-scale isolation of ricinine.

  20. Ultrasonic-assisted enzymatic extraction of phenolics from broccoli (Brassica oleracea L. var. italica) inflorescences and evaluation of antioxidant activity in vitro.

    PubMed

    Wu, Hao; Zhu, Junxiang; Yang, Long; Wang, Ran; Wang, Chengrong

    2015-06-01

    An efficient ultrasonic-assisted enzymatic extraction technique was applied to extracting phenolics from broccoli inflorescences without organic solvents. The synergistic model of enzymolysis and ultrasonication simultaneously was selected, and the enzyme combination was optimized by orthogonal test: cellulase 7.5 mg/g FW (fresh weight), pectinase 10 mg/g FW, and papain 1.0 mg/g FW. The operating parameters in ultrasonic-assisted enzymatic extraction were optimized with response surface methodology using Box-Behnken design. The optimal extraction conditions were as follows: ultrasonic power, 440 W; liquid to material ratio, 7.0:1 mL/g; pH value of 6.0 at 54.5 ℃ for 10 min. Under these conditions, the extraction yield of phenolics achieved 1.816 ± 0.0187 mg gallic acid equivalents/gram FW. The free radical scavenging activity of ultrasonic-assisted enzymatic extraction extracts was determined by 1,1-diphenyl-2-picrylhydrazyl·assay with EC50 values of 0.25, and total antioxidant activity was determined by ferric reducing antioxidant power assay with ferric reducing antioxidant power value of 0.998 mmol FeSO4/g compared with the referential ascorbic acid of 1.184 mmol FeSO4/g. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Collison nebulizer as a new soft ionization source for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.

    2016-08-01

    We have proposed that a Collison-type nebulizer be used as an ionization source for mass spectrometry with ionization under atmospheric pressure. This source does not require the use of electric voltage, radioactive sources, heaters, or liquid pumps. It has been shown that the number of ions produced by the 63Ni radioactive source is three to four times larger than the number of ions produced by acoustic ionization sources. We have considered the possibility of using a Collison-type nebulizer in combination with a vortex focusing system as an ion source for extractive ionization of compounds under atmospheric pressure. The ionization of volatile substances in crossflows of a charged aerosol and an analyte (for model compounds of the amine class, viz., diethylaniline, triamylamine, and cocaine) has been investigated. It has been shown that the limit of detecting cocaine vapor by this method is on the level of 4.6 × 10-14 g/cm3.

  2. Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens.

    PubMed

    Towle, Dana; Baker, Vanisha; Schramm, Craig; O'Brien, Matthew; Collins, Melanie S; Feinn, Richard; Murray, Thomas S

    2018-05-01

    The Cystic Fibrosis Foundation (CFF) recommends routine nebulizer disinfection for patients but compliance is challenging due to the heavy burden of home care. SoClean® is a user friendly ozone based home disinfection device currently for home respiratory equipment. The objective of this study was to determine whether SoClean® has potential as a disinfection device for families with CF by killing CF associated bacteria without altering nebulizer output. Ozone based disinfection effectively kills bacterial pathogens inoculated to home nebulizer equipment without gross changes in nebulizer function. Common bacterial pathogens associated with CF were inoculated onto the PariLC® jet nebulizer and bacterial recovery compared with or without varied ozone exposure. In separate experiments, nebulizer output was estimated after repeated ozone exposure by weighing the nebulizer. Ozone disinfection was time dependent with a 5 min infusion time and 120 min dwell time effectively killing >99.99% bacteria tested including Pseudomonas aeruginosa and Staphylococcus aureus. Over 250 h of repeat ozone exposure did not alter nebulizer output. This suggests SoClean® has potential as a user-friendly disinfection technique for home respiratory equipment. © 2018 Wiley Periodicals, Inc.

  3. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  4. Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea.

    PubMed

    Staneva, Jordanka; Todorova, Milka; Neykov, Neyko; Evstatieva, Ljuba

    2009-07-01

    This work deals with ultrasonically assisted extraction (UAE) of biologically active compounds from rhizomes of Rhodiola rosea, a popular medicinal plant. The influence of temperature, type of solvent and solid/solvent ratio on the yield of total extracts, total phenols and flavonoids was established. The best extraction of total phenols and flavonoids was achieved by using 50% aqueous EtOH and MeOH, respectively. Five times increase of solid/solvent ratio (from 1:20 to 1:100 (w/v)) leads to slow increase of the yield of total phenols and flavonoids. The extraction effectiveness of conventional maceration with 50% EtOH and UAE performed for 1 h at 25 degrees C using the same solvent with respect of total phenols was comparable.

  5. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.

    PubMed

    Ellison, Candice R; Overa, Sean; Boldor, Dorin

    2018-05-19

    Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of

  6. Running a nurse-led nebulizer clinic in a district general hospital.

    PubMed

    Porter-Jones, G; Francis, S; Benfield, G

    The widespread home use of nebulizers for delivering bronchodilating medication in patients with a variety of respiratory conditions is well documented, as is the lack of appropriate assessment before this form of treatment is prescribed (Cochrane et al, 1985). When it is considered that the use of nebulizers at home is increasing (Drug Information Bulletin, 1994), it is essential that appropriate assessment is undertaken in line with British Thoracic Society recommendations in order to ensure that the degree of benefit is sufficient to justify the inconvenience, potential dangers and high cost of nebulizer therapy in the home. This article examines a nurse-led nebulizer assessment clinic that was set up as part of a service for providing home nebulization for long-term use in patients with chronic obstructive pulmonary disease or chronic severe asthma.

  7. [Problems in the use, cleaning and maintenance of nebulization equipment in the home situation].

    PubMed

    Struycken, V H; Tiddens, H A; van den Broek, E T; Dzoljic-Danilovic, G; van der Velden, A J; de Jongste, J C

    1996-03-23

    To determine whether jet nebulizers used at home for the treatment of children with asthma are used optimally. Descriptive. Outpatient clinic for child pulmonary diseases of the Academic Hospital/Sophia Children's Hospital Rotterdam and outpatient clinic for child diseases of the Baronie Hospital Breda, the Netherlands. Thirty-nine children aged 0-13 years and their parents were interviewed at home, and medication cup, saline and aerosol were cultured for bacterial analysis. The pressures of the compressor and nebulizer were measured with a manometer, and the particle size of the aerosol of 10 jet nebulizers was measured by laser technique. The suppliers of the nebulizer did not provide clear instructions on user-related aspects and technical maintenance of the jet nebulizer. Many patients used damaged and poorly functioning, contaminated jet nebulizers. Contamination by potentially pathogenic micro-organisms was present in 50% of the saline, medication cups and aerosols (Klebsiella, Enterobacter, Pseudomonas, Serratia, Escherichia coli). The operating pressure of compressor and nebulizer was below the requirements in more than 50% of the jet nebulizers. In addition, we found that the aerodynamic mass median diameter increased considerably as the nebulizer became older. In 6/10 nebulizers the particle size was below 5 microns. A periodical checkup of user-related aspects and technical quality of jet nebulizers is necessary. The quality of the instruction to users about the procedure for cleaning and maintenance of the jet nebulizer should be improved.

  8. Optimized microwave-assistant extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. and evaluation of its anti-allergic activity.

    PubMed

    Liang, Qian; Chen, Huaguo; Zhou, Xin; Deng, Qingfang; Hu, Enming; Zhao, Chao; Gong, Xiaojian

    2017-04-01

    Microwave extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. was investigated in this study, extraction process was first performed in an ultrasonic cleaner, then treated by microwave irradiation. The optimum ultrasonic time of 25 min was selected by single-factor experiments. A response surface methodology has been used to obtain a mathematical model that describes the process and analyzes the significant parameters ethanol concentration 59.92%, liquid to raw materials ratio 21.24 mL/g, microwave radiation time 209.53 s, and microwave power 274.14 w. In these optimum conditions, the yield of flavonoids from P. forrestii (TFPF) could be up to 9.11 ± 0.08%, which was increased by 14.30 and 19.86% compared microwave extraction and ultrasonic extraction, respectively. In vitro suppress hyaluronidase experimentation showed that TFPF purified using polyamide exhibited good anti-hyaluronidase ability with IC 50 value of 1.033 mg/mL, possessing certain anti-antiallergic and potential application prospect in pharmaceutical production of treating inflammation and other related fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhancement of Cognitive Functions by Aronia melanocarpa Elliot Through an Intermittent Ultrasonication Extraction Process.

    PubMed

    Kim, Nam Young; Lee, Hyeon Yong

    2016-03-01

    To increase the cognitive enhancement provided by Aronia melanocarpa Elliot (Aronia), Aronia was extracted using 70% ethanol solvent and six cycles of intermittent ultrasonication at 120 KHz for 50 min, followed by a rest for 10 min (UE), and was also extracted using 70% ethanol for 24 h at 80°C (EE) as a control process. In both in vivo water maze and passive avoidance tests, the UE showed better performance enhancement than the EE: in the water maze, mice treated with EE and UE showed escape latencies of 62.6 s and 54.3 s, respectively; for passive avoidance, they showed retention times of 45.9 s and 38.9 s, respectively. UE downregulated the expression level of acetylcholinesterase genes to 1.46 times compared with 1.72 for EE. However, there were no significant histological differences in the hippocampus between the mice fed with EE and those fed UE. Additionally, the UE was confirmed to have a greater antioxidant effect, 0.728 versus 0.561 for EE. Comparison of the high-performance liquid chromatography chromatograms of the extracts demonstrates that the intermittent ultrasonication process may improve the cognitive activities of Aronia by eluting higher amounts of cyanidin-3-galactoside (C3G). This work is the first to report that the crude extract from the intermittent ultrasonication process provided better cognitive enhancement than a single major bioactive substance, C3G itself, possibly through the synergistic effects of other anthocyanins present in the extract, such as delphine galactoside, cyanidin arabinoside, and cyanidin glucoside. We also believe that these findings may provide a reliable basis for developing natural plant drugs to compensate for the side effects of purified and/or chemically synthesized single-component drugs rather than to compete with them.

  10. Compensating effect of ultrasonic waves on retarding action of nanoparticles in drops liquid-liquid extraction.

    PubMed

    Saien, Javad; Daneshamoz, Sana

    2018-03-01

    The influence of ultrasonic waves on liquid-liquid extraction of circulating drops and in the presence of magnetite nanoparticles was investigated. Experiments were conducted in a column equipped with an ultrasound transducer. The frequency and intensity of received waves, measured by the hydrophone standard method, were 35.40 kHz and 0.37 mW/cm 2 , respectively. The recommended chemical system of cumene-isobutyric acid-water was used in which mass transfer resistance lies in the aqueous phase. Nanoparticles, within concentration range of (0.0003-0.0030) wt%, were added to the aqueous continuous phase. The presence of nanoparticles and ultrasonic waves provided no sensible change in drop size (within 2.49-4.17 mm) and measured terminal velocities were close to Grace model. However, presence of nanoparticles, caused mass transfer to decrease. This undesired effect was significantly diminished by using ultrasonic waves so that mass transfer coefficient increased from (73.0-178.2) to (130.2-240.2) µm/s, providing a 55.6% average enhancement. It is presumably due to disturbing the accumulated nanoparticles around the drops. The current innovative study highlights the fact that using ultrasonic waves is an interesting way to improve liquid-liquid extraction in the presence and absence of nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk.

    PubMed

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Jia; Wang, Yanwei; Xing, Lisha

    2014-01-30

    An enzymolysis-ultrasonic assisted extraction (EUAE) procedure of corn silk polysaccharides (CSPS) was established and the physicochemical properties, antioxidant and anticancer activities of CSPS were studied. Orthogonal test and response surface methodology were applied to optimize the extraction parameters. The optimum enzymolysis and ultrasonic conditions were cellulase content of 7.5% for 150 min at 55 °C and liquid-solid ratio of 31.8 for 34.2 min at 66.3 °C, respectively. Under these conditions, the yield of CSPS increased from 4.56% to 7.10%. CSPS obtained by hot water and EUAE were composed of rhamnose, arabinose, xylose, mannose, galactose and glucose with molecular ratios of 4.17:17.33:5.59:18.65:19.11:35.14 and 8.83:15.77:7.92:12.39:11.15:43.94, respectively. Their molecular weight distributions were 10.52 × 10(4) and 6.88 × 10(4)Da, respectively. CSPS obtained by EUAE showed morphological and conformation changes and higher antioxidant and anticancer activities compared with CSPS extracted by hot water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  13. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  14. Baby bottle steam sterilizers for disinfecting home nebulizers inoculated with non-tuberculous mycobacteria.

    PubMed

    Towle, D; Callan, D A; Lamprea, C; Murray, T S

    2016-03-01

    Non-tuberculous mycobacteria (NTMb), present in environmental water sources, can contribute to respiratory infection in patients with chronic pulmonary disease. Contaminated nebulizers are a potential source of respiratory infection. Treatment with baby bottle steam sterilizers disinfects home nebulizers inoculated with bacterial pathogens but whether this method works for disinfection of NTMb is unclear. Baby bottle steam sterilization was compared with vigorous water washing for disinfecting home nebulizers inoculated with NTMb mixed with cystic fibrosis sputum. No NTMb was recovered from any nebulizers after steam treatment whereas viable NTMb grew after water washing, demonstrating that steam sterilization effectively disinfects NTMb-inoculated nebulizers. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  16. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent.

    PubMed

    Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila

    2011-07-22

    Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Field method for the determination of hexavalent chromium by ultrasonication and strong anion-exchange solid-phase extraction.

    PubMed

    Wang, J; Ashley, K; Marlow, D; England, E C; Carlton, G

    1999-03-01

    A simple, fast, sensitive, and economical field method was developed and evaluated for the determination of hexavalent chromium (CrVI) in environmental and workplace air samples. By means of ultrasonic extraction in combination with a strong anion-exchange solid-phase extraction (SAE-SPE) technique, the filtration, isolation, and determination of CrVI in the presence of trivalent chromium (CrIII) and potential interferents was achieved. The method entails (1) ultrasonication in basic ammonium buffer solution to extract CrVI from environmental matrixes; (2) SAE-SPE to separate CrVI from CrIII and interferences; (3) elution/acidification of the eluate; (4) complexation of chromium with 1,5-diphenylcarbazide; and (5) spectrophotometric determination of the colored chromium-diphenylcarbazone complex. Several critical parameters were optimized in order to effect the extraction of both soluble (K2CrO4) and insoluble (PbCrO4) forms of CrVI without inducing CrIII oxidation or CrVI reduction. The method allowed for the dissolution and purification of CrVI from environmental and workplace air sample matrixes for up to 24 samples simultaneously in less than 90 min (including ultrasonication). The results demonstrated that the method was simple, fast, quantitative, and sufficiently sensitive for the determination of occupational exposures of CrVI. The method is applicable for on-site monitoring of CrVI in environmental and industrial hygiene samples.

  18. Baby bottle steam sterilizers disinfect home nebulizers inoculated with bacterial respiratory pathogens.

    PubMed

    Towle, Dana; Callan, Deborah A; Farrel, Patricia A; Egan, Marie E; Murray, Thomas S

    2013-09-01

    Contaminated nebulizers are a potential source of bacterial infection but no single method is universally accepted for disinfection. We hypothesized that baby-bottle steam sterilizers effectively disinfect home nebulizers. Home nebulizers were inoculated with the common CF respiratory pathogens methicillin resistant Staphylococcus aureus, Burkholderia cepacia, Haemophilus influenzae, mucoid and non mucoid Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. The nebulizers were swabbed for bacterial growth, treated with either the AVENT (Philips), the NUK Quick & Ready (Gerber) or DRY-POD (Camera Baby) baby bottle steam sterilizer and reswabbed for bacterial growth. All steam sterilizers were effective at disinfecting all home nebulizers. Viable bacteria were not recovered from any inoculated site after steam treatment, under any conditions tested. Steam treatment is an effective disinfection method. Additional studies are needed to confirm whether these results are applicable to the clinical setting. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  19. Demountable direct injection high efficiency nebulizer for inductively coupled plasma mass spectrometry

    DOEpatents

    Montaser, Akbar; Westphal, Craig S.; Kahen, Kaveh; Rutkowski, William F.; Acon, Billy W.

    2006-12-05

    A nebulizer adapted for adjusting a position of a capillary tube contained within the nebulizer is provided. The nebulizer includes an elongated tubular shell having a gas input port and a gas output port, a capillary adjustment adapter for displacing the capillary tube in a lateral direction via a rotational force, and a connector for connecting the elongated tubular shell, the capillary adjustment adapter and the capillary tube.

  20. Effect of mask dead space and occlusion of mask holes on delivery of nebulized albuterol.

    PubMed

    Berlinski, Ariel

    2014-08-01

    Infants and children with respiratory conditions are often prescribed bronchodilators. Face masks are used to facilitate the administration of nebulized therapy in patients unable to use a mouthpiece. Masks incorporate holes into their design, and their occlusion during aerosol delivery has been a common practice. Masks are available in different sizes and different dead volumes. The aim of this study was to compare the effect of different degrees of occlusion of the mask holes and different mask dead space on the amount of nebulized albuterol available at the mouth opening in a model of a spontaneously breathing child. A breathing simulator mimicking infant (tidal volume [VT] = 50 mL, breathing frequency = 30 breaths/min, inspiratory-expiratory ratio [I:E] = 1:3), child (VT = 155 mL, breathing frequency = 25 breaths/min, I:E = 1:2), and adult (VT = 500 mL, breathing frequency = 15 breaths/min, I:E = 1:2) breathing patterns was connected to a collection filter hidden behind a face plate. A pediatric size mask and an adult size mask connected to a continuous output jet nebulizer were sealed to the face plate. Three nebulizers were loaded with albuterol sulfate (2.5 mg/3 mL) and operated with 6 L/min compressed air for 5 min. Experiments were repeated with different degrees of occlusion (0%, 50%, and 90%). Albuterol was extracted from the filter and measured with a spectrophotometer at 276 nm. Occlusion of the holes in the large mask did not increase the amount of albuterol in any of the breathing patterns. The amount of albuterol captured at the mouth opening did not change when the small mask was switched to the large mask, except with the breathing pattern of a child, and when the holes in the mask were 50% occluded (P = .02). Neither decreasing the dead space of the mask nor occluding the mask holes increased the amount of nebulized albuterol captured at the mouth opening.

  1. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    PubMed

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  2. Pharmacokinetics of nebulized and subcutaneously implanted terbinafine in cottonmouths (Agkistrodon piscivorus).

    PubMed

    Kane, L P; Allender, M C; Archer, G; Leister, K; Rzadkowska, M; Boers, K; Souza, M; Cox, S

    2017-10-01

    Ophidiomyces ophiodiicola, the causative agent of snake fungal disease, is proposed as a serious threat to the conservation of several snake populations. The objective of this study was to determine the pharmacokinetic parameters of terbinafine administered through nebulization and a sustained subcutaneous implant as potential treatments of Ophidiomyces in reptiles. Seven adult cottonmouths (Agkistrodon piscivorus) were used in single-dose trials. Each snake was nebulized with terbinafine (2 mg/ml) for 30 min and had blood collected before nebulization and up to 12 hr after nebulization. Following a 5-month washout, the same snakes were administered a subcutaneous implant containing 24.5 mg terbinafine; blood was collected at baseline, 1 day postimplant placement, and then once weekly for 9 weeks. Plasma for both studies was analyzed by high-performance liquid chromatography. The mean plasma concentrations of nebulized terbinafine peaked between 0.5 and 4 hr. The subcutaneously implanted terbinafine reached therapeutic concentrations on day 1 and maintained therapeutic for over 6 weeks. These methods and doses are recommended as potential treatment options for snake fungal disease in reptiles. © 2017 John Wiley & Sons Ltd.

  3. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  4. Nebulized naloxone gently and effectively reverses methadone intoxication.

    PubMed

    Mycyk, Mark B; Szyszko, Amy L; Aks, Steven E

    2003-02-01

    A 46-year-old woman presented to the Emergency Department with lethargy and respiratory depression after ingesting methadone. Initial oxygen saturation of 61% on room air did not improve with supplemental oxygenation. As venous access was initially unobtainable, naloxone was administered by nebulizer. Within 5 min oxygen saturation was 100% and mental status was normal. The patient did not develop severe withdrawal symptoms. Naloxone hydrochloride has been administered by various routes to treat opioid toxicity. Our report describes the successful use of nebulized naloxone for methadone toxicity.

  5. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities

    PubMed Central

    Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  6. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  7. [Effectiveness of the HighFO novel oxygen nebulizer for respiratory failure patients with severe hypoxia].

    PubMed

    Takamatsu, Kazufumi; Sakuramoto, Minoru; Inoue, Daiki; Ishitoko, Manabu; Itotani, Ryo; Suzuki, Shinko; Matsumoto, Masataka; Takemura, Masaya; Fukui, Motonari

    2011-04-01

    Optimal oxygen delivery is an essential component of therapy for patients with respiratory failure. Reservoir masks or air entrainment nebulizers have often been used for patients who require highly concentrated oxygen, but these may not actually deliver a sufficient fraction of inspired oxygen if there is a marked increase in the patient's ventilatory demands, or if oxygen flow becomes limited due to high resistance in the nebulizer nozzles. The HighFO nebulizer is a novel air entrainment nebulizer equipped with unique structures which reduce nozzle resistance, and as a result, it is possible to supply a sufficient flow of highly concentrated-oxygen. The purpose of this study was to evaluate the effectiveness and usefulness of the HighFO nebulizer in 10 respiratory failure patients with severe hypoxemia who used a reservoir mask and required more than 10 L/min of oxygen supply. In each case, the reservoir mask was replaced with the HighFO nebulizer, and changes in percutaneous oxygen saturation (SpO2) were monitored using pulse oximetry. Oxygenation improved promptly after the reservoir mask was substituted for the HighFO nebulizer (SpO2 : 83.7% +/- 8.5%-94.2% +/- 3.2%, p = 0.007). This finding suggests that the HighFO nebulizer was reasonably effective in delivering highly concentrated oxygen, sufficient for patient demands. The HighFO nebulizer may be the beginning of a new strategy for oxygen therapy.

  8. Incorporating a Nebulizer System Into High-Flow Nasal Cannula Improves Comfort in Infants With Bronchiolitis.

    PubMed

    Valencia-Ramos, Juan; Mirás, Alicia; Cilla, Amacia; Ochoa, Carlos; Arnaez, Juan

    2018-07-01

    High-flow nasal cannula (HFNC) is increasingly used to provide respiratory support in infants with bronchiolitis. The delivery of aerosol therapy through a jet nebulizer is widely indicated despite its controversial efficacy and poor tolerability. This randomized cross-over study aimed to evaluate the comfort and satisfaction of the delivery of aerosol therapy using a nebulization system integrated into HFNC compared with the standard practice of using a jet nebulizer with a face mask. The COMFORT-Behavior (COMFORT-B) scale, a visual analog scale, and a numeric rating scale were used by health professionals and caregivers to assess subjects' levels of comfort and satisfaction. A total of 113 nebulizations (64 via nebulizer with HFNC; 49 via jet nebulizer) were delivered to the 6 subjects included in the study. Use of the nebulizer with HFNC showed increased comfort and satisfaction during nebulization compared to use of the jet nebulizer, as measured by the COMFORT-B scale, the visual analog scale, and the numeric rating scale, with the following median (interquartile range) scores: 10.7 (7-16) versus 14.5 (10-20) ( P = .006), 8.5 (6-10) versus 7 (4-9) ( P = .02), and 3.84 (3.61-4.07) versus 1.83 (1.58-2.08) ( P < .001), respectively. Correlation between the COMFORT-B scale and the visual analog scale using Spearman's rho was -0.757 ( P < .001). The intraclass correlation coefficient for the COMFORT-B scale, visual analog scale, and numeric rating scale, as measured by 2 different nurses, was between 0.75 and 0.87. The use of a nebulizer incorporated into HFNC therapy results in an increased level of comfort and satisfaction compared to the use of a conventional jet nebulizer in subjects with bronchiolitis who required HFNC therapy. Further studies are needed to determine whether aerosol therapy delivered through HFNC improves the clinical course of this pathology. Copyright © 2018 by Daedalus Enterprises.

  9. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    PubMed

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  10. Facial and ocular deposition of nebulized budesonide: effects of face mask design.

    PubMed

    Harris, Keith W; Smaldone, Gerald C

    2008-02-01

    In vivo case reports and in vitro studies have indicated that aerosol therapy using face masks can result in drug deposition on the face and in the eyes, and that face mask design may affect drug delivery. To test different mask/nebulizer combinations for budesonide, a nebulized steroid used to treat pediatric patients with asthma. Using high-performance liquid chromatography, drug delivery (inhaled mass), facial, and ocular deposition of budesonide aerosols were studied in vitro using a ventilated face facsimile (tidal volume, 50 mL; rate, 25 breaths/min, duty cycle 0.4), a tight-fitting test mask, a standard commercial mask, and a prototype mask designed to optimize delivery by reducing particle inertia. Nebulizer insertion into the mask (front loaded vs bottom loaded) was also tested. Particle size was measured by cascade impaction. Pari LC Plus (PARI Respiratory Equipment; Midlothian, VA) and MistyNeb (Allegiance; McGaw Park, IL) nebulizers were tested. Inhaled mass for tight-fitting and prototype masks was similar (13.2 +/- 1.85% vs 14.4 +/- 0.67% [percentage of nebulizer charge], p = 0.58) and significantly greater than for the commercial mask (3.03 +/- 0.26%, p = 0.005). Mask insertion of nebulizer was a key factor (inhaled mass: front loaded vs bottom loaded, 8.23 +/- 0.18% vs 3.03 +/- 0.26%; p = 0.005). Ocular deposition varied by an order of magnitude and was a strong function of mask design (4.77 +/- 0.24% vs 0.35 +/- 0.05%, p = 0.002, tight fitting vs prototype). Particle sizes (7.3 to 9 microm) were larger than previously reported for budesonide. For pediatric breathing patterns, mask design is a key factor defining budesonide delivery to the lungs, face, and eyes. Front-loaded nebulizer mask combinations are more efficient than bottom-loaded systems.

  11. PDI using nebulized indocyanine green for pneumonia treatment

    NASA Astrophysics Data System (ADS)

    Geralde, Mariana C.; Kassab, Giulia; Inada, Natalia M.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2018-02-01

    Infectious pneumonia is a major cause of morbidity/mortality, mainly due to the increasing rate of microorganisms resistant to antibiotics. Photodynamic Inactivation (PDI) is emerging as a promising treatment option, which effects are based on oxidative stress, targeting several biomolecules and probably preventing potential resistant strains. In previous studies, the in vitro inactivation of Streptococcus pneumoniae using indocyanine green (ICG) and infrared (IR) light source (780 nm) was successful, and achieving satisfactory reduction of colony-forming units (CFU/mL). In the present study, a proof-of-principle protocol was designed to treat lung infections by PDI using extracorporeal irradiation with a 780 nm laser device and nebulized ICG as photosensitizer. Balb/c mice were infected with S. pneumoniae and PDI was performed two days after infection using 800 μM of nebulized ICG and extracorporeal irradiation. Our results indicate that IR-extracorporeal PDI using nebulized ICG may be considered a potential pneumonia treatment, and pulmonary decontamination with PDI may be used as a single therapy or as an adjuvant for antibiotics.

  12. Protein stability in pulmonary drug delivery via nebulization.

    PubMed

    Hertel, Sebastian P; Winter, Gerhard; Friess, Wolfgang

    2015-10-01

    Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Characterization of a human powered nebulizer compressor for resource poor settings

    PubMed Central

    2014-01-01

    Background Respiratory disease accounts for three of the ten leading causes of death worldwide. Many of these diseases can be treated and diagnosed using a nebulizer. Nebulizers can also be used to safely and efficiently deliver vaccines. Unfortunately, commercially available nebulizers are not designed for use in regions of the world where lung disease is most prevalent: they are electricity-dependent, cost-prohibitive, and not built to be reliable in harsh operating conditions or under frequent use. To overcome these limitations, the Human Powered Nebulizer compressor (HPN) was developed. The HPN does not require electricity; instead airflow is generated manually through a hand-crank or bicycle-style pedal system. A health care worker or other trained individual operates the device while the patient receives treatment. This study demonstrates functional specifications of the HPN in comparison with a standard commercially available electric jet nebulizer compressor, the DeVilbiss Pulmo-Aide 5650D (Pulmo-Aide). Methods Pressure and flow characteristics were measured with a rotameter and pressure transducer, respectively. Volume nebulized by each compressor was determined by mass, and particle size distribution was determined via laser diffraction. The Hudson RCI Micro Mist nebulizer mouthpiece was used with both compressors. Results The pressure and flow generated by the HPN and Pulmo-Aide were: 15.17 psi and 10.5 L/min; and 14.65 psi and 11.2 L/min, respectively. The volume of liquid delivered by each was equivalent, 1.097 ± 0.107 mL (mean ± s.e.m., n = 13) for the HPN and 1.092 ± 0.116 mL for the Pulmo-Aide. The average particle size was also equivalent, 5.38 ± 0.040 micrometers (mean ± s.e.m., n = 7) and 5.40 ± 0.025 micrometers, respectively. Conclusions Based on these characteristics, the HPN’s performance is equivalent to a popular commercially available electric nebulizer compressor. The findings presented in

  14. Does nebulized fentanyl relieve dyspnea during exercise in healthy man?

    PubMed Central

    Kotrach, Houssam G.; Bourbeau, Jean

    2015-01-01

    Few therapies exist for the relief of dyspnea in restrictive lung disorders. Accumulating evidence suggests that nebulized opioids selective for the mu-receptor subtype may relieve dyspnea by modulating intrapulmonary opioid receptor activity. Our respective primary and secondary objectives were to test the hypothesis that nebulized fentanyl (a mu-opioid receptor agonist) relieves dyspnea during exercise in the presence of abnormal restrictive ventilatory constraints and to identify the physiological mechanisms of this improvement. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of 250 μg nebulized fentanyl, chest wall strapping (CWS), and their interaction on detailed physiological and perceptual responses to constant work rate cycle exercise (85% of maximum incremental work rate) in 14 healthy, fit young men. By design, CWS decreased vital capacity by ∼20% and mimicked the negative consequences of a mild restrictive lung disorder on exercise endurance time and on dyspnea, breathing pattern, dynamic operating lung volumes, and diaphragmatic electromyographic and respiratory muscle function during exercise. Compared with placebo under both unrestricted control and CWS conditions, nebulized fentanyl had no effect on exercise endurance time, integrated physiological response to exercise, sensory intensity, unpleasantness ratings of exertional dyspnea. Our results do not support a role for intrapulmonary opioids in the neuromodulation of exertional dyspnea in health nor do they provide a physiological rationale for the use of nebulized fentanyl in the management of dyspnea due to mild restrictive lung disorders, specifically those arising from abnormalities of the chest wall and not affiliated with airway inflammation. PMID:26031762

  15. Aerosol Delivery Using Jet Nebulizer and Vibrating Mesh Nebulizer During High Frequency Oscillatory Ventilation: An In Vitro Comparison.

    PubMed

    Fang, Tien-Pei; Lin, Hui-Ling; Chiu, Shu-Hua; Wang, Szu-Hui; DiBlasi, Robert M; Tsai, Ying-Huang; Fink, James B

    2016-10-01

    High frequency oscillatory ventilation (HFOV) is used in critically ill patients with severe hypoxemic respiratory failure. The purpose of this in vitro study was to determine the efficiency of aerosol delivery with different lung parameters during simulated neonatal, pediatric, and adult HFOV. Sensormedics 3100A/B ventilators were used to deliver infant, pediatric, and adult HFOV. Two types of aerosol generators were chosen for testing: 1) a continuous jet nebulizer (JN) with a unit-dose of 5.0 mg/2.5 mL salbutamol sulfate diluted into 4 mL, and 2) a vibrating mesh nebulizer (VMN) with salbutamol sulfate were run to completion of aerosol generation. Both aerosol devices were placed 1) between the ventilator circuit and the endotracheal tube (ETT) (proximal position); and 2) at the inlet of the heated humidifier (distal position) (n = 5). Drug was collected on a bacterial filter placed distal to the ETT, and the drug eluted and analyzed with a UV Spectrophotometer at 276 nm. T- test and ANOVA tests were used for comparison (p < 0.05). The inhaled drug delivered by JN was 0%-0.6% of the nominal dose when placed at distal position, and 0%-3% at proximal position (p < 0.01), while the VMN was 0%-0.5% at distal and 8.6%-22.7% at proximal position (p < 0.01). Aerosol delivery during HFOV was greater with adult settings than pediatric and infant settings with VMN and JN (22.7%, 8.6%, and 17.4% respectively, p < 0.01). When the aerosol delivery device was placed at the distal position, negligible drug mass was observed (<0.5%), regardless of the nebulizer device used. During HFOV, aerosol delivery with the nebulizer placed at proximal was greater than placement distal from the ETT, with VMN delivering more drug than JN. The inhaled drug was delivery correlated positively with ETT size, MAP, and bias flow, and inversely proportional to power settings.

  16. Nebulization reflux concentrator

    NASA Technical Reports Server (NTRS)

    Collins, V. G.; Cofer, W. R., III

    1986-01-01

    A nebulization reflux concentrator for removing trace gas contaminants from a sample gas is described. Sample gas from a gas supply is drawn by a suction source into a vessel. The gas enters the vessel through an atomizing nozzle, thereby atomizing and entraining a scrubbing liquid solvent drawn through a siphon tube from a scrubbing liquid reservoir. The gas and entrained liquid rise through a concentrator and impinge upon a solvent phobic filter, whereby purified gas exits through the filter housing and contaminated liquid coalesces on the solvent phobic filter and falls into the reservoir.

  17. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    PubMed Central

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny

    2012-01-01

    Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624

  18. Nebulized antibiotics. An adequate option for treating ventilator-associated respiratory infection?

    PubMed

    Rodríguez, A; Barcenilla, F

    2015-03-01

    Ventilator-associated tracheobronchitis (VAT) is a frequent complication in critical patients. The 90% of those who develop it receive broad-spectrum antibiotic (ATB) treatment, without any strong evidence of its favorable impact. The use of nebulized ATB could be a valid treatment option, to reduce the use of systemic ATB and the pressure of selection on the local flora. Several studies suggest that an adequate nebulization technique can ensure high levels of ATB even in areas of lung consolidation, and to obtain clinical and microbiological cure. New studies are needed to properly assess the impact of treatment with nebulized ATB on the emergence of resistance. Copyright © 2014 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  19. Effects of peritoneal ropivacaine nebulization for pain control after laparoscopic gynecologic surgery.

    PubMed

    Somaini, Marta; Brambillasca, Pietro; Ingelmo, Pablo Mauricio; Lovisari, Federica; Catenacci, Stefano Scalia; Rossini, Valeria; Bucciero, Mario; Sahillioglu, Emre; Buda, Alessandro; Signorelli, Mauro; Gili, Mauro; Joshi, Girish; Fumagalli, Roberto; Ferland, Catherine E; Diemunsch, Pierre

    2014-01-01

    To evaluate the effects of peritoneal cold nebulization of ropivacaine on pain control after gynecologic laparoscopy. Evidence obtained from a properly designed, randomized, double-blind, placebo-controlled trial (Canadian Task Force classification I). Tertiary care center. One hundred thirty-five women with American Society of Anesthesiologists disease classified as ASA I-III who were scheduled to undergo operative laparoscopy. Patients were randomized to receive either nebulization of 30 mg ropivacaine before surgery (preoperative group), nebulization of 30 mg ropivacaine after surgery (postoperative group), instillation of 100 mg ropivacaine before surgery (instillation group), or instillation of saline solution (control group). Nebulization was performed using the Aeroneb Pro device. Pain scores, morphine consumption, and ambulation time were collected in the post-anesthesia care unit and at 4, 6, and 24 hours postoperatively. One hundred eighteen patients completed the study. Patients in the preoperative group reported lower pain Numeric Ranking Scale values compared with those in the control group (net difference 2 points; 95% confidence interval [CI], 0.3-3.1 at 4 hours, 1-3 at 6 hours, and 0.7-3 at 24 hours; p = .01) Patients in the preoperative group consumed significantly less morphine than did those in the control group (net difference 7 mg; 95% CI, 0.7-13; p = .02). More patients who received nebulization walked without assistance within 12 hours after awakening than did those in the instillation and control groups (net difference 15%; 95% CI, 6%-24%; p = .001). Cold nebulization of ropivacaine before surgery reduced postoperative pain and morphine consumption and was associated with earlier walking without assistance. Copyright © 2014 AAGL. Published by Elsevier Inc. All rights reserved.

  20. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    PubMed

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxidation-extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Yuwei; Cheng, Chunping; Wang, Jun; Jin, Xudong; Liu, Bin; Wang, Zhiqiu; Gao, Jingqun; Kang, Pingli

    2011-09-01

    In order to examine the mechanism and process of sonodynamic reaction, the chlorophyllin magnesium (Chl-Mg) acting as a sonosensitizer was irradiated by ultrasound, and the generation of reactive oxygen species (ROS) were detected by the method of oxidation-extraction spectrometry (OES). That is, under ultrasonic irradiation in the presence of Chl-Mg, the 1,5-diphenyl carbazide (DPCI) is oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed organic solvent and display a obvious visible absorption at 563 nm wavelength. Besides, the generation conditions of ROS were also reviewed. The results demonstrated that the quantities of generated ROS increased with the increase of ultrasonic irradiation time, Chl-Mg concentration and DPCI concentration. Finally, several radical scavengers (l-Histidine (His), 2,6-Di-tert-butyl-methylphenol (BHT) and Vitamin C (VC)) were used to determine the kind of the generated ROS. It was found that at least the hydroxyl radical (OH) and singlet oxygen ( 1O 2) were generated in the presence of Chl-Mg under ultrasonic irradiation. It is wish that this paper might offer some valuable references for the study on the mechanism of SDT and the application of Chl-Mg in tumor treatment.

  2. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid.

    PubMed

    Tang, Wei-Qiang; Li, Di-Cai; Lv, Yang-Xiao; Jiang, Jian-Guo

    2010-05-01

    Low-caffeine or caffeine-removed tea and its products are widely welcomed on market in recent years. In the present study, we adopt ultrasonic-enhanced supercritical fluid extraction process to remove caffeine from green tea. An orthogonal experiment (L16 (4(5))) was applied to optimize the best removal conditions. Extraction pressure, extraction time, power of ultrasound, moisture content, and temperature were the main factors to influence the removal rate of caffeine from green tea. The 5 factors chosen for the present investigation were based on the results of a single-factor test. The optimum removal conditions were determined as follows: extraction pressure of 30 MPa, temperature at 55 degrees C, time of 4 h, 30% moisture content, and ultrasound power of 100 W. Chromatogram and ultraviolet analysis of raw material and decaffeinates suggests that under optimized conditions, the caffeine of green tea was effectively removed and minished without damaging the structure of active ingredients in green tea.

