Science.gov

Sample records for ultrasonic pulse transmission

  1. Tunable time-reversal cavity for high-pressure ultrasonic pulses generation: A tradeoff between transmission and time compression

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Pernot, Mathieu; Fink, Mathias; Tanter, Mickael

    2012-08-01

    This Letter presents a time reversal cavity that has both a high reverberation time and a good transmission factor. A multiple scattering medium has been embedded inside a fluid-filled reverberating cavity. This allows creating smart ultrasonic sources able to generate very high pressure pulses at the focus outside the cavity with large steering capabilities. Experiments demonstrate a 25 dB gain in pressure at the focus. This concept will enable us to convert conventional ultrasonic imaging probes driven by low power electronics into high power probes for therapeutic applications requiring high pressure focused pulses, such as histotripsy or lithotripsy.

  2. Experiments in Pulsed Ultrasonics

    ERIC Educational Resources Information Center

    Palmer, S. B.; Forster, G. A.

    1970-01-01

    Describes and apparatus designed to generate and detect pulsed ultrasonics in solids and liquids over the frequency range 1-20 MHz. Experiments are suggested for velocity of sound, elastic constant and ultrasonic attenuation measurements on various materials over a wide temperature range. The equipment should be useful for demonstration purposes.…

  3. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  4. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  5. Ultrasonic flowmetering with reflected pulses

    NASA Astrophysics Data System (ADS)

    Hoyle, D. C.; Glicksman, L. R.; Peterson, C. R.

    1984-09-01

    Consolidated Edison of New York City has expressed the need for a new gasmeter for accurately monitoring large diameter interdistrict gas transmission lines for loss due to theft or leakage. A research effort aimed at developing a new flowmeter for Con Edison is described. The new flowmeter uses ultrasonic flowmetering technology in a novel way to meet Con Edison's four major design specifications: the flowmeter should be accurate to 0.5 percent of totalized flow over one year, it should be much simpler to install than a conventional flowmeter, essentially meaning that excavation be limited to that necessary to expose the upper surface of a buried main; its installation must not require service shutdown; and, the flowmeter should not require zero-flow calibration once installed in the gas main.

  6. A Pulse Generator Based on an Arduino Platform for Ultrasonic Applications

    NASA Astrophysics Data System (ADS)

    Acevedo, Pedro; Vázquez, Mónica; Durán, Joel; Petrearce, Rodolfo

    The objective of this work is to use the Arduino platform as an ultrasonic pulse generator to excite PVDF ultrasonic arrays in transmission. An experimental setup was implemented using a through-transmission configuration to evaluate the performance of the generator.

  7. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed echo imaging system....

  8. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project a... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed echo imaging system....

  9. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  10. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  11. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  12. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  13. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  14. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  15. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  16. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  17. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  18. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  19. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended...

  20. Medical tomograph system using ultrasonic transmission

    NASA Technical Reports Server (NTRS)

    Heyser, Richard C. (Inventor); Nathan, Robert (Inventor)

    1978-01-01

    Ultrasonic energy transmission in rectilinear array scanning patterns of soft tissue provides projection density values of the tissue which are recorded as a function of scanning position and angular relationship, .theta., of the subject with a fixed coordinate system. A plurality of rectilinear scan arrays in the same plane for different angular relationships .theta..sub.1 . . . .theta..sub.n thus recorded are superimposed. The superimposition of intensity values thus yields a tomographic image of an internal section of the tissue in the scanning plane.

  1. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  2. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  3. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines...

  4. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  5. Ultrasonic spectrum analysis using frequency-tracked gated RF pulses

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.; Heyman, J. S.

    1980-01-01

    A new method of ultrasonic frequency analysis is introduced which employs frequency-tracked gated RF drive pulses rather than shock-excited broadband spikes to generate the ultrasonic waveform. The new technique, a variation of the sampled-continuous wave technique, eliminates problems associated with finite pulse widths of conventional methods. It is shown to yield correct ultrasonic wave velocity measurements of the sample irrespective of receiver gate width or position provided any portions of two successive echoes are gated simultaneously into the spectrum analyzer. The experimental observations are substantiated by a theoretical model based on the time-frequency domain formulation of ultrasonic frequency analysis.

  6. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  7. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2. PMID:27587156

  8. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  9. Ultrasonic transmission from fiber optic generators on steel plate

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Tang, Qixiang; OwusuTwumasi, Jones; Yu, Tzuyang; Wang, Xingwei

    2016-04-01

    Fiber optic acoustic generators have generated a lot of interest due to its great potential in many applications including nondestructive tests. This paper reports four acoustic generation configurations. All the configurations are based on gold nanoparticles/polydimethylsiloxane (PDMS) composites. Since gold nanoparticles have high absorption efficiency to optical energy and PDMS has a high coefficient of thermal expansion, the composites can transfer optical energy to ultrasonic waves with high conversion efficiency. The strength and bandwidth of ultrasonic waves generated by the composites can be changed by different designs and structures of the composites. This paper explores the relation between the structure of fiber optic acoustic generators and the profile of generated ultrasonic waves. Experimental results also demonstrated that four ultrasonic generation configurations have similar features of ultrasonic transmission on a steel plate, which is important for future choices of ultrasonic receivers.

  10. Resonant ultrasonic wireless power transmission for bio-implants

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Youm, Woosub; Hwang, Gunn; Moon, Kee S.; Ozturk, Yusuf

    2014-03-01

    In this paper, we present the ultrasonic wireless power transmission system as part of a brain-machine interface (BMI) system in development to supply the required electric power. Making a small-size implantable BMI, it is essential to design a low power unit with a rechargeable battery. The ultrasonic power transmission system has two piezoelectric transducers, facing each other between skin tissues converting electrical energy to mechanical vibrational energy or vice versa. Ultrasound is free from the electromagnetic coupling effect and medical frequency band limitations which making it a promising candidate for implantable purposes. In this paper, we present the design of piezoelectric composite transducer, the rectifier circuit, and rechargeable battery that all packaged in biocompatible titanium can. An initial prototype device was built for demonstration purpose. The early experimental results demonstrate the prototype device can reach 50% of energy transmission efficiency in a water medium at 20mm distance and 18% in animal skin tissue at 18mm distance, respectively.

  11. Evaluation of a pulsed ultrasonic Doppler flowmeter

    NASA Technical Reports Server (NTRS)

    Wells, M. K.

    1973-01-01

    The in vivo application of the pulsed ultrasound Doppler velocity meter (PUDVM) for measuring arterial velocity waveforms is reported. In particular, the performance of the PUDVM is compared with a hot film anemometer of proven accuracy.

  12. Generalized pulse equations for through-transmission evaluation of arbitrary multilayered structures

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Nielsen, Hatsumi T. C.

    1990-01-01

    Generalized transit time and pulse amplitude equations were derived for modelling the ultrasonic through-transmission wave propagation of an arbitrary n-layered structure. The equations can be programmed into an expert system and used to identify and predict the through-transmission pulse signals from the critical interfaces of a multilayered structure. To test the formulas, the through transmission was measured from one- and three-layered configurations in the laboratory. The experimental measurements were compared with computer-generated data determined using the derived equations. The results verify the validity of the formulas.

  13. Ultrasonic transmission through multiple-sublattice subwavelength holes arrays.

    PubMed

    Estrada, Héctor; Gómez-Lozano, Vicente; Uris, Antonio; Candelas, Pilar; Belmar, Francisco; Meseguer, Francisco

    2012-03-01

    The ultrasonic transmission through plates perforated with 2 × 2 or 3 × 3 square array of subwavelength holes per unit cell are studied by numerical simulations. Calculations are obtained by means of a theoretical model under the rigid-solid assumption. It is demonstrated that when the inter-hole distance within the unit cell is reduced, new transmission dips appear resulting from Wood anomalies that have influence on the second and the third order Fabry-Perot peak. When the inter-hole distance within the unit cell is reduced, the transmission spectrum of the multiple-sublattice holes arrays tends to the transmission spectrum of a plate perforated with only one hole in the unit cell.

  14. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples.

  15. Ultrasonic pulsed phase locked loop interferometer for bolt load measurements

    NASA Astrophysics Data System (ADS)

    Allison, S. G.; Clendenin, C. G.

    The pulsed phase-locked-loop bolt monitor (P2L2) that uses ultrasonic waves to measure bolt preload with accuracies ranging from 1 to 3 percent (depending on the specific bolt) is described. To remeasure bolt load after installation, a thermal calibration factor compensates for bolt temperature changes, and a standard reference block allows correction for acoustic phase errors due to measurement equipment configuration such as utilization of a different transducer, couplant, or cable. Some examples of critical applications including Space Shuttle landing-gear wheels and NASA wind-tunnel fan blades are discussed.

  16. Pulse transmission transceiver architecture for low power communications

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  17. Monitoring of concrete structures using the ultrasonic pulse velocity method

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Deraemaeker, A.; Aggelis, D. G.; Van Hemelrijck, D.

    2015-11-01

    Concrete is the material most produced by humanity. Its popularity is mainly based on its low production cost and great structural design flexibility. Its operational and ambient loadings including environmental effects have a great impact in the performance and overall cost of concrete structures. Thus, the quality control, the structural assessment, the maintenance and the reliable prolongation of the operational service life of the existing concrete structures have become a major issue. In the recent years, non-destructive testing (NDT) is becoming increasingly essential for reliable and affordable quality control and integrity assessment not only during the construction of new concrete structures, but also for the existing ones. Choosing the right inspection technique is always followed by a compromise between its performance and cost. In the present paper, the ultrasonic pulse velocity (UPV) method, which is the most well known and widely accepted ultrasonic concrete NDT method, is thoroughly reviewed and compared with other well-established NDT approaches. Their principles, inherent limitations and reliability are reviewed. In addition, while the majority of the current UPV techniques are based on the use of piezoelectric transducers held on the surface of the concrete, special attention is paid to a very promising technique using low-cost and aggregate-size piezoelectric transducers embedded in the material. That technique has been evaluated based on a series of parameters, such as the ease of use, cost, reliability and performance.

  18. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-16

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  19. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    PubMed

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode.

  20. Ultrasonic underwater transmission of composite turbine blade structural health

    NASA Astrophysics Data System (ADS)

    Heckman, A.; Rovey, J. L.; Chandrashekhara, K.; Watkins, S. E.; Mishra, R.; Stutts, D.

    2012-04-01

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements is described and demonstrated. An ultrasonic communication system is used to transmit health data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of +/-5% at a max sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. For a 1000 mA-hr battery to last two years, the transmitter must be operated with a duty cycle of 368, which means data are acquired and transmitted every 59 seconds. Finally, because the data transmission system is flexible, being able to operate at high sample rate for short durations and lower sample rate/high duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

  1. Pulse transmission transmitter including a higher order time derivate filter

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  2. Composite NDE using full-field pulse-echo ultrasonic propagation imaging system

    NASA Astrophysics Data System (ADS)

    Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon

    2016-04-01

    In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is presented. The coincided laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. The system nondestructively inspected targets with two-axis translation stages. Various structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are an aluminum honeycomb sandwich, ailerons and carbon fiber reinforced plastic (CFRP) honeycomb sandwich structures including various defects.

  3. Detection of cystic structures using pulsed ultrasonically induced resonant cavitation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

    2002-01-01

    Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

  4. Method of estimating tissue attenuation using wideband ultrasonic pulse and apparatus for use therein

    SciTech Connect

    Flax, S.W.

    1986-11-11

    This patent describes a method of estimating tissue attenuation of ultrasound energy comprising the steps of: transmitting a wide band ultrasonic pulse into the tissue, the pulse having a frequency spectrum with a center frequency, detecting the pulse as reflected by the tissue, estimating decay of a measure of amplitude of the reflected pulse between two levels in the tissue to approximate the slope of the decay, estimating center frequency of the reflected pulse between the two levels, and obtaining tissue attenuation from the approximated slope of a measure of amplitude and the center frequency.

  5. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    PubMed

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies.

  6. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    PubMed

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. PMID:25957464

  7. Rotational swashplate pulse continuously variable transmission based on helical gear axial meshing transmission

    NASA Astrophysics Data System (ADS)

    Sun, Jiandong; Fu, Wenyu; Lei, Hong; Tian, E.; Liu, Ziping

    2012-11-01

    The current research on pulse continuously variable transmission(CVT) is mainly focused on reducing the pulse degree and making pulse degrees a constant value. Current research mainly confined to find out new design parameters by using the method of optimization, and reduce the pulse degree of pulse CVT and its range of variation. But the fact is that the reduction of the pulse degree is not significant. This article presents a new structure of mechanical pulse CVT—the rotational swashplate pulse CVT with driven by helical gear axial meshing. This transmission is simple and compact in structure and low in pulsatile rate (it adopts 6 guide rods), and the pulsatile degree is irrelevant to the transmission ratio. Theoretically, pulsatile rate could be reduced to zero if appropriate curved surface of the swashplate is used. Compared with the connecting rod pulse CVT, the present structure uses helical gear mechanism as transmission part and it avoids unbalanced inertial force in the former model. This paper analyzes the principle of driving of this transmission, presents its mechanical structure, and discusses its motion characteristics. Experimental prototype of this type of CVT has been manufactured. Tests for the transmission efficiency(when the rotational speed of the output shaft is the maximum) and the angular velocity of the output shaft have been carried out, and data have been analyzed. The experimental results show that the speed of the output shaft for the experimental prototype is slightly lower than the theoretical value, and the transmission efficiency of the experimental prototype is about 70%. The pulse degree of the CVT discussed in this paper is less than the existing pulse CVT of other types, and it is irrelevant to the transmission ratio of the CVT. The research provides the new idea to the CVT study.

  8. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  9. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  10. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273

  11. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  12. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  13. Precision pulse-timing instrumentation for ultrasonic nondestructive testing

    SciTech Connect

    Duncan, M.G.

    1990-08-31

    A new, pulse-timing discriminator and B-scan time-to-pulse-height converter have been developed for the inspection of production parts. The discriminator is easy to operate and features automatic echo gating and automatic pulse polarity discrimination. This instrument combines the noise-blanking advantages of threshold discrimination with the echo-timing precision of zero-crossing discrimination to improve measurement accuracy by a factor of two over the best precious techniques. When used with the discriminator, the B-scan unit allows detection of flaws at depths less than one-fourth those obtainable with commercially available instruments. 3 refs., 20 figs., 2 tabs.

  14. A pulsed phase measurement ultrasonic flowmeter for medical gases.

    PubMed

    Kou, A H; Peickert, W R; Polenske, E E; Busby, M G

    1984-01-01

    Pneumotachometers are used to measure instantaneous flowrate in the respiratory gas streams. The presently available devices suffer from lack of linearity, slow response times, and gas density sensitivity. A new design of an ultrasonic gas flowmeter is presented in this paper: We investigate the acoustic characteristics of ring and piston shaped transducers, and describe a sampling method to avoid the error due to reflection. A microcomputer is used to overcome the 360 degrees detection ambiguity problem associated with phase detection technique. This design has been tested in clinical settings and has been shown to give linear response, independent of gas density, and to have a wide dynamic range. PMID:6240213

  15. Reflection and transmission pulse oximetry during compromised peripheral perfusion.

    PubMed

    Pälve, H

    1992-01-01

    The performance of a reflection pulse oximeter and a transmission pulse oximeter was assessed during open-heart surgery when cardiac output, peripheral temperature, pulse pressure, and systolic pressure were low and vascular resistance was high. Before and after extracorporeal circulation (ECC) there was no difference in ability of the sensors to obtain readings and no difference in the accuracy of those readings. During partial ECC, especially after coronary artery bypass grafting, the reflection sensor gave readings earlier and at a lower pulse pressure. In addition, the transmission sensor failed to give any readings for 2 patients on partial ECC, for whom the reflection sensor did give readings. The accuracy of heart rate (HR) data was comparable for both sensors before ECC; however, during partial ECC, the reflection sensor tended to give values closer to the electrocardiographic HR. The accuracy of saturation data given by the reflection oximeter was comparable to that of the transmission oximeter. It is concluded that the accuracy of the saturation and HR data provided by the two methods of pulse oximetry are comparable, but that the reflection sensor is more likely to obtain readings under conditions of poorer peripheral circulation. PMID:1538246

  16. Method and apparatus for characterizing reflected ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1991-01-01

    The invention is a method of and apparatus for characterizing the amplitudes of a sequence of reflected pulses R1, R2, and R3 by converting them into corresponding electric signals E1, E2, and E3 to substantially the same value during each sequence thereby restoring the reflected pulses R1, R2, and R3 to their initial reflection values by timing means, an exponential generator, and a time gain compensator. Envelope and baseline reject circuits permit the display and accurate location of the time spaced sequence of electric signals having substantially the same amplitude on a measurement scale on a suitable video display or oscilloscope.

  17. Elastic moduli of precompressed pyrophyllite used in ultrahigh pressure research. [propagation of ultrasonic pulses

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Ruoff, A. L.

    1974-01-01

    The propagation of ultrasonic pulses in pyrophyllite specimens was studied to determine the effect of specimen precompression on the measured elastic moduli. Measurements were made at room pressure and, for the precompressed specimens, to pressures of 3 kbar. Pyrophyllite was found to be elastically anisotropic, apparently the result of the fabric present in our material. The room pressure adiabatic bulk modulus as measured on specimens made of isostatically compacted powered pyrophyllite was determined to be 96.1 kbar. The wave speeds of ultrasonic pulses in pyrophyllite were found to decrease with increasing specimen precompression. A limiting value of precompression was found, above which no further decrease in wave speed was observed. For the shear wave speeds this occurs at 10 kbar while for the longitudinal wave at 25 kbar. In the limit, the shear waves propagate 20% slower than in the unprecompressed samples; for the longitudinal wave the difference is 30%.

  18. Effect of stress on ultrasonic pulses in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Hemann, J. H.; Baaklini, G. Y.

    1986-01-01

    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress on an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267,400 cm/sec to 680,000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

  19. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  20. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  1. Roll-off factor dependence of Nyquist pulse transmission.

    PubMed

    Harako, Koudai; Suzuki, Daiki; Hirooka, Toshihiko; Nakazawa, Masataka

    2016-09-19

    We evaluate the dependence of system performance on the roll-off factor, α, of a Nyquist pulse in a single-channel 1.28 Tbit/s-525 km transmission both experimentally and analytically. Low α values are preferable in terms of spectral efficiency and tolerance to chromatic dispersion and polarization-mode dispersion, while a strong overlap with neighboring symbols results in larger nonlinear impairments. On the other hand, a Nyquist pulse with high α values also suffers from nonlinearity due to higher peak power. As a result, we found experimentally that the optimum α value is 0.4~0.6, which agrees well with the analysis.

  2. Roll-off factor dependence of Nyquist pulse transmission.

    PubMed

    Harako, Koudai; Suzuki, Daiki; Hirooka, Toshihiko; Nakazawa, Masataka

    2016-09-19

    We evaluate the dependence of system performance on the roll-off factor, α, of a Nyquist pulse in a single-channel 1.28 Tbit/s-525 km transmission both experimentally and analytically. Low α values are preferable in terms of spectral efficiency and tolerance to chromatic dispersion and polarization-mode dispersion, while a strong overlap with neighboring symbols results in larger nonlinear impairments. On the other hand, a Nyquist pulse with high α values also suffers from nonlinearity due to higher peak power. As a result, we found experimentally that the optimum α value is 0.4~0.6, which agrees well with the analysis. PMID:27661933

  3. Retrieving reflection responses by crosscorrelating transmission responses from deterministic transient sources: application to ultrasonic data.

    PubMed

    Draganov, Deyan; Wapenaar, Kees; Thorbecke, Jan; Nishizawa, Osamu

    2007-11-01

    By crosscorrelating transmission recordings of acoustic or elastic wave fields at two points, one can retrieve the reflection response between these two points. This technique has previously been applied to measured elastic data using diffuse wave-field recordings. These recordings should be relatively very long. The retrieval can also be achieved by using deterministic transient sources with the advantage of using short recordings, but with the necessity of using many P-wave and S-wave sources. Here, it is shown how reflections were retrieved from the cross correlation of transient ultrasonic transmission data measured on a heterogeneous granite sample.

  4. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Y. P.; Wang, J. S.; Huang, K. N.; Ho, C. T.; Huang, J. D.; Young, M. S.

    2007-06-01

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2mm at a range of 50-500mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  5. Atomic library optimization for pulse ultrasonic sparse signal decomposition and reconstruction

    NASA Astrophysics Data System (ADS)

    Song, Shoupeng; Li, Yingxue; Dogandžić, Aleksandar

    2016-02-01

    Compressive sampling of pulse ultrasonic NDE signals could bring significant savings in the data acquisition process. Sparse representation of these signals using an atomic library is key to their interpretation and reconstruction from compressive samples. However, the obstacles to practical applicability of such representations are: large size of the atomic library and computational complexity of the sparse decomposition and reconstruction. To help solve these problems, we develop a method for optimizing the ranges of parameters of traditional Gabor-atom library to match a real pulse ultrasonic signal in terms of correlation. As a result of atomic-library optimization, the number of the atoms is greatly reduced. Numerical simulations compare the proposed approach with the traditional method. Simulation results show that both the time efficiency and signal reconstruction energy error are superior to the traditional one even with small-scale atomic library. The performance of the proposed method is also explored under different noise levels. Finally, we apply the proposed method to real pipeline ultrasonic testing data, and the results indicate that our reduced atomic library outperforms the traditional library.

  6. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement.

    PubMed

    Rajzer, Izabella; Piekarczyk, Wojciech; Castaño, Oscar

    2016-10-01

    An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement.

  7. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement.

    PubMed

    Rajzer, Izabella; Piekarczyk, Wojciech; Castaño, Oscar

    2016-10-01

    An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement. PMID:27287094

  8. Analysis of Doppler Effect on the Pulse Compression of Different Codes Emitted by an Ultrasonic LPS

    PubMed Central

    Paredes, José A.; Aguilera, Teodoro; Álvarez, Fernando J.; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an Ultrasonic Local Positioning System. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver. PMID:22346670

  9. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1991-01-01

    A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.

  10. Analysis of Doppler effect on the pulse compression of different codes emitted by an ultrasonic LPS.

    PubMed

    Paredes, José A; Aguilera, Teodoro; Alvarez, Fernando J; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an ultrasonic local positioning system. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver.

  11. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    SciTech Connect

    Ji Hongjun; Li Mingyu Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-10-15

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au{sub 8}Al{sub 3} formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration.

  12. Multi-wave ultrasonic Doppler method for measuring high flow-rates using staggered pulse intervals

    NASA Astrophysics Data System (ADS)

    Muramatsu, Ei; Murakawa, Hideki; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2016-02-01

    The ultrasonic pulsed Doppler method (UDM) can obtain a velocity profile along the path of an ultrasonic beam. However, the UDM measurement volume is relatively large and it is known that the measurement volume affects the measurement accuracy. In this study, the effect of the measurement volume on velocity and flow rate measurements is analytically and experimentally evaluated. The velocities measured using UDM are considered to be ensemble-averaged values over the measurement volume in order to analyze the velocity error due to the measurement volume, while the flow rates are calculated from the integration of the velocity profile across the pipe. The analytical results show that the channel width, i.e. the spatial resolution along the ultrasonic beam axis, rather than the ultrasonic beam diameter, strongly influences the flow rate measurement. To improve the accuracy of the flow rate, a novel method using a multi-wave ultrasonic transducer consisting of two piezo-electric elements with different basic frequencies is proposed to minimize the size of the measurement volume in the near-wall region of a pipe flow. The velocity profiles in the near-wall region are measured using an 8 MHz sensor with a small diameter, while those far from the transducer are measured using a hollow 2 MHz sensor in the multi-wave transducer. The applicability of the multi-wave transducer was experimentally investigated using the water flow-rate calibration facility at the National Institute of Advanced Industrial Science and Technology (AIST). As a result, the errors in the flow rate were found to be below  -1%, while the multi-wave method is shown to be particularly effective for measuring higher flow rates in a large-diameter pipe.

  13. Transmission of ultrasonic waves at oblique incidence to composite laminates with spring-type interlayer interfaces.

    PubMed

    Ishii, Yosuke; Biwa, Shiro

    2015-11-01

    The transmission characteristics of ultrasonic waves at oblique incidence to composite laminates are analyzed theoretically by the stiffness matrix method. The analysis takes into account the presence of thin resin-rich regions between adjacent plies as spring-type interfaces with normal and shear stiffnesses. The amplitude transmission coefficient of longitudinal wave through a unidirectional laminate immersed in water is shown to be significantly influenced by the frequency, the interlayer interfacial stiffnesses, and the incident angle. Using Floquet's theorem, the dispersion relation of the infinitely extended laminate structure is calculated and compared to the transmission coefficient of laminates of finite thickness. This reveals that the ranges of frequency and interfacial stiffnesses where the Floquet waves lie in the band-gaps agree well with those where the transmission coefficient of the finite layered structure is relatively small, indicating that the band-gaps appear even in the laminate with a finite number of plies. The amplitude transmission coefficient for an 11-ply carbon-epoxy unidirectional composite laminate is experimentally obtained for various frequencies and incident angles. The low-transmission zones observed in the experimental results, which are due to the critical angle of the quasi-longitudinal wave and the Bragg reflection, are shown to be favorably compared with the theory. PMID:26627756

  14. Physical and electrical characteristics of NiFe thin films using ultrasonic assisted pulse electrodeposition

    NASA Astrophysics Data System (ADS)

    Asa Deepthi, K.; Balachandran, R.; Ong, B. H.; Tan, K. B.; Wong, H. Y.; Yow, H. K.; Srimala, S.

    2016-01-01

    Nickel iron (NiFe) thin films were prepared on the copper substrate by ultrasonic assisted pulse electrodeposition under galvanostatic mode. Careful control of the thin films deposition is essential as the electrical properties of the films could be greatly affected, particularly if low quality films are produced. The preparation of NiFe/Cu thin films was aimed to reduce the grain size of NiFe particles, surface roughness and electrical resistivity of the copper substrates. Various parameters were systematically studied including current magnitude, deposition time and ultrasonic bath temperature. The optimized conditions to obtain NiFe permalloy, which subsequently applied to all investigated samples, were found at a current magnitude of 70 mA deposited for a duration of 2 min under ultrasonic bath temperature of 27 °C. The composition of NiFe permalloy was as close as Ni 80.71% and Fe 19.29% and the surface roughness was reduced from 12.76 nm to 2.25 nm. The films electrical resistivity was decreased nearly sevenfold from an initial value of 67.32 μΩ cm to 9.46 μΩ cm.

  15. Ultrasonic vehicle rangefinder

    SciTech Connect

    Obayashi, H.; Kobayashi, H.; Takeuchi, K.

    1987-06-30

    An ultrasonic rangefinder is described comprising: an oscillator for intermittently generating high frequency signals; a transmitter microphone for emitting an ultrasonic pulse toward a target object when the high frequency signals are received from the oscillator; a receiver microphone for receiving an ultrasonic pulse reflected from the target object; means for measuring the time difference between transmitted and received pulses; means for detecting attenuation vibrations generated in the transmitter microphone after the high frequency signals have been input into the transmitter microphone; means for distinguishing between a malfunction in the rangefinder on a transmission side or a reception side based on the output from the detecting means; the detecting means comprising a switching means for disconnecting the oscillator from the distinguishing means when high frequency signals from the oscillator are input into transmitter microphone.

  16. Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system.

    PubMed

    Masala, Tatiana; Harvel, Glenn; Chang, Jen-Shih

    2007-11-01

    In this work, a high speed ultrasonic multitransducer pulse-echo system using a four transducer method was used for the dynamic characterization of gas-liquid two-phase separated flow regimes. The ultrasonic system consists of an ultrasonic pulse signal generator, multiplexer, 10 MHz (0.64 cm) ultrasonic transducers, and a data acquisition system. Four transducers are mounted on a horizontal 2.1 cm inner diameter circular pipe. The system uses a pulse-echo method sampled every 0.5 ms for a 1 s duration. A peak detection algorithm (the C-scan mode) is developed to extract the location of the gas-liquid interface after signal processing. Using the measured instantaneous location of the gas/liquid interface, two-phase flow interfacial parameters in separated flow regimes are determined such as liquid level and void fraction for stratified wavy and annular flow. The shape of the gas-liquid interface and, hence, the instantaneous and cross-sectional averaged void fraction is also determined. The results show that the high speed ultrasonic pulse-echo system provides accurate results for the determination of the liquid level within +/-1.5%, and the time averaged liquid level measurements performed in the present work agree within +/-10% with the theoretical models. The results also show that the time averaged void fraction measurements for a stratified smooth flow, stratified wavy flow, and annular flow qualitatively agree with the theoretical predictions.

  17. Numerical Analysis of Narrow Band Ultrasonic Wave Generation with High Repetition Pulse Laser and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Yamaguchi, K.; Biwa, S.

    2014-06-01

    Although the easiest way to enhance ultrasonic energy generated with pulse laser is to increase laser output, excessive laser output causes damage of the surface. This study introduced an alternative way to generate burst signals without any damages at the surface using a newly developed high repetition pulse laser controlled by galvano mirrors. The calculation results using two-dimensional elastodynamic finite integration technique coupled with thermoelastic effect proved that burst wave of 1 MHz and its higher harmonics were generated while supressing excessive temperature rise using this technique. Moreover, significantly large displacements at the frequency range sufficiently lower than laser repetition rate were observed of the same order of displacements generated with one single shot with the same input energy.

  18. Development of ultrasonic pulse-train Doppler method for velocity profile and flowrate measurement

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2016-11-01

    We present a novel technique for measuring the velocity profile and flowrate in a pipe. This method, named the ultrasonic pulse-train Doppler method (UPTD), has the advantages of expanding the velocity range and setting the smaller measurement volume with low calculation and instrument costs in comparison with the conventional ultrasonic pulse Doppler method. The conventional method has limited measurement of the velocity range due to the Nyquist sampling theorem. In addition, previous reports indicate that a smaller measurement volume increases the accuracy of the measurement. In consideration of the application of the conventional method to actual flow fields, such as industrial facilities and power plants, the issues of velocity range and measurement volume are important. The UPTD algorithm, which exploits two pulses of ultrasound with a short interval and envelope detection, is proposed. Velocity profiles calculated by this algorithm were examined through simulations and excellent agreement was found in all cases. The influence of the signal-to-noise ratio (SNR) on the algorithm was also estimated. The result indicates that UPTD can measure velocity profiles with high accuracy, even under a small SNR. Experimental measurements were conducted and the results were evaluated at the national standard calibration facility of water flowrate in Japan. Every detected signal forms a set of two pulses and the enveloped line can be observed clearly. The results show that UPTD can measure the velocity profiles over the pipe diameter, even if the velocities exceed the measurable velocity range. The measured flowrates were under 0.6% and the standard deviations for all flowrate conditions were within  ±0.38%, which is the uncertainty of the flowrate measurement estimated in the previous report. In conclusion, UPTD provides superior accuracy and expansion of the velocity range.