  3. A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors

    PubMed Central

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160

  4. Optimization of Ultrasonic-Assisted Aqueous Two-Phase Extraction of Phloridzin from Malus Micromalus Makino with Ethanol/Ammonia Sulfate System.

    PubMed

    Zhang, Zhen; Liu, Fang; He, Caian; Yu, Yueli; Wang, Min

    2017-12-01

    Application of an aqueous two-phase system (ATPS) coupled with ultrasonic technology for the extraction of phloridzin from Malus micromalus Makino was evaluated and optimized by response surface methodology (RSM). The ethanol/ammonium sulfate ATPS was selected for detailed investigation, including the phase diagram, effect of phase composition and extract conditions on the partition of phloridzin, and the recycling of ammonium sulfate. In addition, the evaluation of extraction efficiency and the identification of phloridzin were investigated. The optimal partition coefficient (6.55) and recovery (92.86%) of phloridzin were obtained in a system composed of 35% ethanol (w/w) and 16% (NH 4 ) 2 SO 4 (w/w), 51:1 liquid-to-solid ratio, and extraction temperature of 36 °C. Comparing with the traditional solvent extraction with respective 35% and 80% ethanol, ultrasonic-assisted aqueous two-phase extraction (UAATPE) strategy had significant advantages with lower ethanol consumption, less impurity of sugar and protein, and higher extracting efficiency of phloridzin. Our result indicated that UAATPE was a valuable method for the extraction and preliminary purification of phloridzin from the fruit of Malus micromalus Makino, which has great potential in the deep processing of Malus micromalus Makino industry to increase these fruits' additional value and drive the local economic development. © 2017 Institute of Food Technologists®.

  5. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.

    PubMed

    Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W

    2006-01-23

    Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.

  6. Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES.

    PubMed

    Bakircioglu, Dilek; Kurtulus, Yasemin Bakircioglu; Yurtsever, Selcuk

    2013-06-01

    The content of elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in edible oils (sunflower, hazelnut, canola, corn and olive oils) from Turkey was determined using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic extraction, wet digestion, and extraction induced by emulsion breaking procedures (EIEB). In order to evaluate the best sample preparation procedure, EIEB procedure was compared by ultrasonic extraction and wet digestion procedures. The results in the samples (minimum-maximum in mgkg(-1)) were : 0.022-0.058, Cr 0.126-7.106, Cu 0.570-4.504, Fe 8.004-12.588, Mn 0.035-0.054, Ni 0.908-2.182, Pb 0.099-0.134 and Zn 2.206-8.982. The EIEB procedure was found to be fast, reliable, simple, and excellent in comparison with the other studied procedures. The recovery test was performed by spiking the samples with known amounts of the metals in the form of organometallic standards and applying the EIEB procedure. The recoveries were in the range of 96-109%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives.

    PubMed

    Deng, Junlin; Xu, Zhou; Xiang, Chunrong; Liu, Jing; Zhou, Lijun; Li, Tian; Yang, Zeshen; Ding, Chunbang

    2017-07-01

    Ultrasonic-assisted extraction (UAE) and maceration extraction (ME) were optimized using response surface methodology (RSM) for total phenolic compounds (TPC) from fresh olives. The main phenolic compounds and antioxidant activity of TPC were also investigated. The optimized result for UAE was 22mL/g of liquid-solid ratio, 47°C of extraction temperature and 30min of extraction time, 7.01mg/g of yielding, and for ME was 24mL/g of liquid-solid ratio, 50°C of extraction temperature and 4.7h of extraction time, 5.18mg/g of yielding. The HPLC analysis revealed that the extracts by UAE and ME possessed 14 main phenolic compounds, and UAE exhibited more amounts of all phenols than ME. The most abundant phenolic compounds in olive extracts were hydroxytyrosol, oleuropein and rutin. Both extracts showed excellent antioxidant activity in a dose-dependent manner. Taken together, UAE could effectively increase the yield of phenolic compounds from olives. In addition these phenolic compounds could be used as a potential source of natural antioxidants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Efficient approach for the extraction of proanthocyanidins from Cinnamomum longepaniculatum leaves using ultrasonic irradiation and an evaluation of their inhibition activity on digestive enzymes and antioxidant activity in vitro.

    PubMed

    Liu, Zaizhi; Mo, Kailin; Fei, Shimin; Zu, Yuangang; Yang, Lei

    2017-08-01

    Proanthocyanidins were separated for the first time from Cinnamomum longepaniculatum leaves. An experiment-based extraction strategy was used to research the efficiency of an ultrasound-assisted method for proanthocyanidins extraction. The Plackett-Burman design results revealed that the ultrasonication time, ultrasonic power and liquid/solid ratio were the most significant parameters among the six variables in the extraction process. Upon further optimization of the Box-Behnken design, the optimal conditions were obtained as follows: extraction temperature, 100°C; ethanol concentration, 70%; pH 5; ultrasonication power, 660 W; ultrasonication time, 44 min; liquid/solid ratio, 20 mL/g. Under the obtained conditions, the extraction yield of the proanthocyanidins using the ultrasonic-assisted method was 7.88 ± 0.21 mg/g, which is higher than that obtained using traditional methods. The phloroglucinolysis products of the proanthocyanidins, including the terminal units and derivatives from the extension units, were tentatively identified using a liquid chromatography with tandem mass spectrometry analysis. Cinnamomum longepaniculatum proanthocyanidins have promising antioxidant and anti-nutritional properties. In summary, an ultrasound-assisted method in combination with a response surface experimental design is an efficient methodology for the sufficient isolation of proanthocyanidins from Cinnamomum longepaniculatum leaves, and this method could be used for the separation of other bioactive compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sinuclean Nebules treatment in children suffering from otitis media with effusion.

    PubMed

    Varricchio, A; De Lucia, A; Varricchio, A M; Della Volpe, A; Mansi, N; Pastore, V; Ciprandi, G

    2017-03-01

    Otitis media with effusion (OME) is an ear disorder defined by the presence of fluid in the middle ear without signs or symptoms of acute infection. The current randomized, double-blind, controlled study aimed to evaluate whether Sinuclean Nebules treatment, administered by nasal douche (Rinowash), could induce ear healing better than isotonic saline in children with OME. The study was randomized, double-blind, and controlled. Group A (30 children) was treated with Sinuclean Nebules 45 and Group B (31 children) was treated with isotonic saline; both compounds were administered by nasal nebulization with Rinowash nasal douche twice/day in the morning and in the evening for 10 days, followed by a one-week suspension, and after by a second course as the first. Tympanogram and audiometry were performed at baseline and after treatment. Considering the global evaluation of the treatment: in Group A, 28 (93.3%) patients had complete resolution and 2 (6.7%) had partial resolution; in Group B, all patients had failure of treatment. There was a significant difference between groups (p < 0.0001). The current randomized-controlled study demonstrated that Sinuclean Nebules was effective and in the treatment of children with OME. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps.

    PubMed

    Wang, Chengshuo; Lou, Hongfei; Wang, Xiangdong; Wang, Yang; Fan, Erzhong; Li, Ying; Wang, Hong; Bachert, Claus; Zhang, Luo

    2015-04-01

    There is little evidence on the efficacy of glucocorticoid transnasal nebulization therapy in patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP). We sought to evaluate the immunologic and remodeling effects of budesonide transnasal nebulization in patients with eosinophilic CRSwNP. Sixty patients with eosinophilic CRSwNP were randomized to receive budesonide or placebo treatment for 14 days by means of transnasal nebulization in a double-blind manner. Endoscopic polyp size scores (maximum = 6 points, Kennedy score) and visual analog scale scores for nasal symptoms were assessed before and after treatment. Similarly, polyp samples were evaluated for inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) by using an immunoassay; collagen by using histochemistry; eosinophils by using hematoxylin and eosin stain; and T-cell subsets by using flow cytometry. Budesonide transnasal nebulization significantly reduced polyp size compared with placebo (mean difference between groups, -0.73 units; 95% CI, -1.15 to -0.32 units; P = .002) and improved symptoms. Polyp IL-5 and eotaxin expression decreased significantly, whereas TGF-β and IL-10 expression increased. Expression of IFN-γ and IL-17 was not altered. Budesonide transnasal nebulization consistently reduced eosinophil infiltration and TH2 cell frequency and increased natural regulatory T-cell and type 1 regulatory T-cell frequencies. Indices of remodeling, including albumin, MMP-2, MMP-7, MMP-8, and MMP-9, were significantly decreased, whereas collagen deposition and TIMP-1, TIMP-2, and TIMP-4 levels were significantly increased. Budesonide transnasal nebulization did not suppress the hypothalamic-pituitary-adrenal axis or cause any serious side effects. Short-term budesonide transnasal nebulization is an effective and safe treatment option in patients with eosinophilic CRSwNP, achieving clinical improvement by regulating remodeling

  11. Impact of humidification and nebulization during expiratory limb protection: an experimental bench study.

    PubMed

    Tonnelier, Alexandre; Lellouche, François; Bouchard, Pierre Alexandre; L'Her, Erwan

    2013-08-01

    Different filtering devices are used during mechanical ventilation to avoid dysfunction of flow and pressure transducers or for airborne microorganisms containment. Water condensates, resulting from the use of humidifiers, but also residual nebulization particles may have a major influence on expiratory limb resistance. To evaluate the influence of nebulization and active humidification on the resistance of expiratory filters. A respiratory system analog was constructed using a test lung, an ICU ventilator, heated humidifiers, and a piezoelectric nebulizer. Humidifiers were connected to different types of circuits (unheated, mono-heated, new-generation and old-generation bi-heated). Five filter types were evaluated: electrostatic, heat-and-moisture exchanger, standard, specific, and internal heated high-efficiency particulate air [HEPA] filter. Baseline characteristics were obtained from each dry filter. Differential pressure measurements were carried out after 24 hours of continuous in vitro use for each condition, and after 24 hours of use with an old-generation bi-heated circuit without nebulization. While using unheated circuits, measurements had to be interrupted before 24 hours for all the filtering devices except the internal heated HEPA filter. The heat-and-moisture exchangers occluded before 24 hours with the unheated and mono-heated circuits. The circuit type, nebulization practice, and duration of use did not influence the internal heated HEPA filter resistance. Expiratory limb filtration is likely to induce several major adverse events. Expiratory filter resistance increase is due mainly to the humidification circuit type, rather than to nebulization. If filtration is mandatory while using an unheated circuit, a dedicated filter should be used for ≤ 24 hours, or a heated HEPA for a longer duration.

  12. Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose.

    PubMed

    Setyawati, Yohana Dwi; Ahsan, Sitti Faika; Ong, Lu Ki; Soetaredjo, Felycia Edi; Ismadji, Suryadi; Ju, Yi-Hsu

    2016-07-15

    In this study, a modified aqueous leaching method by complex formation of amylose with glycerol was employed for reducing the amylose content of starch in broken white rice to less than 2%, so that the resulting starch can be classified to that of glutinous rice flour. By employing ultrasonication in alkaline condition, extraction of amylose could be performed by washing at lower temperature in shorter time compared to the existing aqueous leaching method. The effects of glycerol concentration, alkali concentration, ultrasonication and treatment time on the amylose content of the treated starch were systematically investigated. Under optimum condition, amylose content of broken white rice starch can be reduced from 27.27% to 1.43% with a yield of 80.42%. The changes in the physicochemical properties of the rice flour before and after treatment were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of nebulized budesonide on decreasing the recurrence of allergic fungal rhinosinusitis.

    PubMed

    Dai, Qi; Duan, Chen; Liu, Quan; Yu, Hongmeng

    The aim of this study was to evaluate the clinical efficacy and the effects on decreasing the recurrence of AFRS (allergic fungal rhinosinusitis) of a budesonide inhalation suspension delivered via transnasal nebulization to patients following endoscopic sinus surgery. Thirty-five patients were recruited into this study. Final diagnoses were reached using Bent and Kuhn's criteria. The eligible patients were randomly divided into two groups: the budesonide transnasal nebulization group (group A) and the topical nasal steroids group (group B). Nasal symptoms, Lund-Mackay scores, and Kupferberg grades were evaluated before surgery, after surgery and during the follow-up to assess the effects of these two approaches. A total of 30 patients with AFRS who were eligible were included in the study. Four of the 15 patients in group B (26.67%) developed recurrent disease, whereas no patients in group A developed recurrent disease. This difference was statistically significant (p=0.032). Nebulized budesonide is an effective and safe treatment for patients with AFRS following endoscopic sinus surgery, as evidenced by the reduced recurrence rate observed in the budesonide transnasal nebulization group relative to the topical nasal steroids group. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Feedback mechanism for smart nozzles and nebulizers

    DOEpatents

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  15. Patient's Guide to Aerosol Drug Delivery

    MedlinePlus

    ... nebulizer. Ultrasonic nebulizers should be cleaned and disinfected based on the manu- facturer’s recommendations. Table 12. Cleaning instructions for the jet nebulizer CLEANING AFTER EACH USE Wash your hands before handling equipment. Disassemble parts after every treatment. Remove the tubing ...

  16. Fenoterol versus salbutamol nebulization in asthma.

    PubMed Central

    Hockley, B.; Johnson, N. M.

    1983-01-01

    A double-blind crossover study was conducted in 10 stable asthmatics comparing 5 mg fenoterol with 5 mg salbutamol, both given via a Hudson nebulizer. Although both drugs caused significant bronchodilatation at the doses used, fenoterol had a significantly greater peak effect than salbutamol and its duration of action was 4 hr as opposed to 3 hr. PMID:6353397

  17. Nebulized heparin for patients under mechanical ventilation: an individual patient data meta-analysis.

    PubMed

    Glas, Gerie J; Serpa Neto, Ary; Horn, Janneke; Cochran, Amalia; Dixon, Barry; Elamin, Elamin M; Faraklas, Iris; Dissanaike, Sharmila; Miller, Andrew C; Schultz, Marcus J

    2016-12-01

    Pulmonary coagulopathy is a characteristic feature of lung injury including ventilator-induced lung injury. The aim of this individual patient data meta-analysis is to assess the effects of nebulized anticoagulants on outcome of ventilated intensive care unit (ICU) patients. A systematic search of PubMed (1966-2014), Scopus, EMBASE, and Web of Science was conducted to identify relevant publications. Studies evaluating nebulization of anticoagulants in ventilated patients were screened for inclusion, and corresponding authors of included studies were contacted to provide individual patient data. The primary endpoint was the number of ventilator-free days and alive at day 28. Secondary endpoints included hospital mortality, ICU- and hospital-free days at day 28, and lung injury scores at day seven. We constructed a propensity score-matched cohort for comparisons between patients treated with nebulized anticoagulants and controls. Data from five studies (one randomized controlled trial, one open label study, and three studies using historical controls) were included in the meta-analysis, compassing 286 patients. In all studies unfractionated heparin was used as anticoagulant. The number of ventilator-free days and alive at day 28 was higher in patients treated with nebulized heparin compared to patients in the control group (14 [IQR 0-23] vs. 6 [IQR 0-22]), though the difference did not reach statistical significance (P = 0.459). The number of ICU-free days and alive at day 28 was significantly higher, and the lung injury scores at day seven were significantly lower in patients treated with nebulized heparin. In the propensity score-matched analysis, there were no differences in any of the endpoints. This individual patient data meta-analysis provides no convincing evidence for benefit of heparin nebulization in intubated and ventilated ICU patients. The small patient numbers and methodological shortcomings of included studies underline the need for high

  18. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    PubMed

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  19. Nebulized isotonic saline versus water following a laryngeal desiccation challenge in classically trained sopranos.

    PubMed

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M; Muntz, Faye; Houtz, Daniel R; Sauder, Cara; Elstad, Mark; Wright-Costa, Julie

    2010-12-01

    To examine the effects of nebulized isotonic saline (IS) versus sterile water (SW) on self-perceived phonatory effort (PPE) and phonation threshold pressure (PTP) following a surface laryngeal dehydration challenge in classically trained sopranos. In a double-blind, within-subject crossover design, 34 sopranos breathed dry air (relative humidity < 1%) transorally for 15 min and then nebulized 3 mL of IS or SW, or experienced a no-treatment control condition over 3 consecutive weeks. PPE and PTP were measured every 15 min from baseline through 2 hr postdesiccation. PPE increased significantly following the laryngeal desiccation challenge in all 3 treatment conditions (p < .01). After nebulization, PPE returned to baseline for the IS condition only. For the SW and control conditions, PPE remained above baseline during the 2 hr after desiccation. No statistically significant changes in PTP following laryngeal desiccation were observed, although values for the IS condition remained below baseline for nearly 2 hr after nebulization. PPE and PTP were not significantly correlated. Following a laryngeal surface dehydration challenge, classically trained sopranos reported increased vocal effort that persisted for at least 2 hr. Compared with SW, nebulized IS showed promise as an effective way to remediate the adverse, self-perceived effects of laryngeal desiccation.

  20. A Collison nebulizer as an ion source for mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.

    2014-12-01

    It is proposed to use a Collison nebulizer as a source of ionization for mass-spectrometry with ionization at atmospheric pressure. This source does not require an electric voltage, radioactive sources, heaters, or liquid pumps. It is shown that the number of ions produced by the Collison nebulizer is ten times greater than the quantity of ions produced by the 63Ni radioactive source and three to four times greater than the number of ions produced with sonic ionization devices.

  1. Effects of push/pull perfusion and ultrasonication on the extraction efficiencies of phthalate esters in sports drink samples using on-line hollow-fiber liquid-phase microextraction.

    PubMed

    Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih

    2013-08-28

    In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.

  2. Short torch design for direct liquid sample introduction using conventional and micro-nebulizers for plasma spectrometry

    DOEpatents

    Montaser, Akbar [Potomac, MD; Westphal, Craig S [Landenberg, PA; Kahen, Kaveh [Montgomery Village, MD; Rutkowski, William F [Arlington, VA

    2008-01-08

    An apparatus and method for providing direct liquid sample introduction using a nebulizer are provided. The apparatus and method include a short torch having an inner tube and an outer tube, and an elongated adapter having a cavity for receiving the nebulizer and positioning a nozzle tip of the nebulizer a predetermined distance from a tip of the outer tube of the short torch. The predetermined distance is preferably about 2-5 mm.

  3. Red and nebulous objects in dark clouds - A survey

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    A search on the NGS-PO Sky Survey photographs has revealed 150 interesting nebulous and/or red objects, mostly lying in dark clouds and not previously catalogued. Spectral classifications are presented for 55 objects. These indicate a small number of new members of the class of Herbig-Haro objects, a significant number of new T Tauri stars, and a few emission-line hot stars. It is argued that hot, high-mass stars form preferentially in the dense cores of dark clouds. The possible symbiosis of high and low mass stars is considered. A new morphology class is defined for cometary nebulae, in which a star lies on the periphery of a nebulous ring.

  4. Improved efficiency of budesonide nebulization using surface-active agents.

    PubMed

    Bouwman, A M; Heijstra, M P; Schaefer, N C; Duiverman, E J; Lesouëf, P N; Devadason, S G

    2006-01-01

    Our aim was to improve the efficiency of nebulised budesonide using surface-active agents. Cationic, anionic, and nonionic detergents were added to commercial budesonide suspension, and the particle size distribution during nebulization was measured using both cascade impaction and laser diffraction. Our results showed that the emitted dose was increased after addition of cationic (p < 0.001) and nonionic detergents (p < 0.01) compared with the commercial formulation alone. The respirable fraction was increased for all detergent formulations (p < 0.001) compared with the commercial formulation. We concluded that cationic and nonionic detergent increased the total output of budesonide from the Sidestream. All detergent formulations increased the respirable fraction of nebulized budesonide.

  5. Heated air humidification versus cold air nebulization in newly tracheostomized patients

    PubMed Central

    Händel, Alexander; Wenzel, Angela; Kramer, Benedikt; Aderhold, Christoph; Hörmann, Karl; Stuck, Boris A.; Sommer, J. Ulrich

    2017-01-01

    Abstract Background After tracheostomy, the airway lacks an essential mechanism for warming and humidifying the inspired air with the consequent functional impairment and discomfort. The purpose of this study was to compare airway hydration with cold‐air nebulization versus heated high‐flow humidification on medical interventions and tracheal ciliary beat frequency (CBF). Methods Newly tracheostomized patients (n = 20) were treated either with cold‐air nebulization or heated humidification. The number of required tracheal suctioning procedures to clean the trachea and tracheal CBF were assessed. Results The number of required suctions per day was significantly lower in the heated humidification group with medians 3 versus 5 times per day. Mean CBF was significantly higher in the heated humidification group (6.36 ± 1.49 Hz) compared to the cold‐air nebulization group (3.99 ± 1.39 Hz). Conclusion The data suggest that heated humidification enhanced mucociliary transport leading to a reduced number of required suctioning procedures in the trachea, which may improve postoperative patient care. PMID:28990261

  6. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from walnut flour using response surface methodology.

    PubMed

    Luo, Yan; Wu, Wanxing; Chen, Dan; Lin, Yuping; Ma, Yage; Chen, Chaoyin; Zhao, Shenglan

    2017-12-01

    Walnut is a traditional food as well as a traditional medicine recorded in the Chinese Pharmacopoeia; however, the large amounts of walnut flour (WF) generated in walnut oil production have not been well utilized. This study maximized the total polyphenolic yield (TPY) from the walnut flour (WF) by optimizing simultaneous ultrasound/microwave-assisted hydroalcoholic extraction (SUMAE). Response surface methodology was used to optimize the processing parameters for the TPY, including microwave power (20-140 W), ultrasonic power (75-525 W), extraction temperature (25-55 °C), and time (0.5-9.5 min). The polyphenol components were analysed by LC-MS. A second-order polynomial model satisfactorily fit the experimental TPY data (R 2  = 0.9932, P < 0.0001 and R adj 2     = 0.9868). The optimized quick extraction conditions were microwave power 294.38 W, ultrasonic power 93.5 W, temperature 43.38 °C and time 4.33 min, with a maximum TPY of 34.91 mg GAE/g, which was a rapid extraction. The major phenolic components in the WF extracts were glansreginin A, ellagic acid, and gallic acid with peak areas of 22.15%, 14.99% and 10.96%, respectively, which might be used as functional components for health food, cosmetics and medicines. The results indicated that walnut flour, a waste product from the oil industry, was a rich source of polyphenolic compounds and thus could be used as a high-value functional food ingredient.

  7. Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques.

    PubMed

    Zhang, Ruilin; Chen, Jian; Zhang, Xuewu

    2018-01-01

    Due to the rigid cell wall of Chlorella species, it is still challenging to effectively extract significant amounts of protein. Mass methods were used for the extraction of intracellular protein from microalgae with biological, mechanical and chemical approaches. In this study, based on comparison of different extraction methods, a new protocol was established to maximize extract amounts of protein, which was involved in ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. Under the optimized conditions, 72.4% of protein was extracted from the microalgae Chlorella pyrenoidosa, which should contribute to the research and development of Chlorella protein in functional food and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of alkyllead compounds by HPLC/ICP using a glass-frit nebulizer ICP interface

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mona; Nisamaneepong, Wipawan; Haas, David L.; Caruso, Joseph A.

    The glass-frit nebulizer, by forming a very fine mist, has improved the ability of the ICP to accept the introduction of organic solvents with high evaporation rates. The reversed-phase chromatographic separation of TML and TEL, and their determination with glass frit nebulization ICP was accomplished with various mobile phases and columns. The separation of several trialkyllead salts also was studied on a strong cation exchange column, but these compounds were not determined with the glass frit nebulizer interface. Detection limits as low as 33 pg s -1 for TML and 100 pg s -1 for TEL and precision of 3.4% for TML and 6.9% relative standard deviation for TEL were obtained.

  9. Relationship between airway reactivity induced by methacholine or ultrasonically nebulized distilled cold water and BAL fluid cellular constituents in patients with sulfur mustard gas-induced asthma.

    PubMed

    Emad, Ali; Emad, Yasaman

    2007-01-01

    The objective of this article was to evaluate the relationship between the bronchial reactivity to methacholine and distilled cold water and inflammatory bronchial alveolar lavage (BAL) cells in mustard gas-induced asthma. This was a randomized, crossover clinical study set in a university hospital. The patients were 17 veterans with mustard gas-induced asthma and 17 normal veterans as a control group. Inhalation challenges with ultrasonically nebulized distilled water and methacholine and BAL via bronchoscopy and were performed in all patients and subjects. All patients did sustain a 20% fall in FEV(1) after methacholine, whereas two of them did not with distilled cold water. The patients were sensitive to distilled cold water with a median PD20 of 8.44 +/- 6.55 mL and sensitive to methacholine with the median PC20 of 4.88 +/- 4.22 mg/mL. Significant correlation was found between PC20 of methacholine and PD20 of distilled cold water (r = -0.74, p = 0.005). The proportion of BAL macrophages was significantly lower in patients with asthma than in the control group (p = 0.001). The proportions of lymphocytes and neutrophils were similar in the two groups. The percentage of eosinophils was higher in BAL fluid from the asthmatics compared with that in BAL fluid from the control group (p < 0.001). The percentage of the BAL eosinophils significantly correlated with both PC20 of methacholine (r = - 0.58, p = 0.01) and PD20 of distilled cold water (r = -0.81, p = 0.002). No relationship between PC20 of methacholine or PD20 of distilled cold water was found for other inflammatory BAL cells. This study showed that in patients with mustard gas-induced asthma, the degree of airway responsiveness to both methacholine and distilled water was associated with the percentage of BAL eosinophils.

  10. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, K.E.

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol,more » methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.« less

  11. Short-term effect of a smart nebulizing device on adherence to inhaled corticosteroid therapy in Asthma Predictive Index-positive wheezing children.

    PubMed

    Zhou, Yuan; Lu, Yanming; Zhu, Haojin; Zhang, Yanhan; Li, Yaqin; Yu, Qing

    2018-01-01

    To explore the effect of a smart nebulizing device on the rate of adherence to inhaled corticosteroid (ICS) in children with positive Asthma Predictive Index. In total, 65 children with positive Asthma Predictive Index and under the age of 5 years who visited our hospital from October 2015 through October 2016, were randomly assigned to receive conventional nebulization or smart nebulization. The smart nebulizer was connected to smart phones via an App. The following information was collected: rate of adherence to ICS, frequency of emergency visits or hospitalizations, application of antibiotics or oral steroids, and wheezing progression or improvement. The rate of adherence to ICS was 86.67% (26/30), 76.67% (23/30), and 67.33% (20/30) in the smart nebulization group, and 62.86% (22/35), 51.42% (18/35), and 40.00% (14/35) in the conventional nebulization group after 4-, 8-, and 12-week therapy, respectively. There were significant differences between the 2 groups at all of the time points ( P <0.05). Both day- and night-time wheezing scores were significantly lower in the smart nebulization group than those of the conventional nebulization group after 4-, 8-, and 12-week therapy ( P <0.05). The frequency of emergency visits, comorbidity of respiratory infection, antibiotics or systemic steroid usage, and therapeutic cost for additional treatment during the 12-week study period, was significantly lower in the smart nebulization group than that in the conventional nebulization group ( P <0.05). A smart electronic nebulization device could significantly improve the rate of adherence to ICS in children under the age of 5 years, and thus could significantly reduce the frequency of emergency visits and respiratory infections as well as the usage of antibiotics or systemic steroids.

  12. Heated air humidification versus cold air nebulization in newly tracheostomized patients.

    PubMed

    Birk, Richard; Händel, Alexander; Wenzel, Angela; Kramer, Benedikt; Aderhold, Christoph; Hörmann, Karl; Stuck, Boris A; Sommer, J Ulrich

    2017-12-01

    After tracheostomy, the airway lacks an essential mechanism for warming and humidifying the inspired air with the consequent functional impairment and discomfort. The purpose of this study was to compare airway hydration with cold-air nebulization versus heated high-flow humidification on medical interventions and tracheal ciliary beat frequency (CBF). Newly tracheostomized patients (n = 20) were treated either with cold-air nebulization or heated humidification. The number of required tracheal suctioning procedures to clean the trachea and tracheal CBF were assessed. The number of required suctions per day was significantly lower in the heated humidification group with medians 3 versus 5 times per day. Mean CBF was significantly higher in the heated humidification group (6.36 ± 1.49 Hz) compared to the cold-air nebulization group (3.99 ± 1.39 Hz). The data suggest that heated humidification enhanced mucociliary transport leading to a reduced number of required suctioning procedures in the trachea, which may improve postoperative patient care. © 2017 The Authors Head & Neck Published by Wiley Periodicals, Inc.

  13. An evaluation of different steam disinfection protocols for cystic fibrosis nebulizers.

    PubMed

    Hohenwarter, K; Prammer, W; Aichinger, W; Reychler, G

    2016-01-01

    Contamination is a key element in cystic fibrosis. For this reason, nebulizer hygiene is an important, but complex and time-consuming task for cystic fibrosis patients. The aim of this study was to compare different steam disinfection and drying protocols. One hundred nebulizer parts were inoculated with cystic fibrosis-related bacteria in high concentrations (Burkholderia multivorans 3.9 × 10(10)/ml, Staphylococcus aureus 8.9 × 10(8/)ml and Pseudomonas aeruginosa 2.1 × 10(9)/ml). Tubes with Mycobacterium abscessus complex were additionally tested. Six steam disinfectors were compared. Different methods of drying were examined. All tested bacteria were efficiently killed by the different steam disinfectors tested. The risk of contamination depended on the method of drying. Steam disinfection is a safe disinfection method. It is better to leave the nebulizers wet after steam disinfection than to manipulate them by active drying, which seems to be a source of recontamination. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  14. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid-liquid ultrasonic extraction

    NASA Astrophysics Data System (ADS)

    Xia, Qinghai; Yang, Yaling; Liu, Mousheng

    2012-10-01

    An aluminium sensitized spectrofluorimetric method coupled with salting-out assisted liquid-liquid ultrasonic extraction for the determination of four widely used fluoroquinolones (FQs) namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in bovine raw milk was described. The analytical procedure involves the fluorescence sensitization of aluminium (Al3+) by complexation with FQs, salting-out assisted liquid-liquid ultrasonic extraction (SALLUE), followed by spectrofluorometry. The influence of several parameters on the extraction (the salt species, the amount of salt, pH, temperature and phase volume ratio) was investigated. Under optimized experimental conditions, the detection limits of the method in milk varied from 0.009 μg/mL for NOR to 0.016 μg/mL for GAT (signal-to-noise ratio (S/N) = 3). The relative standard deviations (RSD) values were found to be relatively low (0.54-2.48% for four compounds). The calibration graph was linear from 0.015 to 2.25 μg/mL with coefficient of determinations not less than 0.9974. The methodology developed was applied to the determination of FQs in bovine raw milk samples. The main advantage of this method is simple, accurate and green. The method showed promising applications for analyzing polar analytes especially polar drugs in various sample matrices.

  15. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi.

    PubMed

    Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad

    2015-01-01

    The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Magnetic core-shell nanoparticles for drug delivery by nebulization.

    PubMed

    Verma, Navin Kumar; Crosbie-Staunton, Kieran; Satti, Amro; Gallagher, Shane; Ryan, Katie B; Doody, Timothy; McAtamney, Colm; MacLoughlin, Ronan; Galvin, Paul; Burke, Conor S; Volkov, Yuri; Gun'ko, Yurii K

    2013-01-23

    Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery

  17. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice.

    PubMed

    Gavina, Manuela; Luciani, Alessandro; Villella, Valeria R; Esposito, Speranza; Ferrari, Eleonora; Bressani, Ilaria; Casale, Alida; Bruscia, Emanuela M; Maiuri, Luigi; Raia, Valeria

    2013-08-01

    Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF. F508del homozygous mice (Cftr(F508del) ) and transgenic mice overexpressing the ENaC channel β-subunit (Scnn1b-Tg) were treated with nebulized HA (0.5 mg/mouse/day for 7 days). Tumor necrosis factor-alpha (TNFα), macrophage inflammatory protein-2 (MIP-2), myeloperoxidase (MPO) levels, and macrophage infiltration were assessed on lung tissues. IB3-1 and CFBE41o-epithelial cell lines were cultured with HA (24 hr, 100 µg/ml) and Reactive Oxygen Species (ROS), Tissue Transglutaminase (TG2) SUMOylation and Peroxisome Proliferator Activated Receptor gamma (PPARγ) and phospho-p42/p44 levels were measured by dichlorodihydrofluorescein assay, or fluorescence resonance energy transfer (FRET) microscopy or immunoblots. Nebulized HA reduced TNFα expression (P < 0.005); TNFα, MIP-2, and MPO protein levels (P < 0.05); MPO activity (P < 0.05); and CD68+ cells counts (P < 0.005) in lung tissues of Cftr(F508del) and Scnn1b-Tg mice, compared with saline-treated mice. HA reduced ROS, TG2 SUMOylation, TG2 activity, phospho-p42-44, and increased PPARγ protein in both IB3-1 and CFBE41o cells (P < 0.05). Nebulized HA is effective in controlling inflammation in vivo in mice CF airways and in vitro in human airway epithelial cells. We provide the proof of concept for the use of inhaled HA as a potential anti-inflammatory drug in CF therapy. Copyright © 2012 Wiley Periodicals, Inc.

  18. Magnetic core-shell nanoparticles for drug delivery by nebulization

    PubMed Central

    2013-01-01

    Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  19. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    PubMed

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  20. Rapid Nucleic Acid Extraction and Purification Using a Miniature Ultrasonic Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Darren W.; Vreeland, Erika C.; McClain, Jamie L.

    Miniature ultrasonic lysis for biological sample preparation is a promising technique for efficient and rapid extraction of nucleic acids and proteins from a wide variety of biological sources. Acoustic methods achieve rapid, unbiased, and efficacious disruption of cellular membranes while avoiding the use of harsh chemicals and enzymes, which interfere with detection assays. In this work, a miniature acoustic nucleic acid extraction system is presented. Using a miniature bulk acoustic wave (BAW) transducer array based on 36° Y-cut lithium niobate, acoustic waves were coupled into disposable laminate-based microfluidic cartridges. To verify the lysing effectiveness, the amount of liberated ATP andmore » the cell viability were measured and compared to untreated samples. The relationship between input power, energy dose, flow-rate, and lysing efficiency were determined. DNA was purified on-chip using three approaches implemented in the cartridges: a silica-based sol-gel silica-bead filled microchannel, nucleic acid binding magnetic beads, and Nafion-coated electrodes. Using E. coli, the lysing dose defined as ATP released per joule was 2.2× greater, releasing 6.1× more ATP for the miniature BAW array compared to a bench-top acoustic lysis system. An electric field-based nucleic acid purification approach using Nafion films yielded an extraction efficiency of 69.2% in 10 min for 50 µL samples.« less

  1. Rapid Nucleic Acid Extraction and Purification Using a Miniature Ultrasonic Technique

    DOE PAGES

    Branch, Darren W.; Vreeland, Erika C.; McClain, Jamie L.; ...

    2017-07-21

    Miniature ultrasonic lysis for biological sample preparation is a promising technique for efficient and rapid extraction of nucleic acids and proteins from a wide variety of biological sources. Acoustic methods achieve rapid, unbiased, and efficacious disruption of cellular membranes while avoiding the use of harsh chemicals and enzymes, which interfere with detection assays. In this work, a miniature acoustic nucleic acid extraction system is presented. Using a miniature bulk acoustic wave (BAW) transducer array based on 36° Y-cut lithium niobate, acoustic waves were coupled into disposable laminate-based microfluidic cartridges. To verify the lysing effectiveness, the amount of liberated ATP andmore » the cell viability were measured and compared to untreated samples. The relationship between input power, energy dose, flow-rate, and lysing efficiency were determined. DNA was purified on-chip using three approaches implemented in the cartridges: a silica-based sol-gel silica-bead filled microchannel, nucleic acid binding magnetic beads, and Nafion-coated electrodes. Using E. coli, the lysing dose defined as ATP released per joule was 2.2× greater, releasing 6.1× more ATP for the miniature BAW array compared to a bench-top acoustic lysis system. An electric field-based nucleic acid purification approach using Nafion films yielded an extraction efficiency of 69.2% in 10 min for 50 µL samples.« less

  2. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities.

    PubMed

    Hafsa, Jawhar; Chaouch, Mohamed Aymen; Charfeddine, Bassem; Rihouey, Christophe; Limem, Khalifa; Le Cerf, Didier; Rouatbi, Sonia; Majdoub, Hatem

    2017-12-01

    Recently, low-molecular-weight hyaluronic acid (LMWHA) has been reported to have novel features, such as free radical scavenging activities, antioxidant activities and dietary supplements. In this study, hyaluronic acid (HA) was extracted from rooster comb and LMWHA was obtained by ultrasonic degradation in order to assess their antioxidant and antiglycation activities. Molecular weight (Mw) and the content of glucuronic acid (GlcA) were used as the index for comparison of the effect of ultrasonic treatment. The effects on the structure were determined by ultraviolet (UV) spectra and Fourier transform infrared spectra (FTIR). The antioxidant activity was determined by three analytical assays (DPPH, NO and TBARS), and the inhibitory effect against glycated-BSA was also assessed. The GlcA content of HA and LMWHA was estimated at about 48.6% and 47.3%, respectively. The results demonstrate that ultrasonic irradiation decreases the Mw (1090-181 kDa) and intrinsic viscosity (1550-473 mL/g), which indicate the cleavage of the glycosidic bonds. The FTIR and UV spectra did not significantly change before and after degradation. The IC 50 value of HA and LWMHA was 1.43, 0.76 and 0.36 mg/mL and 1.20, 0.89 and 0.17 mg/mL toward DPPH, NO and TBARS, respectively. Likewise LMWHA exhibited significant inhibitory effects on the AGEs formation than HA. The results demonstrated that the ultrasonic irradiation did not damage and change the chemical structure of HA after degradation; furthermore, decreasing Mw and viscosity of LMWHA after degradation may enhance the antioxidant and antiglycation activity.

  3. Accurate assessment of adherence: self-report and clinician report vs electronic monitoring of nebulizers.

    PubMed

    Daniels, Tracey; Goodacre, Lynne; Sutton, Chris; Pollard, Kim; Conway, Steven; Peckham, Daniel

    2011-08-01

    People with cystic fibrosis have a high treatment burden. While uncertainty remains about individual patient level of adherence to medication, treatment regimens are difficult to tailor, and interventions are difficult to evaluate. Self- and clinician-reported measures are routinely used despite criticism that they overestimate adherence. This study assessed agreement between rates of adherence to prescribed nebulizer treatments when measured by self-report, clinician report, and electronic monitoring suitable for long-term use. Seventy-eight adults with cystic fibrosis were questioned about their adherence to prescribed nebulizer treatments over the previous 3 months. Self-report was compared with clinician report and stored adherence data downloaded from the I-Neb nebulizer system. Adherence measures were expressed as a percentage of the prescribed regimen, bias was estimated by the paired difference in mean (95% CI) patient and clinician reported and actual adherence. Agreement between adherence measures was calculated using intraclass correlation coefficients (95% CI), and disagreements for individuals were displayed using Bland-Altman plots. Patient-identified prescriptions matched the medical record prescription. Median self-reported adherence was 80% (interquartile range, 60%-95%), whereas median adherence measured by nebulizer download was 36% (interquartile range, 5%-84.5%). Nine participants overmedicated and underreported adherence. Median clinician report ranged from 50% to 60%, depending on profession. Extensive discrepancies between self-report and clinician report compared with nebulizer download were identified for individuals. Self- and clinician-reporting of adherence does not provide accurate measurement of adherence when compared with electronic monitoring. Using inaccurate measures has implications for treatment burden, clinician prescribing practices, cost, and accuracy of trial data.

  4. Laboratory Study Comparing Pharmacopeial Testing of Nebulizers with Evaluation Based on Nephele Mixing Inlet Methodology.

    PubMed

    Svensson, Mårten; Berg, Elna; Mitchell, Jolyon; Sandell, Dennis

    2018-02-01

    Determination of fine droplet dose with preparations for nebulization, currently deemed to be the metric most indicative of lung deposition and thus in vivo responses, involves combining two procedures following practice as described in the United States Pharmacopeia and the European Pharmacopeia. Delivered dose (DD) is established by simulating tidal breathing at the nebulizer, collecting the medication on a filter downstream of the nebulizer mouthpiece/facemask. Fine droplet fraction (FDF nebulizer to the continuously varying flow profile associated with breath simulation. The study purpose was to investigate the feasibility of this approach, termed mixing inlet lung simulation (MILS), for direct determination of FDD nebulizers, but 5 μm was chosen since this limit is the European norm when testing other inhalation products. Vibrating membrane nebulizers (eFlow® Rapid) were used to deliver aqueous salbutamol sulfate, simulating an adult tidal-breathing pattern (inspiratory to expiratory ratio = 1:1, tidal volume = 500 mL, 15 breaths per minute, peak inspiratory flow rate = 24 L/min). The two procedures were inequivalent, as FDD <5 μm by the MILS approach was 72% of that obtained using the compendial "combination" method. Since the MILS methodology more closely mimics clinical use, we infer that the compendial approach likely overestimates the dose reaching the human lung.

  5. Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis.

    PubMed

    Lu, Chunxia; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Xie, Jun; Liu, Bo

    2012-01-01

    Ionic liquid was used as extraction solvents and applied to the extraction of tannins from Galla chinensis in the simultaneous ultrasonic- and microwave-assisted extraction (UMAE) technique. Several parameters of UMAE were optimised, and the results were compared with of the conventional extraction techniques. Under optimal conditions, the content of tannins was 630.2 ± 12.1 mg g⁻¹. Compared with the conventional heat-reflux extraction, maceration extraction, regular ultrasound- and microwave-assisted extraction, the proposed approach exhibited higher efficiency (11.7-22.0% enhanced) and shorter extraction time (from 6 h to 1 min). The tannins were then identified by ultraperformance liquid chromatography tandem mass spectrometry. This study suggests that ionic liquid-based UMAE is an efficient, rapid, simple and green sample preparation technique.

  6. Induced tolerance to nebulized colistin after severe reaction to the drug.

    PubMed

    Domínguez-Ortega, J; Manteiga, E; Abad-Schilling, C; Juretzcke, M A; Sánchez-Rubio, J; Kindelan, C

    2007-01-01

    Daily nebulized colistin therapy has been used as maintenance therapy for patients with chronic Pseudomonas aeruginosa infection and in treatment protocols aimed at eradicating early P aeruginosa infection. Colistin-induced nephrotoxicity and mild neurotoxic effects have been described but hypersensitivity reactions are rare. However, bronchial constriction has been reported associated with the inhalation of the antibiotic. We report the case of a 63-year-old man who had been diagnosed with bronchiectasis and bronchopleural fistula and who developed severe bronchospasm when using nebulized colistin. A skin prick test (80 mg/mL) with colistin was performed and was negative. An intradermal test was not performed due to its possible irritant effect. As our patient suffered from a tobramycin-resistant P aeruginosa infection, we started a procedure to induce tolerance to 80 mg colistin (8 mg, 16 mg, 24 mg, 32 mg, 40 mg, 80 mg) nebulized in 30-minutes-intervals. No changes in forced expiratory volume in 1 second values were observed and the patient continues on treatment twice daily after the tolerance induction with no new episodes of bronchospasm. We report the first successful procedure to induce tolerance to colistin after escalating doses of inhaled colistin.

  7. Characterization of nebulized liposomal amikacin (Arikace) as a function of droplet size.

    PubMed

    Li, Zhili; Zhang, Yanling; Wurtz, William; Lee, Jin K; Malinin, Vladimir S; Durwas-Krishnan, Sripriya; Meers, Paul; Perkins, Walter R

    2008-09-01

    The stress of nebulization has been shown to alter the properties of liposomal drugs. What has not been demonstrated is whether nebulized liposomes differ as a function of droplet size. Because droplet size influences lung deposition, liposomes with different properties could be deposited in different areas of the lung (e.g., central vs. peripheral). In this report, a liposomal amikacin formulation (Arikace, a registered trademark of Transave, Inc., Monmouth Junction, NJ) that is being developed as an inhaled treatment for gram negative infections was aerosolized with an eFlow (registered trademark of PARI, GmbH, Munich, Germany) nebulizer, reclaimed from the various stages of an Andersen cascade impactor (ACI) and analyzed for lipid-to-drug (L/D) (w/w) ratio, amikacin retention, and liposome size. For the nebulized solution, 99.7% of the total deposited drug was found on ACI stages 0 through 5, which have cutoff diameters of 9, 5.8, 4.7, 3.3, 2.1, and 1.1 microm, respectively. Properties were found to differ for drug reclaimed on stage 0 compared stages 1-5, which were not different from one another. For drug found on stages 1-5 (97% of total drug), the averages (n = 3) for L/D, percent encapsulated amikacin, and liposome mean diameter ranged from 0.59 to 0.68 (w/w), 71% to 75%, 248 to 282 nm, respectively. Drug found on stage 0 (2.8% of total drug) had an average L/D ratio of 0.51 and average liposome mean diameter of 375 nm. Examination of another batch of liposomal amikacin revealed no statistically significant differences between drug reclaimed on stages 0-5. Although a droplet size dependence was noted for one batch of Arikace aerosolized with the eFlow, the effect was considered to be inconsequential because the fraction in doubt represented nonrespirable particles >9 microm and accounted for <3% of the total deposited dose. The methodology applied here appears useful in evaluating aerosolized liposome systems. However, our results should not be assumed to

  8. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, K.E.

    A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into themore » ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.« less

  9. Effect of Ultrasound in Soybean Protein Extraction

    NASA Astrophysics Data System (ADS)

    Fukase, Hirokazu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao

    1994-05-01

    Application of ultrasound for accelerating the extraction of nutriments in food processing has been attempted. However, conditions of exposure to ultrasound were not clear in previous studies. This paper reports on the relationship between the ultrasonic pressure and the amount of extracted protein from soybeans. Experiments were conducted using a beaker, in which the ultrasonic fields were precisely measured. Soybean flakes suspended in water were put in the beaker and placed in a water tank. The amount of extracted protein in water upon ultrasonic exposure was calculated by the Kjeldahl method. It was found that the amount of extracted protein increased in proportion to ultrasonic pressure up to the total amount of soybean protein soluble in water. Furthermore, this paper describes the denaturation of the protein produced by the ultrasonic cavitation.

  10. Optimization of Ionic Liquid Based Simultaneous Ultrasonic- and Microwave-Assisted Extraction of Rutin and Quercetin from Leaves of Velvetleaf (Abutilon theophrasti) by Response Surface Methodology

    PubMed Central

    Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang

    2014-01-01

    An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207

  11. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants.

    PubMed

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing; Chen, Yu-Bo; Shi, Yu-Ting; Li, Rong-Rong

    2017-09-15

    Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    Objective: To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. Materials and Methods: The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20–60°C), time (20–40 min) and power (200–350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. Results: The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. Conclusion: The results of quantification showed that the guava leaves are the potential source of antioxidant compounds. PMID:26246720

  13. Promoting adherence to nebulized therapy in cystic fibrosis: poster development and a qualitative exploration of adherence.

    PubMed

    Jones, Stephen; Babiker, Nathan; Gardner, Emma; Royle, Jane; Curley, Rachael; Hoo, Zhe Hui; Wildman, Martin J

    2015-01-01

    Cystic fibrosis (CF) health care professionals recognize the need to motivate people with CF to adhere to nebulizer treatments, yet little is known about how best to achieve this. We aimed to produce motivational posters to support nebulizer adherence by using social marketing involving people with CF in the development of those posters. The Sheffield CF multidisciplinary team produced preliminary ideas that were elaborated upon with semi-structured interviews among people with CF to explore barriers and facilitators to the use of nebulized therapy. Initial themes and poster designs were refined using an online focus group to finalize the poster designs. People with CF preferred aspirational posters describing what could be achieved through adherence in contrast to posters that highlighted the adverse consequences of nonadherence. A total of 14 posters were produced through this process. People with CF can be engaged to develop promotional material to support adherence, providing a unique perspective differing from that of the CF multidisciplinary team. Further research is needed to evaluate the effectiveness of these posters to support nebulizer adherence.

  14. Promoting adherence to nebulized therapy in cystic fibrosis: poster development and a qualitative exploration of adherence

    PubMed Central

    Jones, Stephen; Babiker, Nathan; Gardner, Emma; Royle, Jane; Curley, Rachael; Hoo, Zhe Hui; Wildman, Martin J

    2015-01-01

    Background Cystic fibrosis (CF) health care professionals recognize the need to motivate people with CF to adhere to nebulizer treatments, yet little is known about how best to achieve this. We aimed to produce motivational posters to support nebulizer adherence by using social marketing involving people with CF in the development of those posters. Methods The Sheffield CF multidisciplinary team produced preliminary ideas that were elaborated upon with semi-structured interviews among people with CF to explore barriers and facilitators to the use of nebulized therapy. Initial themes and poster designs were refined using an online focus group to finalize the poster designs. Results People with CF preferred aspirational posters describing what could be achieved through adherence in contrast to posters that highlighted the adverse consequences of nonadherence. A total of 14 posters were produced through this process. Conclusion People with CF can be engaged to develop promotional material to support adherence, providing a unique perspective differing from that of the CF multidisciplinary team. Further research is needed to evaluate the effectiveness of these posters to support nebulizer adherence. PMID:26346635

  15. Adaption of a parallel-path poly(tetrafluoroethylene) nebulizer to an evaporative light scattering detector: Optimization and application to studies of poly(dimethylsiloxane) oligomers as a model polymer.

    PubMed

    Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael

    2018-06-05

    The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.

  16. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    PubMed

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Effect of magnesium sulfate nebulization on the incidence of postoperative sore throat.

    PubMed

    Yadav, Monu; Chalumuru, Nitish; Gopinath, Ramachandran

    2016-01-01

    Postoperative sore throat (POST) is a well-recognized complication after general anesthesia (GA). Numerous nonpharmacological and pharmacological measures have been used for attenuating POST with variable success. The present study was conducted to compare the efficiency of preoperative nebulization of normal saline and magnesium sulfate in reducing the incidence of POST following GA. Following institutional ethical committee approval and written informed consent, a prospective randomized double-blinded study was conducted in 100 cases divided into two equal groups. Patients included in the study were of either gender belonging to American Society of Anesthesiologist (ASA) status 1 or 2 undergoing elective surgery of approximately 2 h or more duration requiring tracheal intubation. Patients in Group A are nebulized with 3 ml of normal saline and the patients in Group B are nebulized with 3 ml of 225 mg isotonic nebulized magnesium sulfate for 15 min, 5 min before induction of anesthesia. The incidence of POST at rest and on swallowing and any undue complaints at 0, 2, 4, and 24 h in the postoperative period are evaluated. There is no significant difference in POST at rest during 0(th), 2(nd) and 4(th) h between normal saline and MgSO4. Significant difference is seen at 24(th) h, where MgSO4 lessens POST. There is no significant difference in POST on swallowing during 0(th) and 2(nd) h between normal saline and MgSO4. Significant difference is seen at 4(th) h, where MgSO4 has been shown to lessen POST. MgSO4 significantly reduces the incidence of POST compared to normal saline.

  18. Coupling of headspace solid phase microextraction with ultrasonic extraction for the determination of chlorinated pesticides in bird livers using gas chromatography.

    PubMed

    Lambropoulou, Dimitra A; Konstantinou, Ioannis K; Albanis, Triantafyllos A

    2006-07-28

    In the present study a combined analytical method involving ultrasonic extraction (USE), sulfuric acid clean-up and headspace solid-phase microextraction (HS-SPME) was developed for the determination of chlorinated pesticides (CPs) in bird livers. Extraction of CPs from 1g of liver was performed by ultrasonication for 30 min using 20 mL of solvent mixture (n-hexane:acetone (4:1, v/v)). The extract was subsequently subjected to a clean-up step for lipid removal. A comparative study on several clean-up procedures prior to the HS-SPME enrichment step was performed in order to achieve maximum recovery and optimal clean-up efficiency, which would provide suitable limits of detection in the gas chromatographic analysis. For this purpose, destructive (sulfuric acid or sodium hydroxide treatment) and non-destructive (alumina column) clean-up procedures has been assayed. The treatment of the extract with 40% (v/v) H2SO4 prior to HS-SPME process showed the best performance since lower detection limits and higher extraction efficiencies were obtained. The method detection limit ranged from 0.5 to 1.0 ng g(-1) wet weight and peak areas were proportional to analyte concentrations (r2>0.990) in the range of 5-500 ng g(-1) wet wt. The method was found to be reproducible (R.S.D.<10%) and effective under the operational conditions proposed and was applied successfully to the analysis of CPs in liver tissues of various bird species from Greece.

  19. Advantages and pitfalls of combining intravenous antithrombin with nebulized heparin and tissue plasminogen activator in acute respiratory distress syndrome.

    PubMed

    Rehberg, Sebastian; Yamamoto, Yusuke; Sousse, Linda E; Jonkam, Collette; Cox, Robert A; Prough, Donald S; Enkhbaatar, Perenlei

    2014-01-01

    Pulmonary coagulopathy has become an important therapeutic target in adult respiratory distress syndrome (ARDS). We hypothesized that combining intravenous recombinant human antithrombin (rhAT), nebulized heparin, and nebulized tissue plasminogen activator (TPA) more effectively improves pulmonary gas exchange compared with a single rhAT infusion, while maintaining the anti-inflammatory properties of rhAT in ARDS. Therefore, the present prospective, randomized experiment was conducted using an established ovine model. Following burn and smoke inhalation injury (40% of total body surface area, third-degree flame burn, and 4 × 12 breaths of cold cotton smoke), 18 chronically instrumented sheep were randomly assigned to receive intravenous saline plus saline nebulization (control), intravenous rhAT (6 IU/kg/h) started 1 hour after injury plus saline nebulization (AT i.v.) or intravenous rhAT combined with nebulized heparin (10,000 IU every 4 hours, started 2 hours after injury), and nebulized TPA (2 mg every 4 hours, started 4 hours after injury) (triple therapy, n = 6 each). All animals were mechanically ventilated and fluid resuscitated according to standard protocols during the 48-hour study period. Both treatment approaches attenuated ARDS compared with control animals. Notably, triple therapy was associated with an improved PaO2/FiO2 ratio (p = 0.007), attenuated pulmonary obstruction (p = 0.02) and shunting (p = 0.025), as well as reduced ventilatory pressures (p < 0.05 each) versus AT i.v. at 48 hours. However, the anti-inflammatory effects of sole AT i.v., namely, the inhibition of neutrophil activation (neutrophil count in the lymph and pulmonary polymorphonuclear cells, p < 0.05 vs. control each), pulmonary transvascular fluid flux (lymph flow, p = 0.004 vs. control), and systemic vascular leakage (cumulative net fluid balance, p < 0.001 vs. control), were abolished in the triple therapy group. Combining intravenous rhAT with nebulized heparin and nebulized

  20. Study on extraction process and activity of plant polysaccharides

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogen; Wang, Xiaojing; Fan, Shuangli; Chen, Jiezhong

    2017-10-01

    Recent studies have shown that plant polysaccharides have many pharmacological activities, such as hypoglycemic, anti-inflammatory and tumor inhibition. The pharmacological activities of plant polysaccharides were summarized. The extraction methods of plant polysaccharides were discussed. Finally, the extraction process of Herba Taraxaci polysaccharides was optimized by ultrasonic assisted extraction. Through single factor experiments and orthogonal experiment to optimize the optimum extraction process from dandelion polysaccharide, optimum conditions of dandelion root polysaccharide by ultrasonic assisted extraction method for ultrasonic power 320W, temperature 80°C, extraction time 40min, can get higher dandelion polysaccharide extract.

  1. Dental hard tissue characterization using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  2. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  3. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  4. Optimization of ultrasonic-assisted extraction of total saponins from Eclipta prostrasta L. using response surface methodology.

    PubMed

    Hu, Ting; Guo, Yan-Yun; Zhou, Qin-Fan; Zhong, Xian-Ke; Zhu, Liang; Piao, Jin-Hua; Chen, Jian; Jiang, Jian-Guo

    2012-09-01

    Eclipta prostrasta L. is a traditional Chinese medicine herb, which is rich in saponins and has strong antiviral and antitumor activities. An ultrasonic-assisted extraction (UAE) technique was developed for the fast extraction of saponins from E. prostrasta. The content of total saponins in E. prostrasta was determined using UV/vis spectrophotometric methods. Several influential parameters like ethanol concentration, extraction time, temperature, and liquid/solid ratio were investigated for the optimization of the extraction using single factor and Box-Behnken experimental designs. Extraction conditions were optimized for maximum yield of total saponins in E. prostrasta using response surface methodology (RSM) with 4 independent variables at 3 levels of each variable. Results showed that the optimization conditions for saponins extraction were: ethanol concentration 70%, extraction time 3 h, temperature 70 °C, and liquid/solid ratio 14:1. Corresponding saponins content was 2.096%. The mathematical model developed was found to fit well with the experimental data. Practical Application: Although there are wider applications of Eclipta prostrasta L. as a functional food or traditional medicine due to its various bioactivities, these properties are limited by its crude extracts. Total saponins are the main active ingredient of E. prostrasta. This research has optimized the extraction conditions of total saponins from E. prostrasta, which will provide useful reference information for further studies, and offer related industries with helpful guidance in practice. © 2012 Institute of Food Technologists®

  5. Nebulized voriconazole in infections with Scedosporium apiospermum--case report and review of the literature.

    PubMed

    Holle, J; Leichsenring, M; Meissner, P E

    2014-07-01

    Scedosporium infections are rare complications in immunocompromised patients or patients with chronic pulmonary disease. While Scedosporium prolificans is resistant to most antimycotics, Scedosporium apiospermum is usually sensitive to voriconazole and posaconazole. Pharmacokinetics and efficacy of nebulized voriconazole have been described in a murine model previously. We report for the first time the safe and effective use of nebulized voriconazole for the treatment of severe pulmonary infection with Scedosporium apiospermum in an adolescent with cystic fibrosis. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Nebulized anticoagulants in lung injury in critically ill patients—an updated systematic review of preclinical and clinical studies

    PubMed Central

    Juschten, Jenny; Tuinman, Pieter R.; Juffermans, Nicole P.; Dixon, Barry; Levi, Marcel

    2017-01-01

    Pneumonia, inhalation trauma and acute respiratory distress syndrome (ARDS), typical causes of lung injury in critically ill patients, are all three characterized by dysregulated inflammation and coagulation in the lungs. Nebulized anticoagulants are thought to have beneficial effects as they could attenuate pulmonary coagulopathy and maybe even affect pulmonary inflammation. A systematic search of the medical literature was performed using terms referring to aspects of the condition (‘pneumonia’, ‘inhalation trauma’ and ‘ARDS’), the intervention (‘nebulized’, ‘vaporized’, and ‘aerosolized’) and anticoagulants limited to agents that are commercially available and frequently given or tested in critically ill patients [‘heparin’, ‘danaparoid’, ‘activated protein C’ (APC), ‘antithrombin’ (AT) and ‘tissue factor pathway inhibitor’ (TFPI)]. The systematic search identified 16 articles reporting on preclinical studies and 11 articles reporting on human trials. All nebulized anticoagulants attenuate pulmonary coagulopathy in preclinical studies using various models for lung injury, but the effects on inflammation are less consistent. Nebulized heparin, danaparoid and TFPI, but not APC and AT also reduced systemic coagulation. Nebulized heparin in lung injury patients shows contradictory results, and there is concern over systemic side effects of this strategy. Future studies need to focus on the way to nebulize anticoagulants, as well as on efficient but safe dosages, and other side effects. PMID:29264361

  7. Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel.

    PubMed

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y; Valéro, Jose R

    2014-10-01

    In-situ transesterification of microbial lipid to biodiesel has been paid substantial attention due to the fact that the lipid extraction and transesterification can be conducted in one-stage process. To improve the feasibility of in-situ transesterification, ultrasonication was employed to reduce methanol requirement and reaction time. The results showed that the use of ultrasonication could achieve high conversion of lipid to FAMEs (92.1% w lipid conversion/w total lipids) with methanol to lipid molar ratio 60:1 and NaOH addition 1% w/w lipid in 20 min, while methanol to lipid molar ratio 360:1, NaOH addition 1% w/w lipid, and reaction time 12h was required to obtain similar yield in in-situ transesterification without ultrasonication. The compositions of FAMEs obtained in case of ultrasonication aided in-situ transesterification were similar as that of two-stage extraction followed by transesterification processes. Copyright © 2014. Published by Elsevier Ltd.

  8. Analysis of Trace Quaternary Ammonium Compounds (QACs) in Vegetables Using Ultrasonic-Assisted Extraction and Gas Chromatography-Mass Spectrometry.

    PubMed

    Xiang, Lei; Wang, Xiong-Ke; Li, Yan-Wen; Huang, Xian-Pei; Wu, Xiao-Lian; Zhao, Hai-Ming; Li, Hui; Cai, Quan-Ying; Mo, Ce-Hui

    2015-08-05

    A reliable, sensitive, and cost-effective method was developed for determining three quaternary ammonium compounds (QACs) including dodecyltrimethylammonium chloride, cetyltrimethylammonium chloride, and didodecyldimethylammonium chloride in various vegetables using ultrasonic-assisted extraction and gas chromatography-mass spectrometry. The variety and acidity of extraction solvents, extraction times, and cleanup efficiency of sorbents were estimated to obtain an optimized procedure for extraction of the QACs in nine vegetable matrices. Excellent linearities (R(2) > 0.992) were obtained for the analytes in the nine matrices. The limits of detection and quantitation were 0.7-6.0 and 2.3-20.0 μg/kg (dry weight, dw) in various matrices, respectively. The recoveries in the nine matrices ranged from 70.5% to 108.0% with relative standard deviations below 18.0%. The developed method was applied to determine the QACs in 27 vegetable samples collected from Guangzhou in southern China, showing very high detection frequency with a concentration of 23-180 μg/kg (dw).

  9. Effects of Nebulizer Position, Gas Flow, and CPAP on Aerosol Bronchodilator Delivery: An In Vitro Study.

    PubMed

    Ball, Lorenzo; Sutherasan, Yuda; Caratto, Valentina; Sanguineti, Elisa; Marsili, Maria; Raimondo, Pasquale; Ferretti, Maurizio; Kacmarek, Robert M; Pelosi, Paolo

    2016-03-01

    The aim of this study was to investigate the effects of different delivery circuit configurations, nebulizer positions, CPAP levels, and gas flow on the amount of aerosol bronchodilator delivered during simulated spontaneous breathing in an in vitro model. A pneumatic lung simulator was connected to 5 different circuits for aerosol delivery, 2 delivering CPAP through a high-flow generator tested at 30, 60, and 90 L/min supplementary flow and 5, 10, and 15 cm H2O CPAP and 3 with no CPAP: a T-piece configuration with one extremity closed with a cap, a T-piece configuration without cap and nebulizer positioned proximally, and a T-piece configuration without cap and nebulizer positioned distally. Albuterol was collected with a filter, and the percentage amount delivered was measured by infrared spectrophotometry. Configurations with continuous high-flow CPAP delivered higher percentage amounts of albuterol compared with the configurations without CPAP (9.1 ± 6.0% vs 6.2 ± 2.8%, P = .03). Among configurations without CPAP, the best performance was obtained with a T-piece with one extremity closed with a cap. In CPAP configurations, the highest delivery (13.8 ± 4.4%) was obtained with the nebulizer placed proximal to the lung simulator, independent of flow. CPAP at 15 cm H2O resulted in the highest albuterol delivery (P = .02). Based on our in vitro study, without CPAP, a T-piece with a cap at one extremity maximizes albuterol delivery. During high-flow CPAP, the nebulizer should always be placed proximal to the patient, after the T-piece, using the highest CPAP clinically indicated. Copyright © 2016 by Daedalus Enterprises.

  10. Application of alkyl polyglycoside surfactant in ultrasonic-assisted extraction followed by macroporous resin enrichment for the separation of vitexin-2″-O-rhamnoside and vitexin from Crataegus pinnatifida leaves.

    PubMed

    Han, Feng; Guo, Yupin; Gu, Huiyan; Li, Fenglan; Hu, Baozhong; Yang, Lei

    2016-02-15

    An alkyl polyglycoside (APG) surfactant was used in ultrasonic-assisted extraction to effectively extract vitexin-2″-O-rhamnoside (VOR) and vitexin (VIT) from Crataegus pinnatifida leaves. APG0810 was selected as the surfactant. The extraction process was optimized for ultrasonic power, the APG concentration, ultrasonic time, soaking time, and liquid-solid ratio. The proposed approach showed good recovery (99.80-102.50% for VOR and 98.83-103.19% for VIT) and reproducibility (relative standard deviation, n=5; 3.7% for VOR and 4.2% for VIT) for both components. The proposed sample preparation method is both simple and effective. The use of APG for extraction of key herbal ingredients shows great potential. Ten widely used commercial macroporous resins were evaluated in a screening study to identify a suitable resin for the separation and purification of VOR and VIT. After comparing static and dynamic adsorption and desorption processes, HPD100B was selected as the most suitable resin. After column adsorption and desorption on this resin, the target compounds VOR and VIT can be effectively separated from the APG0810 extraction solution. Recoveries of VOR and VIT were 89.27%±0.42% and 85.29%±0.36%, respectively. The purity of VOR increased from 35.0% to 58.3% and the purity of VIT increased from 12.5% to 19.9%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In vitro comparison of passive and continuous ultrasonic irrigation in simulated lateral canals of extracted teeth.

    PubMed

    Castelo-Baz, Pablo; Martín-Biedma, Benjamín; Cantatore, Giuseppe; Ruíz-Piñón, Manuel; Bahillo, José; Rivas-Mundiña, Berta; Varela-Patiño, Purificación

    2012-05-01

    Complete endodontic system disinfection requires the removal of vital and necrotic pulp tissue, microorganisms, and toxins. The purpose of this study was to compare the effects of 2 ultrasonic irrigation techniques on the penetration of sodium hypochlorite into the main canal and simulated lateral canals of extracted teeth. Two simulated lateral canals each were created 2, 4, and 6 mm from the working length in 60 single-rooted teeth (6 canals/tooth, n = 360). To resemble the clinical situation, a closed system was created in each tooth. The teeth were randomly assigned to 3 experimental irrigation groups: group 1 (n = 20), positive pressure irrigation (PPI); group 2 (n = 20), passive ultrasonic irrigation (PUI); and group 3 (n = 20), continuous ultrasonic irrigation (CUI). Samples were evaluated by direct observation of still images recorded under a dental operating microscope. To examine irrigating solution penetration, 20% Chinese ink (Sanford Rotring GmbH, Hamburg, Germany) was added to a 5% sodium hypochlorite solution and delivered into the root canals. The results showed a significantly higher (P < .05) penetration of irrigant into the lateral canals in the CUI group. PUI and CUI did not differ significantly in solution penetration into the apical thirds of the main canals. The PPI group showed a significantly lower penetration of sodium hypochlorite into the main and lateral canals compared with the CUI and PUI groups. CUI as a final rinse significantly increased the penetration of irrigating solution into simulated lateral canals. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Pérez-Palacios, David; Fernández-Recio, Miguel Ángel; Moreta, Cristina; Tena, María Teresa

    2012-09-15

    Focused ultrasonic solid-liquid extraction (FUSLE) and reverse-phase ultra performance liquid chromatography (UPLC) coupled to a quadrupole-time of flight mass spectrometer (Q-TOF-MS) was applied to the determination of bisphenol-type endocrine disrupting compounds (EDCs) in food-contact recycled-paper materials. Recycled paper is a potential source of EDCs. Bisphenol A (BPA), bisphenol F (BPF) and their derivatives bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used for the production of epoxy resins employed in the formulation of printing inks. The FUSLE of bisphenol-type EDCs from packaging is reported for the first time. First, different extraction solvents were studied and methanol was selected. Then, the main FUSLE factors affecting the extraction efficiency (solvent volume, extraction time and ultrasonic irradiation power) were studied by means of a central composite design. The FUSLE conditions selected for further experiments were 20 ml of methanol at ultrasonic amplitude of 100% for 5s. Finally, the number of extraction cycles necessary for complete extraction was established in two. The analysis of the FUSLE extracts was carried out by UPLC-Q-TOF-MS with electrospray ionization and the determination of the four analytes took place in only 4 min. The FUSLE and UPLC-ESI-QTOF-MS method was validated and applied to the analysis of different food-contact recycled-paper-based materials and packaging. The proposed method provided recoveries from 72% to 97%, repeatability and intermediate precision under 9% and 14%, respectively, and detection limits of 0.33, 0.16, 0.65 and 0.40 μg/g for BPA, BPF, BADGE and BFDGE, respectively. The analysis of paper and cardboard samples confirmed the presence of EDCs in these packaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. History of aerosol therapy: liquid nebulization to MDIs to DPIs.

    PubMed

    Anderson, Paula J

    2005-09-01

    Inhaled therapies have been used since ancient times and may have had their origins with the smoking of datura preparations in India 4,000 years ago. In the late 18th and in the 19th century, earthenware inhalers were popular for the inhalation of air drawn through infusions of plants and other ingredients. Atomizers and nebulizers were developed in the mid-1800s in France and were thought to be an outgrowth of the perfume industry as well as a response to the fashion of inhaling thermal waters at spas. Around the turn of the 20th century, combustible powders and cigarettes containing stramonium were popular for asthma and other lung complaints. Following the discovery of the utility of epinephrine for treating asthma, hand-bulb nebulizers were developed, as well as early compressor nebulizers. The marketing of the first pressurized metered-dose inhaler for epinephrine and isoproterenol, by Riker Laboratories in 1956, was a milestone in the development of inhaled drugs. There have been remarkable advances in the technology of devices and formulations for inhaled drugs in the past 50 years. These have been influenced greatly by scientific developments in several areas: theoretical modeling and indirect measures of lung deposition, particle sizing techniques and in vitro deposition studies, scintigraphic deposition studies, pharmacokinetics and pharmacodynamics, and the 1987 Montreal Protocol, which banned chlorofluorocarbon propellants. We are now in an era of rapid technologic progress in inhaled drug delivery and applications of aerosol science, with the use of the aerosolized route for drugs for systemic therapy and for gene replacement therapy, use of aerosolized antimicrobials and immunosuppressants, and interest in specific targeting of inhaled drugs.

  15. Compatibility and osmolality of inhaled N-acetylcysteine nebulizing solution with fenoterol and ipratropium.

    PubMed

    Lee, Tzung-Yi; Chen, Chi-Ming; Lee, Chun-Nin; Chiang, Yi-Chun; Chen, Hsiang-Yin

    2005-04-15

    The compatibility, pH, and osmolality of N-acetylcysteine (NAC) nebulizing solution in the presence of ipratropium bromide or fenoterol hydrobromide were studied. Portions (400 microL) of each mixture were sampled immediately upon mixing and one, two, three, four, five, six, and seven hours after mixing and assayed by high-performance liquid chromatography. Osmolality was measured by sampling 100 microL from the filling cup at a five-minute interval during nebulization and by the freezing-point-depression method. Adding NAC solution to fenoterol solution raised the pH from 3.20 to 7.90 and the osmolality to a mean +/- S.D. of 1400.67 +/- 4.51 mOsm/kg. Fenoterol concentrations decreased to 93.71% and NAC concentrations to 92.54% of initial concentrations after seven hours. Mixing ipratropium with NAC solution raised the pH from 3.74 to 7.95 and the osmolality to a mean +/- S.D. of 1413 +/- 11.79 mOsm/kg. The initial ipratropium concentration declined 7.39% and 10.91% one and two hours after mixing with NAC solution, respectively. NAC and ipratropium were stable in nebulizing solution within one hour of mixing. NAC and fenoterol were compatible for at least seven hours.

  16. Ultrasonic extraction of arsenic and selenium from rocks associated with mountaintop removal/valley fills coal mining: Estimation of bioaccessible concentrations.

    PubMed

    Pumure, I; Renton, J J; Smart, R B

    2010-03-01

    Ultrasonic extraction (UE) was used to estimate the total bioaccessible fractions of arsenic and selenium released from rocks associated with mountaintop removal/valley fill coal mining. The combined readily bioaccessible amounts of arsenic and selenium in water soluble, exchangeable and NaOH fractions can be extracted from the solid phase within a 20 or 25 min application of 200 W cm(-2) ultrasound energy in nanopure water for selenium and arsenic, respectively. Application of a two-way ANOVA predicted that there are no significant differences (p0.001, n=12) in the extracted arsenic and selenium concentrations between the combined bioaccessible and ultrasonic extracts. The mechanisms for the UE of arsenic and selenium are thought to involve the formation of secondary minerals on the particle surfaces which eventually dissolve with continued sonication. This is supported by the presence of transient Si-O stretching and OH absorption and bending ATR-FTIR peaks at 795.33 cm(-1), 696.61 cm(-1) and 910.81 cm(-1). The subsequent dissolution of secondary minerals is followed by the release of chemical species that include selenium and arsenic. Release rates decrease after the ultrasound energy elastic limit for the particles is reached. Selenium and arsenic are bound differently within the rock lattice because no selenium was detected in the acid soluble fraction and no arsenic was found in the exchangeable fraction. However, selenium was found in the exchangeable fraction and arsenic was found in the acid soluble fraction. The characterization of coal associated rocks is essential to the design of methodologies and procedures that can be used to control the release of arsenic and selenium from valley fills. Published by Elsevier Ltd.

  17. Individualized supervised resistance training during nebulization in adults with cystic fibrosis.

    PubMed

    Shaw, Ina; Kinsey, Janine E; Richards, Roxanne; Shaw, Brandon S

    2016-01-01

    Since dyspnea limits exercise adherence and intensity in cystic fibrosis (CF) patients, engaging in resistance training (RT), which causes less dyspnea than other exercise modalities, while using nebulizers could not only overcome this barrier, but also enhance long-term adaptations to treatment. The objective of this study was to examine the effects of RT during nebulization on spirometry, anthropometry, chest wall excursion, respiratory muscle strength and health-related quality of life (HRQOL). Fourteen male and female CF patients were assigned to a four-week, 20-minute, 5-day per week proof-of-concept RT group (RTG) (n=7) or non-exercising control group (CON) (n=7), with 3 CON patients later dropping out of the study. Patients performed whole body exercises for 3 sets of 10 reps using resistance bands, since such bands have previously demonstrated a greater effect on functional exercise capacity than conventional RT in lung patients. The RTG displayed significant (p≤0.05) increases in FEV 1 , FEV 1 /FVC, latissimusdorsi strength, pectoralis major clavicular portion strength, pectoralis major sternocostal portion strength and emotional and digestion HRQOL domains, while decreasing pectoralis minor strength on the left and social, body image and respiration HRQOL domains. This small scale proof-of-concept investigation demonstrates the multiple and simultaneous benefits of RT during nebulization in CF patients. The improvements in pulmonary measures are particularly promising especially since this study only made use of a four-week experimental period. This study provides an important alternative, time-saving treatment for the CF patient that does not add to the treatment burden of CF patients.

  18. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information?

    PubMed

    Hatley, Ross Hm; Byrne, Sarah M

    2017-01-01

    To improve convenience to patients, there have been advances in the operation of nebulizers, resulting in fast treatment times and less drug lost to the environment. However, limited attention has been paid to the effects of these developments on the delivered dose (DD) and respirable delivered dose (RDD). Published pharmacopoeia and ISO testing guidelines for adult-use testing utilize a single breathing pattern, which may not be sufficient to enable effective comparisons between the devices. The DD of 5 mg of salbutamol sulfate into adult breathing patterns with inhalation:exhalation (I:E) ratios between 1:1 and 1:4 was determined. Droplet size was determined by laser diffraction and RDD calculated. Nine different nebulizer brands with different modes of operation (conventional, venturi, breath-enhanced, mesh, and breath-activated) were tested. Between the non-breath-activated nebulizers, a 2.5-fold difference in DD (~750-1,900 µg salbutamol) was found; with RDD, there was a more than fourfold difference (~210-980 µg). With increasing time spent on exhalation, there were progressive reductions in DD and RDD, with the RDD at an I:E ratio of 1:4 being as little as 40% of the dose with the 1:1 I:E ratio. The DD and RDD from the breath-activated mesh nebulizer were independent of the I:E ratio, and for the breath-activated jet nebulizer, there was less than 20% change in RDD between the I:E ratios of 1:1 and 1:4. Comparing nebulizers using the I:E ratio recommended in the guidelines does not predict relative performance between the devices at other ratios. There was significant variance in DD or RDD between different brands of non-breath-activated nebulizer. In future, consideration should be given to revision of the test protocols included in the guidelines, to reflect more accurately the potential therapeutic dose that is delivered to a realistic spectrum of breathing patterns.

  19. Antioxidant and Hepatoprotective Activities of Crude Polysaccharide Extracts from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), by Ultrasonic-Circulating Extraction.