  19. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-05-01

    This paper presents an 8 × 24 element, 100 μm-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 μm diameter, 220 μm long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 μm. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  20. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  1. Ultrasonic pulse echography for bubbles traveling in the proximity of a wall

    NASA Astrophysics Data System (ADS)

    Park, Hyun Jin; Tasaka, Yuji; Murai, Yuichi

    2015-12-01

    The behavior of a bubbly two-phase flow in the vicinity of a wall affects heat, mass, and momentum transfer; therefore, there is great interest in developing a quantitative technique to monitor this behavior. Herein we propose a new method based on ultrasound echo signal processing that it feasible for industrial applications where the boundary layer is modified by traveling bubbles. By introducing time-resolved direct waveform analysis at 100 MHz, we have succeeded in the spatio-temporal detection of bubble surfaces at echographic profiling frequencies in the range of 15-20 kHz. Unlike conventional approaches, which use short pulses, a relatively long pulse length is applied to allow ultrasound Doppler velocimetry in the liquid phase. Examination of the horizontal bubbly two-phase turbulent channel flows demonstrated the feasibility of this method; spatio-temporal echography of moving bubble surfaces is successfully achieved as the bubbles travel on length scales smaller than the spatial ultrasonic pulse length near the wall. The applicable range of parameters (e.g. bubble size and shape, and flow speed) was determined by 3D numerical analysis of the wave equation and its application to bubbles flowing beneath a flat-bottom model ship.

  2. Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies

    SciTech Connect

    Liu, Yang; Hu, Hui; Chen, Wen-Li; Bond, Leonard J.

    2014-02-18

    Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and give various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.

  3. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.

    PubMed

    Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J

    2009-02-01

    The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.

  4. Pulsed eddy current and ultrasonic data fusion applied to stress measurement

    NASA Astrophysics Data System (ADS)

    Habibalahi, A.; Safizadeh, M. S.

    2014-05-01

    Stress measurement and its variation are key problems in the operating performance of materials. Stress can affect the material properties and the life of components. There are several destructive and nondestructive techniques that are used to measure stress. However, no single nondestructive testing (NDT) technique or method is satisfactory to fully assess stress. This paper presents an NDT data fusion method to improve stress measurement. An aluminum alloy 2024 specimen subjected to stress simulation is nondestructively inspected using pulsed eddy current and ultrasonic techniques. Following these nondestructive examinations, the information gathered from these two NDT methods has been fused using a suitable fuzzy combination operator. The results obtained with these processes are presented in this paper and their efficiency is discussed. It is shown that the fusion of NDT data with a suitable fuzzy operator can be adequate to improve the reliability of stress measurements.

  5. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    DOE PAGESBeta

    Grossman, John; Suslov, Alexey V.; Yong, Grace; Boatner, Lynn A.; Svitelskiy, Oleksiy

    2016-04-07

    Progress in microelectronic technology has allowed us to design and develop a simple but, professional quality instrument for ultrasonic pulse-echo probing of the elastic properties of materials. The heart of this interfer- ometer lies in the AD8302 microchip, a gain and phase detector from Analog Devices, Inc. The interferometer was tested by measuring the temperature dependences of the ultrasound speed and attenuation in a ferro- electric KTa0.92 Nb0.08O3 (KTN) crystal at a frequency of about 40 MHz. These tests demonstrated that our instrument is capable of detecting the relative changes in the sound speed v on the level of Δv/vmore » ~ 10–7. In addition, the ultrasound attenuation revealed new features in the development of the low-temperature structure of the ferroelectric KTN crystal.« less

  6. Pulse-Echo Ultrasonic Imaging Method for Eliminating Sample Thickness Variation Effects

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1997-01-01

    A pulse-echo, immersion method for ultrasonic evaluation of a material which accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer and automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjustments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.

  7. Pulse-echo ultrasonic imaging method for eliminating sample thickness variation effects

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1995-01-01

    A pulse-echo, immersion method for ultrasonic evaluation of a material is discussed. It accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer, automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjusments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.

  8. Structural and elastic determinants of axial transmission ultrasonic velocity in the human radius

    NASA Astrophysics Data System (ADS)

    Raum, Kay; Leguerney, Ingrid; Chandelier, Florent; Talmant, Maryline; Saied, Amena; Laugier, Pascal; Peyrin, Françoise

    2004-10-01

    Accurate clinical interpretation of the sound velocity derived from axial transmission devices requires a detailed understanding of the propa-gation phenomena involved and of the bone factors that have an impact on measurements. In the low-megahertz range, ultrasonic propagation in cortical bone depends on anisotropic elastic tissue properties, porosity, and the spatial dimensions, e.g., cortical thickness. A subset of ten human radius samples from a previous biaxial transmission investigation was inspected using 50-MHz scanning acoustic microscopy (SAM) and synchrotron radiation computed tomography (SR-CT). Low-frequency axial transmission sound speed at 1 and 2 MHz was related to structural properties (cortical thickness C.Th, porosity POR, Haversian cavity density CDH) and tissue parameters (acoustic impedance Z, mineral density MD) on site-matched cross sections. Significant linear multivariate regression models (1 MHz: R=0.84, p<1E-4, 2 MHz: R=0.65, p<1E-4) were found for the combination of C.Th with POR and Z (measured in the external cortical quarter). A modified model accounting for the nonlinear dispersion relation with C.Th was also highly significant (R=0.75, p<1E-4, rmse=49.22 m/s) and explained (after adjustment for dispersion) 55.6% of the variance of the sound velocity by variations of porosity (15.6%) and impedance (40%).

  9. Calculation of ultrasonic reflection and transmission in anisotropic austenitic layered structures

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Mirwald-Schulz, Birgit; Neumann, Eberhard

    2000-05-01

    The theory of plane wave propagation in layered structures has been applied in the formulation of Nayfeh in order to calculate scattering coefficients due to reflection and transmission at the grain boundaries in austenitic weld metal and cast material. Each layer is assumed to be a cubic homogeneous mono-crystal. Lower symmetries of the layer down to the triclinic case may also be assumed, e.g., transverse isotropy of the columnar grained texture in austenitic weld metal. The layers are rigidly bonded and the multi-layer package embedded in water or between solid substrates. Scattering coefficients are calculated by a transfer matrix approach. Ultrasonic properties of the single layers are algebraically linked together resulting in a simple operator for calculation of reflection and transmission coefficients at the multi-layer package boundaries. Critical angle phenomena may cause failure of solution and are limiting the range of application of the transfer matrix approach, as they cause the matrix numerical condition to decrease down to singularity. This is handled by using complex algebra. The transfer matrix method has been applied to multi-layer packages immersed in water. In case of solid substrates of the multi-layer package transmission is occurring at a larger range of incidence angles.

  10. Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles.

    PubMed

    Choi, James J; Selert, Kirsten; Vlachos, Fotios; Wong, Anna; Konofagou, Elisa E

    2011-10-01

    Focused ultrasound activation of systemically administered microbubbles is a noninvasive and localized drug delivery method that can increase vascular permeability to large molecular agents. Yet the range of acoustic parameters responsible for drug delivery remains unknown, and, thus, enhancing the delivery characteristics without compromising safety has proven to be difficult. We propose a new basis for ultrasonic pulse design in drug delivery through the blood-brain barrier (BBB) that uses principles of probability of occurrence and spatial distribution of cavitation in contrast to the conventionally applied magnitude of cavitation. The efficacy of using extremely short (2.3 μs) pulses was evaluated in 27 distinct acoustic parameter sets at low peak-rarefactional pressures (0.51 MPa or lower). The left hippocampus and lateral thalamus were noninvasively sonicated after administration of Definity microbubbles. Disruption of the BBB was confirmed by delivery of fluorescently tagged 3-, 10-, or 70-kDa dextrans. Under some conditions, dextrans were distributed homogeneously throughout the targeted region and accumulated at specific hippocampal landmarks and neuronal cells and axons. No histological damage was observed at the most effective parameter set. Our results have broadened the design space of parameters toward a wider safety window that may also increase vascular permeability. The study also uncovered a set of parameters that enhances the dose and distribution of molecular delivery, overcoming standard trade-offs in avoiding associated damage. Given the short pulses used similar to diagnostic ultrasound, new critical parameters were also elucidated to clearly separate therapeutic ultrasound from disruption-free diagnostic ultrasound.

  11. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  12. Multiband tissue classification for ultrasonic transmission tomography using spectral profile detection

    NASA Astrophysics Data System (ADS)

    Jeong, Jeong-Won; Kim, Tae-Seong; Shin, Dae-Chul; Do, Synho; Marmarelis, Vasilis Z.

    2004-04-01

    Recently it was shown that soft tissue can be differentiated with spectral unmixing and detection methods that utilize multi-band information obtained from a High-Resolution Ultrasonic Transmission Tomography (HUTT) system. In this study, we focus on tissue differentiation using the spectral target detection method based on Constrained Energy Minimization (CEM). We have developed a new tissue differentiation method called "CEM filter bank". Statistical inference on the output of each CEM filter of a filter bank is used to make a decision based on the maximum statistical significance rather than the magnitude of each CEM filter output. We validate this method through 3-D inter/intra-phantom soft tissue classification where target profiles obtained from an arbitrary single slice are used for differentiation in multiple tomographic slices. Also spectral coherence between target and object profiles of an identical tissue at different slices and phantoms is evaluated by conventional cross-correlation analysis. The performance of the proposed classifier is assessed using Receiver Operating Characteristic (ROC) analysis. Finally we apply our method to classify tiny structures inside a beef kidney such as Styrofoam balls (~1mm), chicken tissue (~5mm), and vessel-duct structures.

  13. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    SciTech Connect

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstration of particle beam profile diagnostics using fiber optic laser pulse transmission line.

  14. Fiber optic picosecond laser pulse transmission line for hydrogen ion beam longitudinal profile measurement.

    PubMed

    Huang, Chunning; Liu, Yun; Aleksandrov, Alexander

    2013-07-01

    We present a fiber optic laser pulse transmission line for nonintrusive longitudinal profile measurement of the hydrogen ion (H(-)) beam at the front-end of the Spallation Neutron Source accelerator. The 80.5 MHz, 2.5 ps, multikilowatt optical pulses are delivered to the accelerator beam line through a large-mode-area polarization-maintaining optical fiber to ensure high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter, and pulse width broadening over a 30 m long fiber line are experimentally investigated. A successful measurement of the H(-) beam microbunch (~130 ps) profile is obtained. The experiment is the first demonstration to our knowledge of particle beam profile diagnostics using a fiber optic laser pulse transmission line.

  15. Q-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission.

    PubMed

    Hirooka, Toshihiko; Nakazawa, Masataka

    2015-12-28

    We present detailed analytical and numerical results of the dispersion and nonlinear tolerances of RZ and Nyquist optical pulses in ultrahigh-speed TDM transmissions. From a Q-map analysis, i.e. by numerically calculating the Q-factor distribution as a function of transmission power and fiber dispersion, we found that Nyquist TDM transmission has a substantially larger Q margin as regards both dispersion and optical power thanks to ISI-free overlapped TDM. We also show that the optimum transmission power for Nyquist pulses is 2 dB lower than for RZ pulses. An analytical model is provided to explain the overlap-induced nonlinear impairments in Nyquist TDM transmission in a high power regime, which agrees well with numerical results.

  16. Finger blood content, light transmission, and pulse oximetry errors.

    PubMed

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.

  17. Ultrasonic transmission measurements in the characterization of viscoelasticity utilizing polymeric waveguides

    NASA Astrophysics Data System (ADS)

    Bause, Fabian; Rautenberg, Jens; Feldmann, Nadine; Webersen, Manuel; Claes, Leander; Gravenkamp, Hauke; Henning, Bernd

    2016-10-01

    For the numerical simulation of acoustic wave propagation in (measurement) systems and their design, the use of reliable material models and material parameters is a central issue. Especially in polymers, acoustic material parameters cannot be evaluated based on quasistatically measured parameters, as are specified in data sheets by the manufacturers. In this work, a measurement method is presented which quantifies, for a given polymeric material sample, a complex-valued and frequency-dependent material model. A novel three-dimensional approach for modeling viscoelasticity is introduced. The material samples are designed as hollow cylindrical waveguides to account for the high damping characteristics of the polymers under test and to provide an axisymmetric structure for good performance of waveguide modeling and reproducible coupling conditions arising from the smaller coupling area in the experiment. Ultrasonic transmission measurements are carried out between the parallel faces of the sample. To account for the frequency dependency of the material properties, five different transducer pairs with ascending central frequency from 750~\\text{kHz} to 2.5~\\text{MHz} are used. After passing through the sample, each of the five received signals contains information on the material parameters which are determined in an inverse procedure. The solution of the inverse problem is carried out by iterative comparison of an innovative forward SBFEM-based simulations of the entire measurement system with the experimentally determined measurement data. For a given solution of the inverse problem, an estimate of the measurement uncertainty of each identified material parameter is calculated. Moreover, a second measurement setup, based on laser-acoustic excitation of Lamb modes in plate-shaped specimens, is presented. Using this setup, the identified material properties can be verified on samples with a varied geometry, but made from the same material.

  18. Increased range of ultrasonic guided wave testing of overhead transmission line cables using dispersion compensation.

    PubMed

    Legg, Mathew; Yücel, Mehmet K; Kappatos, Vassilios; Selcuk, Cem; Gan, Tat-Hean

    2015-09-01

    Overhead Transmission Line (OVTL) cables can experience structural defects and are, therefore, inspected using Non-Destructive Testing (NDT) techniques. Ultrasonic Guided Waves (UGW) is one NDT technique that has been investigated for inspection of these cables. For practical use, it is desirable to be able to inspect as long a section of cable as possible from a single location. This paper investigates increasing the UGW inspection range on Aluminium Conductor Steel Reinforced (ACSR) cables by compensating for dispersion using dispersion curve data. For ACSR cables, it was considered to be difficult to obtain accurate dispersion curves using modelling due to the complex geometry and unknown coupling between wire strands. Group velocity dispersion curves were, therefore, measured experimentally on an untensioned, 26.5m long cable and a method of calculating theoretical dispersion curves was obtained. Attenuation and dispersion compensation were then performed for a broadband Maximum Length Sequence (MLS) excitation signal. An increase in the Signal to Noise Ratio (SNR) of about 4-8dB compared to that of the dispersed signal was obtained. However, the main benefit was the increased ability to resolve the individual echoes from the end of the cable and an introduced defect in the form of a cut, which was 7 to at least 13dB greater than that of the dispersed signal. Five echoes were able to be clearly detected using MLS excitation signal, indicating the potential for an inspection range of up to 130m in each direction. To the best of the authors knowledge, this is the longest inspection range for ACSR cables reported in the literature, where typically cables, which were only one or two meter long, have been investigated previously. Narrow band tone burst and Hann windowed tone burst excitation signal also showed increased SNR and ability to resolve closely spaced echoes. PMID:25991388

  19. Predicting the uniaxial compressive strength of cemented paste backfill from ultrasonic pulse velocity test

    NASA Astrophysics Data System (ADS)

    Yılmaz, Tekin; Ercikdi, Bayram

    2016-07-01

    The aim of this study is to investigate the predictability of the uniaxial compressive strength (UCS) of cemented paste backfill (CPB) prepared from three different tailings (Tailings T1, Tailings T2 and Tailings T3) using ultrasonic pulse velocity (UPV) test. For this purpose, 180 CPB samples with diameter × height of 5 × 10 cm (similar to NX size) prepared at different binder dosages and consistencies were subjected to the UPV and UCS tests at 7-56 days of curing periods. The effects of binder dosage and consistency on the UPV and UCS properties of CPB samples were investigated and UCS values were correlated with the corresponding UPV data. Microstructural analyses were also performed on CPB samples in order to understand the effect of microstructure (i.e. total porosity) on the UPV data. The UPV and UCSs of CPB samples increased with increasing binder dosage and reducing the consistency irrespective of the tailings type and curing periods. Changes in the mixture properties observed to have a lesser extent on the UPV properties of CPB, while, their effect on the UCS of CPB was significant. Empirical equations were produced for each mixture in order to predict the UCSs of CPB through UPV. The validity of the equations was also checked by t- and F-test. The results showed that a linear relation appeared to exist between the UPV and UCS with high correlation coefficients (r ≥ 0.79) and all models were valid by statistical analysis. Mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) analyses have revealed that the UPV properties of CPB samples were highly associated with their respective microstructural properties (i.e. total porosity). The major output of this study is that UPV test can be effectively used for a preliminary prediction of the strength of CPB.

  20. Ultrasonic detection of photothermal interaction of lasers with tissue using a pulsed Doppler system

    NASA Astrophysics Data System (ADS)

    Ying, Hao; Azeemi, Aamer; Hartley, Craig J.; Motamedi, Massoud; Bell, Brent A.; Rastegar, Sohi; Sheppard, L. C.

    1995-05-01

    Thermal therapy using various heating sources such as lasers or microwaves to destroy benign and malignant lesions has recently gained widespread acceptance. However, the accurate prediction of thermal damage in tissue according to theoretical or computer modeling is difficult and unreliable due to target variability with respect to physical properties, geometry, and blood perfusion. Thus, one of the major obstacles to application of thermal therapies has been the lack of a noninvasive, real-time method that could determine the extent and geometry of treated tissue. To evaluate the effects of laser heating on tissue, we have developed an analog-digital hybrid Doppler ultrasound system to measure the phase and amplitude of ultrasonic echoes returned from the heated tissue. The system consists of an eight-gate pulsed Doppler detector, a 16-channel 12-bit A/D converter, and a signal analysis and visualization software package. In vitro studies using canine liver showed two distinct types of modulation of the echoes along the ultrasound beam path during laser irradiation using an 810 nm diode laser. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 1 signals showed a small and slow variation in amplitude and phase, and were attributed to tissue coagulation. Type 2 signals showed large and rapid variations in amplitude and phase which usually appeared after tissue surface explosion and were indicative of tissue ablation. We hypothesize that the observed phase changes in type 1 signals are due to thermal effects within the tissue consistent with tissue expansion and contraction while the phase changes in type 2 signals are likely due to formation and motion of gas bubbles in the tissue. A further development of the Doppler ultrasound technique could lead to the generation of feedback information needed for monitoring and automatic control of thermal treatment using various heating modalities such as

  1. Real-time measurement of ice growth during simulated and natural icing conditions using ultrasonic pulse-echo techniques

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.; Kirby, M. S.

    1986-01-01

    Results of tests to measure ice accretion in real-time using ultrasonic pulse-echo techniques are presented. Tests conducted on a 10.2 cm diameter cylinder exposed to simulated icing conditions in the NASA Lewis Icing Research Tunnel and on an 11.4 cm diameter cylinder exposed to natural icing conditions in flight are described. An accuracy of + or - 0.5 mm is achieved for real-time ice thickness measurements. Ice accretion rate is determined by differentiating ice thickness with respect to time. Icing rates measured during simulated and natural icing conditions are compared and related to icing cloud parameters. The ultrasonic signal characteristics are used to detect the presence of surface water on the accreting ice shape and thus to distinguish between dry ice growth and wet growth. The surface roughness of the accreted ice is shown to be related to the width of the echo signal received from the ice surface.

  2. Transmission errors and forward error correction in embedded differential pulse code modulation

    NASA Astrophysics Data System (ADS)

    Goodman, D. J.; Sundberg, C.-E.

    1983-11-01

    Formulas are derived for the combined effects of quantization and transmission errors on embedded Differential Pulse Code Modulation (DPCM) performance. The present analysis, which is both more general and precise than previous work on transmission errors in digital communication of analog signals, includes as its special cases the conventional DPCM and Pulse code Modulation. An SNR formula is obtained in which the effects of source characteristics and the effects of transmission characteristics are clearly distinguishable. Also given in computationally convenient form are specialized formulas applying to uncoded transmission through a random-error channel, transmission through a slowly fading channel, and transmission with all or part of the DCPM signal being protected by an error-correcting code.

  3. Decoupling of Getting Up Detection Device Using Ultrasonic Radar by Changing Duty Ratio of Transmission Wave

    NASA Astrophysics Data System (ADS)

    Yamada, Yo; Tanaka, Kanya; Haruyama, Kazuo; Wakasa, Yuji; Akashi, Takuya

    The decline in the quality of patient's safety control is a problem, because the number of caretakers is reduced by the acceleration of demographic aging in an elder care facility. Especially, the detection of getting up from the bed is very important for preventing patients from falling and wandering unbreakable. In our previous study, we have developed the getting up detection device with an ultrasonic radar, which is safe, cheap, and break-proof. However, if there are many patients in a ward, it is difficult to use some ultrasonic radars. The reason is that if some ultrasonic radars, which have the same frequency, are used in same ward, the ultrasonic signals are coherent with each other. To solve this problem, we propose a novel incoherent method. This method is achieved by improving the software in the device at a low cost.

  4. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  5. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  6. High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements

    NASA Astrophysics Data System (ADS)

    Ben-David, Avishai; Emery, Silvio L.; Gotoff, Steven W.; D'Amico, Francis M.

    1992-07-01

    A multiple wavelength, pulsed CO2 lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO2 laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented.

  7. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements.

    PubMed

    Ben-David, A; Emery, S L; Gotoff, S W; D'Amico, F M

    1992-07-20

    A multiple wavelength, pulsed CO(2) lidar system operating at a pulse repetition frequency of 200 Hz and permitting the random selection of CO(2) laser wavelengths for each laser pulse is presented. This system was employed to measure target reflectance and atmospheric transmission by using laser pulse bursts consisting of groups with as many as 16 different wavelengths at a repetition rate of 12 Hz. The wavelength tuning mechanism of the transversely excited atmospheric laser consists of a stationary grating and a flat mirror controlled by a galvanometer. Multiple wavelength, differential absorption lidar (DIAL) measurements reduce the effects of differential target reflectance and molecular absorption interference. Examples of multiwavelength DIAL detection for ammonia and water vapor show the dynamic interaction between these two trace gases. Target reflectance measurements for maple trees in winter and autumn are presented. PMID:20725406

  8. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood.

    PubMed

    Dündar, Türker; Wang, Xiping; As, Nusret; Avcı, Erkan

    2016-03-01

    The objective of this study was to examine the potential of ultrasonic velocity as a rapid and nondestructive method to predict the dimensional stability of oak (Quercus petraea (Mattuschka) Lieblein) and chestnut (Castanea sativa Mill.) that are commonly used in flooring industry. Ultrasonic velocity, specific gravity, and radial, tangential and volumetric shrinkages were measured on seventy-four 20×20×30-mm(3) specimens obtained from freshly cut oak and chestnut stems. The ultrasonic velocities of the specimens decreased with increasing moisture content (MC). We found that specific gravity was not a good predictor of the transverse shrinkages as indicated by relatively weak correlations. Ultrasonic velocity, on the other hand, was found to be a significant predictor of the transverse shrinkages for both oak and chestnut. The best results for prediction of shrinkages of oak and chestnut were obtained when the ultrasonic velocity and specific gravity were used together. The multiple regression models we developed in this study explained 77% of volumetric shrinkages in oak and 72% of volumetric shrinkages in chestnut. It is concluded that ultrasonic velocity coupled with specific gravity can be employed as predicting parameters to evaluate the dimensional stability of oak and chestnut wood during manufacturing process.

  9. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, George E.

    1987-01-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  10. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, G.E.

    1985-02-22

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  11. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    PubMed

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  12. Prediction of flat-bottom hole signals received by a spherically focused transducer for an ultrasonic pulse echo immersion testing

    NASA Astrophysics Data System (ADS)

    Xiao, Huifang; Sun, Yunyun; Chen, Dan; Xu, Jinwu

    2016-11-01

    The spherically focused transducer has been widely used for nondestructive evaluation of micrometer-scale inner defects in material and microelectronic devices due to its outstanding transverse resolution and high beam intensity. In this paper, by combining the beam model, the flaw scattering model and the system efficiency factor, an ultrasonic measurement model is developed for the spherically focused transducer in an ultrasonic pulse-echo immersion testing and is used to predict the ultrasonic flaw signal for flat bottom hole (FBH). The multi-Gaussian beam (MGB) model and the Gaussian beam equivalent point source (GBEPS) model are extended to evaluate the beam fields radiated by the spherically focused transducer in water and transmitted into solid through a planar interface. Results show that the MGB model is more excellent considering both the accuracy and efficiency. Experiments are performed to determine the system efficiency factor and the experimental measured flaw signal is compared with the model predictions to validate the accuracy of the proposed model. Effects of the depth and size of the FBH are further studied using the established model.

  13. Full circuit calculation for electromagnetic pulse transmission in a high current facility

    NASA Astrophysics Data System (ADS)

    Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun

    2014-11-01

    We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.

  14. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph; Roach, Dennis P.; Rackow, Kirk A.; Nelson, Ciji L.; Dasch, Cameron J.; Moore, David G.

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  15. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  16. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. PMID:24861424

  17. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant.

  18. Ultrasonic testing method

    SciTech Connect

    Ferreira, N.C.

    1989-02-21

    This patent describes an ultrasonic sound scanning method for detection of ultrasonic anomalies in a workpiece having an inspection surface and at least one formation which results in an echo-masked zone in the workpiece, the method including carrying out an inspection pass by (a) directing a beam of ultrasonic sound pulses from a probe along a beam axis through a transmission medium and impinging the beam upon the inspection surface at a selected impingement angle and thence into the workpiece, (b) receiving echo pulses thereby reflected from the workpiece, (c) displaying the echo pulses to reveal those, if any, which indicate the existence of anomalies within the workpiece, and (d) traversing the beam in a pre-selected path along the inspection surface, the improvement comprising: making one or more first inspection passes with the probe oriented so that, relative to the workpiece, the beam lies within one or more first scanning planes which are non-perpendicular to at least one of the return-reflecting formation at its point or respective points of intersection with the first plane or planes, whereby to reduce the volume of the echo-masked zone relative to that which would be generated with the probe oriented in a corresponding number or one or more scanning planes which are perpendicular to at least one return-reflecting formation.

  19. Pulse-echo phased array ultrasonic inspection of pultruded rod stitched efficient unitized structure (PRSEUS)

    SciTech Connect

    Johnston, P. H.

    2011-06-23

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading.

  20. Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity

    SciTech Connect

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1992-03-01

    A new instrument based on a constant frequency pulse phase-locked loop concept has been developed to accurately measure the ultrasonic phase velocity in condensed matter. Measurements of the sound velocity in ultrapure water are reported in which both damped and undamped transducers are used with the instrument together with reflectors of various thicknesses placed in the sound propagation path. An analysis of measurements made with the new instrument and similar measurements, taken under identical experimental conditions, using a popular variable frequency pulsed-phase-locked loop instrument is reported. Uncertainties in both measurement systems are analyzed and discussed. A method for measuring inherent phase shifts, not addressed by previous investigators, within the variable frequency pulsed phase-locked loop system and a derivation of the equations that govern the overall use of variable frequency systems using phase-sensitive comparisons are presented. The effects of a finite pulse length on the measurements of phase velocity in dispersive media are addressed in detail.

  1. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  2. Regional spectroscopy of paraffin-embedded breast cancer tissue using pulsed terahertz transmission imaging

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas

    2016-03-01

    This work seeks to obtain the properties of paraffin-embedded breast cancer tumor tissues using transmission imaging and spectroscopy. Formalin-fixed and paraffin-embedded breast tumors are first sectioned into slices of 20 μm and 30 μm and placed between two tsurupica slides. The slides are then scanned in a pulsed terahertz system using transmission imaging. The tissue regions in adjacent pathology section are compared to the transmission imaging scan in order to define a region of points over which to average the electrical properties results from the scan.

  3. Degree of dispersion monitoring by ultrasonic transmission technique and excitation of the transducer's harmonics

    NASA Astrophysics Data System (ADS)

    Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.

  4. Using pulsed neutron transmission for crystalline phase imaging and analysis

    SciTech Connect

    Steuwer, A.; Withers, P. J.; Santisteban, J. R.; Edwards, L.

    2005-04-01

    The total scattering cross section of polycrystalline materials in the thermal neutron region contains valuable information about the scattering processes that neutrons undergo as they pass through the sample. In particular, it displays characteristic discontinuities or Bragg edges of selected families of lattice planes. We have developed a pixelated time-of-flight transmission detector able to record these features and in this paper we examine the potential for quantitative phase analysis and crystalline phase imaging through the examination of a simple two-phase test object. Two strategies for evaluation of the absolute phase volumes (path lengths) are examined. The first approach is based on the evaluation of the Bragg edge amplitude using basic profile information. The second approach focuses on the information content of certain regions of the spectrum using a Rietveld-type fit after first identifying the phases via the characteristic edges. The phase distribution is determined and the coarse chemical species radiographic image reconstructed. The accuracy of this method is assessed.

  5. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum. PMID:23853267

  6. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision.

  7. Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades.

    PubMed

    Long, Chloe V; Flint, James A; Lepper, Paul A

    2010-10-01

    Bat mortality resulting from actual or near-collision with operational wind turbine rotors is a phenomenon that is widespread but not well understood. Because bats rely on information contained in high-frequency echoes to determine the nature and movement of a target, it is important to consider how ultrasonic pulses similar to those used by bats for echolocation may be interacting with operational turbine rotor blades. By assessing the characteristics of reflected ultrasonic echoes, moving turbine blades operating under low wind speed conditions (<6 m s(-1)) were found to produce distinct Doppler shift profiles at different angles to the rotor. Frequency shifts of up to ±700-800 Hz were produced, which may not be perceptible by some bat species. Monte Carlo simulation of bat-like sampling by echolocation revealed that over 50 rotor echoes could be required by species such as Pipistrellus pipistrellus for accurate interpretation of blade movement, which may not be achieved in the bat's approach time-window. In summary, it was found that echoes returned from moving blades had features which could render them attractive to bats or which might make it difficult for the bat to accurately detect and locate blades in sufficient time to avoid a collision. PMID:20968394

  8. Nonlinear ultrasonic pulsed measurements and applications to metal processing and fatigue

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.; Na, Jeong K.

    2001-04-01

    Nonlinear ultrasonics research at NASA-Langley Research Center emphasizes development of experimental techniques and modeling, with applications to metal fatigue and metals processing. This review work includes a summary of results from our recent efforts in technique refinement, modeling of fatigue related microstructure contributions, and measurements on fatigued turbine blades. Also presented are data on 17-4PH and 410-Cb stainless steels. The results are in good agreement with the models.

  9. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium

    NASA Astrophysics Data System (ADS)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  10. Critical evaluation of pulse-echo ultrasonic test method for the determination of setting and mechanical properties of acrylic bone cement: influence of mixing technique.

    PubMed

    Hagan, Christopher P; Orr, John F; Mitchell, Christina A; Dunne, Nicholas J

    2015-02-01

    Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult. PMID:25260486

  11. Critical evaluation of pulse-echo ultrasonic test method for the determination of setting and mechanical properties of acrylic bone cement: influence of mixing technique.

    PubMed

    Hagan, Christopher P; Orr, John F; Mitchell, Christina A; Dunne, Nicholas J

    2015-02-01

    Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.

  12. A dealiasing method for use with ultrasonic pulsed Doppler in measuring velocity profiles and flow rates in pipes

    NASA Astrophysics Data System (ADS)

    Murakawa, Hideki; Muramatsu, Ei; Sugimoto, Katsumi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2015-08-01

    The ultrasonic pulsed Doppler method (UDM) is a powerful tool for measuring velocity profiles in a pipe. However, the maximum detectable velocity is limited by the Nyquist sampling theorem. Furthermore, the maximum detectable velocity (also called Nyquist velocity), vmax, and the maximum measurable length are related and cannot be increased at the same time. If the velocity is greater than vmax, velocity aliasing occurs. Hence, the higher velocity that occurs with a larger pipe diameter, i.e. under higher flow rate conditions, cannot be measured with the conventional UDM. To overcome these limitations, dual-pulse repetition frequency (dual PRF) and feedback methods were employed in this study to measure velocity profiles in a pipe. The velocity distributions obtained with the feedback method were found to be more accurate than those obtained with the dual PRF method. However, misdetection of the Nyquist folding number using the feedback method was found to increase with the flow velocity. A feedback method with a moving average is proposed to improve the measurement accuracy. The method can accurately measure the velocity distributions at a velocity five times greater than the maximum velocity that can be measured with the conventional UDM. The measurement volume was found to be among the important parameters that must be considered in assessing the traceability of the reflector during the pulse emission interval. Hence, a larger measurement volume is required to measure higher velocities using the dual PRF method. Integrating velocity distributions measured using the feedback method with a moving average makes it possible to accurately determine flow rates six times greater than those that can be determined using the conventional pulsed Doppler method.