    PubMed

    Chen, Ti Qiang; Wu, Jian-Guo; Kan, Yong-Jun; Yang, Chi; Wu, Yan-Bin; Wu, Jin-Zhong

    2018-01-01

    We recently proposed, and successfully applied, a novel and efficient technique-ultrasonic-circulating extraction (UCE) integrating superfine pulverization-to extract and prepare antioxidant crude polysaccharides other natural active substances from Ganoderma lucidum. The aim of this study was to evaluate the antioxidant and hepatoprotective activities and active ingredients in the powder from UCE (UCEP) through comparison with powder from hot water extraction (HWEP). The DPPH radical, ABTS radical, superoxide anion, total antioxidant activity, and ferric-reducing antioxidant power assay results showed that the UCEP exhibited stronger (P < 0.01) in vitro antioxidant activity than the HWEP. The hepatoprotective activity of the extracts was evaluated against CCl4-induced oxidative damage in the liver. Measurements of reduced glutathione, superoxide dismutase, and malondialdehyde in rat liver; measurements of alanine transaminase, aspartate transaminase, and lactate dehydrogenase in rat blood; and Western blotting for antioxidant proteins of transforming growth factor-β1, heme-oxygenase 1, and glutathione per-oxidase showed that the UCEP had antioxidant activity in vivo either similar to or slightly stronger than (P < 0.1) the HWEP. Further analysis of the active ingredients revealed that the UCEP and HWEP have similar mean yield and total triterpenoid content, but the former has significantly higher (P < 0.05) mean yield and total polysaccharide content than the latter. Our results suggest that the UCEP displays stronger antioxidant activities because of the larger amount of total polysaccharides; the UCEP may be able to be used as an antioxidant and liver protectant.

  20. The Effects of Three Nebulized Osmotic Agents in the Dry Larynx

    ERIC Educational Resources Information Center

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Elstad, Mark

    2007-01-01

    Purpose: This investigation examined the effects of nebulized hypertonic saline, isotonic saline (IS), and sterile (hypotonic) water on phonation threshold pressure (PTP) and self-perceived phonatory effort (PPE) following a surface laryngeal dehydration challenge. Method: In a double-blind, randomized experimental trial, 60 vocally healthy women…

  1. Formulation, Characterization and Pulmonary Deposition of Nebulized Celecoxib Encapsulated Nanostructured Lipid Carriers

    PubMed Central

    Patlolla, Ram R.; Chougule, Mahavir; Patel, Apurva R.; Jackson, Tanise; Tata, Prasad NV; Singh, Mandip

    2010-01-01

    The aim of the current study was to encapsulate celecoxib (Cxb) in the Nanostructured Lipid Carrier (Cxb-NLC) nanoparticles and evaluate the lung disposition of nanoparticles following nebulization in Balb/c mice. Cxb-NLC nanoparticles were prepared with Cxb, Compritol, Miglyol and sodium taurocholate using high-pressure homogenization. Cxb-NLC nanoparticles were characterized for physical and aerosol properties. In-vitro cytotoxicity studies were performed with A549 cells. The lung deposition and pharmacokinetic parameters of Cxb-NLC and Cxb solution (Cxb-Soln) formulations were determined using Inexpose™ system and Pari LC star jet nebulizer. The particle size and entrapment efficiency of Cxb-NLC formulation were 217 ± 20 nm and > 90%, respectively. The Cxb-NLC released the drug in controlled fashion, and in vitro aersolization of Cxb-NLC formulation showed FPF of 75.6 ± 4.6 %, MMAD of 1.6 ±0.13 μm and GSD of 1.2 ± 0.21. Cxb-NLC showed dose and time dependent cytotoxicity against A549 cells. Nebulization of Cxb-NLC demonstrated 4 fold higher AUCt/D in lung tissues compared to Cxb-Soln. The systemic clearance of Cxb-NLC was slower (0.93 L/h) compared to Cxb-Soln (20.03 L/h). Cxb encapsulated NLC were found to be stable and aerodynamic properties were within the respirable limits. Aerosolization of Cxb-NLC improved the Cxb pulmonary bioavailability compared to solution formulation which will potentially lead to better patient compliance with minimal dosing intervals. PMID:20153385

  2. [Allergic bronchopulmonary aspergillosis: Evaluation of a maintenance therapy with nebulized Ambisome®].

    PubMed

    Godet, C; Couturaud, F; Ragot, S; Laurent, F; Brun, A L; Bergeron, A; Cadranel, J

    2017-05-01

    Allergic bronchopulmonary aspergillosis (ABPA) affects 3-13% of patients with asthma. Its natural history includes possibly life-threatening exacerbations and evolution towards fixed obstructive ventilatory disorders or even irreversible lung fibrosis lesions. ABPA prognosis is directly associated with exacerbation control and the main objective of the treatment is to decrease their frequency and duration. Recommendations regarding dosage and duration of treatment are not very precise. The currently used combination of itraconazole and corticosteroid therapy has many limitations. The interests of a therapeutic strategy using nebulized liposomal amphotericin B (LAmB) are to heighten antifungal lung tissue concentration, to circumvent drug interactions and decrease the potential toxicity of systemic antifungal treatments. Finally, this association leads to improved eradication of Aspergillus, thereby limiting the risk of side effects and the emergence of treatment-resistant Aspergillus strains. This is a phase II, multicentre, randomized, single blind, controlled therapeutic study, with the objective of comparing the potential benefit on exacerbation control of a maintenance therapy by LAmB nebulization. The main objective of the study is to compare the incidence of severe clinical exacerbations in ABPA treatment, between a maintenance treatment strategy with nebulized LAmB and a conventional strategy without antifungal maintenance therapy. The results will guide practitioners in the management of ABPA treatments and help to define the place of aerosols of LAmB on "evidence base medicine" criteria. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  3. Effects of Temperature and Humidity on Laser Diffraction Measurements to Jet Nebulizer and Comparison with NGI.

    PubMed

    Song, Xinghan; Hu, Junhua; Zhan, Shuyao; Zhang, Rui; Tan, Wen

    2016-04-01

    Laser diffraction (LD) and next generation impactor (NGI) are commonly used for the evaluation of inhaled drug formulations. In this study, the effect of temperature and humidity on the assessment of the nebulizer particle size distribution (PSD) by LD was investigated, and the consistency between NGI and LD measurements was evaluated. There was an increase in particle size with higher temperature or lower humidity. The particle population with a diameter less than 1 μm was significant at a temperature of 5°C or at relative humidity >90%; however, the same particle population became undetectable when temperature increased to 39°C or at relative humidity of 30-45%. The results of the NGI and LD measurements of aerosol generated from three types of jet nebulizers were compared. A poor correlation between the NGI and LD measurements was observed for PARI LC (2.2 μm) (R (2) = 0.893) and PARI LC (2.9 μm) (R (2) = 0.878), while a relatively good correlation (R (2) = 0.977) was observed for the largest particle size nebulizer (PARI TIA (8.6 μm)). We conclude that the ambient environment and the nebulizer have significant impacts on the performance and consistency between these instruments. These factors should be controlled in the evaluation of inhaled aerosol drug formulations when these instruments are used individually or in combination.

  4. Nebulized isotonic saline improves voice production in Sjögren's syndrome.

    PubMed

    Tanner, Kristine; Nissen, Shawn L; Merrill, Ray M; Miner, Alison; Channell, Ron W; Miller, Karla L; Elstad, Mark; Kendall, Katherine A; Roy, Nelson

    2015-10-01

    This study examined the effects of a topical vocal fold hydration treatment on voice production over time. Prospective, longitudinal, within-subjects A (baseline), B (treatment), A (withdrawal/reversal), B (treatment) experimental design. Eight individuals with primary Sjögren's syndrome (SS), an autoimmune disease causing laryngeal dryness, completed an 8-week A-B-A-B experiment. Participants performed twice-daily audio recordings of connected speech and sustained vowels and then rated vocal effort, mouth dryness, and throat dryness. Two-week treatment phases introduced twice-daily 9-mL doses of nebulized isotonic saline (0.9% Na(+)Cl(-)). Voice handicap and patient-based measures of SS disease severity were collected before and after each 2-week phase. Connected speech and sustained vowels were analyzed using the Cepstral Spectral Index of Dysphonia (CSID). Acoustic and patient-based ratings during each baseline and treatment phase were analyzed and compared. Baseline CSID and patient-based ratings were in the mild-to-moderate range. CSID measures of voice severity improved by approximately 20% with nebulized saline treatment and worsened during treatment withdrawal. Posttreatment CSID values fell within the normal-to-mild range. Similar patterns were observed in patient-based ratings of vocal effort and dryness. CSID values and patient-based ratings correlated significantly (P < .05). Nebulized isotonic saline improves voice production based on acoustic and patient-based ratings of voice severity. Future work should optimize topical vocal fold hydration treatment formulations, dose, and delivery methodologies for various patient populations. This study lays the groundwork for future topical vocal fold hydration treatment development to manage and possibly prevent dehydration-related voice disorders. 2b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Traditional Postextractive Implant Site Preparation Compared with Pre-extractive Interradicular Implant Bed Preparation in the Mandibular Molar Region, Using an Ultrasonic Device: A Randomized Pilot Study.

    PubMed

    Scarano, Antonio

    The immediate placement of single postextractive implants is increasing in the everyday clinical practice. Due to insufficient bone tissue volume, proper primary stability, essential for subsequent osseointegration, is sometimes not reached. The aim of this work was to compare two different approaches: implant bed preparation before and after root extraction. Twenty-two patients of both sexes were selected who needed an implant-prosthetic rehabilitation of the fractured first mandibular molar or presented an untreatable endodontic pathology. The sites were randomly assigned to the test group (treated with implant bed preparation before molar extractions) or control group (treated with implant bed preparation after molar extractions) by a computer-generated table. All implants were placed by the same operator, who was experienced in both traditional and ultrasonic techniques. The implant stability quotient (ISQ) and the position of the implant were evaluated. Statistical analysis was carried out. In the control group, three implants were placed in the central portion of the bone septum, while eight implants were placed with a tilted axis in relation to the septum; in the test group, all implants were placed in ideal positions within the root extraction sockets. The different position of the implants between the two procedures was statistically significant. This work presented an innovative approach for implant placement at the time of mandibular molar extraction. Preparing the implant bed with an ultrasonic device before root extraction is a simple technique and also allows greater stability to be reached in a selective case.

  6. Economic evaluation of nebulized magnesium sulphate in acute severe asthma in children.

    PubMed

    Petrou, Stavros; Boland, Angela; Khan, Kamran; Powell, Colin; Kolamunnage-Dona, Ruwanthi; Lowe, John; Doull, Iolo; Hood, Kerry; Williamson, Paula

    2014-10-01

    The aim of this study was to estimate the cost-effectiveness of nebulized magnesium sulphate (MgSO4) in acute asthma in children from the perspective of the UK National Health Service and personal social services. An economic evaluation was conducted based on evidence from a randomized placebo controlled multi-center trial of nebulized MgSO4 in severe acute asthma in children. Participants comprised 508 children aged 2-16 years presenting to an emergency department or a children's assessment unit with severe acute asthma across thirty hospitals in the United Kingdom. Children were randomly allocated to receive nebulized salbutamol and ipratropium bromide mixed with either 2.5 ml of isotonic MgSO4 or 2.5 ml of isotonic saline on three occasions at 20-min intervals. Cost-effectiveness outcomes were constructed around the Yung Asthma Severity Score (ASS) after 60 min of treatment; whilst cost-utility outcomes were constructed around the quality-adjusted life-year (QALY) metric. The nonparametric bootstrap method was used to present cost-effectiveness acceptability curves at alternative cost-effectiveness thresholds for either: (i) a unit reduction in ASS; or (ii) an additional QALY. MgSO4 had a 75.1 percent probability of being cost-effective at a GBP 1,000 (EUR 1,148) per unit decrement in ASS threshold, an 88.0 percent probability of being more effective (in terms of reducing the ASS) and a 36.6 percent probability of being less costly. MgSO4 also had a 67.6 percent probability of being cost-effective at a GBP 20,000 (EUR 22,957) per QALY gained threshold, an 8.5 percent probability of being more effective (in terms of generating increased QALYs) and a 69.1 percent probability of being less costly. Sensitivity analyses showed that the results of the economic evaluation were particularly sensitive to the methods used for QALY estimation. The probability of cost-effectiveness of nebulized isotonic MgSO4, given as an adjuvant to standard treatment of severe acute

  7. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.

  8. Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster Ait. and Pinus pinea L. by GC-MS.

    PubMed

    Ratola, Nuno; Lacorte, Sílvia; Barceló, Damià; Alves, Arminda

    2009-01-15

    Two different extraction strategies (microwave-assisted extraction (MAE) and ultrasonic extraction (USE)) were tested in the extraction of the 16 US Environmental Protection Agency (EPA) polycyclic aromatic hydrocarbons (PAHs) from pine trees. Extraction of needles and bark from two pine species common in the Iberian Peninsula (Pinus pinaster Ait. and Pinus pinea L.) was optimized using two amounts of sample (1g and 5 g) and two PAHs spiking levels (20 ng/g and 100 ng/g). In all cases, the clean-up procedure following extraction consisted in solid-phase extraction (SPE) with alumina cartridges. Quantification was done by gas chromatography (GC) with mass spectrometry (MS), using five deuterated PAH surrogate standards as internal standards. Limits of detection were globally below 0.2 ng/g. The method was robust for the matrices studied regardless of the extraction procedures. Recovery values between 70 and 130% were reached in most cases, except for high molecular weight PAHs (indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene). A field study with naturally contaminated samples from eight sites (four in Portugal and four in Catalonia, Spain) showed that needles are more suitable biomonitors for PAHs, yielding concentrations from 2 to 17 times higher than those found in bark. The levels varied according to the sampling site, with the sum of the individual PAH concentrations between 213 and 1773 ng/g (dry weight). Phenanthrene was the most abundant PAH, followed by fluoranthene, naphthalene and pyrene.

  9. High throughput screening and antioxidant assay of dibenzo[a,c]cyclooctadiene lignans in modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill by liquid chromatography--mass spectrometry and a free radical-scavenging method.

    PubMed

    Wang, Ming-Chih; Lai, Yih-Cherng; Chang, Chia-Lin

    2008-05-01

    Dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill are well known because of their hepatoprotective activity, antioxidant activity, and anticancer effect. For the isolation of the dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill two extraction methods were used: modified-ultrasonic extraction and supercritical fluid extraction. A specific and fast analytical method for structure identification is established for quality control because structure elucidation could be accomplished by means of liquid chromatography-mass spectrometry (LC-MS) technologies. The separation and identification of the compounds were completed by: (i) a water-acetonitrile gradient system using a C18 reversed-phase column; (ii) UV detection at 225 nm; (iii) MS/MS experiments with electrospray ionization interface (ESI) ion trap mass spectrometry in the positive mode. Normalized collision energy was used to obtain fragment ions of structural relevance in the LC-MS/MS. These results provided a reliable LC-MS/MS method for the determination of the dibenzo[a,c]cyclooctadiene lignans from Schisandra chinensis Baill. Finally, we also detected 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effects (%) of the modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The antioxidant activities of the modified-ultrasonic and supercritical fluid extracts were lower than that of trolox.

  10. Beneficial effects of warmed humidified oxygen combined with nebulized albuterol and ipratropium in pediatric patients with acute exacerbation of asthma in winter months.

    PubMed

    Nibhanipudi, Kumara; Hassen, Getaw Worku; Smith, Arthur

    2009-11-01

    The objective of this study was to determine whether a combination of nebulized albuterol and ipratropium with warmed humidified oxygen would be more beneficial when compared to the same combination with humidified oxygen at room temperature. Albuterol alone was tested in the same settings. All patients between 6 and 17 years of age who presented to a pediatric emergency department in the winter months with acute exacerbation of bronchial asthma were given a combination of nebulized albuterol and ipratropium with warmed or room temperature humidified oxygen. Peak flow was measured before and after the treatment. Sixty patients were enrolled in the study, with 15 subjects in each group. The mean increase in peak flow in the albuterol-ipratropium with warm humidified oxygen group was 52.6, and in the albuterol-ipratropium with humidified oxygen at room temperature group, it was 26.2. The results of the albuterol with warmed humidified oxygen and with humidified oxygen at room temperature groups were 20.6 and 34.3, respectively. The differences between the groups were statistically significant. Our study shows that warmed humidified oxygen given along with the combination of nebulized albuterol and ipratropium is more beneficial for pediatric patients having an acute exacerbation of bronchial asthma in the winter months when compared to nebulized albuterol alone with warmed humidified oxygen, nebulized albuterol alone with room temperature humidified oxygen, or a combination of nebulized albuterol and ipratropium with room temperature humidified oxygen.

  11. Ultrasonic Clothes Drying Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Viral; Momen, Ayyoub

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  12. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology.

    PubMed

    Teng, Hui; Choi, Yong Hee

    2014-01-01

    The optimum extraction conditions for the maximum recovery of total alkaloid content (TAC), berberine content (BC), palmatine content (PC), and the highest antioxidant capacity (AC) from rhizoma coptidis subjected to ultrasonic-assisted extraction (UAE) were determined using response surface methodology (RSM). Central composite design (CCD) with three variables and five levels was employed, and response surface plots were constructed in accordance with a second order polynomial model. Analysis of variance (ANOVA) showed that the quadratic model was well fitted and significant for responses of TAC, BC, PC, and AA. The optimum conditions obtained through the overlapped contour plot were as follows: ethanol concentration of 59%, extraction time of 46.57min, and temperature of 66.22°C. Verification experiment was carried out, and no significant difference was found between observed and estimated values for each response, suggesting that the estimated models were reliable and valid for UAE of alkaloids. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Nebulized heparin is associated with fewer days of mechanical ventilation in critically ill patients: a randomized controlled trial.

    PubMed

    Dixon, Barry; Schultz, Marcus J; Smith, Roger; Fink, James B; Santamaria, John D; Campbell, Duncan J

    2010-01-01

    Prolonged mechanical ventilation has the potential to aggravate or initiate pulmonary inflammation and cause lung damage through fibrin deposition. Heparin may reduce pulmonary inflammation and fibrin deposition. We therefore assessed whether nebulized heparin improved lung function in patients expected to require prolonged mechanical ventilation. Fifty patients expected to require mechanical ventilation for more than 48 hours were enrolled in a double-blind randomized placebo-controlled trial of nebulized heparin (25,000 U) or placebo (normal saline) 4 or 6 hourly, depending on patient height. The study drug was continued while the patient remained ventilated to a maximum of 14 days from randomization. Nebulized heparin was not associated with a significant improvement in the primary end-point, the average daily partial pressure of oxygen to inspired fraction of oxygen ratio while mechanically ventilated, but was associated with improvement in the secondary end-point, ventilator-free days amongst survivors at day 28 (22.6 ± 4.0 versus 18.0 ± 7.1, treatment difference 4.6 days, 95% CI 0.9 to 8.3, P = 0.02). Heparin administration was not associated with any increase in adverse events. Nebulized heparin was associated with fewer days of mechanical ventilation in critically ill patients expected to require prolonged mechanical ventilation. Further trials are required to confirm these findings. The Australian Clinical Trials Registry (ACTR-12608000121369).

  14. Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms.

    PubMed

    Rached, Irada; Barros, Lillian; Fernandes, Isabel P; Santos-Buelga, Celestino; Rodrigues, Alírio E; Ferchichi, Ali; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2016-03-01

    Bioactive extracts were obtained from powdered carob pulp through an ultrasound extraction process and then evaluated in terms of antioxidant activity. Ten minutes of ultrasonication at 375 Hz were the optimal conditions leading to an extract with the highest antioxidant effects. After its chemical characterization, which revealed the preponderance of gallotannins, the extract (free and microencapsulated) was incorporated in yogurts. The microspheres were prepared using an extract/sodium alginate ratio of 100/400 (mg mg(-1)) selected after testing different ratios. The yogurts with the free extract exhibited higher antioxidant activity than the samples added with the encapsulated extracts, showing the preserving role of alginate as a coating material. None of the forms significantly altered the yogurt's nutritional value. This study confirmed the efficiency of microencapsulation to stabilize functional ingredients in food matrices maintaining almost the structural integrity of polyphenols extracted from carob pulp and furthermore improving the antioxidant potency of the final product.

  15. Nebulization of Cyclic Arginine-Glycine-(D)-Aspartic Acid-Peptide Grafted and Drug Encapsulated Liposomes for Inhibition of Acute Lung Injury.

    PubMed

    Desu, Hari R; Thoma, Laura A; Wood, George C

    2018-03-13

    Acute lung injury (ALI) is a fatal syndrome in critically ill patients. It is characterized by lung edema and inflammation. Numerous pro-inflammatory mediators are released into alveoli. Among them, interleukin-1beta (IL-1β) causes an increase in solute permeability across the alveolar-capillary barrier leading to edema. It activates key effector cells (alveolar epithelial and endothelial cells) releasing inflammatory chemokines and cytokines. The purpose of the study was to demonstrate that nebulized liposomes inhibit ALI in vivo. In vivo ALI model was simulated through intra-tracheal instillation of IL-1β solution (100 μg/mL in PBS, pH 7.2, 200 μL) in male Sprague-Dawley rats. Various formulations were tested in ALI induced rats. These formulations include plain liposomes (PL), methylprednisolone sodium succinate solution (MPS solution), cRGD-peptide grafted liposomes (L cRGD ) and methylprednisolone sodium succinate encapsulated and cRGD-peptide grafted liposomes (MPS-L cRGD ). Formulations were nebulized in vivo in rats using micro-pump nebulizer. Liposome formulations exhibited higher levels of drug concentration in lungs. The physicochemical parameters demonstrated that the liposome formulations were stable. On the basis of aerodynamic droplet-size, nebulized formulations were estimated to deposit in different regions of respiratory tract, especially alveolar region, Among the formulations, MPS-L cRGD caused significant reduction of edema, neutrophil infiltration and inflammation biochemical marker levels. From the results, it can be inferred that nebulization of targeted liposomes had facilitated spatial and temporal modulation of drug delivery resulting in alleviation of ALI.

  16. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    PubMed

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2018-01-16

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  18. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [Carya illinoinensis (Wangenh) C. Koch] extracts.

    PubMed

    Hilbig, Josiane; Alves, Victor Rodrigues; Müller, Carmen Maria Olivera; Micke, Gustavo Amadeu; Vitali, Luciano; Pedrosa, Rozangela Curi; Block, Jane Mara

    2018-04-01

    Ultrasonic-assisted extraction combined with statistical tools (factorial design, response surface methodology and kinetics) were used to evaluate the effects of the experimental conditions of temperature, solid-to-solvent ratio, ethanol concentration and time for the extraction of the total phenolic content from pecan nut shells. The optimal conditions for the aqueous and hydroalcoholic extract (with 20% v/v of ethanol) were 60 and 80 °C; solid to solvent ratio of 30 mL·g -1 (for both) and extraction time of 35 and 25 min, respectively. Using these optimize extraction conditions, 426 and 582 mg GAE·g -1 of phenolic compounds, from the aqueous and hydroalcoholic phases respectively, were obtained. In addition, the analysis of the phenolic compounds using the LC-ESI-MS/MS system allowed the identification of 29 phenolic compounds, 24 of which had not been reported in literature for this raw material yet. Copyright © 2018. Published by Elsevier Ltd.

  19. Preconcentration and determination of rare-earth elements in iron-rich water samples by extraction chromatography and plasma source mass spectrometry (ICP-MS).

    PubMed

    Hernández González, Carolina; Cabezas, Alberto J Quejido; Díaz, Marta Fernández

    2005-11-15

    A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO(3), in a 2ml column preconditioned with 20ml 0.01M HNO(3). Subsequently, REEs were quantitatively eluted with 20ml 7M HNO(3). This solution was evaporated to dryness and the final residue was dissolved in 10ml 2% HNO(3) containing 1mugl(-1) of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ngl(-1). The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.

  20. [Studies on extraction process optimization of patrinia scabra Bunge saponins].

    PubMed

    Wang, Xue-Xi; Chen, Ru; Li, Shi-Gang; Shen, Wei; Cheng, Wei-Dong; Zhao, Jian-Xiong

    2007-05-01

    To optimize the conditions for the extraction of Patrinia scabra Bunge saponins. Orthogonal experimental design and ultrasonic method were employed to examine the conditions for the extraction by determination of saponins. The optimun condition for the extraction of Patrinia scabra Bunge saponins was as follows: 65% ethanol for 40 minutes, 55 degrees C and 210 watt of ultrasonic efficinecy. The extraction method of Patrinia scabra Bunge sponins is simple and efficient.

  1. Ultrasonic Removal of Mucilage for Pressurized Liquid Extraction of Omega-3 Rich Oil from Chia Seeds (Salvia hispanica L.).

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2017-03-29

    Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.

  2. Preclinical safety evaluation of submicronized sildenafil citrate nebulization solution in small experimental animals.

    PubMed

    Agrawal, Priyanka; Soni, Sandeep; Mittal, Gaurav; Bhatnagar, Aseem

    2015-01-01

    Sildenafil citrate (SC) nebulization solution has the potential to treat pulmonary hypertension by delivering high concentration directly to the respiratory system while minimizing systemic drug exposure and associated toxicity. The objective of the present study was to evaluate the potential toxicity of aerosolized SC (inhaled) in Sprague dawley rats for 28 days. The rats were randomly divided into five groups (n = 6). Placebo (normal saline) was inhaled to group I (control). Group II was exposed to therapeutic dose (TD): 20 mg/kg, while group 3 and group 4 were exposed to 3 TD and 6 TD, respectively, till 28 days and toxicokinetic parameters were evaluated in group V. The particle size of the nebulized solution of SC (1%) was measured by using Anderson Cascade Impactor. At the end of experiment, all animals were sacrificed. Endpoints used to evaluate potential toxicity of inhaled sildenafil citrate were clinical observations, body weight, and clinical pathology along with broncho-alveolar lavage (BAL) Fluid investigation. ACI study has shown that more than 70% aerosolized drug particles were in submicron range (0.3-0.5 μm). There was no systemic toxicity or clinically limiting local respiratory toxicity associated with inhalation exposure to SC nebulization solution at 6 TD. No significant changes were observed in the level of different blood and BALF parameters in treated groups in comparison to control. Histopathological examination revealed no abnormal findings in the animals of treated group. The data demonstrate that aerosolized sildenafil citrate is well tolerated in rats and suggest its use in humans.

  3. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  4. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta).

    PubMed

    Mittal, Rochak; Tavanandi, Hrishikesh A; Mantri, Vaibhav A; Raghavarao, K S M S

    2017-09-01

    Extraction of phycobiliproteins (R-phycoerythrin, R-PE and R-phycocyanin, R-PC) from macro-algae is difficult due to the presence of large polysaccharides (agar, cellulose etc.) present in the cell wall which offer major hindrance for cell disruption. The present study is aimed at developing most suitable methodology for the primary extraction of R-PE and R-PC from marine macro-algae, Gelidium pusillum(Stackhouse) Le Jolis. Such extraction of phycobiliproteins by using ultrasonication and other conventional methods such as maceration, maceration in presence of liquid nitrogen, homogenization, and freezing and thawing (alone and in combinations) is reported for the first time. Standardization of ultrasonication for different parameters such as ultrasonication amplitude (60, 90 and 120µm) and ultrasonication time (1, 2, 4, 6, 8 and 10mins) at different temperatures (30, 35 and 40°C) was carried out. Kinetic parameters were estimated for extraction of phycobiliproteins by ultrasonication based on second order mass transfer kinetics. Based on calorimetric measurements, power, ultrasound intensity and acoustic power density were estimated to be 41.97W, 14.81W/cm 2 and 0.419W/cm 3 , respectively. Synergistic effect of ultrasonication was observed when employed in combination with other conventional primary extraction methods. Homogenization in combination with ultrasonication resulted in an enhancement in efficiency by 9.3% over homogenization alone. Similarly, maceration in combination with ultrasonication resulted in an enhancement in efficiency by 31% over maceration alone. Among all the methods employed, maceration in combination with ultrasonication resulted in the highest extraction efficiency of 77 and 93% for R-PE and R-PC, respectively followed by homogenization in combination with ultrasonication (69.6% for R-PE and 74.1% for R-PC). HPLC analysis was carried out in order to ensure that R-PE was present in the extract and remained intact even after processing

  5. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties.

    PubMed

    Bayar, Nadia; Bouallegue, Tahani; Achour, Mabrouka; Kriaa, Mouna; Bougatef, Ali; Kammoun, Radhouane

    2017-11-15

    Ultrasonic assisted extraction (UAE) of pectin from Opuntia ficus indica (OFI) cladodes after mucilage removal was attempted using the response surface methodology. The process variables were optimized by the isovariant central composite design in order to improve the pectin extraction yield. The optimum condition obtained was: sonication time 70min, temperature 70°C, pH 1.5 and the water-material ratio 30ml/g. This condition was validated and the performance of experimental extraction was 18.14%±1.41%, which was closely linked to the predicted value (19.06%). Thus, UAE present a promising alternative to conventional extraction process thanks to its high efficiency which was achieved in less time and at lower temperatures. The pectin extracted by UAE from OFI cladodes (UAEPC) has a low degree of esterification, high uronic acid content, important functional properties and good anti-radical activity. These results are in favor of the use of UAEPC as potential additive in food industry. Copyright © 2017. Published by Elsevier Ltd.

  6. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    NASA Astrophysics Data System (ADS)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  7. Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry

    DTIC Science & Technology

    1988-01-01

    linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in

  8. Nebulized C1-Esterase Inhibitor does not Reduce Pulmonary Complement Activation in Rats with Severe Streptococcus Pneumoniae Pneumonia.

    PubMed

    de Beer, Friso; Lagrand, Wim; Glas, Gerie J; Beurskens, Charlotte J P; van Mierlo, Gerard; Wouters, Diana; Zeerleder, Sacha; Roelofs, Joris J T H; Juffermans, Nicole P; Horn, Janneke; Schultz, Marcus J

    2016-12-01

    Complement activation plays an important role in the pathogenesis of pneumonia. We hypothesized that inhibition of the complement system in the lungs by repeated treatment with nebulized plasma-derived human C1-esterase inhibitor reduces pulmonary complement activation and subsequently attenuates lung injury and lung inflammation. This was investigated in a rat model of severe Streptococcus pneumoniae pneumonia. Rats were intra-tracheally challenged with S. pneumoniae to induce pneumonia. Nebulized C1-esterase inhibitor or saline (control animals) was repeatedly administered to rats, 30 min before induction of pneumonia and every 6 h thereafter. Rats were sacrificed 20 or 40 h after inoculation with bacteria. Brochoalveolar lavage fluid and lung tissue were obtained for measuring levels of complement activation (C4b/c), lung injury and inflammation. Induction of pneumonia was associated with pulmonary complement activation (C4b/c at 20 h 1.24 % [0.56-2.59] and at 40 h 2.08 % [0.98-5.12], compared to 0.50 % [0.07-0.59] and 0.03 % [0.03-0.03] in the healthy control animals). The functional fraction of C1-INH was detectable in BALF, but no effect was found on pulmonary complement activation (C4b/c at 20 h 0.73 % [0.16-1.93] and at 40 h 2.38 % [0.54-4.19]). Twenty hours after inoculation, nebulized C1-esterase inhibitor treatment reduced total histology score, but this effect was no longer seen at 40 h. Nebulized C1-esterase inhibitor did not affect other markers of lung injury or lung inflammation. In this negative experimental animal study, severe S. pneumoniae pneumonia in rats is associated with pulmonary complement activation. Repeated treatment with nebulized C1-esterase inhibitor, although successfully delivered to the lungs, does not affect pulmonary complement activation, lung inflammation or lung injury.

  9. Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal

    USGS Publications Warehouse

    Xue, J.; Liu, Gaisheng; Niu, Z.; Chou, C.-L.; Qi, C.; Zheng, Lingyun; Zhang, H.

    2007-01-01

    Coal samples and carbonaceous mudstone were collected from the Huaibei coalfield, China, and experiments investigating the factors influencing the extraction of the sixteen US EPA (Environmental Protection Agency) priority polycyclic aromatic hydrocarbons (PAHs) were carried out. Different extraction times, solvents, and methods were used. Major interest was focused on finding optimum conditions for extracting the PAHs from coal. We conclude that (1) coal composition, including the H/C and O/C ratios, is an important factor for the distribution of PAHs in coals; (2) the total amount of EPA priority PAHs increases with increasing extraction time, 30 min being suitable for ultrasonic-assisted extraction and 24 h for Soxhlet extraction; (3) CS2 is effective in extracting low molecular weight PAHs, while CH2Cl2 is better for extracting high molecular weight PAHs (both are excellent extraction solvents vs hexane); (4) both Soxhlet and ultrasonic extraction showed a similar PAH concentration profile, but the ultrasonic method is less efficient. ?? 2007 American Chemical Society.

  10. Ultrasonically assisted extraction of calcium and ash from char

    NASA Astrophysics Data System (ADS)

    Mathumba, E. E.; Mbaya, R. K. K.; Kolesnikov, A.

    2018-03-01

    This study characterized and removed calcium and ash content from char to improve the chemical quality of char as reductant for titanium smelting application. Calcium in char can be classified in two parts: mineral matter and cationic metals associated with organic matrix. Virgin and chemically treated char was characterized by using ISO 1171, wet chemistry methods, ISO 19579, XRF, and B.E.T. methods. In this present work, demineralization of char with mild chemical leachants such as acetic acid, citric acid, gluconic acid and Ethylene Diamine Tetra Acetic acid with three different ultrasonic power input (150 W, 270 W and 300 W) and semi-dual frequency of 40 kHz tank was investigated. Actual power dissipated into the system was calculated from the calorimetric measurement. An optimum set of process parameters are identified and validated. The ultrasound technology was compared with soaking technology to determine the efficiency of ultrasound system for the removal of calcium. The removal of calcium was exponentially higher with ultrasonic treatment than without it. Results revealed that mild chemical reagents do not harm the carbon content of char. It is evident from the results that amongst the leachants used; acetic and citric acid has caused significant removal of mineral phases.

  11. Effect of On-Demand vs Routine Nebulization of Acetylcysteine With Salbutamol on Ventilator-Free Days in Intensive Care Unit Patients Receiving Invasive Ventilation: A Randomized Clinical Trial.

    PubMed

    van Meenen, David M P; van der Hoeven, Sophia M; Binnekade, Jan M; de Borgie, Corianne A J M; Merkus, Maruschka P; Bosch, Frank H; Endeman, Henrik; Haringman, Jasper J; van der Meer, Nardo J M; Moeniralam, Hazra S; Slabbekoorn, Mathilde; Muller, Marcella C A; Stilma, Willemke; van Silfhout, Bart; Neto, Ary Serpa; Ter Haar, Hans F M; Van Vliet, Jan; Wijnhoven, Jan Willem; Horn, Janneke; Juffermans, Nicole P; Pelosi, Paolo; Gama de Abreu, Marcelo; Schultz, Marcus J; Paulus, Frederique

    2018-03-13

    It remains uncertain whether nebulization of mucolytics with bronchodilators should be applied for clinical indication or preventively in intensive care unit (ICU) patients receiving invasive ventilation. To determine if a strategy that uses nebulization for clinical indication (on-demand) is noninferior to one that uses preventive (routine) nebulization. Randomized clinical trial enrolling adult patients expected to need invasive ventilation for more than 24 hours at 7 ICUs in the Netherlands. On-demand nebulization of acetylcysteine or salbutamol (based on strict clinical indications, n = 471) or routine nebulization of acetylcysteine with salbutamol (every 6 hours until end of invasive ventilation, n = 473). The primary outcome was the number of ventilator-free days at day 28, with a noninferiority margin for a difference between groups of -0.5 days. Secondary outcomes included length of stay, mortality rates, occurrence of pulmonary complications, and adverse events. Nine hundred twenty-two patients (34% women; median age, 66 (interquartile range [IQR], 54-75 years) were enrolled and completed follow-up. At 28 days, patients in the on-demand group had a median 21 (IQR, 0-26) ventilator-free days, and patients in the routine group had a median 20 (IQR, 0-26) ventilator-free days (1-sided 95% CI, -0.00003 to ∞). There was no significant difference in length of stay or mortality, or in the proportion of patients developing pulmonary complications, between the 2 groups. Adverse events (13.8% vs 29.3%; difference, -15.5% [95% CI, -20.7% to -10.3%]; P < .001) were more frequent with routine nebulization and mainly related to tachyarrhythmia (12.5% vs 25.9%; difference, -13.4% [95% CI, -18.4% to -8.4%]; P < .001) and agitation (0.2% vs 4.3%; difference, -4.1% [95% CI, -5.9% to -2.2%]; P < .001). Among ICU patients receiving invasive ventilation who were expected to not be extubated within 24 hours, on-demand compared with routine nebulization of

  12. Financial effect of converting ipratropium-albuterol therapy from inhalers to nebulizer treatments at an academic health system.

    PubMed

    Loborec, Steven M; Johnson, Shawn E; Keating, Ellen A

    2016-02-01

    The results of a study to assess the financial impact of an automatic formulary substitution of ipratropium-albuterol nebulization solution for ipratropium-albuterol metered-dose inhalers (MDIs) at an academic health system are reported. The study was conducted at a 1242-bed urban academic health system. Data were collected regarding all respiratory medication administrations during a three-month period before the MDI-to-nebulizer substitution (October-December 2012) and the same period of 2013 (after the substitution was implemented). Purchasing data were compared between the two time periods to measure the impact of the formulary substitution on pharmacy department costs, and documented administrations were assessed to evaluate associated changes in respiratory therapist (RT) workload. With 100% prescriber compliance with the formulary substitution, the number of MDI administrations of ipratropium-albuterol declined from 13,667 in October-December 2012 to zero in the same period of 2013. The substitution required expenditures for equipment (vibrating mesh nebulizer technology and patient-specific kits) and RT personnel (one additional RT was hired), but those added costs were substantially outweighed by cost savings resulting from a substantial reduction in overall respiratory drug spending. An automatic substitution of ipratropium-albuterol nebulization solution for MDIs resulted in a three-month savings of $99,359 in drug cost and an extrapolated full-year savings of $397,436. When additional costs associated with the substitution were taken into account, there was an overall savings of $146,806 during the implementation year and a projected savings of $257,936 for each following year. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  13. Nebulized hypertonic saline and recombinant human DNase in the treatment of pulmonary atelectasis in newborns.

    PubMed

    Dilmen, Ugur; Karagol, Belma Saygili; Oguz, Serife Suna

    2011-06-01

    The aim of this study was to compare and evaluate the efficacy of nebulized 3% hypertonic saline (HS) and recombinant human DNase (rhDNase) treatment for resolution of persistent atelectasis in newborns. Forty newborns (38 preterms) who did not respond to conventional treatment were enrolled to receive either nebulized 3% HS solution (n = 20) or rhDNase (n = 20) between September 2007 and March 2008. Clinical parameters, oxygen saturation and radiological response (chest X-ray scoring) were analyzed before and after administration of 3% HS or rhDNase. The patients of the nebulized 3% HS solution group improved better chest X-ray scores parameters than the patients of the rhDNase group: chest X-ray scores were 5.1 ± 1.9 vs 4.8 ± 1.7 before treatment and 1.0 ± 0.8 vs 2.1 ± 1.4 after treatment (P < 0.001). Resolution time of atelectasis did not differ between the two groups after whole treatment but the percentage of atelectasis resolution after 3 days treatment were 90% (18/20) in the 3% HS group and 70% (14/20) in the rhDNase group. The patients in the 3% HS group improved better also in clinical parameters in comparison to the rhDNase treatment. The difference of oxygen saturation before and after the treatment was 4.6 ± 0.8 in 3% HS group in comparison to 2.6 ± 0.1 in the rhDNase group (P < 0.05). All serum sodium levels were normal in two groups before and after the treatment modalities. This is the first study on the usefulness of nebulized 3% hypertonic saline solution in treating newborns with pulmonary atelectasis. In addition, 3% HS solution was a more effective therapeutic option on the basis of clinical and radiological improvement compared to rhDNase treatment in newborns with pulmonary atelectasis. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  14. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  15. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    PubMed

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  16. Effects of the combined extracts of Herba Epimedii and Fructus Ligustrilucidi on airway remodeling in the asthmatic rats with the treatment of budesonide.

    PubMed

    Tang, Xiufeng; Nian, Honglei; Li, Xiaoxi; Yang, Yan; Wang, Xiujuan; Xu, Liping; Shi, Haotian; Yang, Xinwei; Liu, Renhui

    2017-08-01

    Asthma is characterized by chronic airway inflammation, leading to structura1 changes in the airway, collectively termed airway remodeling. Airway remodeling is thought to contribute to airway hyper responsiveness and irreversible airflow limitation. The combination of Herba Epimedii (HE) and Fructus Ligustri Lucidi (FLL) decoction and the systemic administration of glucocorticoids (GC) had a synergistic inhibitory action on airway inflammation in the asthmatic model rats. However, the effects of the combination on airway remodeling have not been studied and compared. In the present study, we investigated the effects of the co-administration of combined extracts of HE and FLL with inhaled GC (budesonide) on airway remodeling in the rat asthmatic model induced by ovalbumin (OVA). Male Sprague-Dawley rats were sensitized to intraperitoneal OVA followed by repetitive OVA challenge for 7 weeks. Treatments included extracts of HE and FLL (Extracts for short, 100 mg/kg by gastric perfusion), budesonide (1 mg budesonide suspension in 50 ml sterile physiological saline, 3 rats in an ultrasonic nebulizer by nebulized inhabation with a flow of 1.6 ml/min for 30 min), and co-administration of extracts of HE and FLL with budesonide (Co-administration for short) for 4 weeks. Lung histomorphometry and bronchoalveolar lavage fluid (BALF) cell count were assessed 24 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-5 and IgE were measured by ELISA. Expressions of Collagen I and Collagen III were tested by immunohistology. Expressions of transforming growth factor (TGF) -β1, TGF-β2 and Smads mRNA were measured by quantitative real-time PCR. Extracts, budesonide and Co-administration significantly reduced allergen-induced increases in the serum levels of IL-4, IL-5 and IgE, the number of eosinophils in BALF, goblet cell hyperplasia, Collagen III integral optical density (IOD) and the mRNA expression of TGF-β2 and Smad2. Extracts and Co-administration could

  17. Determination of metals in lubricating oils by flame atomic absorption spectrometry using a single-bore high-pressure pneumatic nebulizer.

    PubMed

    Mora, J; Todolí, J L; Sempere, F J; Canals, A; Hernandis, V

    2000-12-01

    The behaviour of a single-bore high-pressure pneumatic nebulizer (SBHPPN) as a tool for the analysis of lubricating oils by flame atomic absorption spectrometry (FAAS) was investigated. The effects of the sample oil content [from 10% to 100% (w/w) oil in 4-methylpentan-2-one, IBMK] and the carrier nature (IBMK and methanol) on the characteristics of the aerosols generated, on the analyte transport efficiency and on the analytical figures of merit in FAAS were studied. A pneumatic concentric nebulizer (PCN) was used for comparison. Increasing the oil content increases the viscosity of the sample. With the PCN this gives rise to coarser aerosols, making it impossible to nebulize samples with an oil content higher than 70% (w/w). Using the SBHPPN, the viscosity of the sample scarcely affects the characteristics of the primary aerosols. Hence, the SBHPPN is able, by using the appropriate carrier, to nebulize pure lubricating oils. Among the carriers tested, IBMK is the most advisable because it is fully miscible with all the oil samples. The SBHPPN provides higher sensitivities and lower limits of detection than the PCN. Compared with a method based on organic dilution, the use of the SBHPPN for the direct analysis of lubricating oils by FAAS makes it possible, in addition to increasing the analysis throughput, to detect elements at lower concentrations. Moreover, the SBHPPN provides similar results to those obtained using a previous acid digestion step.

  18. Optimization of ultrasonic-assisted extraction for determination of polycyclic aromatic hydrocarbons in biochar-based fertilizer by gas chromatography-mass spectrometry.

    PubMed

    Chen, Ping; Sun, Mingxing; Zhu, Zhixiu; Zhang, Jidong; Shen, Guoqing

    2015-08-01

    Application of biochar-based fertilizers is increasingly being considered for its potential agronomic and environmental benefits. However, biochar may contain residues of polycyclic aromatic hydrocarbons (PAHs) as a result of its production by pyrolysis. The strong adsorption of PAHs to biochar makes extraction and analysis of biochar-based fertilizers difficult. This study optimizes the extraction of PAHs in biochar-based fertilizer samples by using an ultrasonic bath for quantification by gas chromatography-mass spectrometry. Among 12 solvents, acetone-cyclohexane (1:1) mixture was selected as the optimum solvent for extraction. Three variables affecting the extraction were studied by Box-Behnken design. The optimum conditions were 57 °C extraction temperature, 81 min extraction time, and two extraction cycles, which were validated by assessing the linearity of analysis, LOD, LOQ, recovery, and levels of PAHs in real biochar-based fertilizer samples. Results revealed that the 16 U.S. EPA PAHs had good linearity, with squared correlation coefficients greater than 0.99. LODs were low, ranging from 2.2 ng g(-1) (acenaphthene) to 23.55 ng g(-1) (indeno[1,2,3-cd]perylene), and LOQs varied from 7.51 ng g(-1) to 78.49 ng g(-1). The recoveries of 16 individual PAHs from the three biochar-based fertilizer samples were 81.8-109.4 %. Graphical Abstract Use of RSM to optimize UAE for extraction of the PAHs in biochar-based fertilizer.

  19. Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue.

    PubMed

    Shi, Min; Yang, Yingnan; Hu, Xuansheng; Zhang, Zhenya

    2014-07-15

    A crude Ganoderma lucidum polysaccharide (GLPL) was extracted from fermented soybean curd residue by ultrasonic assisted extraction. The optimal extraction conditions were 30 min at 80 °C with 80 W and water to solid ratio of 10, and with this method 115.47 ± 2.95 mg/g of GLPL yield was obtained. Additionally, the antioxidant and immunomodulatory activities of GLPL were investigated. The results showed that GLPL exhibited strong antioxidant effects, which included scavenging activities against DPPH radicals, hydrogen oxide and ABTS radicals with IC50 values of 0.23, 0.48 and 0.69 mg/mL, respectively. For immunomodulatory activities, GLPL was shown to strongly stimulate the proliferation of macrophages (158.02 ± 13.12%), the production of nitric oxide and phagocytosis (21.16 ± 1.65 μM), and, at 40.00 μg/mL, protected macrophage from Doxorubicin (DOX) (0.16 ± 0.003). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  1. Aerosol Delivery with Two Nebulizers Through High-Flow Nasal Cannula: A Randomized Cross-Over Single-Photon Emission Computed Tomography-Computed Tomography Study.

    PubMed

    Dugernier, Jonathan; Hesse, Michel; Jumetz, Thibaud; Bialais, Emilie; Roeseler, Jean; Depoortere, Virginie; Michotte, Jean-Bernard; Wittebole, Xavier; Ehrmann, Stephan; Laterre, Pierre-François; Jamar, François; Reychler, Gregory

    2017-10-01

    High-flow nasal cannula use is developing in ICUs. The aim of this study was to compare aerosol efficiency by using two nebulizers through a high-flow nasal cannula: the most commonly used jet nebulizer (JN) and a more efficient vibrating-mesh nebulizer (VN). Aerosol delivery of diethylenetriaminepentaacetic acid labeled with technetium-99m (4 mCi/4 mL) to the lungs by using a VN (Aerogen Solo ® ; Aerogen Ltd., Galway, Ireland) and a constant-output JN (Opti-Mist Plus Nebulizer ® ; ConvaTec, Bridgewater, NJ) through a high-flow nasal cannula (Optiflow ® ; Fisher & Paykel, New Zealand) was compared in six healthy subjects. Flow rate was set at 30 L/min through the heated humidified circuit. Pulmonary and extrapulmonary deposition was measured by single-photon emission computed tomography combined with a low-dose computed tomographic scan and by planar scintigraphy. Lung deposition was only 3.6 (2.1-4.4) and 1 (0.7-2)% of the nominal dose with the VN and the JN, respectively (p < 0.05). The JN showed higher retained doses than the VN. However, both nebulizers were associated with substantial deposition in the single limb circuit, the humidification chamber, and the nasal cannula [58.2 (51.6-61.6)% of the nominal dose with the VN versus 19.2 (15.8-22.9)% of the nominal dose with the JN, p < 0.05] and in the upper respiratory tract [17.6 (13.4-27.9)% of the nominal dose with the VN and 8.6 (6.0-11.0)% of the nominal dose with the JN, p < 0.05], especially in the nasal cavity. In the specific conditions of the study, pulmonary drug delivery through the high-flow nasal cannula is about 1%-4% of the initial amount of drugs placed in the nebulizer, despite the higher efficiency of the VN as compared with the JN.

  2. Headspace Solid-Phase Microextraction and Ultrasonic Extraction with the Solvent Sequences in Chemical Profiling of Allium ursinum L. Honey.

    PubMed

    Jerković, Igor; Kuś, Piotr M

    2017-11-06

    A volatile profile of ramson (wild garlic, Allium ursinum L.) honey was investigated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) followed by gas chromatography and mass spectrometry (GC-FID/GC-MS) analyses. The headspace was dominated by linalool derivatives: cis - and trans -linalool oxides (25.3%; 9.2%), hotrienol (12.7%), and linalool (5.8%). Besides direct extraction with dichloromethane and pentane/diethyl ether mixture (1:2, v / v ), two solvent sequences (I: pentane → diethyl ether; II: pentane → pentane/diethyl ether (1:2, v / v ) → dichloromethane) were applied. Striking differences were noted among the obtained chemical profiles. The extracts with diethyl ether contained hydroquinone (25.8-36.8%) and 4-hydroxybenzoic acid (11.6-16.6%) as the major compounds, while ( E )-4-(r-1',t-2',c-4'-trihydroxy-2',6',6'-trimethylcyclohexyl)but-3-en-2-one predominated in dichloromethane extracts (18.3-49.1%). Therefore, combination of different solvents was crucial for the comprehensive investigation of volatile organic compounds in this honey type. This particular magastigmane was previously reported only in thymus honey and hydroquinone in vipers bugloss honey, while a combination of the mentioned predominant compounds is unique for A. ursinum honey.

  3. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus).

    PubMed

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2014-01-01

    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry.

  4. Influence of Conventional and Ultrasonic-Assisted Extraction on Phenolic Contents, Betacyanin Contents, and Antioxidant Capacity of Red Dragon Fruit (Hylocereus polyrhizus)

    PubMed Central

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2014-01-01

    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry. PMID:25379555

  5. Nebulization with Gamma-Tocopherol Ameliorates Acute Lung Injury after Burn and Smoke Inhalation in the Ovine Model

    PubMed Central

    Yamamoto, Yusuke; Enkhbaatar, Perenlei; Sousse, Linda E.; Sakurai, Hiroyuki; Rehberg, Sebastian W.; Asmussen, Sven; Kraft, Edward R.; Wright, Charlotte L.; Bartha, Eva; Cox, Robert A.; Hawkins, Hal K.; Traber, Lillian D.; Traber, Maret G.; Szabo, Csaba; Herndon, David N.; Traber, Daniel L.

    2012-01-01

    We hypothesize that the nebulization of gamma-tocopherol (g-T) in the airway of our ovine model of acute respiratory distress syndrome (ARDS) will effectively improve pulmonary function following burn and smoke inhalation after 96 hours. Adult ewes (n=14) were subjected to 40% total body surface area burn and were insufflated with 48 breaths of cotton smoke under deep anesthesia, in a double-blind comparative study. A customized aerosolization device continuously delivered g-T in ethanol with each breath from 3 to 48 hours after the injury (g-T group, n=6), while the control group (n=5) was nebulized with only ethanol. Animals were weaned from the ventilator when possible. All animals were sacrificed after 96 hours, with the exception of one untreated animal that was euthanized after 64 hours. Lung g-T concentration significantly increased after g-T nebulization compared to the control group (38.5±16.8 nmol/g vs. 0.39±0.46, p<0.01). The PaO2/FiO2 ratio was significantly higher after treatment with g-T compared to the control group (310±152 vs 150±27.0, p<0.05). The following clinical parameters were improved with g-T treatment: pulmonary shunt fraction, peak and pause pressures, lung bloodless wet-to-dry weight ratios (2.9±0.87 vs 4.6±1.4, p<0.05), and bronchiolar obstruction (2.0±1.1% vs 4.6±1.7%, p<0.05). Nebulization of g-T, carried by ethanol, improved pulmonary oxygenation and markedly reduced the time necessary for assisted ventilation in burn and smoke injured sheep. Delivery of g-T into the lungs may be a safe, novel, and efficient approach for management of ALI patients who have sustained oxidative damage to the airway. PMID:22266978

  6. [Ionic liquid based ultrasonication-assisted extraction of essential oil from the leaves of Persicaria minor and conductor-like screening model for realistic solvents study].

    PubMed

    Habib, Ullah; Cecilia, D Wilfred; Maizatul, S Shaharun

    2017-06-08

    Ionic liquids (ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature, sonication time, and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed, 1-ethyl-3-methylimidazolium acetate was the most effective, providing a 9.55% yield of the essential oil under optimum conditions (70 ℃, 25 min, IL:hexane ratio of 7:10 (v/v), particle size 60-80 mesh). The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its low viscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.

  7. Industrial Applications of High Power Ultrasonics

    NASA Astrophysics Data System (ADS)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  8. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  9. Optimization of ultrasonic circulating extraction of samara oil from Acer saccharum using combination of Plackett-Burman design and Box-Behnken design.

    PubMed

    Chen, Fengli; Zhang, Qiang; Fei, Shimin; Gu, Huiyan; Yang, Lei

    2017-03-01

    In this study, ultrasonic circulating extraction (UCE) technique was firstly and successfully applied for extraction of samara oil from Acer saccharum. The extraction kinetics were fitted and described, and the extraction mechanism was discussed. Through comparison, n-hexane was selected as the extraction solvent, the influence of solvent type on the responses was detailedly interpreted based on the influence of their properties on the occurrence and intensity of cavitation. Seven parameters potentially influencing the extraction yield of samara oil and content of nervonic acid, including ultrasound irradiation time, ultrasound irradiation power, ultrasound temperature, liquid-solid ratio, soaking time, particle size and stirring rate, were screened through Plackett-Burman design to determine the significant variables. Then, three parameters performed statistically significant, including liquid-solid ratio, ultrasound irradiation time and ultrasound irradiation power, were further optimized using Box-Behnken design to predict optimum extraction conditions. Satisfactory yield of samara oil (11.72±0.38%) and content of nervonic acid (5.28±0.18%) were achieved using the optimal conditions. 1% proportion of ethanol in extraction solvent, 120°C of drying temperature and 6.4% moisture were selected and applied for effective extraction. There were no distinct differences in the physicochemical properties of samara oil obtained by UCE and Soxhlet extraction, and the samara oil obtained by UCE exhibited better antioxidant activities. Therefore, UCE method has enormous potential for efficient extraction of edible oil with high quality from plant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  11. Effect of heliox- and air-driven nebulized bronchodilator therapy on lung function in patients with asthma.

    PubMed

    El-Khatib, Mohamad F; Jamaleddine, Ghassan; Kanj, Nadim; Zeineddine, Salah; Chami, Hassan; Bou-Akl, Imad; Husari, Ahmad; Alawieh, Marwan; Bou-Khalil, Pierre

    2014-06-01

    This study compares the effect of heliox-driven to that of air-driven bronchodilator therapy on the pulmonary function test (PFT) in patients with different levels of asthma severity. One-hundred thirty-two participants were included in the study. Participants underwent spirometry twice with bronchodilator testing on two consecutive days. Air-driven nebulization was used one day and heliox-driven nebulization the other day in random order crossover design. After a baseline PFT, each participant received 2.5 mg of albuterol sulfate nebulized with the randomized driving gas. Post bronchodilator PFT was repeated after 30 min. The next day, the exact same protocol was repeated, except that the other driving gas was used to nebulize the drug. Participants were subgrouped and analyzed according to their baseline FEV(1) on day 1: Group I, FEV(1) ≥80 %; Group II, 80 % > FEV(1) > 50 %; Group III, FEV(1) ≤50 %. The proportion of participants with greater than 12 % and 200-mL increases from their baseline FEV(1) and the changes from baseline in PFT variables were compared between heliox-driven versus air-driven bronchodilation therapy. The proportion of participants with >12 % and 200-mL increases from their baseline FEV(1) with air- or heliox-driven bronchodilation was not different with respect to the proportion of participants with baseline FEV(1) ≥80 % (20 vs. 18 %, respectively) and 80 % > FEV(1) > 50 % (36 vs. 43 %, respectively), but it was significantly greater with heliox-driven bronchodilation in participants with FEV(1) ≤50 % (43 vs. 73 %, respectively; p = 0.01). Changes from baseline FVC, FEV(1), FEV(1)/FVC, FEF(25-75) %, FEF(max), FEF(25) %, FEF(50) %, and FEF(75) % were significantly larger with heliox-driven versus air-driven bronchodilation in participants with baseline FEV(1) ≤50 %. Improvements in PFT variables are more frequent and profound with heliox-driven compared to air-driven bronchodilator therapy only in asthmatic patients with baseline

  12. [Optimization of extraction technics of total saponins from Pulsatilla cernua].

    PubMed

    Li, Hai-Yan; Hao, Ning; Xu, Yong-Nan; Piao, Zhong-Yun

    2010-04-01

    The extraction condition of total saponins from Pulsatilla cenua by ultrasonic wave was optimized by single factor and orthogonal experiments. The largest absorbency of saponin was intended to be 470 nm by wavelength scan method with the pulchinenoside B4 as control sample, the linear relationship was observed between the absorbency and the content of saponin in the range of 0 - 0.040 mg/mL. The optimal conditions of extraction was as following: 80% of alcohol concentration, 40 min of ultrasonic time, 1: 20 of solid to liquid ratio, 80 W of ultrasonic power and one time for extraction. Among them, alcohol had the most significant effect on the extraction of total saponins. The content of total saponins in Pulsatilla cernua was 4. 32% under the optimal condition. The method developed here is efficient, stable, accurate and repeatable.

  13. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  14. Nebulized Isotonic Saline versus Water following a Laryngeal Desiccation Challenge in Classically Trained Sopranos

    ERIC Educational Resources Information Center

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M.; Muntz, Faye; Houtz, Daniel R.; Sauder, Cara; Elstad, Mark; Wright-Costa, Julie

    2010-01-01

    Purpose: To examine the effects of nebulized isotonic saline (IS) versus sterile water (SW) on self-perceived phonatory effort (PPE) and phonation threshold pressure (PTP) following a surface laryngeal dehydration challenge in classically trained sopranos. Method: In a double-blind, within-subject crossover design, 34 sopranos breathed dry air…

  15. Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography.

    PubMed

    Yu, Chunhe; Hu, Bin

    2007-08-10

    A combined stir bar coated with poly (dimethysiloxane)-beta-cyclodextrin (PDMS-beta-CD) on single side has been prepared for the first time by sol-gel method and was coupled with ultrasonic assisted extraction (UAE) for the determination of some brominated flame-retardant compounds (BFRs) in soil and dust samples by high performance liquid chromatography (HPLC). Four different kinds of coatings including PDMS-beta-CD, PDMS, carbowax (CW)-PDMS-poly (vinyl alcohol) (PVA) and PDMS-PVA were evaluated for stir bar sorptive extraction of BFRs by orthogonal experiment design. The experimental results reveal that the PDMS-beta-CD combined stir bar exhibited the best extraction efficiency for the target analytes. The reproducibility for the preparation of PDMS-beta-CD combined stir bar ranged from 1.3% to 15.7% in one batch, and 7.2% to 15.1% among batches. Extraction time, desorption solvent, concentration of methanol and NaCl in the matrix, pH, temperature and stirring speed were optimized. The combined stir bar can avoid direct friction of the coating with the bottom of the vessel, and could be used for more than 100 times. Linearity (>0.993), repeatability (<10.5%), reproducibility (<16.5%), recovery (56-118%) and detection limits (2.9-4.2 microg L(-1)) were proper to determine the seven BFRs. The developed method was applied to the determination of BFRs in soil and dust with satisfactory results.

  16. Ovine progressive pneumonia virus is transmitted more effectively via aerosol nebulization than oral administration

    USDA-ARS?s Scientific Manuscript database

    A new method of experimental infection of ovine progressive pneumonia virus (OPPV), aerosol nebulization (Nb), was compared to intravenous (IV) and oral (PO) methods of experimental infection. Seven month old lambs were given 3.5 × 107 TCID50 of Dubois OPPV LMH19 isolate using IV, PO, or Nb methods ...

  17. Comparison of Initial Response of Nebulized Salbutamol and Adrenaline in Infants and young Children Admitted with Acute Bronchiolitis.

    PubMed

    Adhikari, S; Thapa, P; Rao, K S; Bk, G

    2016-01-01

    Background Acute bronchiolitis is common cause of hospitalization in infants and young children. There are widespread variations in the diagnosis and management. Despite the use of bronchodilators for decades, there is lack of consensus for the benefit of one above another. Objective To compare initial response of nebulized adrenaline and salbutamol. Method Children aged two months to two years admitted with acute bronchiolitis in the department of Paediatrics of Manipal teaching hospital, Pokhara, Nepal, from 1st March 2014 to 28th February 2015 were enrolled. Patients fulfilling inclusion criteria received either adrenaline or salbutamol nebulization. Data were collected in a predesigned proforma. Respiratory distress assessment instrument (RDAI) scores were considered primary outcome measure and respiratory rate at 48 hours, duration of hospital stay, requirement of supplemental oxygen and intravenous fluid were considered secondary outcome measure. Result A total of 40 patients were enrolled in each study group. Mean RDAI scores at admission was in 9.75 with (CI- 9.01, 10.49) in adrenaline and 9.77 (CI- 9.05, 10.50) in salbutamol group. There was gradual decline in mean RDAI scores in both the groups over 48 hours to 4.15 (CI- 3.57,4.73) and 4.13 (CI- 3.69,4.56) in adrenaline and salbutamol group respectively. Hospital stay was 5.32 days in adrenaline and 5.68 days in salbutamol group. Patients nebulized with adrenaline required oxygen for 33.30 hours compared with 36.45 hours in salbutamol. Intravenous fluid duration was also less in adrenaline group compared to salbutamol group (33.15 vs 37.80 hours). Conclusion Patients of acute bronchiolitis nebulized with either salbutamol or adrenaline experienced similar decline in RDAI scores in the first 48 hours. Duration of supplementary oxygen and intravenous fluid was less in adrenaline group compared with salbutamol group.

  18. MDI with DIY Spacer versus Nebulizer for Bronchodilator Therapy in Children Admitted with Asthmatic Attack.

    PubMed

    Leelathipkul, Lalit; Tanticharoenwiwat, Pattara; Ithiawatchakul, Jutinan; Prommin, Danu; Sirisalee, Pasu; Junhunee, Parinya; Poachanukoon, Orapan

    2016-07-01

    Inhaled bronchodilator treatment given via the pressurized metered-dose inhaler (pMDI) with spacer has been recommended for an acute asthma treatment. Unfortunately, most of commercially available spacers are at high cost while a do-it-yourself (DIY) spacer has lower cost as it is made from plastic bottle and siphon pump which are inexpensive and easilyfound materials. This study aims to compare treatment response in nebulizer and DIY spacer used for asthmatic children. A prospective, randomized control study was conducted in children aged 1-15 years old hospitalized for mild to moderate asthmatic attack at Thammasat University Hospital between June 2014 and March 2015. The patients were divided into 2 groups, receiving β2-agonist via nebulization and via pMDI with DIY spacer. Their vital signs and oxygen saturation were monitored and asthma scores were also recorded at admission, 24 hours, 48 hours, and before discharge. The satisfaction of equipment use was evaluated employing questionnaires. 40 childrens were enrolled with male at 72.5% and mean age at 3.1±1.6 years old. There was no significant difference in efficacy of β2-agonist among 2 groups when comparing in consideration of vital signs, oximetry, asthma scores and hospital stay. However, there were significantly different on side effect in which the DIY spacer had less tachycardia and agitation. Satisfaction of parents and healthcare workers were higher in DIY spacer. MDI with DIY spacer was able to be used effectively when compared with nebulization to treat mild to moderate acute exacerbations of asthma in children admitted in hospital.

  19. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry.

    PubMed

    Pan, Xun; Qiang, Zhimin; Ben, Weiwei; Chen, Meixue

    2011-01-01

    This work describes a systematic approach to the development of a method for simultaneous determination of three classes of veterinary antibiotics in the suspended solids (SS) of swine wastewater, including five sulfonamides, three tetracyclines and one macrolide (tiamulin). The entire procedures for sample pretreatment, ultrasonic extraction (USE), solid-phase extraction (SPE), and liquid chromatography-mass spectrometry (LC-MS) quantification were examined and optimized. The recovery efficiencies were found to be 76%-104% for sulfonamides, 81%-112% for tetracyclines, and 51%-64% for tiamulin at three spiking levels. The intra-day and inter-day precisions, as expressed by the relative standard deviation (RSD), were below 17%. The method detection limits (MDLs) were between 0.14 and 7.14 microg/kg, depending on a specific antibiotic studied. The developed method was applied to field samples collected from three concentrated swine feeding plants located in Beijing, Shanghai and Shandong province of China. All the investigated antibiotics were detected in both SS and liquid phase of swine wastewater, with partition coefficients (logK(d)) ranging from 0.49 to 2.30. This study demonstrates that the SS can not be ignored when determining the concentrations of antibiotics in swine wastewater.

  1. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2008-02-01

    A novel, rapid and simple sample pretreatment technique termed ultrasonication followed by single-drop micro-extraction (U-SDME) has been developed and combined with GC/MS for the determination of organochlorine pesticides (OCPs) in fish. In the present work, the lengthy procedures generally used in the conventional methods like, Soxhlet extraction, supercritical fluid extraction, pressurized liquid extraction and microwave assisted solvent extraction for extraction of OCPs from fish tissues are minimized by the use of two simple extraction procedures. Firstly, OCPs from fish were extracted in organic solvent with ultrasonication and then subsequently preconcentrated by single-drop micro-extraction (SDME). Extraction parameters of ultrasonication and SDME were optimized in spiked sample solution in order to obtain efficient extraction of OCPs from fish tissues. The calibration curves for OCPs were found to be linear between 10-1000 ng/g with correlation of estimations in the range 0.990-0.994. The recoveries obtained in blank fish tissues were ranged from 82.1 to 95.3%. The LOD and RSD for determination of OCPs in fish were 0.5 ng/g and 9.4-10.0%, respectively. The proposed method was applied for the determination of bioconcentration factor in fish after exposure to different concentrations of OCPs in cultured water. The present method avoids the co-extraction of lipids, long extraction steps (>12 h) and large amount of organic solvent for the separation of OCPs. The main advantages of the present method are rapid, selective, sensitive and low cost for the determination of OCPs in fish.

  2. Nebulized perflubron and carbon dioxide rapidly dilate constricted airways in an ovine model of allergic asthma.

    PubMed

    El Mays, Tamer Y; Choudhury, Parichita; Leigh, Richard; Koumoundouros, Emmanuel; Van der Velden, Joanne; Shrestha, Grishma; Pieron, Cora A; Dennis, John H; Green, Francis Hy; Snibson, Ken J

    2014-09-16

    The low toxicity of perfluorocarbons (PFCs), their high affinity for respiratory gases and their compatibility with lung surfactant have made them useful candidates for treating respiratory diseases such as adult respiratory distress syndrome. We report results for treating acute allergic and non-allergic bronchoconstriction in sheep using S-1226 (a gas mixture containing carbon dioxide and small volumes of nebulized perflubron). The carbon dioxide, which is highly soluble in perflubron, was used to relax airway smooth muscle. Sheep previously sensitized to house dust mite (HDM) were challenged with HDM aerosols to induce early asthmatic responses. At the maximal responses (characterised by an increase in lung resistance), the sheep were either not treated or treated with one of the following; nebulized S-1226 (perflubron + 12% CO2), nebulized perflubron + medical air, 12% CO2, salbutamol or medical air. Lung resistance was monitored for up to 20 minutes after cessation of treatment. Treatment with S-1226 for 2 minutes following HDM challenge resulted in a more rapid, more profound and more prolonged decline in lung resistance compared with the other treatment interventions. Video bronchoscopy showed an immediate and complete (within 5 seconds) re-opening of MCh-constricted airways following treatment with S-1226. S-1226 is a potent and rapid formulation for re-opening constricted airways. Its mechanism(s) of action are unknown. The formulation has potential as a rescue treatment for acute severe asthma.

  3. The safety and pharmacokinetics of rapid iloprost aerosol delivery via the BREELIB nebulizer in pulmonary arterial hypertension

    PubMed Central

    Gessler, Tobias; Ghofrani, Hossein-Ardeschir; Held, Matthias; Klose, Hans; Leuchte, Hanno; Olschewski, Horst; Rosenkranz, Stephan; Fels, Lueder; Li, Na; Ren, Dawn; Kaiser, Andreas; Schultze-Mosgau, Marcus-Hillert; Müllinger, Bernhard; Rohde, Beate; Seeger, Werner

    2017-01-01

    The BREELIB nebulizer was developed for iloprost to reduce inhalation times for patients with pulmonary arterial hypertension (PAH). This multicenter, randomized, unblinded, four-part study compared inhalation time, pharmacokinetics, and acute tolerability of iloprost 5 µg at mouthpiece delivered via BREELIB versus the standard I-Neb nebulizer in 27 patients with PAH. The primary safety outcome was the proportion of patients with a maximum increase in heart rate (HR) ≥ 25% and/or a maximum decrease in systolic blood pressure ≥ 20% within 30 min after inhalation. Other safety outcomes included systolic, diastolic, and mean blood pressure, HR, oxygen saturation, and adverse events (AEs). Median inhalation times were considerably shorter with BREELIB versus I-Neb (2.6 versus 10.9 min; n = 24). Maximum iloprost plasma concentration and systemic exposure (area under the plasma concentration–time curve) were 77% and 42% higher, respectively, with BREELIB versus I-Neb. Five patients experienced a maximum systolic blood pressure decrease ≥ 20%, four with BREELIB (one mildly and transiently symptomatic), and one with I-Neb; none required medical intervention. AEs reported during the study were consistent with the known safety profile of iloprost. The BREELIB nebulizer offers reduced inhalation time, good tolerability, and may improve iloprost aerosol therapy convenience and thus compliance for patients with PAH. PMID:28597762

  4. High-dose nebulized budesonide is effective for mild asthma exacerbations in children under 3 years of age.

    PubMed

    Saito, M; Kikuchi, Y; Kawarai Lefor, A; Hoshina, M

    2017-01-01

    Background. High-dose inhaled steroid therapy has been shown to be effective in children and adults with asthma exacerbations. However, few reports are available regarding its efficacy for asthma exacerbations in younger children. Objective. In this study, we administered high-dose nebulized budesonide therapy for mild asthma exacerbations in children < 3 years of age and compared its efficacy and safety with systemic steroid therapy. Methods. This study included children < 3 years old with mild asthma exacerbations. Patients were randomly assigned to two groups: the BIS group was given 1 mg of nebulized budesonide twice daily, and the PSL group received prednisolone 0.5 mg/kg iv three times daily. Days to disappearance of wheezing, days of steroid use, days of oxygen use, serum cortisol level, and incidence of adverse events during treatment were compared between the groups. Result. Wheezing disappeared after an average of five days, and steroids were administered for an average of five days in both groups, with no significant difference in days of oxygen use. Serum cortisol levels at initiation and during the course of treatment remained unchanged in the BIS group, and were decreased in the PSL group; however, the decrease in the latter group was not pathologic. Conclusion. For children < 3 years old with mild asthma exacerbations, high-dose nebulized budesonide therapy is equally as effective as systemic steroid therapy.

  5. Effect of Ultrasonic Extraction on Production and Structural Changes of C-Phycocyanin from Marine Spirulina maxima.

    PubMed

    Choi, Woon Yong; Lee, Hyeon Yong

    2018-01-11

    This work first showed that very high amounts of phycocyanins, such as 11.3 mg/mL C-phycocyanin (C-PC), 3.1 mg/mL allophycocyanin (APC), and 0.8 mg/mL phycoerythrin (PE), can be obtained using an ultrasonic extraction process (UE) with a 60 kHz frequency and 3 h of process time at 25 °C, without any other pretreatments. These yields were higher than those from most conventional water extractions at 4 °C for 24 h (Control condition) or at 25 °C for 24 h (WE), namely, 9.8 and 5.7 mg/mL C-PC, 2.3 and 1.2 mg/mL APC, and 0.7 and 0.3 mg/mL PE, respectively. These yields were also shown to be even higher than yields from other reported data. Structural changes in C-PC in the extracts were also found for the first time, according to extraction conditions, showing that the total concentration of C-PC and of the α-subunit of C-PC in the UE were much higher than in the WE, with little difference in the amount of β-subunit of C-PC in the UE or WE. It was also shown that the structural changes in C-PC in the WE decreased both antioxidant and anti-inflammation activities-29.83% vs. 32.09% of α,α-diphenyl-β-picrylhydrazyl (DPPH) scavenging activity and 8.21 vs. 7.25 µM of NO production for the WE and UE, respectively-while the UE, with similar patterns to standard C-PC, showed very high biological effects, which may suggest that the biologically active part is the α-subunit of C-PC, not the β-subunit.

  6. Effect of Ultrasonic Extraction on Production and Structural Changes of C-Phycocyanin from Marine Spirulina maxima

    PubMed Central

    Choi, Woon Yong; Lee, Hyeon Yong

    2018-01-01

    This work first showed that very high amounts of phycocyanins, such as 11.3 mg/mL C-phycocyanin (C-PC), 3.1 mg/mL allophycocyanin (APC), and 0.8 mg/mL phycoerythrin (PE), can be obtained using an ultrasonic extraction process (UE) with a 60 kHz frequency and 3 h of process time at 25 °C, without any other pretreatments. These yields were higher than those from most conventional water extractions at 4 °C for 24 h (Control condition) or at 25 °C for 24 h (WE), namely, 9.8 and 5.7 mg/mL C-PC, 2.3 and 1.2 mg/mL APC, and 0.7 and 0.3 mg/mL PE, respectively. These yields were also shown to be even higher than yields from other reported data. Structural changes in C-PC in the extracts were also found for the first time, according to extraction conditions, showing that the total concentration of C-PC and of the α-subunit of C-PC in the UE were much higher than in the WE, with little difference in the amount of β-subunit of C-PC in the UE or WE. It was also shown that the structural changes in C-PC in the WE decreased both antioxidant and anti-inflammation activities—29.83% vs. 32.09% of α,α-diphenyl-β-picrylhydrazyl (DPPH) scavenging activity and 8.21 vs. 7.25 µM of NO production for the WE and UE, respectively—while the UE, with similar patterns to standard C-PC, showed very high biological effects, which may suggest that the biologically active part is the α-subunit of C-PC, not the β-subunit. PMID:29324668

  7. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  8. Water soluble polysaccharides from Spirulina platensis: extraction and in vitro anti-cancer activity.

    PubMed

    Kurd, Forouzan; Samavati, Vahid

    2015-03-01

    Polysaccharides from Spirulina platensis algae (SP) were extracted by ultrasound-assisted extraction procedure. The optimal conditions for ultrasonic extraction of SP were determined by response surface methodology. The four parameters were, extraction time (X1), extraction temperature (X2), ultrasonic power (X3) and the ratio of water to raw material (X4), respectively. The experimental data obtained were fitted to a second-order polynomial equation. The optimum conditions were extraction time of 25 min, extraction temperature 85°C, ultrasonic power 90 W and ratio of water to raw material 20 mL/g. Under these optimal conditions, the experimental yield was 13.583±0.51%, well matched with the predicted models with the coefficients of determination (R2) of 0.9971. Then, we demonstrated that SP polysaccharides had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Overall, SP may have potential applications in the medical and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bipolar Mass Spectrometry of Labile Coordination Complexes, Redox Active Inorganic Compounds, and Proteins Using a Glass Nebulizer for Sonic-Spray Ionization

    NASA Astrophysics Data System (ADS)

    Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.

    2013-08-01

    In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions

  10. [The efficacy and safety of budesonide inhalation suspension via transnasal nebulization compared with oral corticosteroids in chronic rhinosinusitis with nasal polyps].

    PubMed

    Lou, Hongfei; Wang, Chengshuo; Zhang, Luo

    2015-05-01

    To evaluate the efficacy and safety of a short course of nebulized budesonide via transnasal inhalation in chronic rhinosinusitis with nasal polyps. Fifty patients with severe eosinophilic nasal polyps were randomized devided into study group (n = 25) and control group (n = 25). The study group received budesonide inhalation suspension (1 mg twice daily) via transnasal nebulization for one week and the control group received oral prednisone (24 mg QD). Visual analogue scales (VAS) of nasal symptoms, endoscopic polyp scores (kennedy scores) and morning serum cortisol concentrations were assessed in both groups pre- and post-treatment. Operation time and surgical field bleeding were evaluated. Four subjects dropped out in control group. Budesonide transnasal nebulization caused a significant improvement in all nasal symptoms especially nasal obstruction (baseline: 8.25 ± 0.53; after treatment: 4.97 ± 0.97, P < 0.01) and reduced polyp size significantly (baseline: 4.64 ± 0.63; after treatment: 3.40 ± 0.76, P < 0.01) compared to pre-treatment. The patients treated with oral prednisone, however, showed more obvious improvement in nasal symptoms and polyp size, shorter operation time and better surgical field than budesonide group. Additionally, the morning serum cortisol concentration was mildly decreased after one week treatment in budesonide group [baseline (17.18 ± 2.83) μg/dl, after treatment (16.24 ± 2.93) μg/dl, P > 0.05], but all values were still located in normal range (normal range: 5-25 μg/dl). Conversely, the morning serum cortisol concentration in oral prednisone group was lower than normal limit [baseline (18.19 ± 2.81) μg/dl, after treatment (2.26 ± 0.70) μg/dl, P < 0.01]. Twice daily budesonide transnasal nebulization is an effective and safe treatment as evidenced by significant improvements in nasal symptoms and reduction in polyp size, coupled with an absence of hypothalamic-pituitary-adrenal axis suppression, which is safer than the

  11. Bipolar mass spectrometry of labile coordination complexes, redox active inorganic compounds, and proteins using a glass nebulizer for sonic-spray ionization.