  13. Prototype and estimation an ultrasonic motor using a transmission rod with a stator vibrator and a rotor at the both ends

    NASA Astrophysics Data System (ADS)

    Takano, Takehiro; Tamura, Hideki; Sato, Daisuke; Aoyagi, Manabu

    2012-05-01

    A new structure of ultrasonic motor composed of a stator vibrator, a rotor and an ultrasonic transmission rod is proposed. Two vibrations of a stator vibrator mounted at a rod end excite two orthogonal bending vibrations in the rod and elliptic motions of displacement are formed at another end of the rod. The elliptic motions produce a rotating force to a rotor pressed at the end. The simple structure of mounting and preloading a rotor is designed by FEM. It is checked experimentally that two orthogonal bending vibrations are excited in the rod and the motor operation of the new construction is confirmed.

  14. Computational intelligence aspects for defect classification in aeronautic composites by using ultrasonic pulses.

    PubMed

    Cacciola, Matteo; Calcagno, Salvatore; Morabito, Francesco Carlo; Versaci, Mario

    2008-04-01

    Production of carbon fiber reinforced polymers (i.e., one of the basic material of the modern airplanes) is an elaborate process unfree from faults and problems. Errors during the manufacturing or the plies' overlapping, in fact, can cause particular flaws in the resulting material, so compromising its same integrity. Within this framework, ultrasonic tests could be useful to characterize the presence of defect, depending on its dimensions. On the contrary, the requirement of a perfect state for used polymers is unavoidable in order to assure both transport reliability and passenger safety. Therefore, a real-time approach able to recognize and classify the defect starting from the measured ultrasonic echoes could be very useful in industrial applications. The ill-posedness of the so defined process induce a regularization method. In this paper, an heuristic approach is proposed for this aim. Particularly, the proposed method is based on the use of support vector machines. Obtained results assure good performances of the implemented classifier, with very interesting applications.

  15. In-situ application of Ultrasonic Pulse Velocity measurements to determine the degree of zeolitic alteration of ignimbrites

    NASA Astrophysics Data System (ADS)

    Evren Çubukçu, H.; Yurdakul, Yasin; Erkut, Volkan; Akkaş, Efe; Akın, Lütfiye; Ulusoy, İnan; Şen, Erdal

    2016-04-01

    The velocity of P-waves passing through a rock body is strongly dependent on the petrographical properties such as texture, crystallinity, porosity and fracture network. For this reason, the measurement of ultrasonic pulse velocities (UPV) has been widely used in various applications interested in mechanical properties of solid rock bodies. An ignimbrite is a deposit of pyroclastic density current originating from an explosive volcanic eruption and comprises of vitric volcanic ash, free crystals, juvenile magma fragments (pumice) and accidental xenoliths. The complex nature of the componentry of ignimbrites also exhibits spatial variation depending on the location of deposition. Furthermore, both syn- and post-depositional processes (i.e. welding, alteration etc.) may have drastic impact on the mechanical characteristics of the ignimbrites. Alteration can be defined as the devitrification and the crystallization of vitric components and the transformation of pre-existing minerals of the ignimbrite into new minerals under changing thermodynamic conditions. In this context, zeolitization is an alteration process in which metastable (vitric) components of an ignimbrite body are replaced by zeolite group of minerals under low temperature and pressure induced by hydrothermal activity. The crystallization of zeolite minerals in the pore space promotes an increase in crystallinity and therefore a decrease in porosity. Hence, the velocity of P-waves passing through a zeolitized ignimbrite will be considerably higher compared to those in unaltered counterparts. Within the scope of a TUBİTAK project (No:113Y439) in which the alteration properties of Cappadocian Ignimbrites (Nevşehir, Turkey) are being investigated, in-situ UPV measurements have been performed using a portable pulse test instrument. The acquired velocity data has been correlated with the modal proportions of secondary zeolite minerals obtained by SEM-EDS. The results demonstrate that the measured P

  16. Pulse-transmission Oscillators: Autonomous Boolean Models and the Yeast Cell Cycle

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2010-03-01

    Models of oscillatory gene expression typically involve a constitutively expressed or positively autoregulated gene which is repressed by a negative feedback loop. In Boolean representations of such systems, which include the repressilator and relaxation oscillators, dynamical stability stems from the impossibility of satisfying all of the Boolean rules at once. We consider a different class of networks, in which oscillations are due to the transmission of a pulse of gene activation around a ring. Using autonomous Boolean modeling methods, we show how the circulating pulse can be stabilized by decoration of the ring with certain feedback and feed-forward motifs. We then discuss the relation of these models to ODE models of transcriptional networks, emphasizing the role of explicit time delays. Finally, we show that a network recently proposed as a generator of cell cycle oscillations in yeast contains the motifs required to support stable transmission oscillations.

  17. Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil.

    PubMed

    Ferrante, G; Zarcone, M; Uryupin, S A

    2003-08-22

    The formation of a highly anisotropic photoelectron velocity distribution as a result of the interaction of a powerful ultrashort laser pulse with a thin foil is found to yield a large skin-layer depth and an anomalous increase of the transmission coefficient. The physical reason for the effect is the influence of the incident wave magnetic field, through the Lorenz force, on the electron kinetics in the skin layer.

  18. Flashover vulnerability of transmission and distribution lines to high-altitude electromagnetic pulse (HEMP)

    SciTech Connect

    Kruse, V.J.; Liu, T.K.; Tesche, F.M.; Barnes, P.R.

    1989-01-01

    This paper estimates the vulnerability of transmission and distribution lines to flashover from the electromagnetic pulse generated by a nuclear detonation 400 kilometers above the earth. The analysis consists of first determining the cumulative probability of induced-voltage on three-phase lines, including shield and neutral conductors, for four operating voltages and then comparing these stresses to estimates of line insulation strength. 11 refs., 9 figs., 5 tabs.

  19. Brachial vs. central systolic pressure and pulse wave transmission indicators: a critical analysis.

    PubMed

    Izzo, Joseph L

    2014-12-01

    This critique is intended to provide background for the reader to evaluate the relative clinical utilities of brachial cuff systolic blood pressure (SBP) and its derivatives, including pulse pressure, central systolic pressure, central augmentation index (AI), and pulse pressure amplification (PPA). The critical question is whether the newer indicators add sufficient information to justify replacing or augmenting brachial cuff blood pressure (BP) data in research and patient care. Historical context, pathophysiology of variations in pulse wave transmission and reflection, issues related to measurement and model errors, statistical limitations, and clinical correlations are presented, along with new comparative data. Based on this overview, there is no compelling scientific or practical reason to replace cuff SBP with any of the newer indicators in the vast majority of clinical situations. Supplemental value for central SBP may exist in defining patients with exaggerated PPA ("spurious systolic hypertension"), managing cardiac and aortic diseases, and in studies of cardiovascular drugs, but there are no current standards for these possibilities.

  20. Properties of defect-induced multiple pulse laser damage of transmission components.

    PubMed

    Ma, Bin; Zhang, Li; Lu, Menglei; Wang, Ke; Jiao, Hongfei; Zhang, Jinlong; Cheng, Xinbin; Yang, Liming; Wang, Zhanshan

    2016-09-01

    When the number of laser pulses increases, the laser-induced damage threshold of the optical components gradually declines. The magnitude and tendency of this reduced threshold are associated with various factors. Furthermore, this reduced threshold is conclusively determined by the limiting factors or defect characteristics that trigger damage to optical components. Then, fully understanding the damage properties of different kinds of defects will contribute to the optimization of the performance and lifetime of the optical components. In this study, the statistical and deterministic characterizations of the fatigue effect are used to evaluate the properties of the multiple pulse laser damage of transmission components. First, the influence of spot sizes and polishing materials on the properties of the multiple pulse laser damage of optical components is discussed. Then, the structural, absorptive, and mixed artificial defects are fabricated, and the damage characteristics are evaluated and analyzed. Finally, the damage mechanism of different factors has been clarified. PMID:27607284

  1. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    SciTech Connect

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  2. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  3. 640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance.

    PubMed

    Harako, Koudai; Seya, Daiki; Hirooka, Toshihiko; Nakazawa, Masataka

    2013-09-01

    We report a substantial increase in PMD tolerance in a single-channel ultrahigh-speed transmission using optical Nyquist pulses. We demonstrate both analytically and experimentally a large reduction in depolarization-induced crosstalk with optical Nyquist pulses, which is one of the major obstacles facing polarization-multiplexed ultrashort pulse transmission. By taking advantage of the high PMD tolerance, a low-penalty 1.28 Tbit/s/ch optical Nyquist TDM transmission at 640 Gbaud was achieved over 525 km.

  4. Experimental spatial sampling study of the real-time ultrasonic pulse-echo BAI-mode imaging technique.

    PubMed

    Yin, Xiangtao; Morris, Scott A; O'Brien, William D

    2003-04-01

    The ultrasonic pulse-echo backscattered amplitude integral (BAI)-mode imaging technique has been developed to inspect the seal integrity of hermetically sealed, flexible food packages. With a focused 17.3-MHz transducer acquiring radio frequency (RF) echo data in a static rectilinear stop-and-go pattern, this technique was able to reliably detect channel defects as small as 38 microm in diameter and occasionally detect 6-microm-diameter channels. This contribution presents our experimental spatial sampling study of the BAI-mode imaging technique with a continuous zigzag scanning protocol that simulates a real-time production line inspection method in continuous motion. Two transducers (f/2 17.3 MHz and f/3 20.3 MHz) were used to acquire RF echo data in a zigzag raster pattern from plastic film samples bearing rectilinear point reflector arrays of varying grid spacings. The average BAI-value difference (deltaBAI) between defective and intact regions and the contrast-to-noise ratio (CNR) were used to assess image quality as a function of three spatial sampling variables: transducer spatial scanning step size, array sample grid spacing, and transducer -6-dB pulse-echo focal beam spot size. For a given grid size, the deltaBAI and CNR degraded as scanning step size in each spatial dimension increased. There is an engineering trade-off between the BAI-mode image quality and the transducer spatial sampling. The optimal spatial sampling step size has been identified to be between one and two times the -6-dB pulse-echo focal beam lateral diameter. PMID:12744399

  5. Transmission mode adaptive beamforming for planar phased arrays and its application to 3D ultrasonic transcranial imaging

    NASA Astrophysics Data System (ADS)

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.

    2013-03-01

    A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).

  6. Mid IR pulsed light source for laser ultrasonic testing of carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Hatano, H.; Watanabe, M.; Kitamura, K.; Naito, M.; Yamawaki, H.; Slater, R.

    2015-09-01

    A quasi-phase-matched (QPM) optical parametric oscillator (OPO) was developed using a periodically poled Mg-doped stoichiometric LiTaO3 crystal to generate mid-IR light for excitation of laser ultrasound in carbon fiber reinforced plastic (CFRP). The ultrasound generation efficiency was measured at the three different wavelengths that emanate from the OPO: 1.064 μm, 1.59/1.57 μm, and 3.23/3.30 μm. The measurements indicate that mid-IR 3.2-3.3 μm light generates the most efficient ultrasonic waves in CFRP with the least laser damage. We used mid-IR light in conjunction with a laser interferometer to demonstrate the detection of flaws/defects in CFRP such as the existence of air gaps that mimic delamination and voids in CFRP, and the inhomogeneous adhesion of CFRP material to a metal plate was also clearly detected.

  7. Histotripsy Produced by Hundred-Microsecond-Long Focused Ultrasonic Pulses: A Preliminary Study.

    PubMed

    Guan, Yubo; Lu, Mingzhu; Li, Yujiao; Liu, Fenfen; Gao, Ya; Dong, Tengju; Wan, Mingxi

    2016-09-01

    A new strategy is proposed in this study to rapidly generate mechanical homogenized lesions using hundred-microsecond-long pulses. The pulsing scheme was divided into two stages: generating sufficient bubble seed nuclei via acceleration by boiling bubbles and efficiently forming a mechanically homogenized and regularly shaped lesion with a homogenate inside via inertial cavitation. The duty cycle was set at 4.9%/3.9% in stage 1 and 1%/0.88% in stage 2 by changing the pulse duration (PD) and off-time independently. The pulse sequence was 500-μs/400-μs PD with a 100-Hz pulse repetition frequency (PRF) in stage 1, followed by 500-μs/400-μs PD with a 100-Hz PRF and 200-μs PD with a 200-Hz PRF in stage 2. Experiments were conducted on polyacrylamide phantoms with bovine serum albumin and on ex vivo porcine kidney tissues using a single-element 1.06-MHz transducer at an 8-MPa peak negative pressure with shock waves. The lesion evolution and dynamic elastic modulus variation in the phantoms and the histology in the tissue samples were investigated. The results indicate that the two-stage treatment using hundred-microsecond-long pulses can efficiently produce mechanically homogenized lesions with smooth borders, long tear shapes and the total homogenate inside. The time to generate a single mechanically homogenized lesion is shortened from >50 s to 17.1 s. PMID:27318864

  8. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  9. Lumped-element model of a tapered transmission line for impedance matching in a pulsed power system

    NASA Astrophysics Data System (ADS)

    Lee, Kun-A.; Ko, Kwang-Cheol

    2016-07-01

    In a pulsed power system, impedance matching is one of the significant factors for increasing the efficiency of the system. One of the most general methods for impedance matching is to use a tapered transmission line. Because the characteristics of a tapered transmission line are changed continuously according to its position, modeling the tapered transmission line by using lumped elements is difficult. In this study, we investigated a tapered transmission line to match the impedance of power supply to that of a load by using lumped elements especially in a pulsed power system. In modeling the tapered transmission line, we used the concept of a transmission, and we introduced an efficient modeling method. We propose a simulation model based on the investigation results. The results of the study will be useful for research on tapered transmission lines.

  10. All-fiber-integrated linearly polarized fiber laser delivering 476  μJ, 50  kHz, nanosecond pulses for ultrasonic generation.

    PubMed

    Zhang, Pengfei; Xu, Xiaodong; Yu, Hailong; Su, Rongtao; Wang, Xiaolin; Yang, Lijia

    2016-05-10

    We demonstrate a high-energy linearly polarized pulsed fiber laser for ultrasonic generation based on a master oscillator power amplification (MOPA) scheme, which delivers nanosecond pulses with duration of 4.8 ns and pulse energy of 476 μJ at the repetition rate of 50 kHz. The MOPA is seeded by a gain switch semiconductor laser diode at 1064 nm. In the pre-amplification stages, a double-pass amplification structure is designed and successfully applied to amplify the low-power seed laser for the consideration of suppressing amplified spontaneous emission, decreasing the number of amplification stages, and reducing the nonlinear effects. A highly ytterbium-doped fiber is utilized in the main amplifier to shorten the fiber length and reduce the fiber nonlinearity. The average power is finally boosted to 23.8 W with corresponding optical-to-optical efficiency of 66.9% and a polarization extinction rate of ∼10.5  dB. The corresponding peak power is calculated to be 87.1 kW. Finally, the established laser system is successfully used for ultrasonic generation based on a line excitation configuration and grating excitation configuration, and clear surface acoustic wave signals are detected. Many potential applications in laser ultrasonics can be foreseen. PMID:27168281

  11. Online process control for directional solidification by ultrasonic pulse echo technique.

    PubMed

    Drevermann, A; Pickmann, C; Tiefers, R; Zimmermann, G

    2004-04-01

    A method of controlling the actual growth velocity during directional solidification based on ultrasound has been developed. For this purpose a pulse echo technique is used to measure the actual solidification rate online. This quantity is used to control the furnace velocity. Solidification experiments with metallic alloys and constant furnace velocity often result in non-steady actual solidification rates. Experiments carried out with online process control demonstrate that a really steady-state solidification with a constant solidification rate is achieved.

  12. The effect of stress on ultrasonic pulses in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Hemann, J. H.; Baaklini, G. Y.

    1983-01-01

    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress for an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267 400 cm/sec to 680 000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

  13. Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter.

    PubMed

    Zheng, Yi; Chen, Shigao; Tan, Wei; Kinnick, Randall; Greenleaf, James F

    2007-02-01

    A method using pulse echo ultrasound and the Kalman filter is developed for detecting submicron harmonic motion induced by ultrasonic radiation force. The method estimates the amplitude and phase of the motion at desired locations within a tissue region with high sensitivity. The harmonic motion generated by the ultrasound radiation force is expressed as extremely small oscillatory Doppler frequency shifts in the fast time (A-line) of ultrasound echoes, which are difficult to estimate. In slow time (repetitive ultrasound echoes) of the echoes, the motion also is presented as oscillatory phase shifts, from which the amplitude and phase of the harmonic motion can be estimated with the least mean squared error by Kalman filter. This technique can be used to estimate the traveling speed of a harmonic shear wave by tracking its phase changes during propagation. The shear wave propagation speed can be used to solve for the elasticity and viscosity of tissue as reported in our earlier study. Validation and in vitro experiments indicate that the method provides excellent estimations for very small (submicron) harmonic vibrations and has potential for noninvasive and quantitative stiffness measurements of tissues such as artery.

  14. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    NASA Technical Reports Server (NTRS)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  15. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    PubMed

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning.

  16. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    PubMed

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning. PMID:26489364

  17. Beam-forming techniques with applications to pulsed Doppler ultrasonic flowmeters

    NASA Astrophysics Data System (ADS)

    Fu, C. C.

    The near-field and array approaches to beam forming appear to be the most practical and useful methods for providing uniform illumination of the cross section of blood vessels. Through the near-field approach, the required beam patterns are produced in the near field of pulsed transducers and, as a result, it is most suitable for peripheral applications. Field patterns of pulsed transducers are defined and are investigated by theoretical analysis, numerical simulation, and experimental characterization to verify the validity and indicate the limitations of this approach. Transducers are designed and fabricated, based on these results, and are employed in the preliminary flowmeter system evaluation. The use of transducer arrays is the only viable approach to deepbody measurements and flexible beamwidth adjustment. A theory, founded on the finite Fourier-Bessel and Dini series expansions, is developed to synthesize circularly symmetrical beam patterns by means of concentric annular arrays. Its application to the generation of variable-width uniform beams results in a canonical design procedure. A prototype transducer array suitable for transcutaneous cardiac-output estimation was developed.

  18. Pulse reflection and transmission due to impurities in a granular chain.

    PubMed

    Liu, Shi Wei; Yang, Yang Yang; Duan, Wen Shan; Yang, Lei

    2015-07-01

    Reflection and transmission due to the incident wave in one-dimensional bead chains when there are impurities have been studied. The impurities can be any kind of material, any size, and their numbers are arbitrary. The dependence of the transmission and the reflection on the numbers and the material parameters of the impurities are given. The analytical results are given by using the inverse scattering method. Substantial reflection is observed if there is only one steel bead. However, the reflection is negligible if there are two steel beads. The reflection monotonously increases as the numbers of the steel beads increase. The reflection remains a constant when the numbers of the steel beads are so many that the length composed by the steel beads is larger than the width of the solitary wave. It can be used to detect the impurities in the beads' chain by measuring the reflection of a pulse.

  19. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  20. The Next Linear Collider Test Accelerator's RF Pulse Compression And Transmission

    SciTech Connect

    Tantawi, S.G.; Adelphson, C.; Holmes, S.; Lavine, Theodore L.; Loewen, R.J.; Nantista, C.; Pearson, C.; Pope, R.; Rifkin, J.; Ruth, R.D.; Vlieks, A.E.; /SLAC

    2011-09-14

    The overmoded rf transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit rf power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II* pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II. The NLC rf systems use low loss highly over-moded circular waveguides operating in the TE01 mode. The efficiency of the systems is sensitive to the mode purity of the mode excited inside these guides. We used the so called flower petal mode transducer [2] to excite the TE01 mode. This type of mode transducer is efficient, compact and capable of handling high levels of power. To make more efficient systems, we modified this device by adding several mode selective chokes to act as mode purifiers. To manipulate the rf signals we used these modified mode converters to convert back and forth between over-moded circular waveguides and single-moded WR90 rectangular waveguides. Then, we used the relatively simple rectangular waveguide components to do the actual manipulation of rf signals. For example, two mode transducers and a mitered rectangular waveguide bend comprise a 90 degree bend. Also, a magic tee and four mode transducers would comprise a four-port-hybrid, etc. We will discuss the efficiency of an rf transport system based on the above methodology. We also used this methodology in building the SLEDII pulse compression system. At SLAC we built 4 of these pulse systems. In this paper we describe the SLEDII system and compare the performance of these 4 systems at SLAC. We

  1. An all solid-state high-voltage ns trigger generator based on magnetic pulse compression and transmission line transformer.

    PubMed

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Chen, Xinbing

    2013-09-01

    Innovative design of an all solid-state high-voltage ns trigger generator, based on magnetic pulse compression and transmission line transformer, is presented. The repetitive trigger pulse generator was developed to trigger a 700 kV trigatron, which has been used to pulse a repetitive intense electron beam accelerator with Tesla transformer charged double pulse forming lines (PFLs). Experimental results show that the trigger pulse generator could produce 180 kV 65 ns duration pulses with a rise time of 20 ns. The repetitive trigger pulses have nice uniform in the voltage waveform. The control time jitter is less then 3 ns. Owing to its good stability and low time jitter, the high-voltage trigger generator is an excellent candidate to trigger the repetitive accelerator.

  2. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    SciTech Connect

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1991-10-01

    A new instrument based on a constant frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonicwavevelocity in liquids and changes in ultrasonicwavevelocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques including the constant phase shifts of reflectors placed in the path of the ultrasonicwave.Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measurevelocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10{sup 7}.

  3. A novel structure of transmission line pulse transformer with mutually coupled windings.

    PubMed

    Yu, Binxiong; Su, Jiancang; Li, Rui; Zhao, Liang; Zhang, Xibo; Wang, Junjie

    2014-03-01

    A novel structure of transmission line transformer (TLT) with mutually coupled windings is described in this paper. All transmission lines except the first stage of the transformer are wound on a common ferrite core for the TLT with this structure. A referral method was introduced to analyze the TLT with this structure, and an analytic expression of the step response was derived. It is shown that a TLT with this structure has a significantly slower droop rate than a TLT with other winding structures and the number of ferrite cores needed is largely reduced. A four-stage TLT with this structure was developed, whose input and output impedance were 4.2 Ω and 67.7 Ω, respectively. A frequency response test of the TLT was carried out. The test results showed that pulse response time of the TLT is several nanoseconds. The TLT described in this paper has the potential to be used as a rectangle pulse transformer with very fast response time.

  4. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements.

    PubMed

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ∼40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals. PMID:27131694

  5. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    NASA Astrophysics Data System (ADS)

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A.; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ˜40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals.

  6. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  7. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  8. Losses at magnetic nulls in pulsed-power transmission line systems

    SciTech Connect

    Mendel, C.W. Jr.; Pointon, T.D.; Savage, M.E.; Seidel, D.B.; Magne, I.; Vezinet, R.

    2006-04-15

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  9. Losses at magnetic nulls in pulsed-power transmission line systems.

    SciTech Connect

    Magne, I.; Savage, Mark Edward; Seidel, David Bruce; Mendel, Clifford Will, Jr.; Pointon, Timothy David; Vezinet, R.

    2004-08-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  10. Uplink transmission of a 60-km-reach WDM/OCDM-PON using a spectrum-sliced pulse source

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Kyu; Hanawa, Masanori; Park, Chang-Soo

    2014-02-01

    We propose and experimentally demonstrate the uplink transmission of a 60-km-reach wavelength division multiplexing/optical code division multiplexing (WDM/OCDM) passive optical network (PON) using a spectrum-sliced pulse source. As a single light source, a broadband pulse source with a bandwidth of 6.5 nm and a repetition rate of 1.25 GHz is generated at a central office and supplied to a remote node (RN) through a 50-km fiber link. At the RN, narrow-band pulses (as a source for uplink transmission) are obtained by spectrum slicing the broadband pulse source with a cyclic arrayed waveguide grating and are then supplied to all optical network units (ONUs) via 1×4 power splitters and 10-km drop fibers. Eight wavelengths are obtained with a 6.5-nm bandwidth of the broadband pulse source, and the qualities of the pulses with a repetition rate of 1.25 GHz and a pulse width of 45 ps for the eight wavelengths are sufficient for four-chip OCDM encoding at the ONUs. In our experiments, four signals are multiplexed by OCDM at one wavelength, and another encoded signal is also multiplexed by WDM. The bit error rates (BERs) of the signals exhibit error-free transmission (BER<10-9) over a 60-km single-mode fiber at 1.25 Gb/s.

  11. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  12. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-06-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ≥14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS’ System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

  13. Impedance matching network for high frequency ultrasonic transducer for cellular applications.

    PubMed

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K Kirk

    2016-02-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber=1.23) and 2.6mm (fnumber=0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (|Y|) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic pulse was

  14. Single-shot temporal envelope measurement of ultrashort extreme-UV pulses by spatially encoded transmission gating.

    PubMed

    Chu, Hsu-hsin; Yang, Chi-Hsiang; Liu, Shih-Cheng; Wang, Jyhpyng

    2015-12-28

    Single-shot ultrashort extreme-UV(EUV) pulse waveform measurement is demonstrated by utilizing strong field ionization of H2 gas for transmission gating. A cross-propagating intense near-IR gate pulse ionizes the EUV absorbing H2 molecules into EUV-non-absorbing H2++ (two protons) and creates a time sweep of transmission encoded spatially across the EUV pulse. The temporal envelope is then retrieved from the lopsided spatial profile of the transmitted pulse. This method not only measures EUV temporal envelope for each single shot, but also determines timing jitter and envelope fluctuation statistically, thus is particularly useful for characterizing low-repetition-rate fluctuating EUV/soft x-ray sources. PMID:26832064

  15. Ultrasonic bone densitometer

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    A device, for measuring the density of a bone structure so as to monitor the calcium content, is described. A pair of opposed spaced ultrasonic transducers are held within a clamping apparatus closely adjacent the bone being analyzed. These ultrasonic transducers incude piezoelectric crystals shaped to direct signals through the bone encompassed in the heel and finger of the subject being tested. A pulse generator is coupled to one of the transducers and generates an electric pulse for causing the transducers to generate an ultrasonic sound wave which is directed through the bone structure to the other transducer. An electric circuit, including an amplifier and a bandpass filter couples the signals from the receiver transducer back to the pulse generator for retriggering the pulse generator at a frequency proportional to the duration that the ultrasonic wave takes to travel through the bone structure being examined.

  16. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  17. Transmission of reactive pulsed laser deposited VO2 films in the THz domain

    NASA Astrophysics Data System (ADS)

    Émond, Nicolas; Hendaoui, Ali; Ibrahim, Akram; Al-Naib, Ibraheem; Ozaki, Tsuneyuki; Chaker, Mohamed

    2016-08-01

    This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO2) films in the terahertz (THz) frequency range, namely the transition temperature TIMT, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO2 monoclinic structure with an enhancement of (011) preferential orientation when varying the O2 pressure (PO2) during the deposition process from 2 to 25 mTorr. THz transmission measurements as a function of temperature reveal that VO2 films obtained at low PO2 exhibit low TIMT, large ΔA, and narrow ΔH. Increasing PO2 results in VO2 films with higher TIMT, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO2 IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

  18. Outgassing of lower hybrid antenna modules during high-power long-pulse transmission

    SciTech Connect

    Goniche, M.; Kazarian, F.; Bibet, P.; Maebara, S.; Seki, M.; Ikeda, Y.; Imai, T.

    2005-01-01

    During high-power, long-pulse transmission from lower-hybrid-range-of-frequency (LHRF) antennas, the waveguide walls outgas as a result of rf-loss-induced heating. If the resulting pressure rise is too high, power transmission will be adversely affected and additional pumping may be required to maintain the pressure at a low enough value. The outgassing rates of waveguides made of various materials (oxygen-free high-conductivity copper, dispersoid copper, copper-coated carbon fiber composite, copper-coated graphite) were measured during rf injection at high power density (50-200 MW/m{sup 2}) for a duration in the range 100-4700 s. The experiments were performed on a test-bed facility equipped with a 3.7 GHz klystron on multiwaveguide (2 to 18) mock-ups. The effect of the main parameters, namely, the waveguide surface temperature and the initial wall gas loading ('conditioning'), are analyzed in detail. It is concluded that an outgassing rate of 1x10{sup -5} (5x10{sup -5}) Pa m{sup 3} s{sup -1} m{sup -2} at 300 deg. C (400 deg. C) can be considered for most materials. The requirement, in terms of additional pumping, for the International Thermonuclear Experimental Reactor LHRF antenna is finally discussed.

  19. Localisation and direction of mitral regurgitant flow in mitral orifice studied with combined use of ultrasonic pulsed Doppler technique and two dimensional echocardiography.

    PubMed Central

    Miyatake, K; Nimura, Y; Sakakibara, H; Kinoshita, N; Okamoto, M; Nagata, S; Kawazoe, K; Fujita, T

    1982-01-01

    Regurgitant flow was analysed in 40 cases of mitral regurgitation, using combined ultrasonic pulsed Doppler technique and two dimensional echocardiography. Abnormal Doppler signals indicative of mitral regurgitant flow were detected in reference to the two dimensional image of the long axis view of the heart and the short axis view at the level of the mitral orifice. The overall direction of regurgitant flow into the left atrium was clearly seen in 28 of 40 cases, and the localisation of regurgitant flow in the mitral orifice in 38 cases. In cases with mitral valve prolapse of the anterior leaflet or posterior leaflet the regurgitant flow was directed posteriorly or anteriorly, respectively. The prolapse occurred at the anterolateral commissure or posteromedial commissure and resulted in regurgitant flow located near the anterolateral commissure or posteromedial commissure of the mitral orifice, respectively. In cases with rheumatic mitral regurgitation the regurgitant flow is usually towards the central portion of the left atrium and is sited in the mid-part of the orifice. The Doppler findings were consistent with left ventriculography and surgical findings. The ultrasonic pulsed Doppler technique combined with two dimensional echocardiography is useful for non-invasive analysis and preoperative assessment of mitral regurgitation. Images PMID:7138708

  20. Numerical analysis of the hybrid transducer ultrasonic motor: comparison of characteristics calculated by transmission-line and lumped-element models.

    PubMed

    Satonobu, Jun; Friend, James R; Nakamura, Kentaro; Ueha, Sadayuki

    2002-06-01

    In this paper, a hybrid transducer ultrasonic motor is numerically analyzed by using two equivalent electrical circuit models. A transmission-line model for the torsional vibration in the stator, which can model any torsional vibration mode and their combinations, was introduced and compared with a lumped-element model, which modeled the fundamental torsional resonance mode in the stator. The calculation result by using the transmission-line model demonstrated that the second harmonic torsional vibration increased either with the static spring force by which the rotor was pressed to the stator or with the load torque placed on the rotor. The difference in the calculated motor performance between the two models appeared when the second harmonic torsional vibration became large at a sufficient static spring force.