    PubMed

    Antonakis, Manolis M; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J; Pergantis, Spiros A

    2013-08-01

    In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [Cu(II) 6Ln(III)] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions

  12. Effect of Heat Moisture Exchanger on Aerosol Drug Delivery and Airway Resistance in Simulated Ventilator-Dependent Adults Using Jet and Mesh Nebulizers.

    PubMed

    Ari, Arzu; Dang, Truong; Al Enazi, Fahad H; Alqahtani, Mohammed M; Alkhathami, Abdulrahman; Qoutah, Rowaida; Almamary, Ahmad S; Fink, James B

    2018-02-01

    Placement of a heat moisture exchanger (HME) between aerosol generator and patient has been associated with greatly reduced drug delivery. The purpose of this study was to evaluate the effect of filtered and nonfiltered HMEs placed between nebulizer and patient on aerosol deposition and airway resistance (Raw) in simulated ventilator-dependent adults. An in vitro lung model was developed to simulate a mechanically ventilated adult (Vt 500 mL, RR 15/min, and PEEP 5 cmH 2 O, using two inspiratory flow rates 40 and 50 L/min) using an intubated adult manikin with an endotracheal tube (8 mmID). The bronchi of the manikin were connected to a Y-adapter through a collecting filter (Respirgard II) attached to a test lung through a heated humidifier (37°C producing 100% relative humidity) to simulate exhaled humidity. For treatment conditions, a nonfiltered HME (ThermoFlo™ 6070; ARC Medical) and filtered HMEs (ThermoFlo™ Filter; ARC Medical and PALL Ultipor; Pall Medical) were placed between the ventilator circuit at the endotracheal tube and allowed to acclimate to the exhaled heat and humidity for 30 minutes before aerosol administration. Airway resistance (cmH 2 O/L/s) was taken at 0, 10, 20, and 30 minutes after HME placement and after each of four aerosol treatments. Albuterol sulfate (2.5 mg/3 mL) was administered with jet (Misty Max 10; Airlife) and mesh (Aerogen Solo; Aerogen) nebulizers positioned in the inspiratory limb proximal to the Y-adapter. Control consisted of nebulization with no HME. Drug was eluted from filter at the end of the trachea and measured using spectrophotometry (276 nm). Greater than 60% of the control dose was delivered through the ThermoFlo. No significant difference was found between the first four treatments given by the jet (p = 0.825) and the mesh (p = 0.753) nebulizers. There is a small increase in Raw between pre- and post-four treatments with the jet (p = 0.001) and mesh (p = 0.015) nebulizers. Aerosol

  13. Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats

    DTIC Science & Technology

    2012-01-01

    square inch (psi) pressure was attached to the side arm of the Sonomist. At this pressure the spray nozzle developed an air flow of approximately 20...L/min (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an ultrasonic whistle that aerosolized the droplets...pipe contained the spray pattern. The pipe was reduced in size to accept an orifice plate, which was used to measure flow rate by the pressure drop

  14. Determination of nonylphenol and nonylphenol ethoxylates in environmental solid samples by ultrasonic-assisted extraction and high performance liquid chromatography-fluorescence detection.

    PubMed

    Núñez, L; Turiel, E; Tadeo, J L

    2007-04-06

    A simple and rapid analytical method for the determination of nonylphenol (NP) and nonylphenol ethoxylates (NPEOx) in solid environmental samples has been developed. This method combines an ultrasonic-assisted extraction procedure in small columns and an enrichment step onto C(18) solid-phase extraction cartridges prior to separation using HPLC with fluorescence detection. Method optimization was carried out using soil samples fortified at different concentration levels (from 0.1 to 100 microg/g). Under optimum conditions, 2g of soil was placed in small glass columns and extraction was performed assisted by sonication (SAESC) at 45 degrees C in two consecutive steps of 15 min using a mixture of H(2)O/MeOH (30/70). The obtained extracts were collected, loaded onto 500 mg C(18) cartridges, and analytes were eluted with 3 x 1 ml of methanol and 1 ml of acetonitrile. Finally, sample extracts were evaporated under a nitrogen stream, redissolved in 500 microl H(2)O/AcN (50/50), and passed though a 0.45 microm nylon filter before final determination by HPLC-FL. The developed procedure allowed to achieve quantitative recoveries for NP and NPEOx, and was properly validated. Finally, the method was applied to the determination of these compounds in soils and other environmental solid samples such as sediments, compost and sludge.

  15. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  16. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  17. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis.

    PubMed

    You, Qinghong; Yin, Xiulian; Ji, Chaowen

    2014-01-30

    Four methods for extracting polysaccharides from Boletus edulis, namely, hot-water extraction, ultrasonic clearer extraction, static probe ultrasonic extraction, and pulsed counter-current probe ultrasonic extraction (CCPUE), were studied. Results showed that CCPUE has the highest extraction efficiency among the methods studied. Under optimal CCPUE conditions, a B. edulis polysaccharide (BEP) yield of 8.21% was obtained. Three purified fractions, BEP-I, BEP-II, and BEP-III, were obtained through sequential purification by DEAE-52 and Sephadex G-75 chromatography. The average molecular weights of BEP-I, BEP-II, and BEP-III were 10,278, 23,761, and 42,736 Da, respectively. The polysaccharides were mainly composed of xylose, mannose, galactose, and glucose; of these, mannose contents were the highest. The antioxidant activities of the BEPs were further investigated by measurement of their ability to scavenge DPPH and hydroxyl radicals as well as their reducing power. The results indicated that the BEPs have good antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The Effects of Smartphone-based Nebulizer Therapy Education on Parents' Knowledge and Confidence of Performance in Caring for Children with Respiratory Disease.

    PubMed

    Lee, Jung Min; Kim, Shin-Jeong; Min, Hae Young

    This study aimed to identify the effects of smartphone-based nebulizer therapy education on the knowledge and confidence of parents while performing care for their children with respiratory disease. This quasi-experimental study employed a pretest-posttest design using a nonequivalent control group. Data were collected from children's parents who had not used nebulizer therapy for their children previously. Both the groups were given nebulizer therapy education using the same content but different learning methods. The experimental group (n=36) was taught using smartphones, while the control group (n=36) was taught using verbal and paper-based methods. The data were analyzed using the Chi Square test, repeated measures analysis of variance, and t-test. The mean scores on knowledge improvement (F=100.949, p<0.001) and confidence in performing care (t=-6.959, p<0.001) were significantly higher for the experimental group as compared to the control group. Further, the scores on satisfaction with the learning method were significantly higher for the experimental group as compared to the control group (t=-5.819, p<0.001). Our results suggest that smartphone-based education on nebulizer therapy might be effective in improving parents' knowledge and confidence in performing care for their children. This study suggests that smartphone-based education needs to be considered as an effective educational intervention in providing nursing support for parents of children with respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sono-assisted extraction of alcohol-insoluble extract from Althaea rosea: purification and chemical analysis.

    PubMed

    Eskandari, Meghdad; Samavati, Vahid

    2015-01-01

    A Box-Behnken design (BBD) was used to evaluate the effects of ultrasonic power, extraction time, extraction temperature, and water to raw material ratio on extraction yield of alcohol-insoluble polysaccharide of Althaea rosea leaf (ARLP). Purification was carried out by dialysis method. Chemical analysis of ARLP revealed contained 12.69 ± 0.48% moisture, 79.33 ± 0.51% total sugar, 3.82 ± 0.21% protein, 11.25 ± 0.37% uronic acid and 3.77 ± 0.15% ash. The response surface methodology (RSM) showed that the significant quadratic regression equation with high R(2) (=0.9997) was successfully fitted for extraction yield of ARLP as function of independent variables. The overall optimum region was found to be at the combined level of ultrasonic power 91.85 W, extraction time 29.94 min, extraction temperature 89.78 °C, and the ratio of water to raw material 28.77 (mL/g). At this optimum point, extraction yield of ARLP was 19.47 ± 0.41%. No significant (p>0.05) difference was found between the actual and predicted (19.30 ± 0.075%) values. The results demonstrated that ARLP had strong scavenging activities on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Laryngeal Desiccation Challenge and Nebulized Isotonic Saline in Healthy Male Singers and Nonsingers: Effects on Acoustic, Aerodynamic, and Self-Perceived Effort and Dryness Measures.

    PubMed

    Tanner, Kristine; Fujiki, Robert B; Dromey, Christopher; Merrill, Ray M; Robb, Whitney; Kendall, Katherine A; Hopkin, J Arden; Channell, Ron W; Sivasankar, M Preeti

    2016-11-01

    This study examined the effects of a laryngeal desiccation challenge and nebulized isotonic saline on voice production in young, healthy male singers and nonsingers. This is a prospective, double-blind, within-subjects experimental design. Participants included 10 male university-trained singers and 10 age-matched nonsingers (mean age, 21.8 years; range, 18-26 years) who underwent a 30-minute oral breathing laryngeal desiccation challenge using medical grade dry air (<1% relative humidity) on two occasions in consecutive weeks. After the challenge, participants received either 3 mL or 9 mL of nebulized isotonic saline (0.9% Na + Cl - ); order of administration was counterbalanced. Phonation threshold pressure (PTP), the cepstral spectral index of dysphonia (CSID) for sustained vowels and connected speech, and self-perceived vocal effort, mouth dryness, and throat dryness were measured at each recording (baseline, after challenge, and at 5, 35, and 65 minutes after treatment). Self-perceived effort and dryness measures increased (worsened) after desiccation challenge and decreased (improved) after nebulized treatment (P < 0.05). No consistent changes were observed for PTP or CSID over time. Overall, singers demonstrated significantly lower vocal effort and CSID as compared with nonsingers. Young, vocally healthy men may not experience physiologic changes in voice production associated with laryngeal desiccation and nebulized saline treatments; however, self-reported increases in vocal effort which are associated with dryness symptoms might improve with nebulized treatments. Future hydration research should consider age and sex variables. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins

    PubMed Central

    Altemimi, Ammar; Watson, Dennis G.; Choudhary, Ruplal; Dasari, Mallika R.; Lightfoot, David A.

    2016-01-01

    The ultrasound-assisted extraction (UAE) method was used to optimize the extraction of phenolic compounds from pumpkins and peaches. The response surface methodology (RSM) was used to study the effects of three independent variables each with three treatments. They included extraction temperatures (30, 40 and 50°C), ultrasonic power levels (30, 50 and 70%) and extraction times (10, 20 and 30 min). The optimal conditions for extractions of total phenolics from pumpkins were inferred to be a temperature of 41.45°C, a power of 44.60% and a time of 25.67 min. However, an extraction temperature of 40.99°C, power of 56.01% and time of 25.71 min was optimal for recovery of free radical scavenging activity (measured by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction). The optimal conditions for peach extracts were an extraction temperature of 41.53°C, power of 43.99% and time of 27.86 min for total phenolics. However, an extraction temperature of 41.60°C, power of 44.88% and time of 27.49 min was optimal for free radical scavenging activity (judged by from DPPH reduction). Further, the UAE processes were significantly better than solvent extractions without ultrasound. By electron microscopy it was concluded that ultrasonic processing caused damage in cells for all treated samples (pumpkin, peach). However, the FTIR spectra did not show any significant changes in chemical structures caused by either ultrasonic processing or solvent extraction. PMID:26885655

  2. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  3. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    PubMed

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Fluorescence assessment of the delivery and distribution of nebulized indocyanine green in a murine model

    NASA Astrophysics Data System (ADS)

    Kassab, Giulia; C. Geralde, Mariana; M. Inada, Natalia; Bagnato, Vanderlei S.

    2018-02-01

    Photodynamic inactivation (PDI) is a promising alternative for the treatment of infectious diseases, and the combination of indocyanine green (ICG) and extracorporeal infrared light has shown optimistic results against pneumonia in vitro and in vivo. However, the pharmacokinetics and the possible side effects of the pulmonary delivery via nebulization have not been fully investigated. This study assessed the distribution of the photosensitizer within the lungs and to other organs of mice, and monitored the fluorescence of ICG in the thorax in the presence and absence of the activating light. The excitation wavelength was 780 nm and detection focused on the emission between 795 and 890 nm. Experiments demonstrated that the amount of fluorescence detected from outside the body was significantly higher after the nebulization of ICG, and reduced after the illumination, allowing for the monitoring of the PDI in real time. The fluorescence remained detectable in the mice for at least 24 hours, and was present in the lungs, stomach, liver, small and large intestines, bladder, spleen and heart after this time.

  5. Simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood using ultrasonic cell crusher extraction combined with gas chromatography.

    PubMed

    Zhao, Juanjuan; Ren, Yan; Yu, Chen; Chen, Xiangming; Shi, Yanan

    2017-02-01

    An effective method for the simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood by gas chromatography was developed and validated. Total docosahexaenoic acid and eicosapentaenoic acid were extracted from seafood by ultrasonic cell crusher assisted extraction and methyl esterified for gas chromatography analysis in the presence of the internal standard. The linearity was good (r > 0.999) in 9.59 ∼ 479.5 μg/mL for docosahexaenoic acid and 9.56 ∼ 477.8 μg/mL for eicosapentaenoic acid. The intrarun and interrun precisions were both within 4.8 and 6.1% for the two analytes, while the accuracy was less than 5.8%. The developed method was applied for determination of docosahexaenoic acid and eicosapentaenoic acid in six kinds of seafood. The result showed the content of docosahexaenoic acid and eicosapentaenoic acid was all higher than 1 mg/g in yellow croaker, hairtail, venerupis philippinarum, mussel, and oyster. Our work may be helpful for dietary optimization and production of docosahexaenoic acid and eicosapentaenoic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Broadband reflective metasurface for focusing underwater ultrasonic waves with linearly tunable focal length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaoxiao; Tian, Jingxuan; Wen, Weijia, E-mail: phwen@ust.hk

    2016-04-18

    We report a metasurface for focusing reflected ultrasonic waves over a wide frequency band of 0.45–0.55 MHz. The broadband focusing effect of the reflective metasurface is studied numerically and then confirmed experimentally using near-field scanning techniques. The focusing mechanism can be attributed to the hyperboloidal reflection phase profile imposed by different depths of concentric grooves on the metasurface. In particular, the focal lengths of the reflective metasurface are extracted from simulations and experiments, and both exhibit good linear dependence on frequency over the considered frequency band. The proposed broadband reflective metasurface with tunable focal length has potential applications in the broadmore » field of ultrasonics, such as ultrasonic tomographic imaging, high intensity focused ultrasound treatment, etc.« less

  7. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  8. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.

    PubMed

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-07-01

    Budesonide (BDS) is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers, nebulizers, and dry powder inhalers. Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine BDS particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water, and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result was fine crystalline BDS powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6% ± 2.8% to 54.9% ± 1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  9. The effect of ultrasonic post instrumentation on root surface temperature.

    PubMed

    Huttula, Andrew S; Tordik, Patricia A; Imamura, Glen; Eichmiller, Frederick C; McClanahan, Scott B

    2006-11-01

    This study measured root surface temperature changes when ultrasonic vibration, with and without irrigation, was applied to cemented endodontic posts. Twenty-six, extracted, single-rooted premolars were randomly divided into two groups. Root lengths were standardized, canals instrumented, obturated, and posts cemented into prepared spaces. Thermocouples were positioned at two locations on the proximal root surfaces. Samples were embedded in plaster and brought to 37 degrees C in a water bath. Posts were ultrasonically vibrated for 4 minutes while continuously measuring temperature. Two-way ANOVA compared effects of water coolant and thermocouple location on temperature change. Root surface temperatures were significantly higher (p < 0.001) when posts were instrumented dry. A trend for higher temperatures was observed at coronal thermocouples of nonirrigated teeth and at apical thermocouples of irrigated teeth (p = 0.057). Irrigation during post removal with ultrasonics had a significant impact on the temperature measured at the external root surface.

  10. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  11. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  12. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  13. Nebulized hypertonic-saline vs epinephrine for bronchiolitis; proof of concept study of cumulative sum (CUSUM) analysis.

    PubMed

    Gupta, Neeraj; Puliyel, Ashish; Manchanda, Ayush; Puliyel, Jacob

    2012-07-01

    To apply cumulative sum (CUSUM) to monitor a drug trial of nebulized hypertonic-saline in bronchiolitis. To test if monitoring with CUSUM control lines is practical and useful as a prompt to stop the drug trial early, if the study drug performs significantly worse than the comparator drug. Prospective, open label, controlled trial using standard therapy (epinephrine) and study drug (hypertonic-saline) sequentially in two groups of patients. Hospital offering tertiary-level pediatric care. Children, 2 months to 2 years, with first episode of bronchiolitis, excluding those with cardiac disease, immunodeficiency and critical illness at presentation. Nebulized epinephrine in first half of the bronchiolitis season (n = 35) and hypertonic saline subsequently (n = 29). Continuous monitoring of response to hypertonic-saline using CUSUM control charts developed with epinephrine-response data. Clinical score, tachycardia and total duration of hospital stay. In the epinephrine group, the maximum CUSUM was +2.25 (SD 1.34) and minimum CUSUM was -2.26 (SD 1.34). CUSUM score with hypertonic saline group stayed above the zero line throughout the study. There was no statistical difference in the post-treatment clinical score at 24 hours between the treatment groups {Mean (SD) 3.516 (2.816): 3.552 (2.686); 95% CI: -1.416 to 1.356}, heart rate {Mean (SD) 136 (44): 137(12); 95% CI: -17.849 to 15.849) or duration of hospital stay (Mean (SD) 96.029 (111.41): 82.914 (65.940); 95% CI: -33.888 to 60.128}. The software we developed allows for drawing of control lines to monitor study drug performance. Hypertonic saline performed as well or better than nebulized epinephrine in bronchiolitis.

  14. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Kinetic improvement of olive leaves' bioactive compounds extraction by using power ultrasound in a wide temperature range.

    PubMed

    Khemakhem, Ibtihel; Ahmad-Qasem, Margarita Hussam; Catalán, Enrique Barrajón; Micol, Vicente; García-Pérez, Jose Vicente; Ayadi, Mohamed Ali; Bouaziz, Mohamed

    2017-01-01

    In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70°C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC-DAD/MS-MS). Moreover, Naik's model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR>98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p<0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57±0.18 being extracted approximately 88% in the first minute for UAE experiments. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  17. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  18. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  19. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  20. Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder

    PubMed Central

    Su, Jing; Vielnascher, Robert; Silva, Carla; Cavaco-Paulo, Artur; Guebitz, Georg M.

    2018-01-01

    Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fibre powder was investigated. The effect of ultrasonic probe depth and power input parameters on the type and amount of products extracted was assessed. The results of input energy and radical formation correlated with the calculated values for the anti-nodal point (λ/4; 16.85 mm, maximum amplitude) of the ultrasonic wave in aqueous medium. Ultrasonic treatment at optimum probe depth of 15 mm improve 2.6-fold the extraction efficiencies of hemicellulose and phenolic lignin compounds from bamboo bast fibre powder. LC-Ms-Tof (liquid chromatography-mass spectrometry-time of flight) analysis indicated that ultrasound led to the extraction of coniferyl alcohol, sinapyl alcohol, vanillic acid, cellobiose, in contrast to boiling water extraction only. At optimized conditions, ultrasound caused the formation of radicals confirmed by the presence of (+)-pinoresinol which resulted from the radical coupling of coniferyl alcohol. Ultrasounds revealed to be an efficient methodology for the extraction of hemicellulosic and phenolic compounds from woody bamboo without the addition of harmful solvents. PMID:29856764

  1. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).

    PubMed

    Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong

    2014-11-26

    An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A simple and efficient ultrasonic-assisted extraction procedure combined with UV-Vis spectrophotometry for the pre-concentration and determination of folic acid (vitamin B9) in various sample matrices.

    PubMed

    Gürkan, Ramazan; Altunay, Nail

    2016-07-01

    A simple and efficient ultrasonic-assisted extraction (UAE) procedure has been proposed for the pre-concentration of (2S)-2-[(4-{[(2-amino-4-hydroxypteridin-yl)methyl]amino}phenyl)formamido]pentanedioic acid (folic acid) in vegetables, pharmaceuticals and foods prior to determination at 540 nm using UV-Vis spectrophotometry. The method is based on hydrophobic ternary complex formation of folic acid with silver ions in the presence of cetyltrimethylammonium bromide (CTAB) as a sensitivity enhancer counter ion at pH 7.0, and then extraction into a micellar phase of polyethylene glycol monoalkyl ether (Genapol X-080). The impacts on the extraction efficiency and complex formation of analytical parameters such as sample pH, concentration of silver, concentration of surfactants and extraction time, ultrasonic time and sample volume, were investigated and optimised in detail. The matrix effect on the pre-concentration and determination of folic acid was investigated, and it was observed that the proposed method was highly selective against possible matrix co-extractives. Under optimised conditions, a good linear relationship between the analytical signal and folic acid concentration was obtained in the range of 0.6-180 μg l(-1) with a detection limit of 0.19 μg l(-1) and quantification limit of 0.63 μg l(-1). The applicability was evaluated using samples fortified at different concentration levels, and recoveries higher than 94.1% were obtained. The precision as the percent relative standard deviation (RSD%) was in range of 2.5-3.8% (10 and 40 μg l(-1), n = 5). The proposed method was validated by analysis of two standard reference materials (SRMs) and various real samples, and satisfactory results were obtained.

  3. High-efficient extraction of principal medicinal components from fresh Phellodendron bark (cortex phellodendri).

    PubMed

    Xu, Keqin; He, Gongxiu; Qin, Jieming; Cheng, Xuexiang; He, Hanjie; Zhang, Dangquan; Peng, Wanxi

    2018-05-01

    There are three key medicinal components (phellodendrine, berberine and palmatine) in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine.

  4. Impact of airborne particle size, acoustic airflow and breathing pattern on delivery of nebulized antibiotic into the maxillary sinuses using a realistic human nasal replica.

    PubMed

    Leclerc, Lara; Pourchez, Jérémie; Aubert, Gérald; Leguellec, Sandrine; Vecellio, Laurent; Cottier, Michèle; Durand, Marc

    2014-09-01

    Improvement of clinical outcome in patients with sinuses disorders involves targeting delivery of nebulized drug into the maxillary sinuses. We investigated the impact of nebulization conditions (with and without 100 Hz acoustic airflow), particle size (9.9 μm, 2.8 μm, 550 nm and 230 nm) and breathing pattern (nasal vs. no nasal breathing) on enhancement of aerosol delivery into the sinuses using a realistic nasal replica developed by our team. After segmentation of the airways by means of high-resolution computed tomography scans, a well-characterized nasal replica was created using a rapid prototyping technology. A total of 168 intrasinus aerosol depositions were performed with changes of aerosol particle size and breathing patterns under different nebulization conditions using gentamicin as a marker. The results demonstrate that the fraction of aerosol deposited in the maxillary sinuses is enhanced by use of submicrometric aerosols, e.g. 8.155 ± 1.476 mg/L of gentamicin in the left maxillary sinus for the 2.8 μm particles vs. 2.056 ± 0.0474 for the 550 nm particles. Utilization of 100-Hz acoustic airflow nebulization also produced a 2- to 3-fold increase in drug deposition in the maxillary sinuses (e.g. 8.155 ± 1.476 vs. 3.990 ± 1.690 for the 2.8 μm particles). Our study clearly shows that optimum deposition was achieved using submicrometric particles and 100-Hz acoustic airflow nebulization with no nasal breathing. It is hoped that our new respiratory nasal replica will greatly facilitate the development of more effective delivery systems in the future.

  5. Effects of Ultrasound on Extraction of Saponin from Ginseng

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ohdaira, Etsuzo; Ide, Masao

    1994-05-01

    We performed a study of the effects of ultrasound on the extraction of saponin from Panax ginseng C. A. Meyer. In this study, the extraction of saponin was examined as functions of irradiation time (0.5 to 6 h) and acoustic pressure (0 to 90 kPa). It has been observed that the yields of both total extract and saponin are larger with ultrasonic irradiation than those without ultrasonic irradiation; the increase in yield of total extract is approximately 15 wt%, and that of saponin is approximately 30 wt% at an acoustic pressure 67 kPa. In addition, the yield increases with the acoustic pressure. It is also demonstrated that saponin was not resolved in the acoustic intensity range of this experiment. The enhancement in liquid-solid extraction caused by ultrasound can be attributed to the phenomenon of cavitation.

  6. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  7. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology.

    PubMed

    Ma, Tingting; Sun, Xiangyu; Tian, Chengrui; Luo, Jiyang; Zheng, Cuiping; Zhan, Jicheng

    2016-07-01

    The extraction process of Sphallerocarpus gracilis root polysaccharides (SGRP) was optimized using response surface methodology with two methods [hot-water extraction (HWE) and ultrasonic-assisted extraction (UAE)]. The antioxidant activities of SGRP were determined, and the structural features of the untreated materials (HWE residue and UAE residue) and the extracted polysaccharides were compared by scanning electron microscopy. Results showed that the optimal UAE conditions were extraction temperature of 81°C, extraction time of 1.7h, liquid-solid ratio of 17ml/g, ultrasonic power of 300W and three extraction cycles. The optimal HWE conditions were 93°C extraction temperature, 3.6h extraction time, 21ml/g liquid-solid ratio and three extraction cycles. UAE offered a higher extraction yield with a shorter time, lower temperature and a lower solvent consumption compared with HWE, and the extracted polysaccharides possessed a higher antioxidant capacity. Therefore, UAE could be used as an alternative to conventional HWE for SGRP extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology.

    PubMed

    Xu, Yan-Yang; Qiu, Yang; Ren, Hui; Ju, Dong-Hu; Jia, Hong-Lei

    2017-03-16

    Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol-water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30-0.35 g mL -1 ), ethanol-water ratio (0.6-0.8), ultrasonic time (40-60 min), and ultrasonic power (175-225 W) were further optimized by implementing Box-Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL -1 , ethanol-water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL -1 , ethanol-water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g -1 , respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.

  9. Diethylene-triamine-penta-acetate administration protocol for radiological emergency medicine in nuclear fuel reprocessing plants.

    PubMed

    Jin, Yutaka

    2008-01-01

    Inhalation therapy of diethylene-triamine-penta-acetate (DTPA) should be initiated immediately to workers who have significant incorporation of plutonium, americium or curium in the nuclear fuel reprocessing plant. A newly designed electric mesh nebulizer is a small battery-operated passive vibrating mesh device, in which vibrations in an ultrasonic horn are used to force drug solution through a mesh of micron-sized holes. This nebulizer enables DTPA administration at an early stage in the event of a radiation emergency from contamination from the above radioactive metals.

  10. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.).

    PubMed

    Hromádková, Z; Ebringerová, A; Valachovic, P

    2002-01-01

    The insoluble plant residues, obtained after preparation of medicinal tinctures from the roots of valerian (Valeriana officinalis L.) by classical and ultrasound-assisted extraction with aqueous ethanol in a pilot plant, were subsequently treated with hot water to isolate the accessible polysaccharide cell wall components. At almost equal amounts of the hot-water extractable material, the yields of the recovered polysaccharides were lower in the ultrasonical experiment. This is due to the fact that a part of accessible polysaccharides were already solubilised by the aqueous ethanol and recoverable from the medicinal tincture. Therefore, the net yield of extracted polysaccharides was enhanced in the ultrasonical procedure. This fact as well as the sugar composition and structural features of the isolated polysaccharides suggest that ultrasonication have attacked the integrity of cell walls, released and degraded its most accessible polysaccharides (pectic polysaccharides and starch) and increased also the extractibility of its less accessible components--xylan, mannan and glucan. The water-soluble polysaccharide fractions from both the conventional and ultrasonical experiments exhibit significant immunostimulatory activities in mitogenic and comitogenic thymocyte tests.

  11. Optimization of lipids' ultrasonic extraction and production from Chlorella sp. using response-surface methodology.

    PubMed

    Hadrich, Bilel; Akremi, Ismahen; Dammak, Mouna; Barkallah, Mohamed; Fendri, Imen; Abdelkafi, Slim

    2018-04-17

    Three steps are very important in order to produce microalgal lipids: (1) controlling microalgae cultivation via experimental and modeling investigations, (2) optimizing culture conditions to maximize lipids production and to determine the fatty acid profile the most appropriate for biodiesel synthesis, and (3) optimizing the extraction of the lipids accumulated in the microalgal cells. Firstly, three kinetics models, namely logistic, logistic-with-lag and modified Gompertz, were tested to fit the experimental kinetics of the Chlorella sp. microalga culture established on standard conditions. Secondly, the response-surface methodology was used for two optimizations in this study. The first optimization was established for lipids production from Chlorella sp. culture under different culture conditions. In fact, different levels of nitrate concentrations, salinities and light intensities were applied to the culture medium in order to study their influences on lipids production and determine their fatty acid profile. The second optimization was concerned with the lipids extraction factors: ultrasonic's time and temperature, and chloroform-methanol solvent ratio. All models (logistic, logistic-with-lag and modified Gompertz) applied for the experimental kinetics of Chlorella sp. show a very interesting fitting quality. The logistic model was chosen to describe the Chlorella sp. kinetics, since it yielded the most important statistical criteria: coefficient of determination of the order of 94.36%; adjusted coefficient of determination equal to 93.79% and root mean square error reaching 3.685 cells · ml - 1 . Nitrate concentration and the two interactions involving the light intensity (Nitrate concentration × light intensity, and salinities × light intensity) showed a very significant influence on lipids production in the first optimization (p < 0.05). Yet, only the quadratic term of chloroform-methanol solvent ratio showed a significant influence on lipids

  12. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro.

    PubMed

    Halford, Andrew; Ohl, Claus-Dieter; Azarpazhooh, Amir; Basrani, Bettina; Friedman, Shimon; Kishen, Anil

    2012-11-01

    Irrigation dynamics and antibacterial activity determine the efficacy of root canal disinfection. Sonic or ultrasonic agitation of irrigants is expected to improve irrigation dynamics. This study examined the effects of microbubble emulsion (ME) combined with sonic or ultrasonic agitation on irrigation dynamics and reduction of biofilm bacteria within root canal models. Two experiments were conducted. First, high-speed imaging was used to characterize the bubble dynamics generated in ME by sonic or ultrasonic agitation within canals of polymer tooth models. Second, 5.25% NaOCl irrigation or ME was sonically or ultrasonically agitated in canals of extracted teeth with 7-day-grown Enterococcus faecalis biofilms. Dentinal shavings from canal walls were sampled at 1 mm and 3 mm from the apical terminus, and colony-forming units (CFUs) were enumerated. Mean log CFU/mL values were analyzed with analysis of variance and post hoc tests. High-speed imaging demonstrated strongly oscillating and vaporizing bubbles generated within ME during ultrasonic but not sonic agitation. Compared with CFU counts in controls, NaOCl-sonic and NaOCl-ultrasonic yielded significantly lower counts (P < .05) at both measurement levels. ME-sonic yielded significantly lower counts (P = .002) at 3 mm, whereas ME-ultrasonic yielded highly significantly lower counts (P = .000) at both measurement levels. At 3 mm, ME-ultrasonic yielded significantly lower CFU counts (P = .000) than ME-sonic, NaOCl-sonic, and NaOCl-ultrasonic. Enhanced bubble dynamics and reduced E. faecalis biofilm bacteria beyond the level achieved by sonic or ultrasonic agitation of NaOCl suggested a synergistic effect of ME combined with ultrasonic agitation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Preconcentration and determination of vanadium and molybdenum in milk, vegetables and foodstuffs by ultrasonic-thermostatic-assisted cloud point extraction coupled to flame atomic absorption spectrometry.

    PubMed

    Gürkan, Ramazan; Korkmaz, Sema; Altunay, Nail

    2016-08-01

    A new ultrasonic-thermostatic-assisted cloud point extraction procedure (UTA-CPE) was developed for preconcentration at the trace levels of vanadium (V) and molybdenum (Mo) in milk, vegetables and foodstuffs prior to determination via flame atomic absorption spectrometry (FAAS). The method is based on the ion-association of stable anionic oxalate complexes of V(V) and Mo(VI) with [9-(diethylamino)benzo[a]phenoxazin-5-ylidene]azanium; sulfate (Nile blue A) at pH 4.5, and then extraction of the formed ion-association complexes into micellar phase of polyoxyethylene(7.5)nonylphenyl ether (PONPE 7.5). The UTA-CPE is greatly simplified and accelerated compared to traditional cloud point extraction (CPE). The analytical parameters optimized are solution pH, the concentrations of complexing reagents (oxalate and Nile blue A), the PONPE 7.5 concentration, electrolyte concentration, sample volume, temperature and ultrasonic power. Under the optimum conditions, the calibration curves for Mo(VI) and V(V) are obtained in the concentration range of 3-340µgL(-1) and 5-250µgL(-1) with high sensitivity enhancement factors (EFs) of 145 and 115, respectively. The limits of detection (LODs) for Mo(VI) and V(V) are 0.86 and 1.55µgL(-1), respectively. The proposed method demonstrated good performances such as relative standard deviations (as RSD %) (≤3.5%) and spiked recoveries (95.7-102.3%). The accuracy of the method was assessed by analysis of two standard reference materials (SRMs) and recoveries of spiked solutions. The method was successfully applied into the determination of trace amounts of Mo(VI) and V(V) in milk, vegetables and foodstuffs with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming

    2017-07-01

    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  16. Non-contact fluid characterization in containers using ultrasonic waves

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2012-05-15

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  17. Physicochemical compatibility of mixtures of dornase alfa and tobramycin containing nebulizer solutions.

    PubMed

    Krämer, Irene; Schwabe, Astrid; Lichtinghagen, Ralf; Kamin, Wolfgang

    2009-02-01

    Patients suffering from cystic fibrosis (CF) often need to inhale multiple doses of different nebulizable drugs per day. Patients attempt to shorten the time consuming administration procedure by mixing drug solutions/suspensions for simultaneous inhalation. The objective of this experimental study was to determine whether mixtures of the nebulizer solution dornase alfa (Pulmozyme) with tobramycin nebulizer solutions (TOBI and GERNEBCIN 80 mg) are physico-chemically compatible. Drug combinations were prepared by mixing the content of one respule Pulmozyme with either one respule TOBI or one ampoule GERNEBCIN 80 mg. Test solutions were stored at room temperature and exposed to light. Dornase alfa activity and tobramycin concentrations were determined by using a kinetic colorimetric DNase activity assay and a fluorescence immunoassay, respectively. Physical compatibility was determined by visual inspection and measurements of pH and osmolality. Tobramycin concentration was not affected by mixing the drug products. In spite of the high variability of the dornase alfa potency assay, it is obvious that activity is especially affected by sodium metabisulfite, used as excipient in GERNEBCIN. Patients should be advised, not to mix Pulmozyme with GERNEBCIN because of the incompatibility reaction. Further analytical studies are needed in order to determine the integrity and activity of dornase alfa in mixtures of Pulmozyme with TOBI. Finally clinical studies are necessary in order to demonstrate equivalent efficacy and safety of simultaneous inhalation in comparison to consecutive inhalation of both drugs. (c) 2008 Wiley-Liss, Inc.

  18. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  19. Use of nebulized antimicrobials for the treatment of respiratory infections in invasively mechanically ventilated adults: a position paper from the European Society of Clinical Microbiology and Infectious Diseases.

    PubMed

    Rello, J; Solé-Lleonart, C; Rouby, J-J; Chastre, J; Blot, S; Poulakou, G; Luyt, C-E; Riera, J; Palmer, L B; Pereira, J M; Felton, T; Dhanani, J; Bassetti, M; Welte, T; Roberts, J A

    2017-09-01

    With an established role in cystic fibrosis and bronchiectasis, nebulized antibiotics are increasingly being used to treat respiratory infections in critically ill invasively mechanically ventilated adult patients. Although there is limited evidence describing their efficacy and safety, in an era when there is a need for new strategies to enhance antibiotic effectiveness because of a shortage of new agents and increases in antibiotic resistance, the potential of nebulization of antibiotics to optimize therapy is considered of high interest, particularly in patients infected with multidrug-resistant pathogens. This Position Paper of the European Society of Clinical Microbiology and Infectious Diseases provides recommendations based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology regarding the use of nebulized antibiotics in invasively mechanically ventilated adults, based on a systematic review and meta-analysis of the existing literature (last search July 2016). Overall, the panel recommends avoiding the use of nebulized antibiotics in clinical practice, due to a weak level of evidence of their efficacy and the high potential for underestimated risks of adverse events (particularly, respiratory complications). Higher-quality evidence is urgently needed to inform clinical practice. Priorities of future research are detailed in the second part of the Position Paper as guidance for researchers in this field. In particular, the panel identified an urgent need for randomized clinical trials of nebulized antibiotic therapy as part of a substitution approach to treatment of pneumonia due to multidrug-resistant pathogens. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Determination of fluoroquinolones in cattle manure-based biogas residue by ultrasonic-enhanced microwave-assisted extraction followed by online solid phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Lu, Xue-Feng; Zhou, Yang; Zhang, Jian; Ren, Yu-Peng

    2018-06-01

    The present work describes the development and application of an ultrasonic-enhanced microwave-assisted extraction (UEMAE) followed by online solid phase extraction (SPE)-ultra-high performance liquid chromatography-tandem mass spectrometry method for the analysis of 14 fluoroquinolones in cattle manure-based biogas residue (CMBBR). The UEMAE was performed using the mixed solution of sodium dihydrogen phosphate and disodium ethylenediamine tetraacetic acid, avoiding use of any organic solvent. The online SPE system employed two solid phase extraction columns in a parallel manner, and the extraction was performed by passing 1 mL of the extract through the column. Quantification was performed using standard spiked samples and structural analogue internal standard, which were indispensable to reduce the matrix effects. Validation parameters were performed and good linearity (R 2  > 0.99 in all cases) and precision (inter- and intra-day relative standard deviations were lower than 12.8%) were obtained. Limits of detection were as low as 0.021 ng ∙ g -1 and lower limits of quantification were 0.5 ng ∙ g -1 for all fluoroquinolones. The overall extraction recovery, which was the product of the UEMAE recovery and the online SPE recovery, was assessed for three concentration levels (0.8, 40 and 400 ng ∙ g -1 ) and acceptable values (74.3-99.3%) were found. As a part of the method validation, the developed method has been used to analyze real CMBBR samples. Nine fluoroquinolones were found in the concentration range of 0.9-74.6 ng ∙ g -1 , while five were not detected in the samples. The results showed the method could be adapted for screening the presence or the final fate of fluoroquinolones during fermentation of animal waste. Copyright © 2018. Published by Elsevier B.V.