  1. Effects of high power microwave pulses on synaptic transmission and long term potentiation in hippocampus.

    PubMed

    Pakhomov, Andrei G; Doyle, Joanne; Stuck, Bruce E; Murphy, Michael R

    2003-04-01

    Effects of short, extremely high power microwave pulses (EHPP) on neuronal network function were explored by electrophysiological techniques in the isolated rat hippocampal slice model. Population spikes (PS) in the CA1 area were evoked by repeated stimulation (1 per 30 s) of the Schaffer collateral pathway. A brief tetanus (2 s at 50 Hz) was used to induce long term potentiation (LTP) of synaptic transmission. In three different series of experiments with a total of 160 brain slices, the EHPP irradiation was performed before, during, or after the tetanus. The EHPP carrier frequency was 9.3 GHz, the pulse width and repetition rate were from 0.5 to 2 micros and from 0.5 to 10 Hz, respectively, and the peak specific absorption rate (SAR) in brain slices reached up to 500 MW/kg. Microwave heating of the preparation ranged from 0.5 degrees C (at 0.3 kW/kg time average SAR) to 6 degrees C (at 3.6 kW/kg). The experiments established that the only effect caused by EHPP exposure within the studied range of parameters was a transient and fully reversible decrease in the PS amplitude. Recovery took no more than a few minutes after the cessation of exposure and return to the initial temperature. This effect's features were characteristic of an ordinary thermal response: it was proportional to the temperature rise but not to any specific parameter of EHPP, and it could also be induced by a continuous wave (CW) irradiation or conventional heating. Irradiation did not affect the ability of neurons to develop LTP in response to tetanus or to retain the potentiated state that was induced before irradiation. No lasting or delayed effects of EHPP were observed. The results are consistent with the thermal mechanism of EHPP action and thus far provided no indication of EHPP-specific effects on neuronal function.

  2. 2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km.

    PubMed

    Harako, Koudai; Seya, Daiki; Suzuki, Daiki; Hirooka, Toshihiko; Nakazawa, Masataka

    2015-11-30

    We demonstrate a single-channel 2.56 Tbit/s polarization-multiplexed DQPSK transmission using 640 Gbaud non-coherent optical Nyquist pulses. By virtue of a large tolerance to polarization-mode dispersion, the detrimental depolarization-induced crosstalk was reduced by 3.8 dB compared with RZ pulses. As a result, the transmission distance was substantially extended to 525 km compared with the distance of 300 km obtained with a Gaussian pulse.

  3. Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses.

    PubMed

    Islas-Cital, Alan; Atkins, Philip R; Foo, Kae Y; Picó, Ruben

    2011-10-01

    The phase angle component of the complex frequency response of a sonar system operating near transducer resonance is usually distorted. Interpretation and classification of the received sonar signal benefits from the preservation of waveform fidelity over the full bandwidth. A calibration process that measures the phase response in addition to the amplitude response is thus required. This paper describes an extension to the standard-target calibration method to include phase angle, without affecting the experimental apparatus, by using dual-frequency transmission pulses and frequency-domain data processing. This approach reduces the impact of unknown range and sound speed parameters upon phase calibration accuracy, as target phase is determined from the relationship of the two frequency components instead of relying on a local phase reference. Tungsten carbide spheres of various sizes were used to simultaneously calibrate the amplitude and phase response of an active sonar system in a laboratory tank. Experimental measurements of target phase spectra are in good agreement with values predicted from a theoretical model based upon full-wave analysis, over an operating frequency of 50-125 kHz.

  4. Ultrasonic Monitor

    NASA Technical Reports Server (NTRS)

    1983-01-01

    MicroUltrasonics PLR-1000 is a refined microprocessor-controlled version (usable on bolts, plates, liquids and gases) of the P2L2 developed by Langley Research Center. New technique is for nondestructive measurement of residual stress in various types of structures, for example, nuclear pressure vessels, pipes in nuclear reactors, offshore platforms, bridges, railroad tracks and wheels, aircraft wings, and engines. The instrument produces sound tone pulses that travel through a test specimen. PLR-1000 precisely measures speeds as stress increases speed of sound, tone changes, making precise measurements possible.

  5. Use of Modified Transmission Line Models to reproduce Initial Breakdown Pulse Waveforms

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T. C.; Stolzenburg, M.; Karunarathna, N.

    2013-12-01

    E-change waveforms of Initial breakdown pulses (IBPs) were recorded at multiple sites in and around Kennedy Space center, Florida in summer of 2011. Locations of IBPs were obtained using TOA method and used as constraints to model six ';classic' IBPs using three modified transmission line (MTL) models (MTLL-linearly decaying current, MTLE-exponentially decaying current, MTLEI-exponentially increasing current) from the literature and a new model, MTLK, with the current following the Kumaraswamy distribution. All four models did a good job of modeling all six IBPs; the MTLE model was most often the best fit. It is important to note that for a given pulse, there is good agreement between the different models on a number of parameters: current risetime, current falltime, two current shape factors, current propagation speed, and the IBP charge moment change. Ranges and mean values of physical quantities found are: current risetime [4.8-25, (13×6)] μs, current falltime [15-37, (25×6)] μs, current speed [0.78-1.8, (1.3×0.3)]×10^8 m/s (excluding one extreme case of MTLEI), channel length [0.20-1.6, (0.6×0.3)] km, charge moment [0.015-0.30, (0.12×0.10)] C km, peak current [16-404, (80×80)] kA, and absolute average line charge density [0.11-4.7, (0.90×0.90)] mC/m. Currents in the MTLL and MTLE models deposit negative charge along their paths and the mean total charges deposited (Q) were -0.35 and -0.71 C. MTLEI currents effectively deposited positive charge along their paths with Q = 1.3 C. MTLK is more special regarding how it handles the charges. Initially, along the lower current path, negative charge is deposited and positive charge is deposited onto its upper path making the overall charge transfer almost zero, (Q = 3.8×10^-5 C). Because of this the MTLK model apparently obeys conservation of charge without making that a model constraint.

  6. Ringing in the pulse response of long and wideband coaxial transmission lines due to group delay dispersion

    SciTech Connect

    Kotzian,G.; de Maria,R.; Caspers, F.; Federmann, S.; Hofle, W.

    2009-05-04

    In particle accelerators coaxial cables are commonly used to transmit wideband beam signals covering many decades of frequencies over long distances. Those transmission lines often have a corrugated outer and/or inner conductor. This particular construction exhibits a significant amount of frequency dependent group delay variation. A comparison of simulations based on theoretical models, numerical simulations and S{sub 21} network analyzer measurements up to 2.5 GHz is presented. It is shown how the non-linear phase response and varying group delay leads to ringing in the pulse response and subsequent distortion of signal s transmitted through such coaxial transmission lines.

  7. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    DOEpatents

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  8. Calculations and experimental investigation of pulse transmission system in the typical module of the facility “Gamma”

    NASA Astrophysics Data System (ADS)

    Zavyalov, N. V.; Punin, V. T.; Gordeev, V. S.; Grishin, A. V.; Nazarenko, S. T.; Balakin, V. A.; Glushkov, S. L.; Demanov, V. A.; Kozachek, A. V.; Pavlov, V. S.; Puchagin, S. Yu.; Strabykin, K. V.; Moiseevskikh, M. A.; Kalashnikov, D. A.; Spirin, D. P.; Mansurov, D. O.

    2014-08-01

    For the last few years in INRP RFNC-VNIIEF the works on development of a multi-module «Gamma» facility have been conducted. An important part of each module is a pulse transmission system (PTS), providing transportation of a high-volt electromagnetic pulse ( 2.3 MV, 60 ns) to a diode load, positioned at an angle of 80° to the axis of a module's forming system. Basic PTS units: a water-insulated transmission line (WTL), having a bended section, a vacuum insulator stack and a magnetically-insulated transmission line (MITL). At the first stage an experimental sample of PTS with diameter 0.65 m was studied. Performed studies allowed a conclusion that the given experimental PTS sample did not possess enough electric strength, what was a reason for electric breakdowns in the bended section of WTL. Reasons for breakdown occurrence were analyzed; conclusions were made on the necessity for increasing PTS diameter. As a result a PTS version with diameter 1 m was developed. This paper presents results of the experimental studies as a part of the facility module. Totally 200 shots of the module were performed with given PTS at different charge voltage of its forming lines. Reliable and steady operation of all PTS units, as well as correspondence between output module parameters and their calculated values were proved. When using PTS, without MITL in the module diode load, with impedance 3 Ohm the pulses with power 1.5 TW and total electron energy in a pulse 80 kJ were obtained. When using PTS with cylindrical MITL of 1.6 m length, the pulse power was 1.4 TW.

  9. Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments.

    PubMed

    Xu, Kailiang; Ta, Dean; He, Runxin; Qin, Yi-Xian; Wang, Weiqi

    2014-04-01

    Mode conversion occurs when the ultrasonic guided waves encounter fractures. The aim of this study was to investigate the feasibility of fracture assessment in long cortical bone using guided-mode conversion. Mode conversion behavior between the fundamental modes S0 and A0 was analyzed. The expressions proposed for modal velocity were used to identify the original and converted modes. Simulations and phantom experiments were performed using 1.0-mm-thick steel plates with a notch width of 0.5 mm and notch depths of 0.2, 0.4, 0.6 and 0.8 mm. Furthermore, in vitro experiments were carried out on nine ovine tibias with 1.0-mm-wide partial transverse gap break and cortical thickness varying from 2.10 to 3.88 mm. The study confirmed that mode conversion gradually becomes observable as fracture depth increases. Energy percentages of the converted modes correlated strongly with fracture depth, as illustrated by the frequency-sweeping experiments on steel phantoms (100-1100 kHz, r(2) = 0.97, p < 0.0069) and the fixed-frequency experiments on nine ovine tibias (250 kHz, r(2) = 0.97, p < 0.0056). The approaches described, including mode excitation, velocity expressions and energy percentage criteria, may also contribute to ultrasonic monitoring of long bone fracture healing.

  10. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  11. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    SciTech Connect

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to properly survey the heat

  12. The influence of local heating by nonlinear pulsed laser excitation on the transmission characteristics of a ZnO nanowire waveguide.

    PubMed

    Voss, Tobias; Svacha, Geoffry T; Mazur, Eric; Müller, Sven; Ronning, Carsten

    2009-03-01

    We perform a transmission experiment on a ZnO nanowire waveguide to study its transmission characteristics under nonlinear femtosecond-pulse excitation. We find that both the second harmonic and the photoluminescence couple into low-order waveguide modes of the nanowires but with distinctly different efficiencies. We measure the transmission spectrum of a single ZnO nanowire waveguide for near-UV light generated by interband recombination processes. The transmission spectrum allows us to determine the absorption edge of the excited nanowire and to study the temperature profile of the nanowire under femtosecond-pulse excitation.

  13. Ultrasonic Imaging of Reaction Wood in Standing Trees

    NASA Astrophysics Data System (ADS)

    Brancheriau, Loic; Saadat-Nia, Mohammad Ali; Gallet, Philippe; Lasaygues, Philippe; Pourtahmasi, Kambiz; Kaftandjian, Valerie

    Wood is an orthotropic material and its properties depend on its age but also depend on environmental growing conditions. An important feature of property alteration is reaction wood formation. Reaction wood forms when part of a tree is subjected to mechanical stress, and helps to bring parts of the plant into an optimal position. This article aims to study the effect of reaction wood on ultrasonic wave propagation using tomographic imaging. The ultrasonic emission was a pulse train of square wave. The peak frequency was 80 kHz. Two logs of poplar and spruce were tested because of the presence of different types of reaction wood (tension wood for poplar and compression wood for spruce). Maps were computed according to the Radon theory and using a filtered back projection algorithm with fan beam geometry. The intrinsic parameters were the slowness (s/m) and attenuation (dB/m at 80 kHz). In addition to ultrasonic tests, X-ray imaging in transmission was used. The ultrasonic maps were analyzed to highlight the differences between normal wood and observed reaction zones. The X-ray images were also compared to ultrasonic maps and the relationships between X-ray attenuation and ultrasonic parameters were discussed.

  14. Ultrasonic meters prove reliability on Nova Gas pipeline

    SciTech Connect

    Rogi, M.

    1995-08-01

    Getting the job done efficiently, safely, and economically are the main reasons Nova Gas Transmission Ltd. (NGTL) of Alberta, Canada looked to an ultrasonic gas flow meter for its flow measurement applications. In the past, NGTL relied mainly on orifice plates to measure mainline flow. In 1990, as a result of an increased requirement for reliable mainline measurement, NGTL initiated a Mainline Measurement Task group to review available metering devices and recommend the best solution. This task group compiled a list of acceptance criteria against which to assess various options. They were looking for mainline measurement devices with high accuracy and performance. After developing the acceptance criteria and researching other pipeline companies in North America and Europe, the Task Group narrowed the list of options to four measurement devices, including two single-path ultrasonic meters. Further evaluation conducted at NGTL`s research facility concluded that the single-path ultrasonic gas flow meter was best suited for NGTL`s system requirements. The single-path ultrasonic gas flow meter, selected by the Task Group, uses direct digital time measurement of the difference between travel times of individual upstream and downstream ultrasonic pulses. This paper reviews the complexity of flow measurements and the types of information that is necessary to accurately calculate flow. The performance and accuracy of the ultrasonic meter are provided based on this company`s experience.

  15. Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique

    PubMed Central

    Hiwatashi, Akio; Keupp, Jochen; Yamashita, Koji; Kikuchi, Kazufumi; Yoshiura, Takashi; Yoneyama, Masami; Kruiskamp, Marijn J.; Sagiyama, Koji; Takahashi, Masaya; Honda, Hiroshi

    2016-01-01

    In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs) were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s). The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTRasym) and ΔMTRasym (contrast between tumor and normal white matter) at 3.5 ppm were compared among different saturation lengths. A significant increase in MTRasym (3.5 ppm) of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s), but MTRasym (3.5 ppm) was not different among the saturation lengths in LGG. ΔMTRasym (3.5 ppm) increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s). In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses. PMID:27227746

  16. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  17. Transmission of 1064 nm laser radiation during ablation with an ultra-short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Oehme, Bernd; Frentzen, Matthias

    2012-01-01

    During ablation of oral hard tissue with an USPL system a small amount of the incident laser power does not contribute to the ablation process and is being transmitted. Partial transmission of ultra-short laser pulses could potentially affect the dental pulp. The aim of this study was to assess the transmission during ablation and to deduce possible risks for the patient. The study was performed with an Nd:YVO4 laser, emitting pulses with a duration of 8 ps at a wavelength of 1064 nm. A repetition rate of 500 kHz and an average power of 9 W were chosen to achieve high ablation efficiency. A scanner system created square cavities with an edge length of 1 mm. Transmission during ablation of mammoth ivory and dentin slices with a thickness of 2 mm and 5 mm was measured with a power meter, placed directly beyond the samples. Effects on subjacent blood were observed by ablating specimens placed in contact to pork blood. In a separate measurement the temperature increase during ablation was monitored using an infrared camera. The influence of transmission was assessed by tuning down the laser to the corresponding power and then directly irradiating the blood. Transmission during ablation of 2 mm specimens was about 7.7% (ivory) and 9.6% (dentin) of the incident laser power. Ablation of specimens directly in contact to blood caused coagulation at longer irradiation times (t~18s). Direct irradiation of blood with the transmitted power provoked bubbling and smoke formation. Temperature measurements identified heat generation as the main reason for the observed coagulation.

  18. Ultrasonic extensometer measures bolt preload

    NASA Technical Reports Server (NTRS)

    Daniels, C. M., Jr.

    1978-01-01

    Extensometer using ultrasonic pulse reflections to measure elongations in tightened belts and studs is much more accurate than conventional torque wrenches in application of specified preload to bolts and other threaded fasteners.

  19. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    PubMed

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  20. Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7 T

    NASA Astrophysics Data System (ADS)

    Massire, Aurélien; Cloos, Martijn A.; Vignaud, Alexandre; Le Bihan, Denis; Amadon, Alexis; Boulant, Nicolas

    2013-05-01

    At ultra-high magnetic field (⩾7 T), B1 and ΔB0 non-uniformities cause undesired inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting parallel transmission have been shown to mitigate these phenomena. However, the design of large flip angle excitations, a prerequisite for many clinical applications, remains challenging due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient ascent pulse engineering to design non-selective spin-echo refocusing pulses that simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method lays in the optimization of the rotation matrices themselves as opposed to magnetization states. Consequently, the commonly used linear class of large tip angle approximation can be eliminated from the optimization procedure. This approach, combined with optimal control, provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, and allows the derivative of the performance criterion to be found analytically. The method was experimentally validated on an 8-channel transmit array at 7 T, using a water phantom with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum Process Tomography. The results are complemented with a series of spin-echo measurements comparing the proposed method against commonly used alternatives. Both experiments confirm very good performance, while simultaneously maintaining a low energy deposition and pulse duration compared to well-known adiabatic solutions.

  1. Directivity patterns of ultrasonic waves generated by a laser pulse at the interface between two elastic media

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, E.; Ségur, D.; Dehoux, T.; Audoin, B.

    2016-02-01

    Directivity patterns of an acoustic source generated by the absorption of a laser pulse at the interface between a transparent epoxy-resin half-space and an opaque CFRP isotropised half-space have been calculated using the reciprocity theorem. Longitudinal and shear radiation patterns of acoustic field emitted in the CFRP are compared in respect with the loading surface condition.

  2. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  3. Ultrasonic thermometer isolation standoffs

    DOEpatents

    Arave, Alvin E.

    1977-01-01

    A method is provided for minimizing sticking of the transmission line to the protective sheath and preventing noise echoes from interfering with signal echoes in an improved high temperature ultrasonic thermometer which includes an ultrasonic transmission line surrounded by a protective sheath. Small isolation standoffs are mounted on the transmission line to minimize points of contact between the transmission line and the protective sheath, the isolation standoffs serving as discontinuities mounted on the transmission line at locations where a signal echo is desired or where an echo can be tolerated. Consequently any noise echo generated by the sticking of the standoff to the protective sheath only adds to the amplitude of the echo generated at the standoff and does not interfere with the other signal echoes.

  4. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  5. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.

    PubMed

    Plowright, Raina K; Peel, Alison J; Streicker, Daniel G; Gilbert, Amy T; McCallum, Hamish; Wood, James; Baker, Michelle L; Restif, Olivier

    2016-08-01

    Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife. PMID:27489944

  6. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.

    PubMed

    Plowright, Raina K; Peel, Alison J; Streicker, Daniel G; Gilbert, Amy T; McCallum, Hamish; Wood, James; Baker, Michelle L; Restif, Olivier

    2016-08-01

    Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.

  7. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir–Host Populations

    PubMed Central

    Plowright, Raina K.; Peel, Alison J.; Streicker, Daniel G.; Gilbert, Amy T.; McCallum, Hamish; Wood, James; Baker, Michelle L.; Restif, Olivier

    2016-01-01

    Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host–pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife. PMID:27489944

  8. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  9. Temperature imaging with speed of ultrasonic transmission tomography for medical treatment control: A physical model-based method

    NASA Astrophysics Data System (ADS)

    Chu, Zhe-Qi; Yuan, Jie; Stephen, Z. Pinter; Oliver, D. Kripfgans; Wang, Xue-Ding; Paul, L. Carson; Liu, Xiao-Jun

    2015-10-01

    Hyperthermia is a promising method to enhance chemo and radiation therapy of breast cancer. In the process of hyperthermia, temperature monitoring is of great importance to assure the effectiveness of treatment. The transmission speed of ultrasound in biomedical tissue changes with temperature. However, when mapping the speed of sound directly to temperature in each pixel as desired for using all speeds of ultrasound data, temperature bipolar edge enhancement artifacts occur near the boundary of two tissues with different speeds of ultrasound. After the analysis of the reasons for causing these artifacts, an optimized method is introduced to rebuild the temperature field image by using the continuity constraint as the judgment criterion. The significant smoothness of the rebuilding image in the transitional area shows that our proposed method can build a more precise temperature image for controlling the medical thermal treatment. Project supported in part by DoD/BCRP Idea Award, BC095397P1, the National Natural Science Foundation of China (Grant No. 61201425), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131280), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China, and the National Institutes of Health (NIH) of United States (Grant Nos. R01AR060350, R01CA91713, and R01AR055179).

  10. Ultrasonic monitoring of material processing using clad buffer rod sensors

    NASA Astrophysics Data System (ADS)

    Ramos Franca, Demartonne

    Ultrasonic sensors and techniques are developed for in-line monitoring of polymer extrusion, cleanliness of molten metals and liquid flow speed at elevated temperature. Pulse-echo mode is used for the first two processes, while the through-transmission mode is applied in the third one. The ultrasonic probe consists of high performance clad buffer rods with different dimensions to thermally isolate the commercial ultrasonic transducer from materials at high temperature. The clad buffer rods are made of steel, polymer and ceramic. Steel clad buffer rods are introduced for in-line monitoring of polymer extrusion processes. Owing to its superior performance in pulse-echo mode, for the first time such a probe is installed and performs ultrasonic monitoring in the die of a co-extrusion machine and in the barrel section of a twin-screw extruder. It can reveal a variety of information relevant to process parameters, such as polymer layer thickness, interface location and adhesion quality, stability, or polymer composition change. For the ultrasonic monitoring of polymer processes, probes with acoustic impedance that matches that of the processed polymer may offer certain advantages such as quantitative viscoelastic evaluation; thus high temperature polymer clad buffer rods, in particular PEEK, are developed. It is demonstrated that this new probe exhibits unique advantages for in-line monitoring of the cure of epoxies and polymer extrusion process. Long steel clad buffer rods with a spherical focus lens machined at the probing end are proposed for cleanliness evaluation of molten metals. The potential of this focusing probe is demonstrated by means of high-resolution imaging and particles detection in molten zinc at temperatures higher than 600°C, using a single probe operated at pulse-echo mode. A contrapropagating ultrasonic flowmeter employing steel clad buffer rods is devised to operate at high temperature. It is demonstrated that these rods guide ultrasonic signals

  11. Transmission properties of terahertz pulses through semiconductor split-ring resonators

    NASA Astrophysics Data System (ADS)

    yun-hong, He; Jiu-sheng, Li

    2011-02-01

    In this paper, two novel planar terahertz semiconductor split-ring resonators are successfully constructed and measured using the commercial software CST Microwave Studio. They exhibit a duel-band and a triple-band transmission property within the frequencies ranging from 0.1THz to 3THz. We have simulated the dual-band planar metamaterial with two distinct electric resonances at 0.81THz and 1.818THz, and triple-band planar metamaterial with three distinct electric resonances at 0.543THz, 1.044THz, and 1.506THz. These developments are further steps towards the development of broadband terahertz devices.

  12. Transmission line pulse properties for a bidirectional transient voltage suppression diode fabricated using low-temperature epitaxy

    NASA Astrophysics Data System (ADS)

    Bouangeune, Daoheung; Cho, Deok-Ho; Yun, Hyung-Joong; Shim, Kyu-Hwan; Choi, Chel-Jong

    2015-01-01

    Based on low temperature epitaxy technology, a bidirectional transient voltage suppression (TVS) diode with abrupt multi-junctions was developed. The bidirectional triggering voltage of ±16 V was controlled by the thickness and dopant concentration in the multi-junctions using a reduced-pressure chemical vapor deposition (RPCVD) process. The manufactured TVS diode showed a small leakage current density and dynamic resistance of less than 5.1 × 10-14 A/ µm2 and 1 O, respectively, which could be associated with the epitaxially grown abrupt multijunctions. The transmission line pulse (TLP) analysis results demonstrated that the bidirectional TVS diodes were capable of withstanding a peak pulse current of up to ±20 A or ±1.02 × 10-3 A/ µm2, which is equivalent to ±40 kV of the human body model (HBM) and ±12 kV of IEC61000-4-2 (IEC). Nevertheless, the electrostatic discharge (ESD) design window showed that bidirectional TVS diodes meet IEC level 4 standard ESD protection requirements (8 kV in contact discharge). In addition, because of the bidirectional structure, the TVS devices exhibited a small capacitance of 4.9 pF, which confirms that the TVS diode can be used for protecting high data rate communication lines (over 500 Mbps) from ESD shock.

  13. Improvement of ultrasonic characteristics in butt-welded joint of austenitic stainless steel using magnetic stirring method

    SciTech Connect

    Tanosaki, M.; Yoshikawa, K.; Arakawa, T.

    1995-08-01

    Magnetic Stirring Method of Tungsten Inert Gas(TIG) Welding are applied to butt-welded joint of austenitic stainless steel. The purpose of this method is to refine the welded structure and to improve the ultrasonic characteristics. In the conventional method of ultrasonic test in austenitic stainless steel weldments, dendritic solidification structure of weldment prevents smooth ultrasonic beam transmission. The tests are performed in three welding conditions; One is conventional TIG welding (without magnetic stirring), the other two are TIG welding using magnetic stirring method. Each test piece is evaluated by observing macro structure of cross section and by several ultrasonic tests examining pulse amplitudes, beam path length and proceeding beam direction. The detectability of artificial notches in weldment is also investigated and compared.

  14. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    NASA Astrophysics Data System (ADS)

    Tsysar, S. A.; Nikolaeva, A. V.; Svet, V. D.; Khokhlova, V. A.; Yuldashev, P. V.; Sapozhnikov, O. A.

    2015-10-01

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  15. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    SciTech Connect

    Tsysar, S. A. Nikolaeva, A. V.; Khokhlova, V. A.; Yuldashev, P. V.; Svet, V. D.; Sapozhnikov, O. A.

    2015-10-28

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  16. Long range transmission loss of broadband seismic pulses in the Arctic under ice-free conditions.

    PubMed

    Thode, Aaron; Kim, Katherine H; Greene, Charles R; Roth, Ethan

    2010-10-01

    In 2008 the Louis S. St-Laurent (LSSL) surveyed deep Arctic waters using a three-airgun seismic source. Signals from the seismic survey were detected between 400 km and 1300 km range on a directional autonomous acoustic recorder deployed in water 53 m deep off the Alaskan North Slope. Observations of received signal levels between 10-450 Hz versus LSSL range roughly fit a cylindrical transmission loss model plus 0.01 dB/km attenuation in deep ice-free waters, and fit previous empirical models in ice-covered waters. The transition between ice-free and ice-covered propagation conditions shifted 200 km closer to the recorder during the survey. PMID:20968323

  17. Ultrasonic Imaging Of Deep Arteries

    NASA Technical Reports Server (NTRS)

    Rooney, James A.; Heyser, Richard C.; Lecroissette, Dennis H.

    1990-01-01

    Swept-frequency sound replaces pulsed sound. Ultrasonic medical instrument produces images of peripheral and coronary arteries with resolutions higher and at depths greater than attainable by previous ultrasonic systems. Time-delay-spectrometry imager includes scanning, image-processing, and displaying equipment. It sweeps in frequency from 0 to 10 MHz in 20 ms, pauses for 5 ms, and repeats sweep. Intended for use in noninvasive detection and measurement of atherosclerotic lesions.

  18. Non-contact ultrasonic defect imaging in composites

    NASA Astrophysics Data System (ADS)

    Tenoudji, F. Cohen; Citerne, J. M.; Dutilleul, H.; Busquet, D.

    2016-02-01

    In the situations where conventional NDT ultrasonic techniques using immersion of the part under inspection or its contact with the transducers cannot be used, in-air investigation presents an alternative. The huge impedance mismatch between the part material and air (transmission loss in the order of 80 dB for a thin metallic plate) induces having to deal very small signals and unfavorable signal to noise ratios. The approach adopted here is the use of the crack of a spark generated by an induction coil as a sound source and an electrostatic polyethylene membrane microphone as a receiver [1]. The advantage of this source is that the spark power is high (several kilowatts) and its power is directly coupled to air during the energy release. In some difficult situations, an elliptical mirror is used to concentrate the sound beam power on the surface of the part [2,3]. Stability and reproducibility of the sound generated by the spark, which are a necessity in order to perform quantitative evaluations, are achieved in our experiment. This permits also an increase of the signal to noise ratio by signal accumulation. The sound pulse duration of few microseconds allows operating in pulse echo in some circumstances. The bandwidth of the source is large, of several hundred of kilohertz, and that of the microphone above 100 kHz allow the flexibility to address different kinds of materials. The technique allows an easy, in-air, non contact, inspection of structural composite parts, with pulse waves, with an excellent signal to noise ratio. An X-Y ultrasonic scanning ultrasonic system for material inspection using this technique has been realized. Results obtained in transmission and reflection are presented. Defects in carbon composite plates and in honeycomb are imaged in transmission Echographic measurements show that defect detection can be performed in thin plates using Lamb waves propagation when only one sided inspection of the part is possible.

  19. Theory of magnetically insulated electron flows in coaxial pulsed power transmission lines

    NASA Astrophysics Data System (ADS)

    Lawconnell, Robert I.; Neri, Jesse

    1990-03-01

    The Cartesian magnetically insulated transmission line (MITL) theory of Mendel et al. [Appl. Phys. 50, 3830 (1979); Phys. Fluids 26, 3628 (1983)] is extended to cylindrical coordinates. A set of equations that describe arbitrary electron flows in cylindrical coordinates is presented. These equations are used to derive a general theory for laminar magnetically insulated electron flows. The laminar theory allows one to specify the potentials, fields, and densities across a coaxial line undergoing explosive electron emission at the cathode. The theory is different from others available in cylindrical coordinates in that the canonical momentum and total energy for each electron may be nonzero across the electron sheath. A nonzero canonical momentum and total energy for the electrons in the sheath allows the model to produce one-dimensional flows that resemble flows from lines with impedance mismatches and perturbing structures. The laminar theory is used to derive two new self-consistent cylindrical flow solutions: (1) for a constant density profile and (2) for a quadratic density profile of the form ρ=ρc[(r2m-r2)/(r2m-r2c)]. This profile is of interest in that it is similar to profiles observed in a long MITL simulation [Appl. Phys. 50, 4996 (1979)]. The theoretical flows are compared to numerical results obtained with two-dimensional (2-D) electromagnetic particle-in-cell (PIC) codes.

  20. Experience with ultrasonic flowmeters

    SciTech Connect

    DeVries, E.A.

    1986-06-01

    Ultrasonic flowmeters have been around since the 1960s and were used for oceanographic and military applications before they were introduced to the process industries. There are several different kinds of ultrasonic flowmeters, but they all work on the principle of frequency shift due to velocity. The purpose of this article is to review experiences, both good and bad, with both Doppler and transit time ultrasonic flowmeters. The most common type of ultrasonic flowmeter is the Doppler meter. The Doppler meter signal is reflected by particles, bubbles, or other discontinuities in the liquid, and the frequency is shifted by velocity of these discontinuities. This frequency shift renders a signal proportional to velocity. Another common type of ultrasonic flowmeter is the ''time-of-flight'' or transit time meter. This meter uses two sensors that are lined up at an angle to the direction of flow, and that pulse alternately. A time-differential relationship proportional to the flow is calculated. In this case, the fluid must be free of entrainment or else scattering of the signal may induce an error.

  1. Medical ultrasonic imaging.

    PubMed

    Schuy, S

    1982-01-01

    The development of ultrasonic imaging techniques is by no means finished even today. The morphological display of anatomical cross-sections has already reached a high standard and is characterized by the realization of real-time compound scanners. Automated water-bath scanners, either compound or single pass, are intended to help ultrasound to play a more dominant role in mammography, especially as a screening method, although at present it cannot be used very efficiently for this purpose. Considerable progress can be expected with the increasing use of computer facilities, especially digital signal-processing techniques. They should not only further improve image fidelity and intelligibility, but also the comfort of the handling. A major step forward will be the implementation of objective transducer-independent tissue-differentiation facilities into imaging devices. The development of alternative ultrasonic imaging techniques like the transmission camera should increase the scope of ultrasonic application rather than compete with B-scan imaging.

  2. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2015-02-01

    A fully-integrated near-field wireless transceiver has been presented for simultaneous data and power transmission across inductive links, which operates based on pulse delay modulation (PDM) technique. PDM is a low-power carrier-less modulation scheme that offers wide bandwidth along with robustness against strong power carrier interference, which makes it suitable for implantable neuroprosthetic devices, such as retinal implants. To transmit each bit, a pattern of narrow pulses are generated at the same frequency of the power carrier across the transmitter (Tx) data coil with specific time delays to initiate decaying ringing across the tuned receiver (Rx) data coil. This ringing shifts the zero-crossing times of the undesired power carrier interference on the Rx data coil, resulting in a phase shift between the signals across Rx power and data coils, from which the data bit stream can be recovered. A PDM transceiver prototype was fabricated in a 0.35- μm standard CMOS process, occupying 1.6 mm(2). The transceiver achieved a measured 13.56 Mbps data rate with a raw bit error rate (BER) of 4.3×10(-7) at 10 mm distance between figure-8 data coils, despite a signal-to-interference ratio (SIR) of -18.5 dB across the Rx data coil. At the same time, a class-D power amplifier, operating at 13.56 MHz, delivered 42 mW of regulated power across a separate pair of high-Q power coils, aligned with the data coils. The PDM data Tx and Rx power consumptions were 960 pJ/bit and 162 pJ/bit, respectively, at 1.8 V supply voltage. PMID:24760945

  3. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    PubMed Central

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  4. Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.

    PubMed

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-29

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.

  5. Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.

    PubMed

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  6. Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz.

    PubMed

    Otuya, David Odeke; Kasai, Keisuke; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka

    2014-10-01

    Coherent Nyquist pulses have been used for optical time division multiplexed (OTDM) digital coherent transmission, and a single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km is demonstrated. The ability to considerably reduce the spectral bandwidth of the data signal enabled us to increase the spectral efficiency from 3.2 bit/s/Hz to 7.5 bit/s/Hz when using a Gaussian pulse train.

  7. Proceedings of the IEEE 1986 ultrasonics symposium

    SciTech Connect

    Mc Avoy, B.R.

    1987-01-01

    This book presents the papers given at a conference on ultrasonic testing. Topics considered at the conference included the use of multiprocessors, the laser generation of acoustic waves, ultrasonic techniques in oil well logging, digital systems, piezoelectric devices, computerized tomography, Doppler tomography, pulse shaping techniques, blood flow, surface acoustic wave attenuation, sputtering, and microstructure.

  8. Ultrasonic propagation in gases at high temperatures

    NASA Technical Reports Server (NTRS)

    Carey, C.; Carnevale, E. H.; Lynworth, L. C.; Uva, S.

    1970-01-01

    Ultrasonic pulse method /1 to 3 MHz/ measures both sound speed and absorption in monatomic and polyatomic gases in a temperature range of 300 to 20000 degrees K at atmospheric pressure. Helium, nitrogen, oxygen, and argon are investigated.

  9. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  10. Simplified flexible-PON upstream transmission using pulse position modulation at ONU and DSP-enabled soft-combining at OLT for adaptive link budgets.

    PubMed

    Liu, Xiang; Effenberger, Frank; Chand, Naresh

    2015-03-01

    We demonstrate a flexible modulation and detection scheme for upstream transmission in passive optical networks using pulse position modulation at optical network unit, facilitating burst-mode detection with automatic decision threshold tracking, and DSP-enabled soft-combining at optical line terminal. Adaptive receiver sensitivities of -33.1 dBm, -36.6 dBm and -38.3 dBm at a bit error ratio of 10(-4) are respectively achieved for 2.5 Gb/s, 1.25 Gb/s and 625 Mb/s after transmission over a 20-km standard single-mode fiber without any optical amplification.

  11. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  12. Mathematical Constraints on the Use of Transmission Line Models for Simulating Initial Breakdown Pulses in Lightning Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Merrill, R. A.; Pasko, V. P.

    2015-12-01

    A significant portion of the in-cloud lightning development is observed as a series of initial breakdown pulses (IBPs) that are characterized by an abrupt change in the electric field at a remote sensor. Recent experimental and theoretical studies have attributed this process to the stepwise elongation of an initial lightning leader inside the thunderstorm [da Silva and Pasko, JGR, 120, 4989-5009, 2015, and references therein]. Attempts to visually observe these events are hampered due to the fact that clouds are opaque to optical radiation. Due to this reason, throughout the last decade, a number of researchers have used the so-called transmission line models (also commonly referred to as engineering models), widely employed for return stroke simulations, to simulate the waveshapes of IBPs, and also of narrow bipolar events. The transmission line (TL) model approach is to prescribe the source current dynamics in a certain manner to match the measured E-field change waveform, with the purpose of retrieving key information about the source, such as its height, peak current, size, speed of charge motion, etc. Although the TL matching method is not necessarily physics-driven, the estimated source characteristics can give insights on the dominant length- and time-scales, as well as, on the energetics of the source. This contributes to better understanding of the environment where the onset and early stages of lightning development takes place.In the present work, we use numerical modeling to constrain the number of source parameters that can be confidently inferred from the observed far-field IBP waveforms. We compare different modified TL models (i.e., with different attenuation behaviors) to show that they tend to produce similar waveforms in conditions where the channel is short. We also demonstrate that it is impossible to simultaneously retrieve the speed of source current propagation and channel length from an observed IBP waveform, in contrast to what has been

  13. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  14. Delamination detection in composites by laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Martarelli, M.; Chiariotti, P.; Pezzola, M.; Castellini, P.

    2014-05-01

    In this paper an application of Laser Ultrasonics (LU) is presented on laminate panels. The method exploits a high energy pulsed laser generating ultrasonic waves on the material where it impinges and laser Doppler Mach-Zehnder interferometer for measuring the ultrasonic waves propagating on the testing object. The laser-ultrasonic has been applied to a thin Carbon Fiber Reinforced Polymer (CFRP) test sample where two different depth delaminations have been created. It will be demonstrated that the measurement system is extremely sensitive to the propagation of the ultrasonic waves generated by the high energy pulsed laser source and to the multiple reflections caused by the delamination even when this latter is located in depth.

  15. Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment

    NASA Astrophysics Data System (ADS)

    Gregorčič, P.; Lukač, N.; Možina, J.; Jezeršek, M.

    2016-04-01

    We examine the effects of the synchronized delivery of multiple Er:YAG-laser pulses during vapor-bubble oscillations into water. For this purpose, we used a laser beam transmission probe that enables monitoring of the bubble's dynamics from a single shot. To overcome the main drawbacks of this technique, we propose and develop an appropriate and robust calibration by simultaneous employment of shadow photography. By using the developed experimental method, we show that the resonance effect is obtained when the second laser pulse is delivered at the end or slightly after the first bubble's collapse. In this case, the resonance effect increases the mechanical energy of the secondary bubble's oscillations and prolongs their duration. The presented laser method for synchronized delivery of Er:YAG-laser pulses during bubble oscillations has great potential for further improvement of laser endodontic treatment, especially upon their safety and efficiency.

  16. Techniques for enhancing laser ultrasonic nondestructive evaluation

    SciTech Connect

    Candy, J; Chinn, D; Huber, R; Spicer, J; Thomas, G

    1999-02-16

    Ultrasonic nondestructive evaluation is an extremely powerful tool for characterizing materials and detecting defects. A majority of the ultrasonic nondestructive evaluation is performed with piezoelectric transducers that generate and detect high frequency acoustic energy. The liquid needed to couple the high frequency acoustic energy from the piezoelectric transducers restricts the applicability of ultrasonics. For example, traditional ultrasonics cannot evaluate parts at elevated temperatures or components that would be damaged by contact with a fluid. They are developing a technology that remotely generates and detects the ultrasonic pulses with lasers and consequently there is no requirement for liquids. Thus the research in laser-based ultrasound allows them to solve inspection problems with ultrasonics that could not be done before. This technology has wide application in many Lawrence Livermore National Laboratory programs, especially when remote and/or non-contact sensing is necessary.

  17. Surfaces and thin films studied by picosecond ultrasonics

    SciTech Connect

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse ( pump pulse''). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  18. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.

    PubMed

    Tan, Kang; Shao, Jing; Sun, Junqiang; Wang, Jian

    2012-01-16

    We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach-Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

  19. Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Zhao, An; Han, Yun-Feng; Ren, Ying-Yu; Zhai, Lu-Sheng; in, Ning-De

    2016-03-01

    Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.

  20. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  1. Pulse based sensor networking using mechanical waves through metal substrates

    NASA Astrophysics Data System (ADS)

    Lorenz, S.; Dong, B.; Huo, Q.; Tomlinson, W. J.; Biswas, S.

    2013-05-01

    This paper presents a novel wireless sensor networking technique using ultrasonic signal as the carrier wave for binary data exchange. Using the properties of lamb wave propagation through metal substrates, the proposed network structure can be used for runtime transport of structural fault information to ultrasound access points. Primary applications of the proposed sensor networking technique will include conveying fault information on an aircraft wing or on a bridge to an ultrasonic access point using ultrasonic wave through the structure itself (i.e. wing or bridge). Once a fault event has been detected, a mechanical pulse is forwarded to the access node using shortest path multi-hop ultrasonic pulse routing. The advantages of mechanical waves over traditional radio transmission using pulses are the following: First, unlike radio frequency, surface acoustic waves are not detectable outside the medium, which increases the inherent security for sensitive environments in respect to tapping. Second, event detection can be represented by the injection of a single mechanical pulse at a specific temporal position, whereas radio messages usually take several bits. The contributions of this paper are: 1) Development of a transceiver for transmitting/receiving ultrasound pulses with a pulse loss rate below 2·10-5 and false positive rate with an upper bound of 2·10-4. 2) A novel one-hop distance estimation based on the properties of lamb wave propagation with an accuracy of above 80%. 3) Implementation of a wireless sensor network using mechanical wave propagation for event detection on a 2024 aluminum alloy commonly used for aircraft skin construction.

  2. System and technique for ultrasonic determination of degree of cooking

    DOEpatents

    Bond, Leonard J.; Diaz, Aaron A.; Judd, Kayte M.; Pappas, Richard A.; Cliff, William C.; Pfund, David M.; Morgen, Gerald P.

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  3. Asymmetric Ultrasonic Pulse Radiation Using Electromagnetic-Induction Transducer and PZT(Pb(Zr-Ti)O3) Transducer with Wave Synthesis Method

    NASA Astrophysics Data System (ADS)

    Endoh, Nobuyuki; Yamamoto, Koji

    1993-05-01

    In medical applications, especially in urology, we use a fragmentation calculus technique with shock waves. This technique is very profitable because of no abdominal surgery for a human being. Large negative sound amplitude pulses, however, can cause problems such as internal hemorrhage or pain in the human body. The final goal of this study is to develop a means to project an intense positive unipolar pulse without negative sound pressure. We improved a composite transducer consisting of an electromagnetic-induction-type (EMI) transducer and PZT (Pb(Zr-Ti)O3) transducers. An EMI transducer consisting of a metal coil and vibration membrane can project intense sound pulses into water. In order to suppress its negative sound pressure, we project a compensation pulse with PZT transducers using an inverse filtering method. An asymmetric pulse whose P+ to P- amplitude ratio was very high was projected in water.

  4. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array. PMID:25423646

  5. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.

    PubMed

    Shapoori, Kiyanoosh; Sadler, Jeff; Wydra, Adrian; Malyarenko, Eugene V; Sinclair, Anthony N; Maev, Roman Gr

    2015-05-01

    A new adaptive beamforming algorithm for imaging via small-aperture 1-D ultrasonic-phased arrays through composite layered structures is reported. Such structures cause acoustic phase aberration and wave refraction at undulating interfaces and can lead to significant distortion of an ultrasonic field pattern produced by conventional beamforming techniques. This distortion takes the form of defocusing the ultrasonic field transmitted through the barrier and causes loss of resolution and overall degradation of image quality. To compensate for the phase aberration and the refractional effects, we developed and examined an adaptive beamforming algorithm for small-aperture linear-phased arrays. After accurately assessing the barrier's local geometry and sound speed, the method calculates a new timing scheme to refocus the distorted beam at its original location. As a tentative application, implementation of this method for trans-skull imaging of certain types of head injuries through human skull is discussed. Simulation and laboratory results of applying the method on skull-mimicking phantoms are presented. Correction of up to 2.5 cm focal point displacement at up to 10 cm depth under our skull phantom is demonstrated. Quantitative assessment of the method in a variety of temporal focusing scenarios is also reported. Overall temporal deviation on the order of a few nanoseconds was observed between the simulated and experimental results. The single-point adaptive focusing results demonstrate strong potential of our approach for diagnostic imaging through intact human skull. The algorithms were implemented on an ultrasound advanced open-platform controlling 64 active elements on a 128-element phased array.

  6. Nonlinear ultrasonic phased array imaging.

    PubMed

    Potter, J N; Croxford, A J; Wilcox, P D

    2014-10-01

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  7. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  8. Ultrasonic neuromodulation.

    PubMed

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field's foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions. PMID:27153566

  9. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  10. Studies on Laser Generated Ultrasonic Waves in Inconel Super Alloy

    SciTech Connect

    Pramila, T.; Shukla, Anita; Raghuram, V.

    2010-05-28

    This paper deals with the generation, characterization and analysis of ultrasonic waves generated in a thick stepped sample of inconel super alloy using Laser Based Ultrasonic Technique. Nd-YAG pulsed laser is used for ultrasonic generation while He-Ne laser is used for heterodyne detection. Ultrasonic signals are analyzed using Fourier and wavelet transforms. Here the identification and estimation of velocity of pressure waves is presented. The mechanism of pressure wave generation is discussed in brief. Laser ultrasonics studies of inconel are being reported for the first time.

  11. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  12. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  13. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-09-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

  14. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-01-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238

  15. Transmission of endemic ST22-MRSA-IV on four acute hospital wards investigated using a combination of spa, dru and pulsed-field gel electrophoresis typing.

    PubMed

    Creamer, E; Shore, A C; Rossney, A S; Dolan, A; Sherlock, O; Fitzgerald-Hughes, D; Sullivan, D J; Kinnevey, P M; O'Lorcain, P; Cunney, R; Coleman, D C; Humphreys, H

    2012-11-01

    The transmission of meticillin-resistant Staphylococcus aureus (MRSA) between individual patients is difficult to track in institutions where MRSA is endemic. We investigated the transmission of MRSA where ST22-MRSA-IV is endemic on four wards using demographic data, patient and environmental screening, and molecular typing of isolates. A total of 939 patients were screened, 636 within 72 h of admission (on admission) and 303 >72 h after admission, and 1,252 environmental samples were obtained. Isolates were typed by spa, dru and pulsed-field gel electrophoresis (PFGE) typing. A composite dendrogram generated from the three sets of typing data was used to divide isolates into 'dendrogram groups' (DGs). Ten percent of patients (92/939) were MRSA-positive; 7 % (44/636) on admission and 16 % (48/303) >72 h after admission (p = 0.0007). MRSA was recovered from 5 % of environmental specimens (65/1,252). Most isolates from patients (97 %, 85/88) and the environment (97 %, 63/65) exhibited the ST22-MRSA-IV genotype. Four DGs (DG1, DG4, DG16 and DG17) accounted for 58 % of ST22-MRSA-IV isolates from patients. Epidemiological evidence suggested cross-transmission among 44/92 patients (48 %) but molecular typing confirmed probable cross-transmission in only 11 instances (13 %, 11/88), with the majority of cross-transmission (64 %; 7/11) occurring on one ward. In the setting of highly clonal endemic MRSA, the combination of local epidemiology, PFGE, spa and dru typing provided valuable insights into MRSA transmission.

  16. Femtosecond measurements of near-infrared pulse induced mid-infrared transmission modulation of quantum cascade lasers

    SciTech Connect

    Cai, Hong; Liu, Sheng; Lalanne, Elaine; Guo, Dingkai; Chen, Xing; Choa, Fow-Sen; Wang, Xiaojun; Johnson, Anthony M.

    2014-05-26

    We temporally resolved the ultrafast mid-infrared transmission modulation of quantum cascade lasers (QCLs) using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps were used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth and several nanoseconds recovery lifetime. In contrast, pumping with a photon energy below the QW bandgap induces a smaller transmission modulation depth but much faster (several picoseconds) recovery lifetime, attributed to intersubband transition assisted mechanisms. The latter ultrafast modulation (>60 GHz) could provide a potential way to realize fast QCL based free space optical communication.

  17. Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses.

    PubMed

    Ma, Guangjin; Yu, Wei; Yu, M Y; Luan, Shixia; Wu, Dong

    2016-05-01

    The effect of a transient magnetic field on right-hand circularly polarized (RHCP) laser light propagation in overcritical-density plasma is investigated. When the electron gyrofrequency is larger than the wave frequency, RHCP light can propagate along the external magnetic field in an overcritical density plasma without resonance or cutoff. However, when the magnetic field falls to below the cyclotron resonance point, the propagating laser pulse will be truncated and the local plasma electrons resonantly heated. Particle-in-cell simulation shows that when applied to a thin slab, the process can produce intense two-cycle light pulses as well as long-lasting self-magnetic fields. PMID:27300997

  18. Control of transmission of right circularly polarized laser light in overdense plasma by applied magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Ma, Guangjin; Yu, Wei; Yu, M. Y.; Luan, Shixia; Wu, Dong

    2016-05-01

    The effect of a transient magnetic field on right-hand circularly polarized (RHCP) laser light propagation in overcritical-density plasma is investigated. When the electron gyrofrequency is larger than the wave frequency, RHCP light can propagate along the external magnetic field in an overcritical density plasma without resonance or cutoff. However, when the magnetic field falls to below the cyclotron resonance point, the propagating laser pulse will be truncated and the local plasma electrons resonantly heated. Particle-in-cell simulation shows that when applied to a thin slab, the process can produce intense two-cycle light pulses as well as long-lasting self-magnetic fields.

  19. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1988-01-01

    Ultrasonic pulse-echo measurements of ice growth on cylinders and airfoils exposed to both artificial (icing wind tunnel) and natural (flight) icing conditions are presented. An accuracy of + or - 0.5 mm is achieved with the present method. The ultrasonic signal characteristics associated with each of the two types of icing regimes identified, wet and dry ice growth, are discussed. Heat transfer coefficients are found to be higher in the wind tunnel environment than in flight. Results for ice growth on airfoils have also been obtained using an array of ultrasonic transducers. Icing profiles obtained during flight are compared with mechanical and stereo image measurements.

  20. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  1. Transmission electron microscopy studying of structural features of NiTi B2 phase formed under pulsed electron-beam impact

    SciTech Connect

    Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y.; Neiman, Alexey A. Lotkov, Alexander I.; Ostapenko, Marina G.; Koval, Nikolai N.; Teresov, Anton D.

    2015-10-27

    By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in the form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.

  2. Graphene electrostatic microphone and ultrasonic radio.

    PubMed

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M F; Zettl, Alex K

    2015-07-21

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  3. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  4. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  5. Ultrasonic transducer

    SciTech Connect

    Csaszar, G.; Goldman, F.M.; Oehley, G.; Svoboda, E.J.

    1983-08-30

    An ultrasonic transducer is provided substantially at the hot spot in an engine manifold for vaporizing the fuel from the carburetor prior to entry of the fuel-air mixture into the cylinders. Transducer comprises a crystal adapted to be vibrated at a high frequency on the order of at least 1,000,000 Hz and a resonator tuned to the frequency of the crystal and operatively secured to the crystal, said transducer having an active surface adapted to be contacted by the fuel for finely vaporizing same. The fine vaporization or gasification of the fuel (gasoline, for example) prior to entry into the cylinders causes a more complete burning of the fuel. As a result, the engine delivers more power with less fuel, while carbon monoxide and hydrocarbon emissions are reduced. In operation, the ultrasonic transducer enhances cold weather startup and operation, eliminates engine flooding, smooths out engine idle, and improves pick up and acceleration by increasing power at low engine RPM. Engine power is boosted, while saving gasoline. The ultrasonic transducer can be installed into the intake manifold below the carburetor without modifying the structure of the carburetor or the intake manifold.

  6. Ultrasonic inspection apparatus and method using a focused wave device

    DOEpatents

    Gieske, John H.; Roach, Dennis P.; Walkington, Phillip D.

    2001-01-01

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  7. Ultrasonic temperature measurements with fiber optic system

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Ma, Tong; Liu, Yuqian; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    Ultrasonic temperature measurements have been developed and widely applied in non-contact temperature tests in many industries. However, using optical fibers to build ultrasound generators are novel. This paper reports this new fiber optic ultrasonic system based on the generator of gold nanoparticles/polydimethylsiloxane (PDMS) composites. The optical acoustic system was designed to test the change of temperature on the aluminum plate and the temperature of the torch in the air. This paper explores the relationship between the ultrasonic transmission and the change of temperature. From the experimental results, the trend of ultrasonic speed was different in the aluminum plate and air with the change of temperature. Since the system can measure the average temperature of the transmission path, it will have significant influence on simulating the temperature distribution.

  8. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device.

    PubMed

    Ii, T; Kubo, S; Shimozuma, T; Kobayashi, S; Okada, K; Yoshimura, Y; Igami, H; Takahashi, H; Ito, S; Mizuno, Y; Okada, K; Makino, R; Kobayashi, K; Goto, Y; Mutoh, T

    2015-02-01

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φλ/8, Φλ/4) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  9. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device

    SciTech Connect

    Ii, T. Kubo, S.; Shimozuma, T.; Kobayashi, S.; Okada, K.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Makino, R.; Kobayashi, K.; Goto, Y.

    2015-02-15

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φ{sub λ/8}, Φ{sub λ/4}) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  10. In plant demonstration of high temperature EM pulser and pulsed EMAT receiver: Final report: Experimental development and testing of ultrasonic system for high temperature applications on hot steel

    SciTech Connect

    Boyd, D.M.; Sperline, P.D.

    1988-11-01

    This report describes work performed under the Field Work Proposal on the ''In-Plant Demonstration of a High-Temperature EM Pulser and pulsed EMAT Receiver'' for the Department of Energy's Office of Industrial Programs. Cost sharing by the American Iron and Steel Institute (AISI) helped provide both technical guidance and equipment for the plant demonstration. This report covers the time period from January 1988 through September 1988.

  11. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  12. Time delay estimation in the ultrasonic flowmeter in the oil well

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Lin, Weijun; Zhang, Chengyu; Shen, Zhihui; Zhang, Hailan

    2010-01-01

    A new prototype of ultrasonic flowmeter used in the oil well is presented. The flowmeter depends on the time delay between the propagating times of the downstream and upstream ultrasonic pulses. The ultrasonic passageway is slanted to prevent the disadvantage introduced by the high viscosity of the oil. Two method of time delay estimation: threshold and cross-correlation are both studied and realized.

  13. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  14. Accurate Estimation of Airborne Ultrasonic Time-of-Flight for Overlapping Echoes

    PubMed Central

    Sarabia, Esther G.; Llata, Jose R.; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P.

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  15. Accurate estimation of airborne ultrasonic time-of-flight for overlapping echoes.

    PubMed

    Sarabia, Esther G; Llata, Jose R; Robla, Sandra; Torre-Ferrero, Carlos; Oria, Juan P

    2013-01-01

    In this work, an analysis of the transmission of ultrasonic signals generated by piezoelectric sensors for air applications is presented. Based on this analysis, an ultrasonic response model is obtained for its application to the recognition of objects and structured environments for navigation by autonomous mobile robots. This model enables the analysis of the ultrasonic response that is generated using a pair of sensors in transmitter-receiver configuration using the pulse-echo technique. This is very interesting for recognizing surfaces that simultaneously generate a multiple echo response. This model takes into account the effect of the radiation pattern, the resonant frequency of the sensor, the number of cycles of the excitation pulse, the dynamics of the sensor and the attenuation with distance in the medium. This model has been developed, programmed and verified through a battery of experimental tests. Using this model a new procedure for obtaining accurate time of flight is proposed. This new method is compared with traditional ones, such as threshold or correlation, to highlight its advantages and drawbacks. Finally the advantages of this method are demonstrated for calculating multiple times of flight when the echo is formed by several overlapping echoes. PMID:24284774

  16. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  17. Ultrasonic transducer

    DOEpatents

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  18. Ultrasonic attenuation - Q measurements on 70215,29. [lunar rock

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Stephens, J.

    1974-01-01

    Ultrasonic attenuation measurements have been made on an aluminum alloy, obsidian, and rock samples including lunar sample 70215,29. The measurement technique is based on a combination of the pulse transmission method and the forced resonance method. The technique is designed to explore the problem of defining experimentally, the Q of a medium or sample in which mode conversion may occur. If modes are coupled, the measured attenuation is strongly dependent on individual modes of vibration, and a range of Q-factors may be measured over various resonances or from various portions of a transient signal. On 70215,29, measurements were made over a period of a month while the sample outgassed in hard varuum. During this period, the highest measured Q of this sample increased from a few hundred into the range of 1000-1300.

  19. Digital ultrasonic signal processing: Primary ultrasonics task and transducer characterization use and detailed description

    NASA Technical Reports Server (NTRS)

    Hammond, P. L.

    1979-01-01

    This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.

  20. Modern ultrasonic flowmeters

    NASA Astrophysics Data System (ADS)

    Gurevich, V. M.; Truman, S. G.

    1986-01-01

    The current status of ultrasonic flowmeters were reviewed on the basis of materials published in the Soviet Union and elsewhere. The following advantages of ultrasonic flowmeters over earlier instruments are cited. A comparative analysis is made of the design methods employed in ultrasonic flowmeters. The evolution of ultrasonic flowmetering is traced from the first generation and trends in their development are analyzed.

  1. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  2. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  3. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1990-01-01

    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements.

  4. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  5. Ultrasonic position and velocity measurement for a moving object by M-sequence pulse compression using Doppler velocity estimation by spectrum-pattern analysis

    NASA Astrophysics Data System (ADS)

    Ikari, Yohei; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    Pulse compression using a maximum-length sequence (M-sequence) can improve the signal-to-noise ratio (SNR) of the reflected echo in the pulse-echo method. In the case of a moving object, however, the echo is modulated owing to the Doppler effect. The Doppler-shifted M-sequence-modulated signal cannot be correlated with the reference signal that corresponds to the transmitted M-sequence-modulated signal. Therefore, Doppler velocity estimation by spectrum-pattern analysis of a cyclic M-sequence-modulated signal and cross correlations with Doppler-shifted reference signals that correspond to the estimated Doppler velocities has been proposed. In this paper, measurements of the position and velocity of a moving object by the proposed method are described. First, Doppler velocities of the object are estimated using a microphone array. Secondly, the received signal from each microphone is correlated with each Doppler-shifted reference signal. Then, the position of the object is determined from the B-mode image formed from all cross-correlation functions. After that, the velocity of the object is calculated from velocity components estimated from the Doppler velocities and the position. Finally, the estimated Doppler velocities, determined positions, and calculated velocities are evaluated.

  6. Ultrasonic hydrometer

    SciTech Connect

    Swoboda, C.A.

    1984-04-17

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time ''t'' between the initial and returning impulses. Considering the distance ''d'' between the spaced sonic surfaces and the measured time ''t'', the sonic velocity ''V'' is calculated with the equation ''V=2d/t''. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0/sup 0/ and 40/sup 0/ C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  7. Ultrasonic hydrometer

    DOEpatents

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  8. A practical ultrasonic plethysmograph

    NASA Technical Reports Server (NTRS)

    Wu, V. C.; Nickell, W. T.; Bhagat, P. K.

    1982-01-01

    An ultrasonic plethysmograph, which gives improved performance over the standard Whitney Strain Gauge, is described. This instrument monitors dimension changes in human limbs by measuring the transit times of acoustic pulses across two chords of the limb. In the case of a small uniform expansion, the percentage change in limb volume is shown to be proportional to twice the percentage change in either of the measured chords. Measurement of two chords allows correction for possible non-uniform expansion. In addition, measurement of two chords allows an estimate of the absolute cross-sectional area of the limb. The developed instrument incorporates a microprocessor, which performs necessary calculation and control functions. Use of the microprocessor allows the instrument to be self-calibrating. In addition, the device can be easily reprogrammed to incorporate improvements in operating features or computational schemes.

  9. A practical ultrasonic plethysmograph.

    PubMed

    Wu, V C; Nickell, W T; Bhagat, P K

    1982-04-01

    An ultrasonic plethysmograph, which gives improved performance over the standard Whitney Strain Gauge, is described. This instrument monitors dimension changes in human limbs by measuring the transit times of acoustic pulses across two chords of the limb. In the case of a small uniform expansion, the percentage change in limb volume is shown to be proportional to twice the percentage change in either of the measured chords. Measurement of two chords allows correction for possible non-uniform expansion. In addition, measurement of two chords allows an estimate of the absolute cross-sectional area of the limb. The developed instrument incorporates a microprocessor, which performs necessary calculation and control functions. Use of the microprocessor allows the instrument to be self-calibrating. In addition, the device can be easily reprogrammed to incorporate improvements in operating features or computational schemes. PMID:7082254

  10. Increasing average power in medical ultrasonic endoscope imaging system by coded excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Zhou, Hao; Wen, Shijie; Yu, Daoyin

    2008-12-01

    Medical ultrasonic endoscope is the combination of electronic endoscope and ultrasonic sensor technology. Ultrasonic endoscope sends the ultrasonic probe into coelom through biopsy channel of electronic endoscope and rotates it by a micro pre-motor, which requires that the length of ultrasonic probe is no more than 14mm and the diameter is no more than 2.2mm. As a result, the ultrasonic excitation power is very low and it is difficult to obtain a sharp image. In order to increase the energy and SNR of ultrasonic signal, we introduce coded excitation into the ultrasonic imaging system, which is widely used in radar system. Coded excitation uses a long coded pulse to drive ultrasonic transducer, which can increase the average transmitting power accordingly. In this paper, in order to avoid the overlapping between adjacent echo, we used a four-figure Barker code to drive the ultrasonic transducer, which is modulated at the operating frequency of transducer to improve the emission efficiency. The implementation of coded excitation is closely associated with the transient operating characteristic of ultrasonic transducer. In this paper, the transient operating characteristic of ultrasonic transducer excited by a shock pulse δ(t) is firstly analyzed, and then the exciting pulse generated by special ultrasonic transmitting circuit composing of MD1211 and TC6320. In the final part of the paper, we designed an experiment to validate the coded excitation with transducer operating at 5MHz and a glass filled with ultrasonic coupling liquid as the object. Driven by a FPGA, the ultrasonic transmitting circuit output a four-figure Barker excitation pulse modulated at 5MHz, +/-20 voltage and is consistent with the transient operating characteristic of ultrasonic transducer after matched by matching circuit. The reflected echo from glass possesses coded character, which is identical with the simulating result by Matlab. Furthermore, the signal's amplitude is higher.