  1. Efficacy and safety of glycopyrrolate/eFlow® CS (nebulized glycopyrrolate) in moderate-to-very-severe COPD: Results from the glycopyrrolate for obstructive lung disease via electronic nebulizer (GOLDEN) 3 and 4 randomized controlled trials.

    PubMed

    Kerwin, Edward; Donohue, James F; Goodin, Thomas; Tosiello, Robert; Wheeler, Alistair; Ferguson, Gary T

    2017-11-01

    SUN-101 is a combination of glycopyrrolate delivered through an innovative, electronic nebulizer, intended for the treatment of patients with COPD. The objective of this study was to assess the efficacy and safety of this new drug device combination. Replicate Phase III randomized, double-blind, placebo-controlled studies were conducted to evaluate the efficacy and safety of glycopyrrolate solution administered by an investigational eFlow ® Closed System (eFlow ® CS) nebulizer in subjects with moderate-to-very-severe COPD, including those with continued background use of a long-acting beta 2 -agonist ± inhaled corticosteroid and/or history of cardiovascular (CV) disease. Subjects were randomized in a 1:1:1 ratio to receive placebo or glycopyrrolate (25 μg or 50 μg twice daily [BID]) for 12 weeks. The primary efficacy endpoint was the change from baseline in trough forced expiratory volume in 1 s (FEV 1 ) at Week 12 compared with placebo. Secondary endpoints included change from baseline in forced vital capacity (FVC) after 12 weeks, change from baseline in health status measured by St George's Respiratory Questionnaire (SGRQ) at 12 weeks/end of study (EOS), and change in rescue medication use, as well as change from baseline in FEV 1 area under the curve from 0 to 12 h after 12 weeks in the GOLDEN 3 sub-study. Daytime and night-time symptoms were recorded using an electronic diary. Safety was monitored throughout the study, including major adverse cardiovascular events. A total of 653 subjects were randomized in GOLDEN 3 and 641 in GOLDEN 4. Treatment with glycopyrrolate 25 μg BID and 50 μg BID resulted in statistically significant and clinically important changes from baseline in trough FEV 1 compared with placebo at Week 12 (GOLDEN 3: 0.105 L and 0.126 L; p ≤ 0.0001; GOLDEN 4: 0.084 L and 0.082 L; p ≤ 0.0001). Nebulized glycopyrrolate 25 μg BID and 50 μg BID also resulted in improvements in FVC change from baseline versus placebo at

  2. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  3. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  4. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  5. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.

  6. Nebulized fentanyl vs intravenous morphine for ED patients with acute abdominal pain: a randomized double-blinded, placebo-controlled clinical trial.

    PubMed

    Deaton, Travis; Auten, Jonathan D; Darracq, Michael A

    2015-06-01

    Patients with acute abdominal pain commonly present to emergency departments. The safe and effective relief of discomfort is a concern to patients and physicians. Intravenous opioids are the traditional method used to provide pain relief in this setting, but intravenous access is time consuming and not always achievable. Alternative methods of pain control may therefore be necessary for the acute management of painful conditions without adding to the overall physical or psychological discomfort. The purpose of this study was to evaluate the feasibility of nebulized fentanyl (NF) in the alleviation of acute and undifferentiated abdominal pain. We also sought to compare NF with intravenous morphine (IVM) and to assess patient and provider satisfaction with NF. Nebulized fentanyl (2 μg/kg) was compared to IVM (0.1 mg/kg) at 10, 20, 30, and 40 minutes; and patient and physician satisfaction was recorded. The NF group experienced more rapid pain relief and more sustained and clinically significant pain relief over the 40-minute study interval. There were no adverse effects noted in the NF group. Both patient and physician satisfaction scores were higher in the NF group. Fentanyl citrate at a dose of 2 μg/kg through a breath-actuated nebulizer appears to be a feasible and safe alternative to IVM (0.1 mg/kg) in the treatment of acute abdominal pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Extraction study on uranyl nitrate for energy applications

    NASA Astrophysics Data System (ADS)

    Giri, R.; Nath, G.

    2017-07-01

    Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.

  8. Determination of hexavalent chromium in industrial hygiene samples using ultrasonic extraction and flow injection analysis.

    PubMed

    Wang, J; Ashley, K; Kennedy, E R; Neumeister, C

    1997-11-01

    A simple, fast, and sensitive method was developed for the determination of hexavalent chromium (CrVI) in workplace samples. Ultrasonic extraction in alkaline solutions with 0.05 M (NH4)2SO4-0.05 M NH3 provided good extraction efficiency of CrVI from the sample and allowed the retention of CrVI on an ion-exchange resin (95%). The CrVI in the sample solution was then separated as an anion from trivalent chromium [CrIII] and other cations by elution from the anion-exchange resin with 0.5 M (NH4)2SO4 in 0.1 M NH3 (pH 8) buffer solution. The eluate was then acidified with hydrochloric acid and complexed with 1,5-diphenylcarbazide reagent prior to flow injection analysis. By analyzing samples with and without oxidation of CrIII to CrVI using CeIV, the method can measure CrVI and total Cr. For optimizing the separation and determination procedure, preliminary trials conducted with two certified reference materials (CRMs 013-050 and NIST 1633a) and three spiked samples (ammonia buffer solution, cellulose ester filters and acid washed sand) indicated that the recovery of CrVI was quantitative (> 90%) with this method. The limit of detection for FIA-UV/VIS determination of the Cr-diphenylcarbazone complex was in the sub-nanogram range (0.11 ng). The technique was also applied successfully to a workplace coal fly ash sample that was collected from a power plant and paint chips that were collected from a heating gas pipe and a university building. The principal advantages of this method are its simplicity, sensitivity, speed and potential portability for field analysis.

  9. Oil extraction from algae: A comparative approach.

    PubMed

    Valizadeh Derakhshan, Mehrab; Nasernejad, Bahram; Abbaspour-Aghdam, Farzin; Hamidi, Mohammad

    2015-01-01

    In this article, various methods including soxhlet, Bligh & Dyer (B&D), and ultrasonic-assisted B&D were investigated for the extraction of lipid from algal species Chlorella vulgaris. Relative polarity/water content and impolar per polar ratios of solvents were considered to optimize the relative proportions of each triplicate agent by applying the response surface method (RSM). It was found that for soxhlet, hexane-methanol (54-46%, respectively) with total lipid extraction of 14.65% and chloroform-methanol (54-46%, respectively) with the extraction of 19.87% lipid were the best set of triplicate where further addition of acetone to the first group and ethanol to the second group did not contributed to further extraction. In B&D, however, chloroform-methanol-water (50%-35%-15%, respectively) reached the all-time maximum of 24%. Osmotic shock as well as ultrasonication contributed to 3.52% of further extraction, which is considered to promote the total yield up to almost 15%. From the growth data and fatty acid analysis, the applied method was assessed to be appropriate for biodiesel production with regard to selectivity and extraction yield. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  10. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols.

    PubMed

    Dettmer, Katja; Nürnberger, Nadine; Kaspar, Hannelore; Gruber, Michael A; Almstetter, Martin F; Oefner, Peter J

    2011-01-01

    Trypsin/ethylenediaminetetraacetic acid (EDTA) treatment and cell scraping in a buffer solution were compared for harvesting adherently growing mammalian SW480 cells for metabolomics studies. In addition, direct scraping with a solvent was tested. Trypsinated and scraped cell pellets were extracted using seven different extraction protocols including pure methanol, methanol/water, pure acetone, acetone/water, methanol/chloroform/water, methanol/isopropanol/water, and acid-base methanol. The extracts were analyzed by GC-MS after methoximation/silylation and derivatization with propyl chloroformate, respectively. The metabolic fingerprints were compared and 25 selected metabolites including amino acids and intermediates of energy metabolism were quantitatively determined. Moreover, the influence of freeze/thaw cycles, ultrasonication and homogenization using ceramic beads on extraction yield was tested. Pure acetone yielded the lowest extraction efficiency while methanol, methanol/water, methanol/isopropanol/water, and acid-base methanol recovered similar metabolite amounts with good reproducibility. Based on overall performance, methanol/water was chosen as a suitable extraction solvent. Repeated freeze/thaw cycles, ultrasonication and homogenization did not improve overall metabolite yield of the methanol/water extraction. Trypsin/EDTA treatment caused substantial metabolite leakage proving it inadequate for metabolomics studies. Gentle scraping of the cells in a buffer solution and subsequent extraction with methanol/water resulted on average in a sevenfold lower recovery of quantified metabolites compared with direct scraping using methanol/water, making the latter one the method of choice to harvest and extract metabolites from adherently growing mammalian SW480 cells.

  11. Comparative study on the physicochemical and functional properties of the mucilage in the carpel of Nymphaea odorata using ultrasonic and classical heating extractions.

    PubMed

    Wu, WeiZhi; Tu, ChinWei; Yang, WenJen; Wang, HengLong; Chang, ChaoLin; Chung, JengDer; Lu, MeiKuang; Liao, WeiTung

    2018-02-21

    The cooked carpel of Nymphaea odorata has a large amount of transparent mucilage; however, the basic characteristics of this mucilage have not yet been reported. This study compared the physicochemical and functional properties of this mucilage obtained using conventional hot water extraction (HWM) and ultrasonic-assisted extraction (UAM). Neither HWM nor UAM affected the viability of mouse skin fibroblasts (NIH/3T3) below 100 μg/mL. UAM had a higher yield production, phenol concentration, and in vitro antioxidant activity, but lower viscosity and water-holding capacity than for HWM. The Fourier transform infrared spectra revealed that the dialyzed HWM and UAM, named HWMD and UAMD, respectively, appeared major spectral differences at 1730 cm -1 and 1605 cm -1 , implying that the degree of methylation was different between HWMD and UAMD. Compared to HWMD, UAMD in low-molecular weight polysaccharides increased. Evidently, the basic characteristics of native mucilage in the carpel of N. odorata were greatly changed by various extractions. Nevertheless, sugar analysis indicated that glucuronic acid was the mainly composition of HWMD and UAMD. Copyright © 2017. Published by Elsevier B.V.

  12. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  13. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design.

    PubMed

    Liu, Haitao; Wang, Quanzhen; Liu, Yuyan; Chen, Guo; Cui, Jian

    2013-02-01

    Solvent, impregnation time, sonication repetitions, and ultrasonic power were important factors in the process of ultrasound-assisted extraction from chicory (Cichorium intybus) root, while there were no studies about optimizing these 4 factors for extract yield, total phenolic content (TPC), antioxidant, antibacterial, and antifungal activity of the extracts using orthogonal matrix design. The present research demonstrated that the solvent composition played a significant role in the improving extract yield, TPC, antioxidant, and antibacterial activities. The other 3 factors had inequable effect on different purposes, ultrasonic power could improve TPC and antioxidant activity, but long time of extraction lowered antioxidant activity. The TPC increased from 22.34 to 27.87 mg GAE (gallic acid equivalents)/100 g (dry extracts) with increasing solvent polarity. The half inhibition concentration (IC(50,) μg/mL) of the radical scavenging activity of the chicory extracts ranged from 281.00 to 983.33 μg/mL. The content of caffeoylquinic acids of root extract, which was extracted by the optimal combination was 0.104%. Several extracts displayed antibacterial activities against Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, and Salmonella typhi, while Penicillium sp. and Aspergillus sp. resisted against all the extracts. Combination of 70% ethanol v/v, 24-h impregnation time, 3 sonication rounds, and 300-W ultrasonic input power was found to be the optimal combination for the chicory extract yield, TPC, antioxidant activity, and antibacterial activity. © 2012 Institute of Food Technologists®

  14. Statistical ultrasonics: the influence of Robert F. Wagner

    NASA Astrophysics Data System (ADS)

    Insana, Michael F.

    2009-02-01

    An important ongoing question for higher education is how to successfully mentor the next generation of scientists and engineers. It has been my privilege to have been mentored by one of the best, Dr Robert F. Wagner and his colleagues at the CDRH/FDA during the mid 1980s. Bob introduced many of us in medical ultrasonics to statistical imaging techniques. These ideas continue to broadly influence studies on adaptive aperture management (beamforming, speckle suppression, compounding), tissue characterization (texture features, Rayleigh/Rician statistics, scatterer size and number density estimators), and fundamental questions about how limitations of the human eye-brain system for extracting information from textured images can motivate image processing. He adapted the classical techniques of signal detection theory to coherent imaging systems that, for the first time in ultrasonics, related common engineering metrics for image quality to task-based clinical performance. This talk summarizes my wonderfully-exciting three years with Bob as I watched him explore topics in statistical image analysis that formed a rational basis for many of the signal processing techniques used in commercial systems today. It is a story of an exciting time in medical ultrasonics, and of how a sparkling personality guided and motivated the development of junior scientists who flocked around him in admiration and amazement.

  15. Design of signal reception and processing system of embedded ultrasonic endoscope

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  16. A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites

    NASA Astrophysics Data System (ADS)

    Ni, Qing-Qing; Li, Ran; Xia, Hong

    2017-02-01

    When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.

  17. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  18. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  19. An ammonium sulfate/ethanol aqueous two-phase system combined with ultrasonication for the separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge.

    PubMed

    Guo, Y X; Han, J; Zhang, D Y; Wang, L H; Zhou, L L

    2012-07-01

    We studied the effect of ultrasonication extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS) for the separation of lithospermic acid B (LAB) from Salvia miltiorrhiza Bunge. According to the literature and preliminary studies, ammonium sulfate concentration, ethanol concentration, pH, ultrasonication power, ultrasonication time and the ratio of solvent-to-solid were investigated using a single factor design to identify the factors affecting separation. Taking into consideration a simultaneous increase in LAB recovery (R (%)) and partition coefficient (K), the best performance of the ATPS was obtained at 25°C and pH 2 using ammonium sulfate 22% (w/w) and ethanol 30% (w/w). To keep the solvent-to-solid ratio at 10, response surface methodology was used to find the optimal ultrasonication power and ultrasonication time. Quadratic models were predicted for LAB yield in the upper phase. Optimal conditions of 572.1 W ultrasonication power and 42.2 min produced a maximum yield of LAB of 42.16 mg g(-1) sample. There was no obvious degradation of LAB with ultrasound under the applied conditions, and the experimental yield of LAB was 42.49 mg g(-1) sample and the purity was 55.28% (w/w), which was much higher than that obtained using conventional extraction. The present study demonstrated that ultrasound coupled with aqueous two-phase systems is very efficient tool for the extraction and purification of LAB from Salvia miltiorrhiza Bunge. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Extraction and identification of flavonoids from parsley extracts by HPLC analysis

    NASA Astrophysics Data System (ADS)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.

    2012-02-01

    Flavonoids are phenolic compounds isolated from a wide variety of plants, and are valuable for their multiple properties, including antioxidant and antimicrobial activities. In the present work, parsley (Petroselinum crispum L.) extracts were obtained by three different extraction techniques: maceration, ultrasonic-assisted and microwave-assisted solvent extractions. The extractions were performed with ethanol-water mixtures in various ratios. From these extracts, flavonoids like the flavones apigenin and luteolin, and the flavonols quercetin and kaempferol were identified using an HPLC Shimadzu apparatus equipped with PDA and MS detectors. The separation method involved a gradient step. The mobile phase consisted of two solvents: acetonitrile and distilled water with 0.1% formic acid. The separation was performed on a RP-C18 column.

  1. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  2. [Efficacy of nebulizer therapy with acetylcystein in outpatients with chronic obstructive lung disease].

    PubMed

    Stepanishcheva, L A; Ignatova, G L; Blinova, E V

    2005-01-01

    Chronic obstructive lung disease (COLD) is a widespread illness with constantly growing mortality. Mucolytic therapy plays a significant role in treatment of patients with COLD. The paper contains the results of nebulization with acetyl-cystein as part of rehabilitation program in outpatients with stable clinical course of I-II stage of COLD. The results demonstrated significant clinical improvement, as well as positive changes in external respiration parameters (1 sforced expiratory volume), increase of physical activity tolerance, and disappearance of acute inflammation phase reactants in saliva.

  3. Nebulized heparin and N-acetylcysteine for smoke inhalational injury: A case report.

    PubMed

    Ashraf, Umair; Bajantri, Bharat; Roa-Gomez, Gabriella; Venkatram, Sindhaghatta; Cantin, Amanda; Diaz-Fuentes, Gilda

    2018-05-01

    Every year, ∼40,000 people suffer burn-related injuries in the United States. Despite recent advances, the odds of dying from exposure to fire, flames, or smoke are one in ∼1500. Smoke inhalation causes injury to the airways via a complex physiological process, and the treatment is mainly supportive. Many recent interventions aim to decrease the formation of fibrin casts, the main cause of airway damage in these patients. Among these, treatment with a combination of nebulized heparin and N-acetylcysteine (NAC) has shown benefit. We describe the case of a 58-year-old man who presented after smoke inhalation during a fire. Soot was found in the nostrils when he was admitted to our hospital, and after he began coughing up carbonaceous material, he was electively intubated and placed on volume assist control ventilation. Bronchoscopy on the first day of intensive care confirmed the injury from smoke inhalation and revealed mucosal edema and soot involving the tracheobronchial tree. Inhaled unfractionated heparin of 10,000 IU in 3 mL of 0.9% normal saline alternating every 2 hours with 3 mL of 20% NAC was started 48 hours after admission and continued for 7 days. Bronchoscopy on the fifth day of intensive care showed significant improvement in airway edema and a resolution of soot. On the basis of our experience with this case and limited literature, we posit that nebulized heparin and NAC may be of benefit in patients with inhalational smoke-induced lung injury and mild-to-severe lung injury scores.

  4. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  5. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  6. Benzalkonium Chloride: A Bronchoconstricting Preservative in Continuous Albuterol Nebulizer Solutions.

    PubMed

    Prabhakaran, Sreekala; Abu-Hasan, Mutasim; Hendeles, Leslie

    2017-05-01

    For convenience, many pediatric hospitals are preparing solutions for continuous nebulized albuterol using the 0.5% 20-ml multidose albuterol dropper bottle. This product contains benzalkonium chloride (BAC) that, by itself, produces bronchospasm that is dose dependent and cumulative. The bronchoconstrictive effects of BAC are greater in patients with more severe airway obstruction and increased airway responsiveness. Use of BAC-containing albuterol during severe acute asthma exacerbations may antagonize the bronchodilator response to albuterol, prolong treatment, and increase the risk of albuterol-related systemic adverse effects. Such a deleterious effect of BAC is difficult to detect because some patients improve slowly or may even worsen during treatment. We recommend that only preservative-free albuterol products be used. © 2017 Pharmacotherapy Publications, Inc.

  7. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  8. Slurry micro-sampling technique for use in argon-helium microwave induced plasma optical emission spectrometry.

    PubMed

    Ślachciński, Mariusz

    2016-12-01

    The Flow Focusing Pneumatic Nebulizer (FFPN) working at low liquid flow rates was evaluated for the elemental analysis in slurried samples by argon-helium microwave induced plasma optical emission spectrometry (MIP-OES). The obtained results achieved were compared with commercially available V-groove Babington type nebulizer (VBPN). A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. Analytical performance of the micro nebulization system was characterized by a determination of the limits of detection (LODs), the precision (RSDs) and the wash-out times for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr. The experimental concentration detection limits for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σ blank criterion, peak height) were 0.9, 0.2, 0.3, 0.2, 0.3, 0.1, 0.2, 0.4, 0.4 and 0.3ngmL -1 for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr, respectively. The method offers relatively good precision (RSD ranged from 5% to 8%) for micro-slurry sampling analysis. Analyses of the certified reference materials (NRCC DOLT-2, GBW 07302 and SRM 2710) were performed in order to determine the accuracy available with the presented nebulization systems. The measured contents of elements in the reference materials were in satisfactory agreement with the certified values. In addition, these elements were determined in two real samples. Slurry concentration up to 3% m/v (particles <20μm), prepared in 10% m/v HCl through the application of ultrasonic agitation, was used with calibration by the standard addition technique. An ultrasonic probe was used to homogenize the slurry in the polypropylene bottle just before its introduction into the nebulizer. The nebulizers exhibited no clogging problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nebulized water cooling of the canopy affects leaf temperature, berry composition and wine quality of Sauvignon blanc.

    PubMed

    Paciello, Pericle; Mencarelli, Fabio; Palliotti, Alberto; Ceccantoni, Brunella; Thibon, Cécile; Darriet, Philippe; Pasquini, Massimiliano; Bellincontro, Andrea

    2017-03-01

    The present paper details a new technique based on spraying nebulized water on vine canopy to counteract the negative impact of the current wave of hot summers with temperatures above 30 °C, which usually determine negative effects on vine yield, grape composition and wine quality. The automatized spraying system was able to maintain air temperature at below 30 °C (the threshold temperature to start spraying) for all of August 2013, when in the canopy of uncooled vines the temperature was as high as 36 °C. The maintenance of temperature below 30 °C reduced leaf stress linked to high temperature and irradiance regimes as highlighted by the decrease of H 2 O 2 content and catalase activity in the leaves. A higher amount of total polyphenols and organic acids and lower sugars characterized the grapes of cooled vines. Wine from these grapes had a higher content of some volatile thiols like 3-sulfanylhexanol (3SH) and 3-sulfanylhexylacetate (3SHA), and lower content of 4-methyl-4-sulfanylpentan-2-one (4MSP). Under conditions of high temperature and irradiance regimes, water nebulization on the vine canopy can represent a valid solution to reduce and/or avoid oxidative stress and associated effects in the leaves, ensure a regular berry ripening and maintain high wine quality. The consumption of water during nebulization was acceptable, being 180 L ha -1 min -1 , which lasted an average of about 1 min to reduce the temperature below the threshold value of 30 °C. A total of 85-90 hL (from 0.8 to 0.9 mm) of water per hectare per day was required. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Ultrasonic real-time in-die monitoring of the tablet compaction process-a proof of concept study.

    PubMed

    Stephens, James D; Kowalczyk, Brian R; Hancock, Bruno C; Kaul, Goldi; Cetinkaya, Cetin

    2013-02-14

    The mechanical properties of a drug tablet can affect its performance (e.g., dissolution profile and its physical robustness. An ultrasonic system for real-time in-die tablet mechanical property monitoring during compaction has been demonstrated. The reported set-up is a proof of concept compaction monitoring system which includes an ultrasonic transducer mounted inside the upper punch of the compaction apparatus. This upper punch is utilized to acquire ultrasonic pressure wave phase velocity waveforms and extract the time-of-flight of pressure waves travelling within the compact at a number of compaction force levels during compaction. The reflection coefficients for the waves reflecting from punch tip-powder bed interface are extracted from the acquired waveforms. The reflection coefficient decreases with an increase in compaction force, indicating solidification. The data acquisition methods give an average apparent Young's moduli in the range of 8-20 GPa extracted during the compaction and release/decompression phases in real-time. A monitoring system employing such methods is capable of determining material properties and the integrity of the tablet during compaction. As compared to the millisecond time-scale dwell time of a typical commercial compaction press, the micro-second pulse duration and ToF of an acoustic pulse are sufficiently fast for real-time monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - a response surface approach.

    PubMed

    González-Centeno, María Reyes; Knoerzer, Kai; Sabarez, Henry; Simal, Susana; Rosselló, Carmen; Femenia, Antoni

    2014-11-01

    Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120kHz), ultrasonic power density (50, 100, 150W/L) and extraction time (5, 15, 25min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p<0.05). The Box-Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40kHz, a power density of 150W/L and 25min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31mg GA/100g fw for total phenolics and 2.04mg quercetin/100g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66mg Trolox/100g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors' knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Chembio extraction on a chip by nanoliter droplet ejection.

    PubMed

    Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok

    2005-03-01

    This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.

  13. Comparison of extraction techniques of robenidine from poultry feed samples.

    PubMed

    Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek

    2007-10-31

    In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.

  14. Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffm.

    PubMed

    Waksmundzka-Hajnos, M; Petruczynik, A; Dragan, A; Wianowska, D; Dawidowicz, A L

    2004-01-01

    Optimal conditions for the extraction and analysis of furanocoumarins from fruits of Archangelica officinalis Hoffm. have been determined. The following extraction methods were used: exhaustive extraction in a Soxhlet apparatus, ultrasonication at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed systems, and accelerated solvent extraction (ASE). In most cases the yields of furanocoumarins were highest using the ASE method. The effects of extracting solvent, temperature and time of extraction using this method were investigated. The highest yield of furanocoumarins by ASE was obtained with methanol at 100-130 degrees C for 10 min. The extraction yields of furanocoumarins from plant material by ultrasonication at 60 degrees C and microwave-assisted solvent extraction in an open system were comparable to the extraction yields obtained in the time- and solvent-consuming exhaustive process involving the Soxhlet apparatus.

  15. The effect of nebulized salbutamol or isotonic saline on exercise-induced bronchoconstriction in elite skaters following a 1,500-meter race: study protocol for a randomized controlled trial.

    PubMed

    Driessen, Jean M M; Gerritsma, Margryt; Westbroek, Jaap; ten Hacken, Nick H T; de Jongh, Frans H C

    2013-07-09

    Prevalence of exercise-induced bronchoconstriction (EIB) is high in elite athletes, especially after many years training in cold and dry air conditions. The primary treatment of EIB is inhaling a short-acting beta-2-agonist such as salbutamol. However, professional speed skaters also inhale nebulized isotonic saline or tap water before and after a race or intense training. The use of nebulized isotonic saline or tap water to prevent EIB has not been studied before, raising questions about safety and efficacy. The aim of this study is to analyze the acute effect of nebulized isotonic saline or salbutamol on EIB in elite speed skaters following a 1,500-meter race. This randomized controlled trial compares single dose treatment of 1 mg nebulized salbutamol in 4 mL of isotonic saline, or with 5 mL of isotonic saline. A minimum of 13 participants will be allocated in each treatment group. Participants should be between 18 and 35 years of age and able to skate 1,500 m in less than 2 min 10 s (women) or 2 min 05 s (men). Repeated measurements of spirometry, forced oscillation technique, and electromyography will be performed before and after an official 1,500-m race. Primary outcome of the study is the difference in fall in FEV1 after exercise in the different treatment groups. The trial is currently enrolling participants. Elite athletes run the risk of pulmonary inflammation and remodeling as a consequence of their frequent exercise, and thus increased ventilation in cold and dry environments. Although inhalation of nebulized isotonic saline is commonplace, no study has ever investigated the safety or efficacy of this treatment. This trial protocol was registered with the Dutch trial registration for clinical trials under number NTR3550.

  16. A simple one-step ultrasonic-assisted extraction and derivatization method coupling to high-performance liquid chromatographyfor the determination of ε-aminocaproic acid and amino acids in cosmetics.

    PubMed

    Du, Yuanqi; Xia, Ling; Xiao, Xiaohua; Li, Gongke; Chen, Xiaoguang

    2018-06-15

    Nowadays, the safety of cosmetics is a widespread concern. Amines are common cosmetic additives. Some of them such as amino acids are beneficial. Another kind of amines, however, ε-aminocaproic acid (EACA) is prohibited to add into cosmetics for its adverse reactions. In this study, a simple, rapid, sensitive and eco-friendly one-step ultrasonic-assisted extraction and derivatization (UAE-D) method was developed for determination of EACA and amino acids in cosmetics by coupling with high-performance liquid chromatography (HPLC). By using this sample preparation method, extraction and derivatization of EACA and amino acids were finished in one step in ultrasound field. During this procedure, 4-fluoro-7-nitrobenzofurazan (NBD-F)was applied as derivatization reagent. The extraction conditions including the amount of NBD-F, extraction and derivatization temperature, the ultrasonic vibration time and pH value of the aqueous phase were evaluated. Meanwhile, the extraction mechanism was investigated. Under optimized conditions, the method detection limits were 0.086-0.15 μg/L, and method quantitation limits were 0.29-0.47 μg/L with RSDs less than 3.7% (n = 3). The recoveries of EACA and amino acids obtained from cosmetic samples were in range from 76.9% to 122.3%. Amino acids were found in all selected samples and quantified in range from 1.9 ± 0.9 to 677.2 ± 17.9 μg/kg. And EACA was found and quantified with the contents of 1284.3 ± 22.1 μg/kg in a toner sample. This UAE-D-HPLC method shortened and simplified the sample pretreatment as well as enhanced the sensitivity of analytical method. In our record, only 10 min was needed for the total sample preparation process. And the method detection limits were two orders of magnitude less than literature reports. Furthermore, we reduced the consumption of solvent and minimized the usage of organic solvents, which made our method moving towards green analytical chemistry. In brief, our UAE

  17. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  18. Sensitive ultrasonic vibrometer for very low frequency applications.

    PubMed

    Cretin, B; Vairac, P; Jachez, N; Pergaud, J

    2007-08-01

    Ultrasonic measurement of distance is a well-known low cost method but only a few vibrometers have been developed because sensitivity, spatial resolution, and bandwidth are not high or wide enough for standard laboratory applications. Nevertheless, compared to optical vibrometers, two interesting properties should be considered: very low frequency noise (0.1 Hz to 1 kHz) is reduced and the long wavelength enables rough surfaces to be investigated. Moreover, the ultrasonic probe is a differential sensor, without being a mechanical load for the vibrating structure as usual accelerometers based on contacting transducers are. The main specificity of the presented probe is its ultralow noise electronics including a 3/2 order phase locked loop which extracts the phase modulation related to the amplitude of the detected vibration. This article presents the main useful physical aspects and details of the actual probe. The given application is the measurement of the vibration of an isolated optical bench excited at very low frequency with an electromagnetic transducer.

  19. Extraction of glycogen on mild condition lacks AIG fraction.

    PubMed

    Ghafouri, Z; Rasouli, M

    2016-12-01

    Extraction of animal tissues with cold water or perchloric acid yields less glycogen than is obtained with hot-alkaline. Extraction with acid and alkaline gives two fractions, acid soluble (ASG) and insoluble glycogen (AIG). The aim of this work is to examine the hypothesis that not all liver glycogen is extractable by Tris-buffer using current techniques. Rat liver was homogenized with Tris-buffer pH 8.3 and extracted for the glycogen fractions, ASG and AIG. The degree of homogenization was changed to remove all glycogen. The content of glycogen was 47.7 ± 1.2 and 11.6 ± 0.8 mg/g wet liver in the supernatant and pellet of the first extraction respectively. About 24% of total glycogen is lost through the first pellet. Increasing the extent of homogenization from 30 to 180 sec and from 15000 to 20000 rpm followed with 30 sec ultrasonication did not improve the extraction. ASG and AIG constitute about 77% and 23% of the pellet glycogen respectively. Extraction with cold Tris-buffer failed to extract glycogen completely.  Increasing the extent of homogenization followed with ultrasonication also did not improve the extraction. Thus it is necessary to re-examine the previous findings obtained by extraction with cold Tris-buffer.

  20. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  1. Development of a Post-Processing Algorithm for Accurate Human Skull Profile Extraction via Ultrasonic Phased Arrays

    NASA Astrophysics Data System (ADS)

    Al-Ansary, Mariam Luay Y.

    Ultrasound Imaging has been favored by clinicians for its safety, affordability, accessibility, and speed compared to other imaging modalities. However, the trade-offs to these benefits are a relatively lower image quality and interpretability, which can be addressed by, for example, post-processing methods. One particularly difficult imaging case is associated with the presence of a barrier, such as a human skull, with significantly different acoustical properties than the brain tissue as the target medium. Some methods were proposed in the literature to account for this structure if the skull's geometry is known. Measuring the skull's geometry is therefore an important task that requires attention. In this work, a new edge detection method for accurate human skull profile extraction via post-processing of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo Extraction algorithm, SEE, processes each A-Scan separately and determines the outermost and innermost boundaries of the skull by means of adaptive filtering. The method can also be used to determine the average attenuation coefficient of the skull. When applied to simulated B-Mode images of the skull profile, promising results were obtained. The profiles obtained from the proposed process in simulations were found to be within 0.15lambda +/- 0.11lambda or 0.09 +/- 0.07mm from the actual profiles. Experiments were also performed to test SEE on skull mimicking phantoms with major acoustical properties similar to those of the actual human skull. With experimental data, the profiles obtained with the proposed process were within 0.32lambda +/- 0.25lambda or 0.19 +/- 0.15mm from the actual profile.

  2. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  3. Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves

    NASA Astrophysics Data System (ADS)

    Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Boričević, Ana; Borić, Nataša

    2016-01-01

    The aim of this study was to investigate the influence of conventional and ultrasound-assisted extraction (frequency, time, temperature) on the content of bioactive compounds as well as on the antioxidant activity of aqueous extracts from fresh lemon balm and peppermint leaves. Total phenols, flavonoids, non-flavonoids, total chlorophylls, total carotenoids, and radical scavenging capacity were determined. Moreover, the relationship between bioactive compounds and antioxidant capacity was studied by linear regression. A significant increase in all studied bioactive compounds during ultrasonic extraction for 5 to 20 min was found. With the classical extraction method, the highest amounts of total phenols, flavonoids, and antioxidant activity were determined, and the maximum amounts of total chlorophylls and carotenoids were determined during 20 min ultrasonic extraction. The correlation analysis revealed a strong, positive relationship between antioxidant activity and total phenolic compounds.

  4. Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.

    PubMed

    Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho

    2010-08-15

    Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  6. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  7. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  8. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spicer, James

    shown how these measurements can be used to assess elastic anisotropy in nuclear graphites. Using models developed in this program, ultrasonic data were interpreted to extract orientation distribution coefficients that could be used to represent anisotropy in these materials. This demonstration showed the use of ultrasonic methods to quantify anisotropy and how these methods provide more detailed information than do measurements of thermal expansion – a technique commonly used for assessing anisotropy in nuclear graphites. Finally, we have employed laser-based, ultrasonic-correlation techniques in attempts to quantify aspects of graphite microstructure such as pore size and distribution. Results of these measurements indicate that additional work must be performed to make this ultrasonic approach viable for quantitative microstructural characterization.« less

  9. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells.

    PubMed

    Wu, J; Lin, L; Chau, F T

    2001-10-01

    Ultrasound-assisted extraction was evaluated as a simpler and more effective alternative to conventional extraction methods for the isolation of ginsenosides (saponins) from various types of ginseng. The ginseng samples were extracted with different solvents, under either direct sonication by an ultrasound probe horn or indirect sonication in an ultrasound cleaning bath. The ultrasonic extraction was compared with the conventional method of refluxing boiling solvents in a soxhlet extractor, on the yields of both the total saponin isolated by thin-layer chromatography and the individual ginsenosides by high performance liquid chromatography. It was found that the sonication-assisted extraction of ginseng saponins was about three times faster than the traditional extraction method. The ultrasonic extraction was not only more efficient but also convenient for the recovery and purification of the active ingredients of plant materials. In addition, the sonication-assisted extraction can be carried out at lower temperatures which are favorable for the thermally unstable compounds.

  10. Ultrasound-assisted extraction of Mangiferin from Mango (Mangifera indica L.) leaves using response surface methodology.

    PubMed

    Zou, Tang-Bin; Xia, En-Qin; He, Tai-Ping; Huang, Ming-Yuan; Jia, Qing; Li, Hua-Wen

    2014-01-27

    Mangiferin is a xanthone widely distributed in higher plants showing antioxidative, antiviral, anticancer, antidiabetic, immunomodulatory, hepatoprotective and analgesic effects. In the present study, an ultrasonic-assisted extraction method was developed for the effective extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 44% ethanol, the liquid-to-solid ratio was 38:1, and extraction for 19.2 min at 60 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of mangiferin was 58.46 ± 1.27 mg/g. The results obtained are helpful for the full utilization of mango leaves, and also indicated that ultrasonic-assisted extraction is a very useful method for the extraction of mangiferin from plant materials.

  11. Inhibition of artificially induced cough in man by bronchodilators.

    PubMed Central

    Lowry, R; Higenbottam, T; Johnson, T; Godden, D

    1987-01-01

    1. The antitussive properties of bronchodilators were evaluated in a total of 47 normal volunteers. 2. Cough was induced by inhalation of ultrasonically nebulized solutions of distilled water and hypotonic saline. 3. Inhaled fenoterol hydrobromide (360 micrograms; 20 volunteers) and inhaled ipratropium bromide (72 micrograms; 14 volunteers) both significantly reduced couch compared with placebo (P less than 0.01). Oral salbutamol sulphate (4 mg; 11 volunteers) and oral pirenzepine hydrochloride (50 mg; 14 volunteers) had lesser effects. 4. Cough inhibition correlated with a small but statistically significant degree of bronchodilatation as measured by specific airway conductance (sGaw) and forced expiratory volume in one second (FEV1) in six normal subjects studied with each treatment in a placebo controlled, double blind study (r = 0.67, P less than 0.001). 5. Small reductions in airway tone are associated with a reduced cough response elicited by inhaled ultrasonically nebulized distilled water. PMID:3689630

  12. Faraday instability-based micro droplet ejection for inhalation drug delivery

    PubMed Central

    Tsai, C.S.; Mao, R.W.; Lin, S.K.; Zhu, Y.; Tsai, S.C.

    2014-01-01

    We report here the technology and the underlying science of a new device for inhalation (pulmonary) drug delivery which is capable of fulfilling needs unmet by current commercial devices. The core of the new device is a centimeter-size clog-free silicon-based ultrasonic nozzle with multiple Fourier horns in resonance at megahertz (MHz) frequency. The dramatic resonance effect among the multiple horns and high growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range (2–5 µm) at low electrical drive power (<1.0 W). The small nozzle requiring low drive power has enabled realization of a pocket-size (8.6 × 5.6 × 1.5 cm3) ultrasonic nebulizer. A variety of common pulmonary drugs have been nebulized using the pocket-size unit with desirable aerosol sizes and output rate. These results clearly provide proof-of-principle for the new device and confirm its potential for commercialization. PMID:25045720

  13. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  14. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  15. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  16. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  17. Development of an Ultrasonication-Assisted Extraction Based HPLC With a Fluorescence Method for Sensitive Determination of Aflatoxins in Highly Acidic Hibiscus sabdariffa.