  11. Assessment and Calibration of a Crimp Tool Equipped with Ultrasonic Analysis Features

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, K. Elliott (Inventor)

    2013-01-01

    A method is provided for calibrating ultrasonic signals passed through a crimp formed with respect to a deformable body via an ultrasonically-equipped crimp tool (UECT). The UECT verifies a crimp quality using the ultrasonic signals. The method includes forming the crimp, transmitting a first signal, e.g., a pulse, to a first transducer of the UECT, and converting the first signal, using the first transducer, into a second signal which defines an ultrasonic pulse. This pulse is transmitted through the UECT into the crimp. A second transducer converts the second signal into a third signal, which may be further conditioned, and the ultrasonic signals are calibrated using the third signal or its conditioned variant. An apparatus for calibrating the ultrasonic signals includes a pulse module (PM) electrically connected to the first and second transducers, and an oscilloscope or display electrically connected to the PM for analyzing an electrical output signal therefrom.

  12. High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: Proof of principle experiments with a neutron counting MCP detector

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Kockelmann, W.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.

    2011-05-01

    The high spatial and temporal resolution of a neutron counting detector using microchannel plates (MCPs) combined with Medipix2/Timepix readout can substantially improve the spatial resolution of neutron transmission spectroscopy, as shown in our proof-of-principle experiments. Provided that the neutron fluence and data acquisition time are sufficient, transmission spectra can be acquired in each 55×55 μm2 pixel of the detector, allowing high spatial resolution mapping of Bragg edge positions. Our first experiment demonstrates that energy resolution as high as ΔE/E<1% or ΔE<4 mÅ can be achieved. Variation of the residual strain in a well-characterized VAMAS round robin shrink-fitted Al ring-and-plug sample was measured with ˜200 microstrain resolution through an accurate mapping of the first (1 1 1) Bragg edge. The measured stress profile agrees well with the expected values for that particular sample. More developments on the detector processing electronics are required in order to reduce the data acquisition times by enabling simultaneous measurements of spectra in a wide energy range covering multiple Bragg edges.

  13. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  14. A unique method to study acoustic transmission through ducts using signal synthesis and averaging of acoustic pulses

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Ramakrishnan, R.; Ahuja, K. K.; Brown, W. H.

    1981-01-01

    An acoustic impulse technique using a loudspeaker driver is developed to measure the acoustic properties of a duct/nozzle system. A signal synthesis method is used to generate a desired single pulse with a flat spectrum. The convolution of the desired signal and the inverse Fourier transform of the reciprocal of the driver's response are then fed to the driver. A signal averaging process eliminates the jet mixing noise from the mixture of jet noise and the internal noise, thereby allowing very low intensity signals to be measured accurately, even for high velocity jets. A theoretical analysis is carried out to predict the incident sound field; this is used to help determine the number and locations of the induct measurement points to account for the contributions due to higher order modes present in the incident tube method. The impulse technique is validated by comparing experimentally determined acoustic characteristics of a duct-nozzle system with similar results obtained by the impedance tube method. Absolute agreement in the comparisons was poor, but the overall shapes of the time histories and spectral distributions were much alike.

  15. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  16. Federal technology alert: Ultrasonic humidifiers

    SciTech Connect

    1998-11-01

    Humidifiers are used in buildings to maintain humidity levels to ensure quality and handling capabilities in manufacturing processes, to lower the transmission rate of disease-causing bacteria in hospitals, to reduce static electricity in manufacturing clean rooms and in computer rooms, and to provide higher levels of employee comfort in offices. Ultrasonic humidifiers generate a water mist without raising its temperature. An electronic oscillation is converted to a mechanical oscillation using a piezo disk immersed in a reservoir of mineral-free water. The mechanical oscillation is directed at the surface of the water, where at very high frequencies it creates a very fine mist of water droplets. This adiabatic process, which does not heat the supply water, reduces humidifier energy use by 90 to 93% compared with systems that do boil the water. Ultrasonic humidifiers have been demonstrated to be more efficient and to require less maintenance than competing humidifier technologies such as electrode canisters, quartz lamps, and indirect steam-to-steam. They do not require anticorrosive additives that affect the indoor air quality of buildings using direct steam humidifiers. There are two potential disadvantages of ultrasonic humidifiers. They must use mineral-free, deionized water or water treated with reverse osmosis. Treated water reduces maintenance costs because it eliminates calcium deposits, but increases other operating costs. Also, the cool mist from ultrasonic humidifiers absorbs energy from the supply air as it evaporates and provides a secondary cooling effect.

  17. Surfaces and thin films studied by picosecond ultrasonics. Progress report, December 1, 1989--November 30, 1992

    SciTech Connect

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse (``pump pulse``). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  18. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intended for use in diagnostic ultrasonic medical devices. Accessories of this generic type of device may include transmission media for acoustically coupling the transducer to the body surface, such as...

  19. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... intended for use in diagnostic ultrasonic medical devices. Accessories of this generic type of device may include transmission media for acoustically coupling the transducer to the body surface, such as...

  20. Fundamentals of picosecond laser ultrasonics.

    PubMed

    Matsuda, Osamu; Larciprete, Maria Cristina; Li Voti, Roberto; Wright, Oliver B

    2015-02-01

    The aim of this article is to provide an introduction to picosecond laser ultrasonics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can be used to characterize materials with nanometer spatial resolution. With reference to key experiments, we first review the theoretical background for normal-incidence optical detection of longitudinal acoustic waves in opaque single-layer isotropic thin films. The theory is extended to handle isotropic multilayer samples, and is again compared to experiment. We then review applications to anisotropic samples, including oblique-incidence optical probing, and treat the generation and detection of shear waves. Solids including metals and semiconductors are mainly discussed, although liquids are briefly mentioned.

  1. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  2. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  3. Effective ultrasonication process for better colloidal dispersion of nanofluid.

    PubMed

    Mahbubul, I M; Saidur, R; Amalina, M A; Elcioglu, E B; Okutucu-Ozyurt, T

    2015-09-01

    Improving dispersion stability of nanofluids through ultrasonication has been shown to be effective. Determining specific conditions of ultrasonication for a certain nanofluid is necessary. For this purpose, nanofluids of varying nanoparticle concentrations were prepared and studied to find out a suitable and rather mono-dispersed concentration (i.e., 0.5 vol.%, determined through transmission electron microscopy (TEM) analyses). This study aims to report applicable ultrasonication conditions for the dispersion of Al2O3 nanoparticles within H2O through the two-step production method. The prepared samples were ultrasonicated via an ultrasonic horn for 1-5h at two different amplitudes (25% and 50%). The microstructure, particle size distribution (PSD), and zeta potentials were analyzed to investigate the dispersion characteristics. Better particle dispersion, smaller aggregate sizes, and higher zeta potentials were observed at 3 and 5h of ultrasonication duration for the 50% and 25% of sonicator power amplitudes, respectively. PMID:25616639

  4. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  5. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  6. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  7. System and method for ultrasonic tomography

    DOEpatents

    Haddad, Waleed Sami

    2002-01-01

    A system and method for doing both transmission mode and reflection mode three-dimensional ultrasonic imagining. The multimode imaging capability may be used to provide enhanced detectability of cancer tumors within human breast, however, similar imaging systems are applicable to a number of other medical problems as well as a variety of non-medical problems in non-destructive evaluation (NDE).

  8. Modal dispersion, pulse broadening and maximum transmission rate in GRIN optical fibers encompass a central dip in the core index profile

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; El-Hennawi, H. A.; El-Ghandoor, H.; Soliman, Mona A.

    2013-12-01

    Intermodal and intramodal dispersions signify one of the problems in graded-index multi-mode optical fibers (GRIN) used for LAN communication systems and for sensing applications. A central index dip (depression) in the profile of core refractive-index may occur due to the CVD fabrication processes. The index dip may also be intentionally designed to broaden the fundamental mode field profile toward a plateau-like distribution, which have advantages for fiber-source connections, fiber amplifiers and self-imaging applications. Effect of core central index dip on the propagation parameters of GRIN fiber, such as intermodal dispersion, intramodal dispersion and root-mean-square broadening, is investigated. The conventional methods usually study optical signal propagation in optical fiber in terms of mode characteristics and the number of modes, but in this work multiple-beam Fizeau interferometry is proposed as an inductive but alternative methodology to afford a radial approach to determine dispersion, pulse broadening and maximum transmission rate in GRIN optical fiber having a central index dip.

  9. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  10. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  11. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  12. Resolution and quantitative accuracy improvements in ultrasound transmission imaging

    NASA Astrophysics Data System (ADS)

    Chenevert, T. L.

    The type of ultrasound transmission imaging, referred to as ultrasonic computed tomography (UCT), reconstructs distributions of tissue speed of sound and sound attenuation properties from measurements of acoustic pulse time of flight (TCF) and energy received through tissue. Although clinical studies with experimental UCT scanners have demonstrated UCT is sensitive to certain tissue pathologies not easily detected with conventional ultrasound imaging, they have also shown UCT to suffer from artifacts due to physical differences between the acoustic beam and its ray model implicit in image reconstruction algorithms. Artifacts are expressed as large quantitative errors in attenuation images, and poor spatial resolution and size distortion (exaggerated size of high speed of sound regions) in speed of sound images. Methods are introduced and investigated which alleviate these problems in UCT imaging by providing improved measurements of pulse TCF and energy.

  13. Analysis of microcracks in dry polycrystalline NaCl by ultrasonic signal processing

    SciTech Connect

    Sears, F.M.

    1980-07-01

    The attenuation of energy and the change in shape of transient waveforms is a basic feature associated with the propagation of waves in crustal rocks. The dimensionless quality factor Q is observed as a useful quantity to characterize the attenuation of energy. Existing an elastic (attenuation) theories on the Q-determination problem are compared with experimental measurements to better understand rock properties. Experimental attenuation measurements were made on Avery Island (Louisiana) rock salt, Westerly (Rhode Island) granite, and Creighton (Ontario) quartz biotite gabbro. The attenuation mechanisms and how they affect the agreement between the an elastic theories were examined. Ultrasonic pulse methods were utilized of examine crack geometries as a function of frequency and thermal cycling temperature in dry polycrystalline rock salt. The attenuation of compressional (P) and shear (S) waves was studied in a thermally-induced, isotropic distribution of microcracks using ultrasonic-transmission techniques. These attenuation measurements led to the following series of generalities: ultrasonic or seismic attenuation depends on frequency in the rocks tested; thermal cycling of rock salt increases the porosity and attenuation; grain scattering seems to be the dominant loss mechanism at the higher frequencies in rocks; friction explains why the introduction of cracks into rock salt increases the attenuation; and attenuation appears to be independent of strain amplitude for low strains (10/sup -6/) such as those associated with these measurements. Much work remains to be done to adequately describe the attenuation loss mechanisms and the an elasticity of rocks both experimentally and theoretically.

  14. Ultrasonic and mechanical characterizations of fatigue states of graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Yuce, H.

    1982-01-01

    Results of an exploration of the relationship between ultrasonic attenuation and fatigue survivability of graphite fiber epoxy composites fabricated under different cure conditions are reported. A total of 9 27 x 40 cm eight-ply graphite epoxy laminated specimens were formed, and fatigue tests were run on five partial samples at 73.5 N varying at 30 Hz, with tests ending at a 1.27 cm deflection. A pulsed oscillator generated sinusoidal waves and transducers recorded the passage of the ultrasonic waves for display on oscilloscopes. Cure pressures ranged from 0.52-0.85 MPa and cure temperatures were in the 150-200 C interval. Ultrasonic through-transmission at 4 MHz was performed prior to and during fatigue testing. The minimum void volume fraction occurred at 175 C and 0.86 MPa. The flexural stiffness decreased with the number of fatigue cycles past 10,000, when the attenuation also increased. Correlations were found between the 4.0 MHz signal attenuation and the void volume fraction, and between the number of fatigue cycles to failure and the 4.0 MHz signal attenuation.

  15. Ultrasonic angle beam standard reflector. [ultrasonic nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr. (Inventor)

    1985-01-01

    A method that provides an impression profile in a reference standard material utilized in inspecting critically stressed components with pulsed ultrasound is described. A die stamp having an I letter is used to impress the surface of a reference material. The die stamp is placed against the surface and struck with an inertia imparting member to impress the I in the reference standard material. Upset may appear on the surface as a result of the impression and is removed to form a smooth surface. The stamping and upset removal is repeated until the entire surface area of a depth control platform on the die stamp uniformly contacts the material surface. The I impression profile in the reference standard material is utilized for reflecting pulsed ultrasonic beams for inspection purposes.

  16. Increased epidermal laser fluence through simultaneous ultrasonic microporation

    NASA Astrophysics Data System (ADS)

    Whiteside, Paul J. D.; Chininis, Jeff A.; Schellenberg, Mason W.; Qian, Chenxi; Hunt, Heather K.

    2016-03-01

    Lasers have demonstrated widespread applicability in clinical dermatology as minimally invasive instruments that achieve photogenerated responses within tissue. However, before reaching its target, the incident light must first transmit through the surface layer of tissue, which is interspersed with chromophores (e.g. melanin) that preferentially absorb the light and may also generate negative tissue responses. These optical absorbers decrease the efficacy of the procedures. In order to ensure that the target receives a clinically relevant dose, most procedures simply increase the incident energy; however, this tends to exacerbate the negative complications of melanin absorption. Here, we present an alternative solution aimed at increasing epidermal energy uence while mitigating excess absorption by unintended targets. Our technique involves the combination of a waveguide-based contact transmission modality with simultaneous high-frequency ultrasonic pulsation, which alters the optical properties of the tissue through the agglomeration of dissolved gasses into micro-bubbles within the tissue. Doing so effectively creates optically transparent pathways for the light to transmit unobstructed through the tissue, resulting in an increase in forward scattering and a decrease in absorption. To demonstrate this, Q-switched nanosecond-pulsed laser light at 532nm was delivered into pig skin samples using custom glass waveguides clad in titanium and silver. Light transmission through the tissue was measured with a photodiode and integrating sphere for tissue with and without continuous ultrasonic pulsation at 510 kHz. The combination of these techniques has the potential to improve the efficiency of laser procedures while mitigating negative tissue effects caused by undesirable absorption.

  17. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  18. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice.

  19. Electrical pulse generator

    DOEpatents

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  20. Numerical calculations of ultrasonic fields. [STEALTH

    SciTech Connect

    Johnson, J.A.

    1982-02-01

    A code for calculating ultrasonic fields has been developed by revisng the thermal-hydraulics code STEALTH. This code may be used in a wide variety of situations in which a detailed knowledge of a propagating wave field is required. Among the potential used are: interpretation of pulse-echo or pitch-catch ultrasonic signals in complicated geometries; ultrasonic transducer modeling and characterization; optimization and evaluation of transducer design; optimization and reliability of inspection procedures; investigation of the response of different types of reflectors; flaw modeling; and general theoretical acoustics. The code is described, and its limitations and potential are discussed. A discussion of the required input and of the general procedures for running the code is presented. Three sample problems illustrate the input and the use of the code.

  1. Acousto-ultrasonic characterization of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1981-01-01

    The acousto-ultrasonic technique combines advantageous aspects of acoustic emission and ultrasonic methodologies. Acousto-ultrasonics operates by introducing a repeating series of ultrasonic pulses into a material. The waves introduced simulate the spontaneous stress waves that would arise if the material were put under stress as in the case of acoustic emission measurements. These benign stress waves are detected by an acoustic emission sensor. The physical arrangement of the ultrasonic (input) transducer and acoustic emission (output) sensor is such that the resultant waveform carries an imprint of morphological factors that govern or contribute to material performance. The output waveform is complex, but it can be quantitized in terms of a 'stress wave factor.' The stress wave factor, which can be defined in a number of ways, is a relative measure of the efficiency of energy dissipation in a material. If flaws or other material anomalies exist in the volume being examined, their combined effect appears in the stress wave factor.

  2. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  3. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  4. Ultrasonic determination of Young's moduli of the coat and core materials of a drug tablet.

    PubMed

    Akseli, Ilgaz; Becker, Douglas C; Cetinkaya, Cetin

    2009-03-31

    Many modern tablet presses have system controls that monitor the force exerted to compress the solid oral dosage forms; however this data provides only limited information about the mechanical state of the tablet due to various process and materials uncertainties. A contact pulse/echo ultrasonic scheme is presented for the determination of the local Young's moduli of the coat and the core materials of enteric-coated and monolayer coated tablets. The Young's modulus of a material compacted into solid dosage can be related to its mechanical hardness and, consequently, its dissolution rate. In the current approach, short ultrasonic pulses are generated by the active element of a delay line transducer and are launched into the tablet. The waveforms reflected from the tablet coat-core interface are captured by the same transducer and are processed for determining the reflection and transmission coefficients of the interface from partially overlapping echoes. The Young's moduli of the coat and the core materials are then extracted from these coefficients. The results are compared to those obtained by an air-coupled acoustic excitation study, and good agreement is found. The described measurement technique provides greater insight into the local physical properties of the solid oral dosage form and, as a result, has the potential to provide better hardness-related performance predictability of compacts. PMID:19059326

  5. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, Robert J.

    1985-01-01

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  6. High resolution in situ ultrasonic corrosion monitor

    DOEpatents

    Grossman, R.J.

    1984-01-10

    An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.

  7. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.

  8. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  9. Applications of laser-based ultrasonics to the characterization of the internal structure of teeth.

    PubMed

    Blodgett, D W

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. For example, there is a need to image the margins of a restoration for the detection of poor bonding or voids between the restorative material and the dentin. In addition, a high-resolution imaging modality is needed to detect tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help remineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, nondestructive and noncontact in vitro measurements on "as-is" extracted sections of human incisors and molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements is accomplished with a path-stabilized Michelson-type interferometer. Laser ultrasonics is found effective in characterizing the anisotropic and inhomogeneous nature of dentin. In addition, time-of-flight analysis of the measured bulk transmission waveforms allows for detection of dentino-enamel and carious dentin-dentin junctions. These results are compared to those obtained for specially prepared tooth phantoms that mimic the mechanical properties of dental hard tissues.

  10. Effect of Crack Closure on Ultrasonic Detection of Fatigue Cracks at Fastener Holes

    NASA Astrophysics Data System (ADS)

    Bowles, S. J.; Harding, C. A.; Hugo, G. R.

    2009-03-01

    The ultrasonic response from closed fatigue cracks grown in aluminium alloy specimens using a representative aircraft spectrum loading has been characterised as a function of tensile applied load using pulse-echo 45° shear-wave ultrasonic C-scans with focused immersion transducers. Observed trends with crack size and applied load are described and compared to results for artificial machined defects. The results demonstrate that crack closure significantly reduces the ultrasonic response compared to open cracks or machined defects.

  11. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  12. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  13. Dry-contact technique for high-resolution ultrasonic imaging.

    PubMed

    Tohmyoh, Hironori; Saka, Masumi

    2003-06-01

    To accomplish a high-resolution ultrasonic imaging without wetting a sample, the efficiency of the dry-contact ultrasonic transmission is discussed. In this study, a dry-contact interface is formed on a sample by inserting a thin film between water and a sample, and the pressure is working on the interface by evacuating the air between the film and the sample. A model of dry-contact ultrasonic transmission is presented to assess the signal loss accompanied with the transmission. From the determination of the signal loss caused by the transmission using various films, it was found that the higher frequency ultrasound is transmitted effectively into the sample by selecting an optimum film, which can keep the displacement continuity between the film and the sample during ultrasonic transmission. At last, ultrasonic imaging with the sufficient signal-to-noise ratio (SNR) and high lateral resolution was performed on the delamination in a package and the jointing interface of the ball-grid-array package without wetting the packages.

  14. Ultrasonic Inspection Of The LTAB Floor

    SciTech Connect

    Thomas, G

    2001-07-31

    The National Ignition Facility's (NIF) floor is damaged by transporter operations. Two basic operations, rotating the wheels in place and traversing the floor numerous times can cause failure in the grout layer. The floor is composed of top wear surface (Stonhard) and an osmotic grout layer on top of concrete, Fig. 1. An ultrasonic technique was implemented to assess the condition of the floor as part of a study to determine the damage mechanisms. The study considered damage scenarios and ways to avoid the damage. A possible solution is to install thin steel plates where the transporter traverses on the floor. These tests were conducted with a fully loaded transporter that applies up to 1300 psi loads to the floor. A contact ultrasonic technique evaluated the condition of the grout layer in NIF's floor. Figure 1 displays the configuration of the ultrasonic transducer on the floor. We inspected the floor after wheel rotation damage and after wheel traversal damage. Figure 2a and 2b are photographs of the portable ultrasonic system and data acquisition. We acquired ultrasonic signals in a known pristine area and a damaged area to calibrate the inspection. Figure 3 is a plot of the typical ultrasonic response from an undamaged area (black) overlapped with a signal (red) from a damaged area. The damage area data was acquired at a location next to a hole in the floor that was caused by the transporter. Five megahertz pulses are propagated from the transducer and through a Plexiglas buffer rod into the floor. The ultrasonic pulse reflects from each discontinuity in the floor. The ultrasonic signal reflects from the top surface, the Stonhard-to-grout interface, and the grout to concrete interface. We expect to see reflections from each of these interfaces in an undamaged floor. If the grout layer pulverizes then the high frequency signal cannot traverse the layer and the grout to concrete interface signal will decrease or vanish. The more damage to the grout the more the

  15. Dispersion Method Using Focused Ultrasonic Field

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Kim, Moojoon; Ha, Kanglyel; Chu, Minchul

    2010-07-01

    The dispersion of powders into liquids has become one of the most important techniques in high-tech industries and it is a common process in the formulation of various products, such as paint, ink, shampoo, beverages, and polishing media. In this study, an ultrasonic system with a cylindrical transducer is newly introduced for pure nanoparticle dispersion. The acoustics pressure field and the characteristics of the shock pulse caused by cavitation are investigated. The frequency spectrum of the pulse from the collapse of air bubbles in the cavitation is analyzed theoretically. It was confirmed that a TiO2 water suspension can be dispersed effectively using the suggested system.

  16. Ultrasonic attenuation measurements determine onset, degree, and completion of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1988-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and volume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  17. Ultrasonic inspection of polyethylene butt-fussion joints

    SciTech Connect

    House, L.J.; Day, R.A.

    1982-01-01

    Researchers investigated nondestructive pulse-echo, pitch-catch, and spectroscopic ultrasonic methods for determining voids and inclusions, lack of bond, and inadequate fusion in heat-fused polyethylene butt joints in 4-in. gas distribution pipe. The pulse-echo method, using a 2.25-MHz, cylindrically focused transducer, provided the best sensitivity to the joint defects, detecting flaws as small as 0.014 in. in diameter. No correlation was established between the ultrasonic spectroscopy results and the cohesive strength of incompletely fused joints in the 1.2-3.2 MHz frequency range.

  18. An ultrasonic method for studying elastic moduli as a function of temperature

    NASA Technical Reports Server (NTRS)

    Peterson, R. G.

    1969-01-01

    Ultrasonic method is used to determine the elastic moduli of materials used in components of high-temperature nuclear reactors. An ultrasonic, pulse-echo technique determines the velocity of sound waves propogating in a heated region of rod-shaped specimens. From these velocities, the elastic moduli are calculated.

  19. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  20. Ultrasonic assisted-ECAP.

    PubMed

    Djavanroodi, F; Ahmadian, H; Koohkan, K; Naseri, R

    2013-08-01

    Equal channel angular pressing (ECAP) is one of the most prominent procedures for achieving ultra-fine grain (UFG) structures among the various severe plastic deformation (SPD) techniques. In this study, the effect of ultrasonic vibration on deformation behavior of commercial pure aluminum in the ECAP process is analyzed successfully using three dimensional (3D) by finite element methods (FEMs). The investigation includes the effects of die geometry, billet length, friction factor, ram speed, ultrasonic amplitude and ultrasonic frequency. Conventional as well as ultrasonic ECAP has been performed on aluminium 1070 alloy and the obtained data were used for validating simulations. It is observed that a 13% reduction in the average force was achieved when ultrasonic vibration with amplitude of 2.5 μm at 20 kHz is applied. Also, further reduction in ECAP forming forces are obtained with increase of vibration amplitude, vibration frequency, friction factor, billet length and die channel angle.

  1. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  2. Ultrasonic properties of granular media saturated with DNAPL/water mixtures

    NASA Astrophysics Data System (ADS)

    Ajo-Franklin, J. B.; Geller, J. T.; Harris, J. M.

    2007-04-01

    We present the results of four experiments investigating the ultrasonic properties of granular materials partially saturated with trichloroethylene (TCE), a dense non-aqueous contaminant. P-wave velocity measurements were made under in situ effective stress conditions using a pulse transmission cell at ~250 kHz. Two synthetic samples and two natural aquifer cores were fully saturated with water and then subjected to an axial injection of TCE. The resulting measurements show reductions in P-wave velocity of up to 15% due to contaminant saturation. A theoretical model combining Gassmann fluid substitution and Hill's equation was used to estimate the effects of DNAPL saturation; this model underpredicted observed reductions in velocity at high TCE saturations. A linear relationship, expressed in terms of volumetric contaminant fraction, provided an excellent empirical fit to the laboratory measurements.

  3. Generating Independent Preionizing Pulses for Lasers

    NASA Technical Reports Server (NTRS)

    Pacala, T. J.

    1986-01-01

    Simple pulse-coupling winding on saturable reactor core lets core act as pulse transformer, passing preionizing pulse from winding to tapered transmission line, then to laser. Laser prepared for independent firing pulse, which follows preionizing pulse. Winding is simple, light in weight, low in bulk and power consumption, and inexpensive.

  4. Ultrasonic Communication Project, Phase 1, FY1999

    SciTech Connect

    Haynes, H.D.; Akerman, M.A.; Baylor, V.M.

    2000-06-01

    This Phase 1 project has been successful in identifying, exploring, and demonstrating methods for ultrasonic-based communication with an emphasis on the application of digital signal processing techniques. During the project, at the direction of the agency project monitor, particular attention was directed at sending and receiving ultrasonic data through air and through pipes that would be commonly found in buildings. Efforts were also focused on development of a method for transmitting computer files ultrasonically. New methods were identified and evaluated for ultrasonic communication. These methods are based on a technique called DFS. With DFS, individual alphanumeric characters are broken down into a sequence of bits, and each bit is used to generate a discrete ultrasonic frequency. Characters are then transmitted one-bit-at-a-time, and reconstructed by the receiver. This technique was put into practice through the development of LabVIEW{trademark}VIs. These VIs were integrated with specially developed electronic circuits to provide a system for demonstrating the transmission and reception/reconstruction of typed messages and computer files. Tests were performed to determine the envelope for ultrasound transmission through pipes (with and without water) versus through air. The practical aspects of connections, efficient electronics, impedance matching, and the effect of damping mechanisms were all investigated. These tests resulted in a considerable number of reference charts that illustrate the absorption of ultrasound through different pipe materials, both with and without water, as a function of distance. Ultrasound was found to be least attenuated by copper pipe and most attenuated by PVC pipe. Water in the pipe provides additional damping and attenuation of ultrasonic signals. Dramatic improvements are observed, however, in ultrasound signal strength if the transducers are directly coupled to the water, rather than simply attaching them to the outside of

  5. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization. PMID:18471849

  6. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  7. PULSED INDICATOR CIRCUIT

    DOEpatents

    Linlor, W.I.; Kerns, Q.A.

    1960-11-15

    A system is given for detecting incremental changes in a transducer impedance terminating a transmission line. Principal novelty resides in the transducer impedance terminating the line in a mismatch and a pulse generator being provided to apply discrete pulses to the input end of the line. The amplitudes of the pulses reflected to the input end of the line from the mismatched transducer impedance are then observed as a very accurate measure of the instantaneous value of the latter.

  8. Ultrasonic assessment of tooth structure

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.

    2002-06-01

    A means of assessing the internal structure of teeth based upon use of high frequency, highly localized ultrasound (acoustic waves) generated by a short laser pulse is discussed. Some key advantages of laser-generated ultrasound over more traditional contact transducer methods are that it is noncontact and nondestructive in nature and requires no special surface preparation. Optical interferometric detection of ultrasound provides a complementary nondestructive, noncontact technique with a very small detection footprint. This combination of techniques, termed laser-based ultrasonics, holds promise for future in-vivo diagnostics of tooth health. In this paper, initial results using laser-based ultrasound for assessment of dental structures are presented on an extracted human incisor. Results show the technique to be sensitive to the enamel/dentin, dentin/pulp, and dentin/cementum junctions as well as a region of dead tracts in the dentin.

  9. Three dimensional ultrasonic imaging

    SciTech Connect

    Thomas, G. H.; Benson, S.; Crawford, S.

    1993-03-01

    Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.

  10. Ultrasonic testing of reactive powder concrete.

    PubMed

    Washer, Glenn; Fuchs, Paul; Graybeal, Benjamin A; Hartmann, Joseph Lawrence

    2004-02-01

    Concrete is a critical material for the construction of infrastructure facilities throughout the world. Traditional concretes consist of cement paste and aggregates ranging in size from 6 to 25 mm that form a heterogeneous material with substantial compressive strength and a very low tensile strength. Steel reinforcement is used to provide tensile strength for reinforced concrete structures and as a composite the material is useful for structural applications. A new material known as reactive powder concrete (RPC) is becoming available. It differs significantly from traditional concrete; RPC has no large aggregates, and contains small steel fibers that provide additional strength and, in some cases, can replace traditional steel reinforcement. Due to its high density and lack of aggregates, ultrasonic inspections at frequencies 10 to 20 times that of traditional concrete inspections are possible. This paper reports on the initial findings of research conducted to determine the applicability of ultrasonic testing techniques for the condition assessment of RPC. Pulse velocities for shear and longitudinal waves and ultrasonic measurement of the modulus of elasticity for RPC are reported. Ultrasonic crack detection for RPC also is investigated. PMID:15055809

  11. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    NASA Astrophysics Data System (ADS)

    Fortuna, S. V.; Ivanov, K. V.; Tarasov, S. Yu.; Eliseev, A. A.; Ivanov, A. N.; Rubtsov, V. E.; Kolubaev, E. A.

    2015-10-01

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  12. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    SciTech Connect

    Fortuna, S. V. Ivanov, K. V. Eliseev, A. A.; Tarasov, S. Yu. Ivanov, A. N. Rubtsov, V. E. Kolubaev, E. A.

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  13. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    SciTech Connect

    Murphy, Timothy L.

    2005-12-01

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods, results, and considerations for future research are discussed

  14. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  15. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  16. Ultrasonic materials characterization

    NASA Astrophysics Data System (ADS)

    Smith, R. L.

    1987-02-01

    The National NDT Center at Harwell has been developing methods for the characterization of materials using ultrasonics. This paper reviews the progress made in applying ultrasonic attenuation measurements to the determination of such quantities as grain size and dislocation content. A method, ultrasonic attenuation spectral analysis, has been developed, which enables the contributions of scattering and absorption to the total attenuation to be separated. The theoretical advances that have been made are also described. Some of the practical applications of the technique are illustrated and future development discussed.

  17. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  18. Detonator comprising a nonlinear transmission line

    SciTech Connect

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  19. Testing Results of Magnetostrictive Ultrasonic Sensor Cables for Signal Loss

    SciTech Connect

    JT Evans

    2005-05-01

    The purpose of this test was to determine the signal strength and resolution losses of a magnetostrictive ultrasonic system with an extended signal cable. The cable of interest carries electrical signals between the pulse generator/receiver and the magnetostrictive transducer. It was desired to determine the loss introduced by different lengths of the signal cable (6', 100', and 200').

  20. Development of ultrasonic methods of hemodynamic measurements. [rheoencephalography/flowmeters

    NASA Technical Reports Server (NTRS)

    Histand, M. B.; Mcleod, F. D.; Miller, C. W.