    PubMed

    Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun

    2018-01-01

    The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B 1 , B 2 , G 1 , G 2 were extracted from samples by using methanol/water (70:30, v/v ) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity ( R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15-0.65 and 0.53-2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2-3.6%), and accuracy (recovery rates of 86.0-102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B 1 (AFB 1 ) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc.

  18. [Complex enzyme combined with ultrasound extraction technology, physicochemical properties and antioxidant activity of Hedysarum polysaccharides].

    PubMed

    Yang, Xiu-Yan; Xue, Zhi-Yuan; Yang, Ya-Fei; Fang, Yao-Yao; Zhou, Xiang-Lin; Zhao, Liang-Gong; Feng, Shi-Lan

    2018-06-01

    In this study, complex enzymes combined with ultrasonic extraction technology(MC) were used, to select optimal extraction combinations by single factor and orthogonal test, with Hedysarum polysaccharides yield and content as the comprehensive indexes. The components, physicochemical properties and antioxidant activity of Hedysarum polysaccharides from complex enzyme combined with ultrasonic extraction(HPS-MC)and the Hedysarum polysaccharides from hot water extraction(HPS-R)were analyzed. The results showed that:complex enzymes had significant effect on the yield and content of Hedysarum polysaccharides, and the ultrasonic power could significantly improve the content of Hedysarum polysaccharides. The optimum technological parameters were as follows: complex enzyme ratio 1:1, ultrasonic power 105 W, ultrasonic time 60 min, and enzymatic hydrolysis pH 5, achieving (14.01±0.64)% and (92.45±1.47)% respectively for the yield and content of Polysaccharides. As compared with HPS-R, the molecular weight, absolute viscosity and protein content of HPS-MC were decreased, while the content of uronic acid was increased. In the antioxidant system, the concentration of polysaccharide was within the range of 1-7 g·L⁻¹; the antioxidant activity of HPS-MC was higher than that of HPS-R, and HPS-MC (80%) with the lowest molecular weight showed a significant dose effect relationship with the increase of the experimental concentration. In conclusion, MC is a simple, convenient, economical and environmentally friendly extraction technology, and the Hedysarum polysaccharides extracted by this method have obvious antioxidant activity. Copyright© by the Chinese Pharmaceutical Association.

  19. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  20. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  1. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  2. Effect of ultrasonic frequency on degradation of methylene blue in the presence of particle

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Suzuki, Atsushi; Takahashi, Tomoki; Matsumoto, Hideyuki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2012-05-01

    Techniques for the degradation of hazardous organic compounds have been investigated such as solvent extraction, incineration, chemical dehalogenation and biodegradation, etc. Ultrasound has been found to be an attractive advanced technology for the degradation of hazardous organic compounds in water. In addition, the sonochemical reaction is enhanced by particle addition. However, the enhancement mechanism of particle addition has not been investigated well, because ultrasound enhances not only chemical reaction but also mass transfer. In this study, the degradation process of methylene blue as the model hazardous organic compound by ultrasonic irradiation was investigated. The effects of ultrasonic irradiation condition on degradation rate were investigated. The effect of ultrasonic frequency on improvement of degradation reaction by particle addition was also investigated. In addition, the effects of ultrasonic frequency on ultrasonic power and chemical efficiency were investigated by calorimetry and SE value. The degradation rate constants were estimated from the results of temporal change of the concentration of methylene blue assuming first order kinetics for the decomposition. There was a linear relation in the degradation rate and the ultrasonic power. In addition, the degradation rates at 127 kHz and 490 kHz were much larger than that at 22.8 kHz. The effect of ultrasonic frequency on sonochemical efficiency has been investigated, and the sonochemical effects in the range of frequency of 200 - 500 kHz are 10 times larger than those in the lower or higher frequency regions. Therefore, the degradation rate of methylene blue was considered to estimate using sonochemical efficiency. The degradation process of methylene blue was intensified by particle addition, and the degradation rate increased with increasing amount of particle. On the other hand, the enhancement of degradation rate by particle addition was influenced by both ultrasonic frequency and species

  3. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  4. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  5. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  6. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  7. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  8. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  9. An investigation of the heat induced during ultrasonic post removal.

    PubMed

    Ettrich, Christopher A; Labossière, Paul E; Pitts, David L; Johnson, James D

    2007-10-01

    The purpose of this study was to investigate the potential for temperature increase along the external root surface during ultrasonic post removal in a simulated clinical environment. Thirty-seven extracted teeth were decoronated, instrumented, and then obturated with gutta-percha and sealer. Post spaces were prepared, followed by cementation of stainless steel posts. A simulated clinical environment was created by using a polymethylmethacrylate sheet with holes custom fitted for the extracted teeth and then suspended over a heated water bath. Two thermocouples were attached at 6 and 12 mm from the top of the post along the external root surface. Teeth were divided into 3 test groups, no coolant, air-cooled, and water-cooled. Temperature changes were recorded by using a Vishay 5000 Strain Smart system. Results demonstrated that a significant difference existed in the average heat rates between the upper and lower thermocouples for no coolant and water-cooled groups at the medium setting and the air-cooled group at the high setting. The average heat rates were significantly different between the 2 thermocouples for all 3 groups when comparing the 2 ultrasonic power settings. Results indicated that the average heat rate was less for the water-cooled group when using a medium power setting.

  10. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  11. Ultrasonically assisted antioxidant extraction from grape stalks and olive leaves

    NASA Astrophysics Data System (ADS)

    Cárcel, Juan A.; García-Pérez, José V.; Mulet, Antonio; Rodríguez, Ligia; Riera, Enrique

    2010-01-01

    Grape stalks and olive leaves present high amount of phenolic compounds with antioxidant properties. The extraction of these compounds may be considered a way to increase in value both agro-food by-products. Ultrasound is widely applied in extraction due to its effects (cavitation, microstirring or sponge effect) over the process. The goal of this work was to address the application of ultrasound on the antioxidant extraction of olive leaves and grape stalk. For that purpose, the extraction of antioxidant compounds from grape stalks and olive leaves, previously dried at 100 °C, were carried out using a ethanolic solution (80 % v/v) at 60 °C. Extractions were carried out with (US; 30 kHz; 600W)) and agitation (AG) without ultrasound application. In the AG experiments, the solution was agitated with a stirrer. Samples were obtained at different extraction time (10, 30, 60, 120, 180, 240, 360, 480 and 1440 min) and their antioxidant capacity was measured using FRAP method. The Naik model was used to model the extraction kinetics, being identified the antioxidant capacity of extracts at the equilibrium (Y eq) and the initial velocity of extraction (Y eq/B). For grape stalks, the antioxidant capacity of extracts at the equilibrium (Y eq) and the initial velocity of extraction (Y eq/B) were higher in AG experiments than in US experiments. In the olive leaves extractions, the Y eq/B was of the same order for both treatments but Y eq was significantly higher for US experiments. The different influence of ultrasound for both by-products can be explained from their different geometry and structure.

  12. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  13. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  14. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    PubMed

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P < .001). With NaCl, ultrasonic activated irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P < .001), but hydrodynamic irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    PubMed

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Inhaled, Nebulized Sodium Nitrite Protects In Murine and Porcine Experimental Models Of Hemorrhagic Shock and Resuscitation by Limiting Mitochondrial Injury

    PubMed Central

    Kautza, Benjamin; Gomez, Hernando; Escobar, Daniel; Corey, Catherine; Ataya, Bilal; Luciano, Jason; Botero, Ana Maria; Gordon, Lisa; Brumfield, John; Martinez, Silvia; Holder, Andre; Ogundele, Olufunmilayo; Pinsky, Michael; Shiva, Sruti; Zuckerbraun, Brian S.

    2015-01-01

    Objective The cellular injury that occurs in the setting of hemorrhagic shock and resuscitation (HS/R) affects all tissue types and can drive altered inflammatory responses. Resuscitative adjuncts hold the promise of decreasing such injury. Here we test the hypothesis that sodium nitrite (NaNO2), delivered as a nebulized solution via an inhalational route, protects against injury and inflammation from HS/R. Methods Mice underwent HS/R to a mean arterial pressure (MAP) of 20 or 25 mmHg. Mice were resuscitated with Lactated Ringers after 90–120 minutes of hypotension. Mice were randomized to receive nebulized NaNO2 via a flow through chamber (30mg in 5mL PBS). Pigs (30–35 kg) were anesthetized and bled to a MAP of 30–40 mmHg for 90 minutes, randomized to receive NaNO2 (11 mg in 2.5 mL PBS) nebulized into the ventilator circuit starting 60 minutes into the hypotensive period, followed by initial resuscitation with Hextend. Pigs had ongoing resuscitation and support for up to four hours. Hemodynamic data were collected continuously. Results NaNO2 limited organ injury and inflammation in murine hemorrhagic shock. A nitrate/nitrite depleted diet exacerbated organ injury, as well as mortality, and inhaled NaNO2 significantly reversed this effect. Furthermore, NaNO2 limited mitochondrial oxidant injury. In porcine HS/R, NaNO2 had no significant influence on shock induced hemodynamics. NaNO2 limited hypoxia/reoxia or HS/R-induced mitochondrial injury and promoted mitochondrial fusion. Conclusion NaNO2 may be a useful adjunct to shock resuscitation based on its limitation of mitochondrial injury. PMID:26410351

  17. Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry.

    PubMed

    Gonçalves, C; Alpendurada, M F

    2005-03-15

    In order to reduce the amount of sample to be collected and the time consumed in the analytical process, a broad range of analytes should be preferably considered in the same analytical procedure. A suitable methodology for pesticide residue analysis in soil samples was developed based on ultrasonic extraction (USE) and gas chromatography-mass spectrometry (GC-MS). For this study, different classes of pesticides were selected, both recent and old persistent molecules: parent compounds and degradation products, namely organochlorine, organophosphorous and pyrethroid insecticides, triazine and acetanilide herbicides and other miscellaneous pesticides. Pesticide residues could be detected in the low- to sub-ppb range (0.05-7.0mugkg(-1)) with good precision (7.5-20.5%, average 13.7% R.S.D.) and extraction efficiency (69-118%, average 88%) for the great majority of analytes. This methodology has been applied in a monitoring program of soil samples from an intensive horticulture area in Póvoa de Varzim, North of Portugal. The pesticides detected in four sampling programs (2001/2002) were the following: lindane, dieldrin, endosulfan, endosulfan sulfate, 4,4'-DDE, 4,4'-DDD, atrazine, desethylatrazine, alachlor, dimethoate, chlorpyrifos, pendimethalin, procymidone and chlorfenvinphos. Pesticide contamination was investigated at three depths and in different soil and crop types to assess the influence of soil characteristics and trends over time.

  18. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Determination of Rare Earth Elements in multi-year high-resolution Arctic aerosol record by double focusing Inductively Coupled Plasma Mass Spectrometry with desolvation nebulizer inlet system.

    PubMed

    Giardi, Fabio; Traversi, Rita; Becagli, Silvia; Severi, Mirko; Caiazzo, Laura; Ancillotti, Claudia; Udisti, Roberto

    2018-02-01

    An inductively coupled plasma sector field mass spectrometer (ICP-SFMS) was used to develop an analytical method for the fast determination of Na, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb in Arctic size-segregated aerosol samples (PM 10 ), after microwave acidic digestion. The ICP-SFMS was coupled with a microflow nebulizer and a desolvation system for the sample introduction, which reduced the isobaric interferences due to oxides and the required volume of sample solutions, compared to the usual nebulization chamber methods. With its very low limit of detection, and taking into account the level of blanks, this method allowed the quantification of many metals in very low concentration. Particular attention was given to Rare Earth Elements (REEs - La to Lu). The efficiency in the extraction of REEs was proved to be acceptable, with recoveries over 83% obtained with a Certified Reference Material (AMiS 0356). The analytical method was then applied to particulate matter samples, collected at ground level in Ny Ålesund (Svalbard Islands, Norway), during spring and summer, from 2010 to 2015, with daily resolution and using a low-volume device. Thus, for the first time, a large atmospheric concentrations dataset of metals in Arctic particulate matter at high temporal resolution is presented. On the basis of differences in LREE/HREE ratio and Ce and Eu anomalies in spring and summer samples, basic information to distinguish local and long-range transported dust were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    PubMed

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  1. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  2. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  3. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  4. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  5. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  6. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  7. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  8. A comparative evaluation of the efficacy of manual, magnetostrictive and piezoelectric ultrasonic instruments - an in vitro profilometric and SEM study

    PubMed Central

    SINGH, Sumita; UPPOOR, Ashita; NAYAK, Dilip

    2012-01-01

    Objectives The debridement of diseased root surface is usually performed by mechanical scaling and root planing using manual and power driven instruments. Many new designs in ultrasonic powered scaling tips have been developed. However, their effectiveness as compared to manual curettes has always been debatable. Thus, the objective of this in vitro study was to comparatively evaluate the efficacy of manual, magnetostrictive and piezoelectric ultrasonic instrumentation on periodontally involved extracted teeth using profilometer and scanning electron microscope (SEM). Material and Methods 30 periodontally involved extracted human teeth were divided into 3 groups. The teeth were instrumented with hand and ultrasonic instruments resembling clinical application. In Group A all teeth were scaled with a new universal hand curette (Hu Friedy Gracey After Five Vision curette; Hu Friedy, Chicago, USA). In Group B CavitronTM FSI - SLITM ultrasonic device with focused spray slimline inserts (Dentsply International Inc., York, PA, USA) were used. In Group C teeth were scaled with an EMS piezoelectric ultrasonic device with prototype modified PS inserts. The surfaces were analyzed by a Precision profilometer to measure the surface roughness (Ra value in µm) consecutively before and after the instrumentation. The samples were examined under SEM at magnifications ranging from 17x to 300x and 600x. Results The mean Ra values (µm) before and after instrumentation in all the three groups A, B and C were tabulated. After statistically analyzing the data, no significant difference was observed in the three experimental groups. Though there was a decrease in the percentage reduction of Ra values consecutively from group A to C. Conclusion Within the limits of the present study, given that the manual, magnetostrictive and piezoelectric ultrasonic instruments produce the same surface roughness, it can be concluded that their efficacy for creating a biologically compatible surface of

  9. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  10. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  11. Development of an Ultrasonication-Assisted Extraction Based HPLC With a Fluorescence Method for Sensitive Determination of Aflatoxins in Highly Acidic Hibiscus sabdariffa

    PubMed Central

    Liu, Xiaofei; Ying, Guangyao; Sun, Chaonan; Yang, Meihua; Zhang, Lei; Zhang, Shanshan; Xing, Xiaoyan; Li, Qian; Kong, Weijun

    2018-01-01

    The high acidity and complex components of Hibiscus sabdariffa have provided major challenges for sensitive determination of trace aflatoxins. In this study, sample pretreatment of H. sabdariffa was systematically developed for sensitive high performance liquid chromatography-fluorescence detection (HPLC-FLD) after ultrasonication-assisted extraction, immunoaffinity column (IAC) clean-up and on-line post-column photochemical derivatization (PCD). Aflatoxins B1, B2, G1, G2 were extracted from samples by using methanol/water (70:30, v/v) with the addition of NaCl. The solutions were diluted 1:8 with 0.1 M phosphate buffer (pH 8.0) to negate the issues of high acidity and matrix interferences. The established method was validated with satisfactory linearity (R > 0.999), sensitivity (limits of detection (LODs) and limits of quantitation (LOQs) of 0.15–0.65 and 0.53–2.18 μg/kg, respectively), precision (RSD <11%), stability (RSD of 0.2–3.6%), and accuracy (recovery rates of 86.0–102.3%), which all met the stipulated analytical requirements. Analysis of 28 H. sabdariffa samples indicated that one sample incubated with Aspergillus flavus was positive with aflatoxin B1 (AFB1) at 3.11 μg/kg. The strategy developed in this study also has the potential to reliably extract and sensitively detect more mycotoxins in other complex acidic matrices, such as traditional Chinese medicines, foodstuffs, etc. PMID:29681848

  12. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  13. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    PubMed

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  14. Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: Comparison with conventional hydrodistillation.

    PubMed

    Da Porto, Carla; Decorti, Deborha

    2009-08-01

    Ultrasonically assisted extraction of flavour compounds from different varieties of Mentha spicata, using 70% ethanol, have been carried out for 5, 10 and 15min and coupled with under vacuum distillation. The ultrasound distilled extracts have been analysed by GC-MS and compared with essential oils obtained by hydrodistillation. The results have showed that ultrasonically assisted extraction in combination with under vacuum distillation have provided extracts with higher flavouring strength due to the increased concentration of desirable oxygenated compounds (from 5 to 8 times) compared with hydrodistillation. Extraction yields of flavour volatiles have been calculated giving a range 0.04-0.13% by ultrasound and 0.01-0.02% by hydrodistillation.

  15. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  16. Ultrasound-assisted extraction of amino acids from grapes.

    PubMed

    Carrera, Ceferino; Ruiz-Rodríguez, Ana; Palma, Miguel; Barroso, Carmelo G

    2015-01-01

    Recent cultivar techniques on vineyards can have a marked influence on the final nitrogen content of grapes, specifically individual amino acid contents. Furthermore, individual amino acid contents in grapes are related to the final aromatic composition of wines. A new ultrasound-assisted method for the extraction of amino acids from grapes has been developed. Several extraction variables, including solvent (water/ethanol mixtures), solvent pH (2-7), temperature (10-70°C), ultrasonic power (20-70%) and ultrasonic frequency (0.2-1.0s(-)(1)), were optimized to guarantee full recovery of the amino acids from grapes. An experimental design was employed to optimize the extraction parameters. The surface response methodology was used to evaluate the effects of the extraction variables. The analytical properties of the new method were established, including limit of detection (average value 1.4mmolkg(-)(1)), limit of quantification (average value 2.6mmolkg(-)(1)), repeatability (average RSD=12.9%) and reproducibility (average RSD=15.7%). Finally, the new method was applied to three cultivars of white grape throughout the ripening period. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  18. A COMPARISON OF URINARY ARSENIC SPECIATION VIA DIRECT NEBULIZATION AND ON-LINE PHOTOOXIDATION-HYDRIDE GENERATION WITH DETECTION BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    Arsenic speciation continues to be important in assessing human and environmental exposure risk. Urinary arsenic analysis provides information on recent arsenic exposure. In this study, two sample introduction pathways: direct nebulization (DN) and hydride generation (HG) were ut...

  19. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  20. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  1. Improving dyeability of modified cotton fabrics by the natural aqueous extract from red cabbage using ultrasonic energy.

    PubMed

    Ben Ticha, Manel; Haddar, Wafa; Meksi, Nizar; Guesmi, Ahlem; Mhenni, M Farouk

    2016-12-10

    The concern regarding sustainable utilization of available resources is growing due to its global importance. In this paper, the dyeability of cotton fabrics with natural colorant extracted from red cabbage was improved by applying cationic groups on cotton fibers. Modification of cotton was carried using acid tannic, Rewin Os, Denitex BC and Sera Fast as cationic agents. The dyeing process was done by ultrasonic energy. The effects of the cationising agent amount, the dye bath pH, the dyeing temperature and duration, on the sonicator dyeing quality were studied. The performances of this process were evaluated by measuring the colour yield (K/S) and the dyeing fastness of the coloured cotton. Besides, modified cotton fibers were characterized by morphology analysis (SEM) and Fourier transform infrared (FTIR) spectra and compared to untreated cotton. Moreover, a two-level full factorial design was employed to optimize the sonicator dyeing process. Mathematical model equation and statistical analysis were derived by computer simulation programming applying the least squares method using Minitab 15. Best dyeing conditions were found to be: 10%, pH 11, 60min and 100°C respectively for the Sera Fast amount, dye bath pH, dyeing duration and temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  3. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  4. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  5. Effects of ultrasonic dental scaling on pulp vitality in dogs: an experimental study.

    PubMed

    Vérez-Fraguela, J L; Vives Vallés, M A; Ezquerra Calvo, L J

    2000-06-01

    We investigated whether dental pulpal damage is produced as a result of the application of an ultrasonic scaler commonly used in clinical veterinary dentistry. Using methods developed in preliminary studies, we examined six dogs. The radiographic thickness of the dentin and pulp cavity was measured. The ultrasonic scaler was applied to maxillary and mandibular premolar teeth for 30, 60, or 90 seconds, without the use of water as a coolant. The temperatures of the room, the pulp canal on untreated incisor teeth, the cheek, the gingival sulcus, and the dentin of the affected teeth were recorded using a probe with a thermistor attached to a resistivity meter and inserted in the dentin to a depth of 1 mm. Two weeks following scaling, the teeth were extracted for microscopic examination. In another dog serving as a control, the temperature of the dentin was increased to between 45 degrees C (113 degrees F) and 47 degrees C (117 degrees F) and the premolar teeth were removed for microscopic examination 15 days later. We concluded that the application of an uncooled ultrasonic scaler for 90 seconds did not increase the temperature of the dentin. However, damage comparable with acute pulpitis resulted as a consequence of the ultrasonic effect, similar to the effects produced by the 45-47 degrees C heat applied in the control animal.

  6. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  7. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  8. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  9. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  10. Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures

    PubMed Central

    Raisutis, Renaldas; Samaitis, Vykintas

    2017-01-01

    This work proposes a novel hybrid signal processing technique to extract information on disbond-type defects from a single B-scan in the process of non-destructive testing (NDT) of glass fiber reinforced plastic (GFRP) material using ultrasonic guided waves (GW). The selected GFRP sample has been a segment of wind turbine blade, which possessed an aerodynamic shape. Two disbond type defects having diameters of 15 mm and 25 mm were artificially constructed on its trailing edge. The experiment has been performed using the low-frequency ultrasonic system developed at the Ultrasound Institute of Kaunas University of Technology and only one side of the sample was accessed. A special configuration of the transmitting and receiving transducers fixed on a movable panel with a separation distance of 50 mm was proposed for recording the ultrasonic guided wave signals at each one-millimeter step along the scanning distance up to 500 mm. Finally, the hybrid signal processing technique comprising the valuable features of the three most promising signal processing techniques: cross-correlation, wavelet transform, and Hilbert–Huang transform has been applied to the received signals for the extraction of defects information from a single B-scan image. The wavelet transform and cross-correlation techniques have been combined in order to extract the approximated size and location of the defects and measurements of time delays. Thereafter, Hilbert–Huang transform has been applied to the wavelet transformed signal to compare the variation of instantaneous frequencies and instantaneous amplitudes of the defect-free and defective signals. PMID:29232845

  11. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  12. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  13. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  14. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  15. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  16. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  17. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less

  18. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  19. An empirical method to cluster objective nebulizer adherence data among adults with cystic fibrosis.

    PubMed

    Hoo, Zhe H; Campbell, Michael J; Curley, Rachael; Wildman, Martin J

    2017-01-01

    The purpose of using preventative inhaled treatments in cystic fibrosis is to improve health outcomes. Therefore, understanding the relationship between adherence to treatment and health outcome is crucial. Temporal variability, as well as absolute magnitude of adherence affects health outcomes, and there is likely to be a threshold effect in the relationship between adherence and outcomes. We therefore propose a pragmatic algorithm-based clustering method of objective nebulizer adherence data to better understand this relationship, and potentially, to guide clinical decisions. This clustering method consists of three related steps. The first step is to split adherence data for the previous 12 months into four 3-monthly sections. The second step is to calculate mean adherence for each section and to score the section based on mean adherence. The third step is to aggregate the individual scores to determine the final cluster ("cluster 1" = very low adherence; "cluster 2" = low adherence; "cluster 3" = moderate adherence; "cluster 4" = high adherence), and taking into account adherence trend as represented by sequential individual scores. The individual scores should be displayed along with the final cluster for clinicians to fully understand the adherence data. We present three cases to illustrate the use of the proposed clustering method. This pragmatic clustering method can deal with adherence data of variable duration (ie, can be used even if 12 months' worth of data are unavailable) and can cluster adherence data in real time. Empirical support for some of the clustering parameters is not yet available, but the suggested classifications provide a structure to investigate parameters in future prospective datasets in which there are accurate measurements of nebulizer adherence and health outcomes.

  20. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer. (a) Identification. A diagnostic ultrasonic transducer is a device made of a piezoelectric material...

  1. [Nebulized budesonide in the treatment of exacerbations of chronic obstructive pulmonary disease: Efficacy, safety, and effects on the serum levels of soluble differentiation molecules].

    PubMed

    Makarova, E V; Varvarina, G N; Menkov, N V; Czapaeva, M Yu; Lazareva, E S; Kazatskaya, Zh A; Novikov, V V; Karaulov, A V

    2016-01-01

    To investigate the efficacy and safety of nebulized budesonide and systemic glucocorticosteroids (GCS) (SGCS) in the treatment of an exacerbation of chronic obstructive pulmonary disease (COPD) and their effects on the serum concentration of soluble leukocyte differentiation antigens. Seventy-eight hospitalized patients with an acute exacerbation of COPD were randomized into two groups: 1) 37 patients took nebulized budesonide 4 mg/day; 2) 41 patients received intravenous prednisolone. The symptoms of COPD, forced expiratory volume in one second (FEV1) and other spirometric indicators, peripheral blood oxygen saturation (SpO2), and adverse events were studied. The serum levels of the soluble adhesion molecules CD50 (sCD50) and CD54 (sCD54) and the lymphocyte activation molecules CD38 (sCD38) and CD25 (sCD25) were investigated by an enzyme immunoassay. There was a significant resolution of the symptoms of COPD, FEV1, and SpO2 in both groups after treatment. The incidence of hyperglycemia episodes was lower in the budesonide group than in the sGCS group. GCSs caused a decrease in the serum level of soluble interleukin-2 receptor (sCD25) in both groups. A prednisolone cycle, unlike a budesonide one, was found to reduce the concentrations of sCD54, sCD50, and sCD38. Nebulized budesonide is an effective and safe alternative to SGCS in treating an exacerbation of COPD. Inhaled GCSs, unlike SGCSs, exhibit anti-inflammatory activity, but exert no immunosuppressive activity.

  2. Physical mechanism of ultrasonic machining

    NASA Astrophysics Data System (ADS)

    Isaev, A.; Grechishnikov, V.; Kozochkin, M.; Pivkin, P.; Petuhov, Y.; Romanov, V.

    2016-04-01

    In this paper, the main aspects of ultrasonic machining of constructional materials are considered. Influence of coolant on surface parameters is studied. Results of experiments on ultrasonic lathe cutting with application of tangential vibrations and with use of coolant are considered.

  3. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  4. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  6. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  7. Method and apparatus to characterize ultrasonically reflective contrast agents

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  8. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  9. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  10. Accelerated solvent extraction combined with solid phase extraction for the determination of organophosphate esters from sewage sludge compost by UHPLC-MS/MS.

    PubMed

    Pang, Long; Yang, Peijie; Ge, Liming; Du, Jingjing; Zhang, Hongzhong

    2017-02-01

    Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, are regarded as emerging pollutants. OPEs are prone to concentrate into residual activated sludge, which might cause secondary pollution if not suitably treated. Composting is an economical and effective approach to make sewage sludge stable and harmless. Therefore, it is essential to develop a novel method for analyzing OPEs in sewage sludge compost samples. However, in the composting process, large amounts of amendments are doped into the sludge to adjust the carbon-nitrogen ratio. Amendment has a strong capacity for adsorption and thus induces a decrease of extraction efficiency. This study developed a novel procedure for determining OPEs in compost samples. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used for extracting and concentrating the OPEs from sewage sludge compost samples, and then analyzed by UHPLC-MS/MS. Some parameters were optimized in this study, mainly including the extraction solvent type, extraction temperature, static extraction time, extraction cycles, and flush volume. Under the optimal conditions, the proposed method showed good linearity between 0.50 and 100 μg kg -1 with regression coefficients in the range of 0.9984-0.9998. Detection limits were in the range of 0.02-3 μg kg -1 with standard deviations ranging from 2 to 6%. Acceptable recoveries between 56 and 119% for samples spiked at different concentration levels were achieved. In contrast, the recoveries merely ranged from 24 to 58% by using ultrasonic-assisted extraction. Graphical abstract A comparison of recoveries between ultrasonic-assisted extraction (UAS) and accelerated solvent extraction (ASE) for organophosphate esters from sewage sludge compost samples.

  11. Determination of depleted uranium in urine via isotope ratio measurements using large-bore direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry.

    PubMed

    Westphal, Craig S; McLean, John A; Hakspiel, Shelly J; Jackson, William E; McClain, David E; Montaser, Akbar

    2004-09-01

    Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.

  12. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  13. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  14. Characterization of aerosols containing Legionella generated upon nebulization

    NASA Astrophysics Data System (ADS)

    Allegra, Séverine; Leclerc, Lara; Massard, Pierre André; Girardot, Françoise; Riffard, Serge; Pourchez, Jérémie

    2016-09-01

    Legionella pneumophila is, by far, the species most frequently associated with Legionnaires’ disease (LD). Human infection occurs almost exclusively by aerosol inhalation which places the bacteria in juxtaposition with alveolar macrophages. LD risk management is based on controlling water quality by applying standardized procedures. However, to gain a better understanding of the real risk of exposure, there is a need (i) to investigate under which conditions Legionella may be aerosolized and (ii) to quantify bacterial deposition into the respiratory tract upon nebulization. In this study, we used an original experimental set-up that enables the generation of aerosol particles containing L. pneumophila under various conditions. Using flow cytometry in combination with qPCR and culture, we determined (i) the size of the aerosols and (ii) the concentration of viable Legionella forms that may reach the thoracic region. We determined that the 0.26-2.5 μm aerosol size range represents 7% of initial bacterial suspension. Among the viable forms, 0.7% of initial viable bacterial suspension may reach the pulmonary alveoli. In conclusion, these deposition profiles can be used to standardize the size of inoculum injected in any type of respiratory tract model to obtain new insights into the dose response for LD.

  15. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  16. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  17. Extraction Optimization, Characterization, and Bioactivities of Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine Employing Ultrasound-Assisted Extraction.

    PubMed

    Liu, Yu-Jie; Mo, Xue-Lin; Tang, Xiao-Zhang; Li, Jiang-Hua; Hu, Mei-Bian; Yan, Dan; Peng, Wei; Wu, Chun-Jie

    2017-06-09

    In this study, the ultrasound-assisted extraction of polysaccharides (PSA) from Pinelliae Rhizoma Praeparatum Cum Alumine (PRPCA) was optimized by response surface methodology (RSM). The structural characteristics of PSA were analyzed by UV-vis spectroscopy, infrared spectroscopy, scanning electron microscopy, high performance gel permeation chromatography and high performance liquid chromatography, respectively. In addition, antioxidant and antimicrobial activities of PSA were studied by different in vitro assays. Results indicated that the optimal extraction conditions were as follows: the ratio of water to raw of 30 mL/g, extraction time of 46.50 min, ultrasonic temperature of 72.00 °C, and ultrasonic power of 230 W. Under these conditions, the obtained PSA yield (13.21 ± 0.37%) was closely agreed with the predicted yield by the model. The average molecular weights of the PSA were estimated to be 5.34 × 10³ and 6.27 × 10⁵ Da. Monosaccharide composition analysis indicated that PSA consisted of mannose, galactose uronic acid, glucose, galactose, arabinose with a molar ratio of 1.83:0.55:75.75:1.94:0.45. Furthermore, PSA exhibited moderate antioxidant and antibacterial activities in vitro. Collectively, this study provides a promising strategy to obtain bioactive polysaccharides from processed products of herbal medicines.

  18. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ultrasonic propulsion of kidney stones.

    PubMed

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  20. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  1. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  2. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  3. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  4. Ultrasonic humidification for telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, F.

    1994-03-01

    This article examines two installations which demonstrate that ultrasonic humidification is an excellent option for large-scale commercial installations. Many existing telephone switching centers constructed 20 to 30 years ago were equipped with electro-mechanical switching equipment that was not sensitive to humidity. Today's sophisticated solid-state telecommunications equipment requires specific levels of relative humidity to operate properly. Over the last several years, Einhorn Yaffee Prescott (formerly Rose Beaton + Rose) designed two of the largest ultrasonic humidification systems at telecommunications buildings located in Cheshire, Conn., and White Plains, N.Y. The Cheshire project was a retrofit to the existing system in a 1960smore » building; the White Plains project involved an upgrade to a totally new air handling system, including an ultrasonic humidification component, in a 1950s building.« less

  5. Semiconductor measurement technology: Microelectronic ultrasonic bonding

    NASA Technical Reports Server (NTRS)

    Harman, G. G. (Editor)

    1974-01-01

    Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.

  6. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  7. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  8. Prediction of ultrasonic properties from grain angle

    Treesearch

    M.F. Kabir

    2001-01-01

    The ultrasonic properties of rubber wood were evaluated in three main symmetry axes – longitudinal (L), radial (R) and tangential direction and also at an angle rotating from the symmetry axes at different moisture content. The ultrasonic velocity were determined with a commercial ultrasonic tester of 45 kHz pulsed longitudinal waves. The experimental results were...

  9. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    PubMed

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  10. Comparison of different strategies for soybean antioxidant extraction.

    PubMed

    Chung, Hyun; Ji, Xiangming; Canning, Corene; Sun, Shi; Zhou, Kequan

    2010-04-14

    Three extraction strategies including Soxhlet extraction, conventional solid-liquid extraction, and ultrasonic-assisted extraction (UAE) were compared for their efficiency to extract phenolic antioxidants from Virginia-grown soybean seeds. Five extraction solvents were evaluated in UAE and the conventional extraction. The soybean extracts were compared for their total phenolic contents (TPC), oxygen radical absorbance capacity (ORAC), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) scavenging activities. The results showed that UAE improved the extraction of soybean phenolic compounds by >54% compared to the conventional and Soxhlet extractions. Among the tested solvents, 50% acetone was the most efficient for extracting soybean phenolic compounds. There was no significant correlation between the TPC and antioxidant activities of the soybean extracts. The extracts prepared by 70% ethanol had the highest ORAC values. Overall, UAE with 50% acetone or 70% ethanol is recommended for extracting soybean antioxidants on the basis of the TPC and ORAC results.

  11. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  12. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  13. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  14. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  15. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant woman...

  16. Ultrasonic assisted hot metal powder compaction.

    PubMed

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  18. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb.

    PubMed

    Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku

    2009-01-01

    Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.

  19. [Optimization of extraction technology from Paeoniae Radix Alba using response surface methodology].

    PubMed

    Jin, Lin; Zhao, Wan-shun; Guo, Qiao-sheng; Zhang, Wen-sheng; Ye, Zheng-liang

    2015-08-01

    To ensure the stability of chemistry components and the convenience of operation, ultrasound method was chosen to study in this investigation. As the total common peaks area in chromatograms was set to be evaluation index, the influence on the technology caused by extraction time, ethanol concentration and liquid-to-solid ratio was studied by using single factor methodology, and the extraction technology of Paeoniae Radix Alba was optimized by using response surface methodology. The results showed that the extracting results were most affected by ethanol concentration; liquid-to-solid ratio came the second and extraction time thirdly. The optimum ultrasonic-assisted extraction conditions were as follow: the ultrasonic extraction time was 20.06 min, the ethanol concentration in solvent was 72.04%, and the liquid-to-solid ratio was 53.38 mL · g(-1), the predicted value of total common peaks area was 2.1608 x 10(8). Under the extraction conditions after optimization, the total common peaks area was 2.1422 x 10(8), and the relative deviation between the measured and predicted value was 0.86%, so the optimized extraction technology for Paeoniae Radix Alba is suitable and feasible. Besides, for the purpose of extracting more sufficiently and completely, the optimized extraction technology had more advantages than the extraction method recorded in the monogragh of Paeoniae Radix Alba in Chinese Pharmacopoeia, which will come true the assessment and utilization comprehensively.

  20. Lumber defect detection by ultrasonics

    Treesearch

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  1. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts.

    PubMed

    Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei

    2017-08-01

    To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.

  2. Real-time ultrasonic weld evaluation system

    NASA Astrophysics Data System (ADS)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  3. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  4. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  5. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    PubMed

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  6. Apparatus for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.

    2000-01-01

    An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.

  7. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  8. Catalytic effect on ultrasonic decomposition of cellulose

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Wakida, Kousuke; Mukasa, Shinobu; Toyota, Hiromichi

    2018-07-01

    Cellulase used as a catalyst is introduced into the ultrasonic welding method for cellulose decomposition in order to obtain glucose. By adding cellulase in the welding process, filter paper decomposes cellulose into glucose, 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharides. The amount of glucose from hydrolysis was increased by ultrasonic welding in filter paper immersed in water. Most glucose was obtained by 100 W ultrasonic irradiation; however, when was applied 200 W, the dehydration of the glucose itself occurred, and was converted into 5-HMF owing to the thermolysis of ultrasonics. Therefore, there is an optimum welding power for the production of glucose from cellulose decomposition.

  9. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  10. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  11. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  12. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  13. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.

    1975-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys were considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. Some RF and spectral data on ten sets of ultrasonic reference blocks were taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and microstructural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response.

  14. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  15. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  16. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  18. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  19. Production of Biodiesel from Lipid of Phytoplankton Chaetoceros calcitrans through Ultrasonic Method

    PubMed Central

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g·cm−3. PMID:24688372

  20. Enhanced yield of phenolic extracts from banana peels (Musa acuminata Colla AAA) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil.

    PubMed

    Anal, Anil Kumar; Jaisanti, Sirorat; Noomhorm, Athapol

    2014-10-01

    The bioactive compounds of banana peels and cinnamon barks were extracted by vacuum microwave and ultrasonic-assisted extraction methods at pre-determined temperatures and times. These methods enhance the yield extracts in shorter time. The highest yields of both extracts were obtained from the conditions which employed the highest temperature and the longest time. The extracts' yield from cinnamon bark method was higher by ultrasonic than vacuum microwave method, while vacuum microwave method gave higher extraction yield from banana peel than ultrasonic method. The phenolic contents of cinnamon bark and banana peel extracts were 467 and 35 mg gallic acid equivalent/g extract, respectively. The flavonoid content found in banana peel and cinnamon bark extracts were 196 and 428 mg/g quercetin equivalent, respectively. In addition, it was found that cinnamon bark gave higher 2,2-Diphenyl-1-1 picryhydrazyl (DPPH) radical scavenging activity and total antioxidant activity (TAA). The antioxidant activity of the extracts was analyzed by measuring the peroxide and p-anisidine values after oxidation of fish oils, stored for a month (30 days) at 25 °C and showed lesser peroxide and p-anisidine values in the fish oils containing the sample extracts in comparison to the fish oil without containing any extract. The banana peel and cinnamon extracts had shown the ability as antioxidants to prevent the oxidation of fish oil and might be considered as rich sources of natural antioxidant.