    1975-01-01

    A pulsed ultrasonic Doppler velocity meter which can be used (by modifying transducers) as a flowmeter for blood circulation was experimentally studied. Calculations and profiles of turbulent and laminar flow within blood vessels are shown. Graphs and charts of transducers are included.

  1. Laser ultrasonics in Brazil for aeronautics and space engineering

    NASA Astrophysics Data System (ADS)

    Salvi Sakamoto, João Marcos; Pacheco, Gefeson Mendes

    2010-01-01

    This work is a report bringing the experimental setup and the initial developments to establish a laser ultrasonics system at the Instituto Tecnológico de Aeronáutica in Brazil. Present-day development aim to substitute piezoelectric transducer by a high power pulsed laser to generate ultrasound.

  2. Analysis of ultrasonic tinning

    SciTech Connect

    Vianco, P.T.; Hosking, F.M.

    1991-11-22

    This report describes experiments conducted as part of the initial phase in which the wettability of tin on oxygen-free, high conductivity (OFHC) copper was examined using a point source'' ultrasonic horn.

  3. Analysis of ultrasonic tinning

    SciTech Connect

    Vianco, P.T.; Hosking, F.M.

    1991-11-22

    This report describes experiments conducted as part of the initial phase in which the wettability of tin on oxygen-free, high conductivity (OFHC) copper was examined using a ``point source`` ultrasonic horn.

  4. Research on embedding invisible digital watermarking in ultrasonic image

    NASA Astrophysics Data System (ADS)

    Ye, Huashan; Shi, Qing; Ding, Mingyue

    2009-10-01

    In this paper, we proposed an adaptive watermarking algorithm to embed invisible digital watermarking in the wavelet domain of ultrasonic image. By analyzing the characteristic of detail sub-band coefficients of the ultrasonic image after discrete wavelet transform (DWT), we use the mean and variance of the detail sub-bands to modify the wavelet coefficients adaptively, and the embedded watermark is invisible to human visual system (HVS) and adapted to the original image. We can derive the just noticeable different (JND), which describes the maximum signal intensity that the various parts of image can tolerate the digital watermarking. By using this digital watermarking technique we can embed a certainty or confidentiality information directly into original ultrasonic images so that the replication and transmission of ultrasonic image can be tracked efficiently. Therefore, the copyright and ownership of ultrasonic images can be protected, which is critical for the authorization usage of the source of ultrasonic images. The experimental results and attack analysis showed that the proposed algorithm is effective and robust to ultrasonic image processing operations and geometric attacks.

  5. Metalworking with ultrasonic energy

    NASA Technical Reports Server (NTRS)

    Sonea, I.; Minca, M.

    1974-01-01

    The application of ultrasonic radiation for metal working of steel is discussed. It is stated that the productivity of the ultrasonic working is affected by the hardness of the material to be worked, the oscillation amplitude, the abrasive temperature, and the grain size. The factors that contribute to an increase in the dislocation speed are analyzed. Experimental data are provided to substantiate the theoretical parameters.

  6. Laser ultrasonics: Current research needs

    SciTech Connect

    Wagner, J.W. . Center for Nondestructive Evaluation)

    1990-09-26

    Laser-ultrasonics refers to a range of technologies involving the use of laser electrooptical systems both to generate and to detect ultrasonic signals in and on materials and structures. Such systems have been developed to permit classical ultrasonic measurements for materials characterization and defect identification and measurement. From the point of view of one concerned with practical applications of ultrasonic inspection and measurement methods, laser-ultrasonic systems offer the flexibility which, in principle, should permit remote ultrasonic measurements to be performed on objects at elevated temperatures or in hostile environments. Laser-ultrasonic systems can be designed and constructed with extremely wide and flat detection bandwidth so that ultrasonic vibrational displacements can be recorded with high fidelity. In addition, there is no mechanical loading of the surface to damp, absorb, or otherwise distort the propagating acoustic energy. This feature has been used to great advantage in performing ultrasonic measurements in thin plates and films. In spite of the great advantages offered by laser-ultrasonics, there are severe limitations which restrict its application. In fact, based upon the performance of current state-of-the-art laser-ultrasonic systems, it is almost always more advantageous to use conventional ultrasonic transduction methods, if possible for a given application, than it is to apply laser-ultrasonics. In short, the main reason leading to this conclusion is the poor system detection sensitivity of laser-ultrasonic systems compared with piezoelectric transducer systems. The ramifications of this limited sensitivity are many.

  7. Linear and Nonlinear Ultrasonic Properties of Granular Soils

    SciTech Connect

    Bonner, B.; Berge, P.A.; Aracne-Ruddle, C.M.; Bertete-Auguirre, H.; Wildenschild, D.; Trombino, C.N.; Hardy, E.

    2000-04-20

    The ultrasonic pulse transmission method (100-500 kHz) was adapted to measure compressional (P) and shear (S) wave velocities for synthetic soils fabricated from quartz-clay and quartz-peat mixtures. Velocities were determined as samples were loaded by small (up to 0.1 MPa) uniaxial stress to determine how stress at grain contacts affects ave amplitudes, velocities, and frequency content. Samples were fabricated from quartz sand mixed with either a swelling clay or peat (natural cellulose). P velocities in these dry synthetic soil samples were low, ranging from about 230 to 430 m/s for pure sand, about 91 to 420 m/s for sand-peat mixtures, and about 230 to 470 m/s for dry sand-clay mixtures. S velocities were about half of the P velocity in most cases, about 130 to 250 m/s for pure sand, about 75-220 m/s for sand-peat mixtures, and about 88-220 m/s for dry sand-clay mixtures. These experiments demonstrate that P and S velocities are sensitive to the amount and type of admixed second phase at low concentrations. They found that dramatic increases in all velocities occur with small uniaxial loads, indicating strong nonlinearity of the acoustic properties. Composition and grain packing contribute to the mechanical response at grain contacts and the nonlinear response at low stresses.

  8. Error-eliminating rapid ultrasonic firing

    DOEpatents

    Borenstein, J.; Koren, Y.

    1993-08-24

    A system for producing reliable navigation data for a mobile vehicle, such as a robot, combines multiple range samples to increase the confidence'' of the algorithm in the existence of an obstacle. At higher vehicle speed, it is crucial to sample each sensor quickly and repeatedly to gather multiple samples in time to avoid a collision. Erroneous data is rejected by delaying the issuance of an ultrasonic energy pulse by a predetermined wait-period, which may be different during alternate ultrasonic firing cycles. Consecutive readings are compared, and the corresponding data is rejected if the readings differ by more than a predetermined amount. The rejection rate for the data is monitored and the operating speed of the navigation system is reduced if the data rejection rate is increased. This is useful to distinguish and eliminate noise from the data which truly represents the existence of an article in the field of operation of the vehicle.

  9. Error-eliminating rapid ultrasonic firing

    DOEpatents

    Borenstein, Johann; Koren, Yoram

    1993-08-24

    A system for producing reliable navigation data for a mobile vehicle, such as a robot, combines multiple range samples to increase the "confidence" of the algorithm in the existence of an obstacle. At higher vehicle speed, it is crucial to sample each sensor quickly and repeatedly to gather multiple samples in time to avoid a collision. Erroneous data is rejected by delaying the issuance of an ultrasonic energy pulse by a predetermined wait-period, which may be different during alternate ultrasonic firing cycles. Consecutive readings are compared, and the corresponding data is rejected if the readings differ by more than a predetermined amount. The rejection rate for the data is monitored and the operating speed of the navigation system is reduced if the data rejection rate is increased. This is useful to distinguish and eliminate noise from the data which truly represents the existence of an article in the field of operation of the vehicle.

  10. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  11. Elastic properties of sand-peat moss mixtures from ultrasonic measurements

    SciTech Connect

    Trombino, C N

    1998-09-02

    Effective remediation of an environmental site requires extensive knowledge of the geologic setting, as well as the amount and distribution of contaminants. Seismic investigations provide a means to examine the subsurface with minimum disturbance, Laboratory measurements are needed to interpret field data. In this experiment, laboratory tests were performed to characterize manufactured soil samples in terms of their elastic properties. The soil samples consisted of small (mass) percentages (1 to 20 percent) of peat moss mixed with pure quartz sand. Sand was chosen as the major component because its elastic properties are well known except at the lowest pressures. The ultrasonic pulse transmission technique was used to collect elastic wave velocity data. These data were analyzed and mathematically processed to calculate the other elastic properties such as the modulus of elasticity. This experiment demonstrates that seismic data are affected by the amount~of peat moss added to pure sand samples. Elastic wave velocities, velocity gradients, and elastic moduli vary with pressure and peat moss amounts. In particular, ultrasonic response changes dramatically when pore space fills with peat. With some further investigation, the information gathered in this experiment could be applied to seismic field research.

  12. Integrated ultrasonic and petrographical characterization of carbonate building materials

    NASA Astrophysics Data System (ADS)

    Ligas, Paola; Fais, Silvana; Cuccuru, Francesco

    2014-05-01

    This paper presents the application of non-destructive ultrasonic techniques in evaluating the conservation state and quality of monumental carbonate building materials. Ultrasonic methods are very effective in detecting the elastic characteristics of the materials and thus their mechanical behaviour. They are non-destructive and effective both for site and laboratory tests, though it should be pointed out that ultrasonic data interpretation is extremely complex, since elastic wave velocity heavily depends on moisture, heterogeneity, porosity and other physical properties of the materials. In our study, considering both the nature of the building materials and the constructive types of the investigated monuments, the ultrasonic investigation was carried out in low frequency ultrasonic range (24 kHz - 54 kHz) with the aim of detecting damages and degradation zones and assessing the alterability of the investigated stones by studying the propagation of the longitudinal ultrasonic pulses. In fact alterations in the materials generally cause a decrease in longitudinal pulse velocity values. Therefore starting from longitudinal velocity values the elasto-mechanical behaviour of the stone materials can be deduced. To this aim empirical and effective relations between longitudinal velocity and mechanical properties of the rocks can be used, by transferring the fundamental concepts of the studies of reservoir rocks in the framework of hydrocarbon research to the diagnostic process on stone materials. The ultrasonic measurements were performed both in laboratory and in situ using the Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT) by C.N.S. Electronics LTD. A number of experimental sessions were carried out choosing different modalities of data acquisition. On the basis of the results of the laboratory measurements, an in situ ultrasonic survey on significant monuments, have been carried out. The ultrasonic measurements were integrated by a

  13. Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain).

    PubMed

    del Río, L M; López, F; Esteban, F J; Tejado, J J; Mota, M; González, I; San Emeterio, J L; Ramos, A

    2006-12-22

    The industry of ornamental rocks, such as granites, represents one of the most important industrial activities in the region of Extremadura, SW Spain. A detailed knowledge of the intrinsic properties of this natural stone and its environmental evolution is a required goal in order to fully characterize its quality. In this work, two independent NDT acoustic techniques have been used to measure the acoustic velocity of longitudinal waves in different prismatic granitic-samples of industrial quarries. A low-frequency transceiver set-up, based on a high-voltage BPV Steinkamp instrument and two 50 kHz probes, has been used to measure pulse travel times by ultrasonic through-transmission testing. In complementary fashion, an Erudite MK3 test equipment with an electromagnetic vibrator and two piezoelectric sensors has also been employed to measure ultrasonic velocity by means of a resonance-based method, using the same types of granite varieties. In addition, a comprehensive set of physical/mechanical properties have also been analyzed, according to Spanish regulations in force, by means of alternative methods including destructive techniques such as strength, porosity, absorption, etc. A large number of samples, representing the most important varieties of granites from quarries of Extremadura, have been analyzed using the above-mentioned procedures. Some results obtained by destructive techniques have been correlated with those found using ultrasonic techniques. Our experimental setting allowed a complementary characterization of granite samples and a thorough validation of the different techniques employed, thus providing the industry of ornamental rocks with a non-destructive tool that will facilitate a more detailed insight on the properties of the rocks under study.

  14. Ultrasonic characterization of materials hardness

    PubMed

    Badidi Bouda A; Benchaala; Alem

    2000-03-01

    In this paper, an experimental technique has been developed to measure velocities and attenuation of ultrasonic waves through a steel with a variable hardness. A correlation between ultrasonic measurements and steel hardness was investigated.

  15. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  16. Streamflow monitoring with ultrasonic recorders

    SciTech Connect

    Melroy, L.A.; Huff, D.D.

    1985-01-01

    In September 1983, four new streamflow monitoring sites were established in a west Chestnut Ridge catchment at the Oak Ridge National Laboratory. Ultrasonic level/flow recorders were used to monitor the streamflow at these sites. These recorders use an ultrasonic sound pulse and digital circuitry to measure the stage or flow. By use of a FROM (functional read only memory), the recorder can operate in a linear or proportional mode. In the linear mode, the data are recorded as a fraction of a predetermined maximum stage, and in the proportional mode, the data are recorded as a fraction of a predetermined maximum flow. Data are recorded on an EPROM (erasable programmable read only memory) which can later be translated using an Apple IIe microcomputer with an interface card. EPROMs are erased using an ultraviolet lamp but circular charts on the recorders provide a permanent pen and ink stage or flow record. New computer software was developed for the Apple IIe to meet the specific needs of streamflow reporting, because the available software was aimed at the water and wastewater industry and provided overly extensive reports. The new software is designed to read the EPROM and convert the hexadecimal data to decimal data, then store the data on a disk. An editing program allows the user to estimate any lost data or correct any erroneous data. A report generator computes the streamflow based on a stage-flow rating table and generates a daily summary report which provides the total flow volume, the average flow, and the daily maximum and minimum flow.

  17. ULTRASOUND PULSE-ECHO IMAGING USING THE SPLIT-STEP FOURIER PROPAGATOR

    SciTech Connect

    HUANG, LIANJIE; QUAN, YOULI

    2007-01-31

    Ultrasonic reflection imaging has the potential to produce higher image resolution than transmission tomography, but imaging resolution and quality still need to be further improved for early cancer detection and diagnosis. We present an ultrasound reflection image reconstruction method using the split-step Fourier propagator. It is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wavenumber domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wavenumber domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the breast. We use synthetic ultrasound pulse-echo data recorded around a ring for heterogeneous, computer-generated numerical breast phantoms to study the imaging capability of the method. The phantoms are derived from an experimental breast phantom and a sound-speed tomography image of an in-vivo ultrasound breast data collected usi ng a ring array. The heterogeneous sound-speed models used for pulse-echo imaging are obtained using a computationally efficient, first-arrival-time (time-of-flight) transmission tomography method. Our studies demonstrate that reflection image reconstruction using the split-step Fourier propagator with heterogeneous sound-speed models significantly improves image quality and resolution. We also numerically verify the spatial sampling criterion of wavefields for a ring transducer array.

  18. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  19. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  20. Ultrasonic Attenuation Measurements in Thermally Degraded 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Ortiz, N.; Carreón, H.; Sánchez, A.

    2009-03-01

    Ultrasonic attenuation plays an important role in materials characterization of metal components. This paper present data and discuss ultrasonic attenuation variations in a 2205 duplex stainless steel aged isothermally at 700° C and 900° C for different time intervals. Attenuation measurements as function of frequency where performed using pulse-echo immersion method and broad band planar transducers. Evidence is found of changes in the attenuation coefficient as aging time increases. The corresponding microstructure of aged specimens was observed and impact toughness was measured. Comparison is made with measurements of ferrite content for the two temperatures and different aging times.

  1. Focused high frequency needle transducer for ultrasonic imaging and trapping

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng; Zheng, Fan; Li, Ying; Lee, Changyang; Zhou, Qifa; Kirk Shung, K.

    2012-07-01

    A miniature focused needle transducer (<1 mm) was fabricated using the press-focusing technique. The measured pulse-echo waveform showed the transducer had center frequency of 57.5 MHz with 54% bandwidth and 14 dB insertion loss. To evaluate the performance of this type of transducer, invitro ultrasonic biomicroscopy imaging on the rabbit eye was obtained. Moreover, a single beam acoustic trapping experiment was performed using this transducer. Trapping of targeted particle size smaller than the ultrasonic wavelength was observed. Potential applications of these devices include minimally invasive measurements of retinal blood flow and single beam acoustic trapping of microparticles.

  2. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  3. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  4. Geothermal Ultrasonic Fracture Imager

    SciTech Connect

    Patterson, Doug; Leggett, Jim

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  5. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  6. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Herz, Jack L. (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  7. Ultrasonic humidification for telecommunications

    SciTech Connect

    Longo, F. )

    1994-03-01

    This article examines two installations which demonstrate that ultrasonic humidification is an excellent option for large-scale commercial installations. Many existing telephone switching centers constructed 20 to 30 years ago were equipped with electro-mechanical switching equipment that was not sensitive to humidity. Today's sophisticated solid-state telecommunications equipment requires specific levels of relative humidity to operate properly. Over the last several years, Einhorn Yaffee Prescott (formerly Rose Beaton + Rose) designed two of the largest ultrasonic humidification systems at telecommunications buildings located in Cheshire, Conn., and White Plains, N.Y. The Cheshire project was a retrofit to the existing system in a 1960s building; the White Plains project involved an upgrade to a totally new air handling system, including an ultrasonic humidification component, in a 1950s building.

  8. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  9. Ultrasonic wave techniques and characterization of filled elastomers and biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Wu, Hsueh-Chang

    Ultrasonic wave technique is an excellent method for non-destructive testing and for the monitoring of polymer curing, fatigue damage and polymer transition. It is also a potentially effective tool to be applied in the characterization of high frequency viscoelastic properties of polymers. This research represents the effort to improve and further develop ultrasonic wave techniques and extend its applications to new material evaluation areas. The work is presented as followings: In chapter 1, the fundamental wave propagation theories and characterization of the viscoelastic properties of materials by acoustic parameters were briefly reviewed. In chapter 2, the effects of carbon black filler on the elastomers were studied by the longitudinal wave pulse-echo technique. It is found that the enhanced pulse-echo technique is able to characterize the effects of polymer base, filler loading level, type as well as temperature, on the acoustic properties of filled elastomers. In chapter 3, the application of longitudinal wave pulse-echo technique was extended to the monitoring of the degradation process of biodegradable polymers: poly (glycolic acid)(PGA), poly (lactic acid) (PLA) and their copolymer-poly(d,l-lactide-co-glycolide) (PDLLG). It shows that the pulse-echo technique is able to differentiate the effects of polymer structure and preparation method on the degradation behavior of biopolymers. In chapter 4, the Young's modulus, shear modulus, bulk modulus and Poisson ratio of carbon black filled elastomers were determined by the longitudinal wave pulse-echo method and the shear wave through-transmission method. The effects of polymer base, filler loading and dispersion on the elastomers were also studied by the calculated elastic constants. In chapter 5, the effects of carbon black filler on the elastomers were studied by an innovative calibrated longitudinal and shear wave surface impedance technique. The results show that the effects of polymer base, filler loading

  10. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  11. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  12. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  13. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  14. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  15. Ultrasonic Processing of Materials

    SciTech Connect

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  16. Exploring the use of Low-intensity Ultrasonics as a Tool for Assessing the Salt Content in Pork Meat Products

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; de Prados, M.; Martínez-Escrivá, G.; González, R.; Mulet, A.; Benedito, J.

    Meat industry demands non-destructive techniques for the control of the salting process to achieve a homogeneous final salt content in salted meat products. The feasibility of using low-intensity ultrasound for characterizing the salting process of pork meat products was evaluated. The ultrasonic velocity (V) and time of flight (TF) were measured by through-transmission and pulse-echo methods, respectively, in salted meat products. Salting involved an increase of the V in meat muscles and a decrease of the time of flight in whole hams. Measuring the V before and after salting, the salt content could be estimated. Moreover, online monitoring of the salting process by computing the TF could be considered a reliable tool for quality control purposes.

  17. Ultrasonic shear wave velocity in CLF/CMT graphite from room temperature to 2000/sup 0/F

    SciTech Connect

    Gieske, J.H.

    1980-11-01

    The temperature dependence of the ultrasonic shear velocity in CLF/CMT graphite was determined from room temperature to 2000/sup 0/F using a pulse-echo technique. Data are presented for five 0.75-inch-diameter specimens all machined from the same CLF/CMT billet. Plots of ultrasonic pulse-echo radial and axial scans of the billet which characterize the material property uniformity of the billet are also given.

  18. A device for human ultrasonic echolocation

    PubMed Central

    Gaub, Benjamin M.; Rodgers, Chris C.; Li, Crystal; DeWeese, Michael R.; Harper, Nicol S.

    2015-01-01

    Objective We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system and 2) richer in object, and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. Methods The echoes of ultrasonic pulses were recorded and time-stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments in which the locations of echo-reflective surfaces were judged using these time stretched echoes. Results Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However trained subjects demonstrated an ability to judge elevation as well. Conclusion This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Significance Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment. PMID:25608301

  19. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  20. High energy, low frequency, ultrasonic transducer

    SciTech Connect

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  1. Scanning ultrasonic probe

    DOEpatents

    Kupperman, David S.; Reimann, Karl J.

    1982-01-01

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.

  2. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  3. Experiments with Ultrasonic Transducers.

    ERIC Educational Resources Information Center

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  4. Scanning ultrasonic probe

    DOEpatents

    Kupperman, D.S.; Reimann, K.J.

    1980-12-09

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and anlayzed at one time and their positions accurately located in a single pass down the test specimen.

  5. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  6. Ultrasonic characterization of solid liquid suspensions

    DOEpatents

    Panetta, Paul D.

    2010-06-22

    Using an ultrasonic field, properties of a solid liquid suspension such as through-transmission attenuation, backscattering, and diffuse field are measured. These properties are converted to quantities indicating the strength of different loss mechanisms (such as absorption, single scattering and multiple scattering) among particles in the suspension. Such separation of the loss mechanisms can allow for direct comparison of the attenuating effects of the mechanisms. These comparisons can also indicate a model most likely to accurately characterize the suspension and can aid in determination of properties such as particle size, concentration, and density of the suspension.

  7. Coupling apparatus for ultrasonic medical diagnostic system

    NASA Technical Reports Server (NTRS)

    Frazer, R. E. (Inventor)

    1978-01-01

    An apparatus for the ultrasonic scanning of a breast or other tissue is reported that contains a cavity for receiving the breast, a vacuum for drawing the breast into intimate contact with the walls of the cavity, and transducers coupled through a fluid to the cavity to transmit sound waves through the breast. Each transducer lies at the end of a tapered chamber which has flexible walls and which is filled with fluid, so that the transducer can be moved in a raster pattern while the chamber walls flex accordingly, with sound transmission always occurring through the fluid.

  8. Multimode-Guided-Wave Ultrasonic Scanning of Materials

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2006-01-01

    Two documents discuss a method of characterizing advanced composite materials by use of multimode-guided ultrasonic waves. A transmitting transducer excites modulated (e.g., pulsed) ultrasonic waves at one location on a surface of a plate specimen. The waves interact with microstructure and flaws as they propagate through the specimen to a receiving transducer at a different location. The received signal is analyzed to determine the total (multimode) ultrasonic response of the specimen and utilize this response to evaluate microstructure and flaws. The analysis is performed by software that extracts parameters of signals in the time and frequency domains. Scanning is effected by using computer-controlled motorized translation stages to position the transducers at specified pairs of locations and repeating the measurement, data-acquisition, and data-analysis processes at the successive locations. One document presents results of a scan of a specimen containing a delamination.

  9. Simulation of transducer-couplant effects on broadband ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  10. A sparse reconstruction algorithm for ultrasonic images in nondestructive testing.

    PubMed

    Guarneri, Giovanni Alfredo; Pipa, Daniel Rodrigues; Neves Junior, Flávio; de Arruda, Lúcia Valéria Ramos; Zibetti, Marcelo Victor Wüst

    2015-01-01

    Ultrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration. It is based on regularized least squares using a l1 regularization norm. The method is tested to reconstruct an image of a point-like reflector, using both simulated and real data. The resolution of reconstructed image is compared with four traditional ultrasonic imaging reconstruction algorithms: B-scan, SAFT, ω-k SAFT and regularized least squares (RLS). The method demonstrates significant resolution improvement when compared with B-scan-about 91% using real data. The proposed scheme also outperforms traditional algorithms in terms of signal-to-noise ratio (SNR). PMID:25905700

  11. Pressure pulse detection apparatus

    SciTech Connect

    Claycomb, J.R.

    1981-04-14

    A pressure pulse detection apparatus is disclosed which is adapted to receive small signals from downhole measuring while drilling apparatus which signals are propogated as pressure pulses traveling upstream in a column of drilling mud, which signals are obscured by mud pump pressure and velocity variations traveling downstream and which are significantly larger. The preferred embodiment incorporates a transient pressure transducer and an ultrasonic fluid velocity detector, the two forming output signals which are conditioned, amplified and offset against one another. They cancel (When properly calibrated) so that pressure and velocity variations from the mud pump upstream are nulled to zero. They reinforce so that pressure and velocity variations from the downhole signal generator are enhanced, thereby forming an output signal of downhole variations of interest.

  12. Transfer function concept for ultrasonic characterization of material microstructures

    NASA Technical Reports Server (NTRS)

    Vary, A.; Kautz, H. E.

    1986-01-01

    The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

  13. Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy.

    PubMed

    Fuchs, Hendrik; Dubé, William P; Ciciora, Steven J; Brown, Steven S

    2008-08-01

    Pulsed cavity ring-down spectroscopy is a highly sensitive method for direct absorption spectroscopy that has been applied to in situ detection of NO3, N2O5 and NO2 in the atmosphere from a variety of platforms, including ships, aircraft, and towers. In this paper, we report the development of schemes to significantly improve the accuracy of these measurements. This includes the following: (1) an overall improvement in the inlet transmission efficiencies (92 +/- 2% for NO3 and 97 +/- 1% for N2O5) achieved primarily through a reduction in the inlet residence time; and (2) the development of a calibration procedure that allows regular determination of these efficiencies in the field by addition of NO3 or N2O5 to the inlet from a portable source followed by conversion of NO3 to NO2. In addition, the dependence of the instrument's sensitivity and accuracy to a variety of conditions encountered in the field, including variations in relative humidity, aerosol loading, and VOC levels, was systematically investigated. The rate of degradation of N2O5 transmission efficiency on the inlet and filter system due to the accumulation of inorganic aerosol was determined, such that the frequency of filter changes required for accurate measurements could be defined. In the absence of aerosol, the presence of varying levels of relative humidity and reactive VOC were found to be unimportant factors in the instrument's performance. The 1 sigma accuracy of the NO3, N2O5, and NO2 measured with this instrument are -9/+12, -8/+11, +/- 6%, respectively, where the -/+ signs indicate that the actual value is low/high relative to the measurement. The largest contribution to the overall uncertainty is now due to the NO3 absorption cross section rather than the inlet transmission efficiency.

  14. An on-line ultrasonic cleanliness analyzer for molten light metals

    NASA Astrophysics Data System (ADS)

    Ono, Yuu; Moisan, Jean-François; Jen, Cheng-Kuei; Zhang, Yuanbei; Su, Chun-Yi

    2004-02-01

    Ultrasonic techniques to evaluate the cleanliness of molten aluminum and magnesium using clad steel buffer rods are presented in this article. Backscattered ultrasonic signals from silicon carbide particles, added to molten aluminum, were detected with ultrasonic pulse-echo and pitch-catch modes at an ultrasonic frequency of 10 MHz. The scattered signals from inclusions, which might be oxide films and/or particles, in molten magnesium, were also detected. To establish the procedure and to investigate the optimum system configurations for evaluating melt cleanliness, a particle flow simulator was constructed that uses water and polyvinyl chloride particles. Also developed was a prototype of an on-line ultrasonic cleanliness analyzer for molten magnesium.

  15. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  16. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    PubMed

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  17. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  18. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  19. Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids.

    PubMed

    Bauer-Marschallinger, Johannes; Berer, Thomas; Grun, Hubert; Roitner, Heinz; Reitinger, Bernhard; Burgholzer, Peter

    2012-12-01

    The ongoing expansion of the frequency range used for ultrasonic imaging requires increasing attention to the acoustic attenuation of biomaterials. This work presents a novel method for measuring the attenuation of tissue and liquids in vitro on the basis of single transmission measurements. Ultrasound was generated by short laser pulses directed onto a silicon wafer. In addition, unfocused piezoelectric transducers with a center frequency of 50 MHz were used to detect and emit ultrasound. The laser ultrasound method produces signals with a peak frequency of 30 MHz. In comparison to piezoelectric generation, pulse laser excitation provides approximately 4 times higher amplitudes and 20% larger bandwidth. By using two excitation methods in succession, the attenuation parameters of porcine fat samples with thicknesses in the range of 1.5 to 20 mm could be determined quantitatively within a total frequency range of 5 to 45 MHz. The setup for liquid measurements was tested on samples of human blood and olive oil. Our results are in good agreement with reports in literature. PMID:23221212

  20. Effect of Thermal Degradation on High Temperature Ultrasonic Transducer Performance in Small Modular Reactors

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    Prototype ultrasonic NDT transducers for use in immersion in coolants for small modular reactors have shown low signal to noise ratio. The reasons for the limitations in performance at high temperature are under investigation, and include changes in component properties. This current work seeks to quantify the issue of thermal expansion and degradation of the piezoelectric material in a transducer using a finite element method. The computational model represents an experimental set up for an ultrasonic transducer in a pulse-echo mode immersed in a liquid sodium coolant. Effect on transmitted and received ultrasonic signal due to elevated temperature (∼200oC) has been analysed.

  1. PSIDD: A Post-Scan Interactive Data Display system for ultrasonic scans

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Szatmary, Steven A.

    1993-01-01

    An ultrasonic data display system was developed at NASA Lewis Research Center that allows the user to interactively examine digitized waveforms and processed information associated with any specific scan location of an ultrasonic contact scan. This information is displayed on a video display monitor and includes acquired time-domain waveforms, frequency-domain magnitude and phase spectra, and ultrasonic properties (pulse velocity, phase velocity, reflection coefficient, attenuation coefficient, attenuation coefficient error) as a function of frequency for a material. This report describes the system features and illustrates the system's usefulness for nondestructive materials characterization.

  2. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  3. Monitoring early age cementitious materials using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Borgerson, Jacob L.

    The evaluation of early age concrete is critical for reducing construction times and ensuring quality. In this study, the use of ultrasonic guided waves for monitoring the development of early age cementitious materials is investigated. A torsional wave is transmitted and received through a waveguide that is embedded in early age mortar or concrete. As the cementitious material sets and hardens, the received wave(s) change, indicating the transition from a semifluid to a solid state. This thesis proposes two systems. The first system is a through-transmission system; a wave is transmitted on one end of an embedded waveguide using a sensor arrangement and then it is received on the opposite end of the rod with another sensor. This approach monitors the attenuation of the fundamental torsional wave mode, resulting from the leakage of energy from the cylindrical steel rod to the surrounding cementitious material. The evolution of the material's properties is related to the energy leakage or attenuation of the guided wave. The second system is a pulse-echo system; a wave is transmitted on one end of a partially embedded waveguide via a sensor arrangement that also receives the reflected signals. This approach monitors both the reflection from the end of the rod and the reflection from the point where the waveguide enters the material. The development of the cementitious material's mechanical properties is related to both the energy leaked into the surrounding material and the energy reflected at the point of entry. The ability of this method to only require access to one side of the specimen makes it attractive for monitoring early age cementitious materials in the field. Experiments were performed on mixtures with varying water-cement ratios (w/c = 0.40, 0.50, and 0.60), chemical admixtures (accelerant and retardant), mineral admixtures (silica fume and fly ash), and coarse aggregate (pea gravel). The time of setting and compressive strength of the various mixtures

  4. Ultrasonic wave velocity measurement in small polymeric and cortical bone specimens

    NASA Technical Reports Server (NTRS)

    Kohles, S. S.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A system was refined for the determination of the bulk ultrasonic wave propagation velocity in small cortical bone specimens. Longitudinal and shear wave propagations were measured using ceramic, piezoelectric 20 and 5 MHz transducers, respectively. Results of the pulse transmission technique were refined via the measurement of the system delay time. The precision and accuracy of the system were quantified using small specimens of polyoxymethylene, polystyrene-butadiene, and high-density polyethylene. These polymeric materials had known acoustic properties, similarity of propagation velocities to cortical bone, and minimal sample inhomogeneity. Dependence of longitudinal and transverse specimen dimensions upon propagation times was quantified. To confirm the consistency of longitudinal wave propagation in small cortical bone specimens (< 1.0 mm), cut-down specimens were prepared from a normal rat femur. Finally, cortical samples were prepared from each of ten normal rat femora, and Young's moduli (Eii), shear moduli (Gij), and Poisson ratios (Vij) were measured. For all specimens (bone, polyoxymethylene, polystyrene-butadiene, and high-density polyethylene), strong linear correlations (R2 > 0.997) were maintained between propagation time and distance throughout the size ranges down to less than 0.4 mm. Results for polyoxymethylene, polystyrene-butadiene, and high-density polyethylene were accurate to within 5 percent of reported literature values. Measurement repeatability (precision) improved with an increase in the wave transmission distance (propagating dimension). No statistically significant effect due to the transverse dimension was detected.

  5. Comparison of ultrasonic image features with echodynamic curves for defect classification and characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wedge, Sam; Rogerson, Allan; Drinkwater, Bruce

    2015-03-01

    Ultrasonic array imaging and multi-probe pulse echo inspection are two common ultrasonic techniques used for defect detection, classification and characterization in non-destructive evaluation. Compared to multi-probe pulse echo inspection, ultrasonic array imaging offers some advantages such as higher resolution images and the requirement to obtain fewer measurements. However, it is also limited by a lack of industry-approved inspection procedures and standards. In this paper, several artificial planar and volumetric weld defects of different orientations and locations embedded in 60 mm thick welded ferritic test specimens were measured using both ultrasonic arrays and multiple single crystal probes. The resultant TFM images and echodynamic curves for each defect were compared and the results demonstrate the correlations between TFM image features and echodynamic curve characteristics. Combining the analysis of multi-probe pulse echo inspection data and ultrasonic array images offers better classification and characterization of defects. These findings benefit the further development of industrial ultrasonic array inspection procedures and encourage the uptake of TFM technology within industry.

  6. Non-contact feature detection using ultrasonic Lamb waves

    DOEpatents

    Sinha, Dipen N.

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  7. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Implantable pulsed Doppler ultrasonic flowmeter development has resulted in designs for application to the aortas of dogs and humans, and to human renal and coronary arteries. A figure of merit was derived for each design, indicating the degree of its precision. An H-array design for transcutaneous observation of blood flow was developed and tested in vitro. Two other simplified designs for the same purpose obviate the need to determine vessel orientation. One of these will be developed in the next time period. Techniques for intraoperative use and for implantation have had mixed success. While satisfactory on large vessels, higher ultrasonic frequencies and alteration of transducer design are required for satisfactory operation of pulsed Doppler flowmeters with small vessels.

  8. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  9. Petawatt pulsed-power accelerator

    DOEpatents

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  10. Ultrasonic differential measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert

    1995-01-01

    A method and apparatus for ultrasonic resonance testing of an object is shown and described. Acoustic vibrations are applied to an object at a plurality of frequencies. Measurements of the object's vibrational response are made simultaneously at different locations on said object. The input frequency is stepped by using small frequency changes over a predetermined range. There is a pause interval or ring delay which permits the object to reach a steady state resonance before a measurement is taken.

  11. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2016-07-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  12. Ultrasonically guided percutaneous pyeloscopy.

    PubMed

    Saitoh, M; Watanabe, H

    1981-05-01

    A method for percutaneous endoscopic study of the renal pelvis has been developed in our clinic. A thin endoscope has been manufactured which is introduced into the dilated renal pelvis via a puncture under ultrasonic real-time guidance to allow inspection. This technique has been named percutaneous pyeloscopy. The method can also be applied to the inspection of the renal cyst, the retroperitoneal space, and the urinary bladder.

  13. Ultrasonic techniques for process monitoring and control.

    SciTech Connect

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  14. [Ultrasonic diagnosis in urology].

    PubMed

    Lutz, H; Petzoldt Ehler, R

    1977-08-11

    In recent years ultrasonography has been established as a reliable diagnostic method in various urological disorders. The first and most important indication is the differentiation between renal cysts and solid tumors. But ultrasound is suitable, too, for the diagnosis of haematomas, abscesses and hydronephrosis in the postoperative period and for the evaluation of renal transplants to detect early signs of rejection. Ultrasound allows the examination of patients with renal insufficiency and of patients with unilateral absence of contrast medium excretion in urography, because it is independent of contrast medium and renal function. In these patients as well as in traumatized patients ultrasound can be used as a bed-side method. Furthermore, it is possible to diagnose retroperitoneal tumors causing obstruction, megaureter, and tumors of the bladder. For the diagnosis of the prostate the rectal application of an ultrasonic transducer seems to be the best method. With an ultrasonic Doppler probe the diagnosis of testicular torsion is possible on ground of the absence of intratesticular arterial pulsation. Finally the possibility of ultrasonic targeted percutaneous puncture of the kidneys, tumors and cysts as a diagnostic and occasionally therapeutic approach has to be mentioned.

  15. Ultrasonic Cutting of Foods

    NASA Astrophysics Data System (ADS)

    Schneider, Yvonne; Zahn, Susann; Rohm, Harald

    In the field of food engineering, cutting is usually classified as a mechanical unit operation dealing with size reduction by applying external forces on a bulk product. Ultrasonic cutting is realized by superpositioning the macroscopic feed motion of the cutting device or of the product with a microscopic vibration of the cutting tool. The excited tool interacts with the product and generates a number of effects. Primary energy concentration in the separation zone and the modification of contact friction along the tool flanks arise from the cyclic loading and are responsible for benefits such as reduced cutting force, smooth cut surface, and reduced product deformation. Secondary effects such as absorption and cavitation originate from the propagation of the sound field in the product and are closely related to chemical and physical properties of the material to be cut. This chapter analyzes interactions between food products and ultrasonic cutting tools and relates these interactions with physical and chemical product properties as well as with processing parameters like cutting velocity, ultrasonic amplitude and frequency, and tool design.

  16. Ultrasonic Transducers for Fourier Analysis.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1995-01-01

    Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)

  17. Center crack detection during continuous casting of aluminum by laser ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Grün, Hubert; Mitter, Thomas; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Burgholzer, Peter

    2014-05-01

    Crack detection during continuous direct chill casting of aluminum is a matter of economics. Determining cracks during production process saves money, energy and raw material. Of course, a non-destructive method is required for this evaluation. Because of temperature concerns conventional ultrasound is not applicable. One non-contact alternative is laser ultrasonics. In laser ultrasonics short laser pulses illuminate the sample. The electromagnetic energy gets absorbed at the surface of the sample and results in local heating followed by expansion. Thereby broadband ultrasonic waves are launched which propagate through the sample and get back reflected or scattered at interfaces (cracks, blowholes,…) like conventional ultrasonic waves. Therefore laser ultrasonics is an alternative thermal infrared technology. By using an interferometer also the detection of the ultrasonic waves at the sample surface is done in a remote manner. During preliminary examinations in the lab by scanning different aluminum studs it was able to distinguish between studs with and without cracks. The prediction of the dimension of the crack by evaluation of the damping of the broadband ultrasonic waves was possible. With simple image reconstruction methods one can localize the crack and give an estimation of its extent and even its shape. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.

  18. Column oil agglomeration of fly ash with ultrasonics

    SciTech Connect

    Gray, M.L.; Champagne, K.J.; Soong, Y.; Finseth, D.H.

    1999-07-01

    A promising oil agglomeration process has been developed for the beneficiation of fly ash using a six-foot agglomeration column. Carbon concentrates have been separated from fly ash with yields greater than 60 % and purities of 55 to 74 %. The parameters examined in the study include ultrasonic exposure, pulse rate, frequency, agitation speed, and blade configuration. The effects of the experimental variables on the quality of separation are discussed.

  19. Ultrasonic flowmeters: half-century progress report, 1955-2005.

    PubMed

    Lynnworth, L C; Liu, Yi

    2006-12-22

    Ultrasonic flowmeters are one of the fastest-growing technologies within the general field of instruments for process monitoring, measurement and control. Today, acoustic/ultrasonic flowmeters utilize clamp-on and wetted transducers, single and multiple paths, paths on and off the diameter, passive and active principles, contrapropagating transmission, reflection (Doppler), tag correlation, vortex shedding, liquid level sensing of open channel flow or flow in partially-full conduits, and other interactions. Ultrasonic flowmeters are applicable to liquids, gases, and multiphase mixtures, but not without limits. However, no single technology, nor one type of interaction within a technology, can be best for all fluids, occasions and situations. Users who select a particular type of ultrasonic flowmeter over one based on a competing (nonultrasonic) technology often do so for one (or more) of the following reasons: ultrasonic equipment provides a useful measurement whether the fluid is single-phase or not single-phase; equipment is easy to use; flow regime can be laminar, transitional or turbulent; transducers are totally external (no penetration of the pressure boundary); transducers, if not clamp-on, are minimally invasive; no excess pressure drop; when certain conditions are met, accuracy can be better than 0.5%; fast (ms) response; reliable despite temperature extremes; reasonable purchase price, installation, operating and maintenance costs. Sometimes mass flowrate is obtainable. Energy flowrate might be achieved for natural gas and biogas in the near future. How did ultrasonic flowmeters advance in the past fifty years to support such claims? This paper tries to answer this question by looking at ultrasonic flowmeter inventions and publications since 1955, to see how four key problems were solved. PMID:16782156

  20. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of...

  1. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of...

  2. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of...

  3. A correlation of air-coupled ultrasonic and thermal diffusivity data for CFCC materials

    SciTech Connect

    Pillai, T.A.K.; Easler, T.E.; Szweda, A.

    1997-01-01

    An air-coupled (non contact) through-transmission ultrasonic investigation has been conducted on 2D multiple ply Nicalon{trademark} SiC fiber/SiNC CFCC panels as a function of number of processing cycles. Corresponding thermal diffusivity imaging was also conducted. The results of the air-coupled ultrasonic investigation correlated with thermal property variations determined via infrared methods. Areas of delaminations were detected and effects of processing cycles were also detected.

  4. Study of microstructure of surface layers of low-carbon steel after turning and ultrasonic finishing

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Zh. G.; Ivanov, Yu. F.; Perevalova, O. B.; Klimenov, V. A.; Uvarkin, P. V.

    2013-01-01

    Profilometry and optical and transmission electron microscopy are used to examine the microstructure of surface layers of a low-carbon ferrite-pearlite steel subjected to turning and ultrasonic finishing. It is shown that turning peaks and valleys have different microstructures, which stipulates manifestation of technological hereditary when processing surfaces of machined parts. Ultrasonic finishing causes the severe plastic deformation of the surface layer, which favors the elimination of a technological heredity that is acquired during turning.

  5. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  6. Cooperative pulses

    NASA Astrophysics Data System (ADS)

    Braun, Michael; Glaser, Steffen J.

    2010-11-01

    We introduce the concept of cooperative (COOP) pulses which are designed to compensate each other's imperfections. In multi-scan experiments, COOP pulses can cancel undesired signal contributions, complementing and generalizing phase cycles. COOP pulses can be efficiently optimized using an extended version of the optimal-control-based gradient ascent pulse engineering (GRAPE) algorithm. The advantage of the COOP approach is experimentally demonstrated for broadband and band-selective pulses.

  7. Ultrasonic evaluation of pararenal masses.

    PubMed

    Bartrum, R J

    1975-01-01

    The ease of performing ultrasonic examination and its noninvasive nature make it especially useful in seriously ill patients. We present 12 patients with lesions that can be identified by ultrasound, along with a discussion of the differential diagnosis. Ultrasonically guided percutaneous aspiration biopsy can confirm the diagnosis in selected patients.

  8. Ultrasonic inspection of filament wound graphite epoxy cylinders

    NASA Astrophysics Data System (ADS)

    Tardiff, Lisa A.; Taher, Bradley M., III

    1992-09-01

    A nondestructive inspection procedure utilizing ultrasonic C-scan imaging was developed to test cylindrical filament wound graphite epoxy rocket motor cases. These cylinders are part of a joint U.S. Army, Navy, NASA, and Air force (JANNAF) research round robin to evaluate destructive testing techniques for this type of composite. The rocket motor cases are made from T650/42 graphite fibers (Amoco) in a Lincoln Resin Formulation (LRF) and have six layers (twelve plies). The ultrasonic method used to evaluate the rocket motor cases was immersion, pulse-echo defect C-scans. Difficulties and solutions of using this method to evaluate the rocket motor cases are discussed. The received ultrasonic signals were evaluated for reflections from discontinuities within the material by means of an electronic gate set between the front and back surface reflections. The signals were then imaged in color on a computer according to the amplitude of the reflections. The resultant color C-scans were evaluated to separate the good from the bad. In some rocket motor cases there appeared to be large delaminations and inclusions. There were also some that showed few or no defect indications. Ultrasonic attenuation and time-of-flight (velocity) scans were performed to evaluate their quality. Contact time-of-flight measurements were also taken on a number of cylinders to verify immersion results. Comparisons are made with transverse compression, transverse tension, and in-plane shear destructive test results. These comparisons verify the usefulness of electronically gated ultrasonic immersion, pulse echo, defect C-scans on filament wound cylinders.

  9. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  10. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  11. Ultrasonic Force Microscopies

    NASA Astrophysics Data System (ADS)

    Kolosov, Oleg; Briggs, Andrew

    Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as "mechanical diode" detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as

  12. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  13. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  14. Ultrasonic aesthetic cranioplasty.

    PubMed

    Robiony, Massimo; Casadei, Matteo; Sbuelz, Massimo; Della Pietra, Lorenzo; Politi, Massimo

    2014-07-01

    The management of frontal bone injury is an important issue, and inappropriate management of such injuries may give rise to serious complications. Piezosurgery is a technique used to perform safe and effective osteotomies using piezoelectric ultrasonic vibrations. This instrument allows a safe method for osteotomy of the cranial vault in close proximity to extremely injury-sensitive tissue such as the brain. After a wide review of the literature, the authors present this technical report, introduce the use of piezosurgery to perform a safe "slim-osteotomies" for treatment of posttraumatic frontal bone deformities, and suggest the use of this instrument for aesthetic recontouring of the craniofacial skeleton. PMID:24914759

  15. Ultrasonics in food processing.

    PubMed

    Chandrapala, Jayani; Oliver, Christine; Kentish, Sandra; Ashokkumar, Muthupandian

    2012-09-01

    In recent years, the physical and chemical effects of ultrasound in liquid and solid media have been extensively used in food processing applications. Harnessing the physical forces generated by ultrasound, in the absence and presence of cavitation, for specific food processing applications such as emulsification, filtration, tenderisation and functionality modification have been highlighted. While some applications, such as filtration and emulsification are "mature" industrial processes, other applications, such as functionality modification, are still in their early stages of development. However, various investigations discussed suggest that ultrasonic processing of food and dairy ingredients is a potential and viable technology that will be used by many food industries in the near future.

  16. Ultrasonic Velocities in Methane Hydrate-Bearing Ottawa Sand F110

    NASA Astrophysics Data System (ADS)

    Rydzy, M. B.; Batzle, M. L.; Hester, K.; Howard, J. J.

    2010-12-01

    At the ConocoPhillips Technology Center in Bartlesville, an experimental setup was developed that facilitated ultrasonic velocity measurements of hydrate-bearing sediment samples inside a magnetic resonance imager (MRI). P- and S-wave velocities were determined using the pulse-transmission technique. The waveforms were generated with 500 kHz piezoelectric transducers that were embedded in PEEK end caps. This provided improved impedance matching between transducer and sample, as well as shielding of the transducers from the magnetic field of the MRI. The ultrasonic measurements were conducted in conjunction with magnetic resonance imaging (MRI), which proved to be a valuable tool to determine the gas hydrate saturation and distribution within the specimen. The hydrate-bearing samples were formed by injecting methane into partially water-saturated sand packs, whose porosity ranged around 40 percent. Specimen containing initial water saturations of 20 and 80 percent were investigated in this study. The sample was brought into the gas hydrate stability field by either cooling the pressurized sample or pressurizing the cooled sample. The velocity collected during the course of these experiments exhibited a noticeable dependence on both the initial water saturation as well as the order of pressurization and cooling. Comparison of the experimental data calculated using the pore scale models developed by Ecker et al. (1998) and Helgerud et al. (2000) indicated that the samples with high initial water saturation tended to be load-bearing, whereas samples formed from a low initial water saturation exhibited cementing characteristics. At low saturations, for the specimen that were pressurized after cooling, higher velocities were recorded than for samples that were first pressurized and then cooled afterward.

  17. Elastic moduli of boron carbide/copper composites from -40/sup 0/C to 800/sup 0/C by ultrasonic methods

    SciTech Connect

    Gieske, J.H.

    1980-10-01

    An ultrasonic through-transmission technique for high attenuating materials was developed to determine the ultrasonic longitudinal and shear velocities in B/sub 4/C/Cu composites to 800/sup 0/C. Ultrasonic velocity data was used to calculate Young's modulus, shear modulus, and Poisson's ratio for the composites from -40/sup 0/C to 800/sup 0/C. 5 figures, 1 table.

  18. Ultra-short pulse generator

    DOEpatents

    McEwan, Thomas E.

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  19. Ultra-short pulse generator

    DOEpatents

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  20. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    PubMed

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%.

  1. Ultrasonic Inspection Of Welds On Tube Fittings

    NASA Technical Reports Server (NTRS)

    Ray, Arjun N.; Nummelin, John L.

    1996-01-01

    Scanning ultrasonic apparatus designed for use in nondestructive inspection of electron-beam welds between heat-exchanger tube and end fittings. Includes ultrasonic probe, scanning mechanism, ultrasonic-signal-generating and -processing circuits, and computers. Not necessary to immerse any part of apparatus or tube/fitting assembly in water during inspection. Output ultrasonic-test signals displayed on computer to reveal defects.

  2. Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection.

    PubMed

    Sun, Guangkai; Zhou, Zhenggan; Chen, Xiucheng; Wang, Jie

    2013-09-10

    The characterization of delamination in composite plates with ultrasonic waves generated and detected by lasers is presented. Composite materials have become one of the most important structural materials in the aviation industry because of their excellent mechanical properties, such as high specific stiffness and antifatigue. This paper reports a new application of the laser ultrasonic technique to perform nondestructive detection of carbon-fiber-reinforced plastic (CFRP) and continuous-fiber-reinforced ceramic matrix composites (CFCCs) containing artificial internal defects, based on propagation characteristic of ultrasonic waves generated by pulse laser with a wavelength of 1064 nm and pulse duration of 10 ns. A laser interferometer based on two-wave mixing is used to measure ultrasonic wave signals. The main advantage of this technique over conventional ultrasonic testing techniques is the ability to carry out detection without using coupling agents. The research results prove that the laser ultrasonic technique is effective for the detection of internal defects in both CFRP and CFCC composite components, which should promote and expand the application of the technique in the aviation industry.

  3. Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection.

    PubMed

    Sun, Guangkai; Zhou, Zhenggan; Chen, Xiucheng; Wang, Jie

    2013-09-10

    The characterization of delamination in composite plates with ultrasonic waves generated and detected by lasers is presented. Composite materials have become one of the most important structural materials in the aviation industry because of their excellent mechanical properties, such as high specific stiffness and antifatigue. This paper reports a new application of the laser ultrasonic technique to perform nondestructive detection of carbon-fiber-reinforced plastic (CFRP) and continuous-fiber-reinforced ceramic matrix composites (CFCCs) containing artificial internal defects, based on propagation characteristic of ultrasonic waves generated by pulse laser with a wavelength of 1064 nm and pulse duration of 10 ns. A laser interferometer based on two-wave mixing is used to measure ultrasonic wave signals. The main advantage of this technique over conventional ultrasonic testing techniques is the ability to carry out detection without using coupling agents. The research results prove that the laser ultrasonic technique is effective for the detection of internal defects in both CFRP and CFCC composite components, which should promote and expand the application of the technique in the aviation industry. PMID:24085123

  4. Robust Ultrasonic Waveguide Based Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Periyannan, S.; Rajagopal, P.; Balasubramaniam, K.

    This is a novel technique for distributed temperature measurements, using single robust ultrasonic wire or strip-like waveguides, special embodiments in the form of Helical or Spiral configurations that can cover large area/volume in enclosed regions. Such distributed temperature sensing has low cost applications in the long term monitoring critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks, buildings for fire, etc. The range of temperatures that can be measured are from very low to elevated temperatures. The transduction is performed using Piezo-electric crystals that are bonded to one end of the waveguide which acts as both transmitter and receivers. The wires will have periodic reflector embodiments (bends, gratings, etc.) that allow reflections of an input ultrasonic wave, in a pulse echo mode, back to the crystal. Using the time of fight (TOF) variations at the multiple predefined reflector locations, the measured temperatures are mapped with multiple thermocouples. Using either the L(0,1) or the T(0,1)modes, or simultaneously, measurements other than temperature may also be included. This paper will describe the demonstration of this technology using a 0.5 MHz longitudinal piezo-crystal for transmitting and receiving the L (0, 1) mode through the special form of waveguide at various temperatures zones.

  5. Measurement methods of ultrasonic transducer sensitivity.

    PubMed

    Xiao, Dingguo; Fan, Qiong; Xu, Chunguang; Zhang, Xiuhua

    2016-05-01

    Sensitivity is an important parameter to describe the electro-acoustic energy conversion efficiency of ultrasonic transducer. In this paper, the definition of sensitivity and reciprocity of ultrasonic transducer is studied. The frequency response function of a transducer is the spectrum of its sensitivity, which reflects the response sensitivity of the transducer for input signals at different frequencies. Four common methods which are used to measure the disc-vibrator transducer sensitivity are discussed in current investigation. The reciprocity method and the pulse-echo method are based on the reciprocity of the transducer. In the laser vibrometer method measurement, the normal velocity on the transducer radiating surface is directly measured by a laser vibrometer. In the measurement process of the hydrophone method, a calibrated hydrophone is used to measure the transmitted field. The validity of these methods is checked by experimental test. All of the four methods described are sufficiently accurate for transducer sensitivity measurement, while each method has its advantages and limitations. In practical applications, the appropriate method to measure transducer sensitivity should be selected based on actual conditions. PMID:26953638

  6. Laser-ultrasonic technologies for medicine

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Latyshev, Alexei S.

    1999-06-01

    This review tackles the problem of further developing laser- ultrasonic medical technologies and gives the comparison of different laser and ultrasound combinations. The features of combined influence on biotissue are explicated with due regard for mechanic, ultrasonic (US), and thermal effects. The review present the effect of self-cleaning an optical fiber tip from the laser destruction products of biotissue, the result of research on the possibility of laser-US technology applications in endoscopy, and the ways of suppressing unwanted bending oscillations. Various spheres and peculiarities of applying laser-US technologies are discussed, including microsurgery, cosmetology, transcutaneous drug delivery, and the treatment of chronic prostatitis and infected wounds. Furthermore, the analysis of transcutaneous drug delivery methods employing a portable pulsed Er:YAG laser is presented. Drug diffusion has been shown to be enhanced under acoustic and US effects. The photo-vacuum drug injection mechanism recently suggested is discussed. It turned out that laser-US technology can be suitable for both impregnating the photosensitizer in local photodynamic therapy procedures and conducting microsurgery operations involving drug injection. Treatment of infectious processes based on the bactericidal action of photosensitizers and ultrasound due to the cavitation effect in solutions is described. An additional therapeutic effect can be achieved via the US intermingling of solutions with their simulations illumination by a matrix of red lasers or light diodes. An outlook on further developing laser-US technology and the ways of its apparatus realization are considered.

  7. PULSE SORTER

    DOEpatents

    Wade, E.J.

    1958-07-29

    An apparatus is described for counting and recording the number of electrical pulses occurring in each of a timed sequence of groups of pulses. The particular feature of the invention resides in a novel timing circuit of the univibrator type which provides very accurately timed pulses for opening each of a series of coincidence channels in sequence. The univibrator is shown incorporated in a pulse analyzing system wherein a series of pulse counting channels are periodically opened in order, one at a time, for a predetermtned open time interval, so that only one channel will be open at the time of occurrence of any of the electrical pulses to be sorted.

  8. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  9. Ultrasonic Evaluation and Imaging

    SciTech Connect

    Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.; Larche, Michael R.; Prowant, Matthew S.; Cinson, Anthony D.

    2015-10-01

    Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection of spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.

  10. Ultrasonic Lamb wave tomography

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.

    2002-12-01

    Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.

  11. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  12. Ultrasonic Mixing of Epoxy Curing Agents

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St. Clair, T. L.

    1986-01-01

    New ultrasonic mixing technique used to mix several curing agents/epoxy combinations. Major component of commercially available base epoxy resin used in tetraglycidylmethylenedianiline (TGMDA). In ultrasonic mixing system cup holds resin and curing agent during acoustic excitation. Samples placed in cup with top to ultrasonic horn forming bottom of cup. Ultrasonically treated until amber colored and transparent. Because ultrasonic agitation drives out entrapped air, degassing not necessary before cure.

  13. On-Line Measurement of Lubricant Film Thickness Using Ultrasonic Reflection Coefficients

    SciTech Connect

    Drinkwater, B.W.; Dwyer-Joyce, R.S.; Harper, P.

    2004-02-26

    The ultrasonic reflectivity of a lubricant layer between two solid bodies depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. In this paper, ultrasonic reflectivity measurements are used as a method for determining the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant film layer. For a particular lubricant film the reflected pulse is processed to give a reflection coefficient spectrum. The lubricant film thickness is then obtained from either the layer stiffness or the resonant frequency. The method has been validated using static fluid wedges and the elastohydrodynamic film formed between a ball sliding on a flat. Film thickness values in the range 50-500 nm were recorded which agreed well with theoretical film formation predictions.

  14. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  15. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  16. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  17. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  18. Ultrasonic characterization of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Baaklini, G. Y.

    1986-01-01

    Ultrasonic velocity and attenuation measurements were used to characterize density and microstructure in monolithic silicon nitride and silicon carbide. Research samples of these structural ceramics exhibited a wide range of density and microstructural variations. It was shown that bulk density variations correlate with and can be estimated by velocity measurements. Variations in microstructural features such as grain size or shape and pore morphology had a minor effect on velocity. However, these features had a pronounced effect on ultrasonic attenuation. The ultrasonic results are supplemented by low-energy radiography and scanning laser acoustic microscopy.

  19. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  20. Ultrasonic-aided fabrication of gold nanofluids

    PubMed Central

    2011-01-01

    A novel ultrasonic-aided one-step method for the fabrication of gold nanofluids is proposed in this study. Both spherical- and plate-shaped gold nanoparticles (GNPs) in the size range of 10-300 nm are synthesized. Subsequent purification produces well-controlled nanofluids with known solid and liquid contents. The morphology and properties of the nanoparticle and nanofluids are characterized by transmission electron microscopy, scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction spectroscopy, and dynamic light scattering, as well as effective thermal conductivities. The ultrasonication technique is found to be a very powerful tool in engineering the size and shape of GNPs. Subsequent property measurement shows that both particle size and particle shape play significant roles in determining the effective thermal conductivity. A large increase in effective thermal conductivity can be achieved (approximately 65%) for gold nanofluids using plate-shaped particles under low particle concentrations (i.e.764 μM/L). PMID:21711710

  1. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  2. Method and apparatus for dual amplitude dual time-of-flight ultrasonic imaging

    NASA Technical Reports Server (NTRS)

    Chern, Engmin James (Inventor); Butler, David W. (Inventor)

    1998-01-01

    A method and apparatus for ultrasonic imaging which includes scanning a test specimen located in a test fixture in a predetermined scan pattern. Propagating and receiving reflected pulses of ultrasonic energy from an ultrasonic transducer directed to a surface of the test specimen. Detecting and generating data of both the amplitude and the depth of a defect in the test specimen from the pulses received from the test specimen. Merging the data of the amplitude and the data of the depth of the defect into composite data and then displaying the composite data in a three dimensional image whereby a mesh of both amplitude and depth data of the defect is displayed in a single image of the defect.

  3. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, Laurence S.

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  4. Time domain attenuation estimation method from ultrasonic backscattered signals

    PubMed Central

    Ghoshal, Goutam; Oelze, Michael L.

    2012-01-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements. PMID:22779499

  5. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  6. Shingles Transmission

    MedlinePlus

    ... on Shingles Immunization Action Coalition Chickenpox Q&As Transmission Language: English Español (Spanish) Recommend on Facebook Tweet ... Prevention & Treatment Related Pages Preventing Varicella Zoster Virus Transmission in Healthcare Settings Related Links Medline Plus NIH ...

  7. Apparatus for ultrasonic nebulization

    DOEpatents

    Olson, Kenneth W.; Haas, Jr., William J.; Fassel, Velmer A.

    1978-08-29

    An improved apparatus for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet.

  8. Ultrasonic Technology in Duress Alarms.

    ERIC Educational Resources Information Center

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  9. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  10. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  11. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  12. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  13. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  14. Ultrasonic effect on multicomponent nanoheterostructures

    SciTech Connect

    Naimi, E. K. Rabinovich, O. I.

    2011-05-15

    The ultrasonic effect on the characteristics of GaP and AlGaInN multicomponent nanohetero-structures has been studied. It is found that the ultrasonic irradiation at frequencies of {approx}10{sup 5} Hz for several hours leads to a significant degradation of the characteristics of multicomponent nanoheterostructures and shifts the luminescence spectral peak of LEDs based on these structures. The results obtained are qualitatively explained.

  15. Ultrasonic Evaluation of Deeply Located Trabecular Bones - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Cieślik, Lucyna; Litniewski, Jerzy

    The analysis of ultrasonic signals scattered by soft tissues have been successfully applied for their characterization. Similarly, the trabecular bone backscattered signal contains information about the properties of the bone structure. Therefore scattering-based ultrasonic technique potentially enables the assessment of microstructure characteristics of a bone. The femoral neck fracture often occurs in the course of osteoporosis and can lead to severe complications. Therefore assessment of femoral bone microstructure and condition is important and essential for the diagnosis and treatment monitoring. As far most of the trabecular bone investigations have been performed in vitro. The only in vivo measurements were carried out in transmission and mostly concerned estimation of the attenuation in heel bone. We have built the ultrasonic scanner that could be useful in acquiring the RF (Radio Frequency) echoes backscattered by the trabecular bone in vivo. Moreover, the bone scanner provides data not only from heel bone but from deeply located bones as well (e.g. femoral bone). It can be also used for easily accessible bones like heel bone or breastbone. In this case a gel-pad is applied to assure focusing of ultrasound in trabecular bone (approximately 10 mm beneath the cortical bone). This study presents preliminary results of the attenuating properties evaluation of trabecular bone from the ultrasonic echoes backscattered by heel bone and femoral neck.

  16. Pulse power linac

    DOEpatents

    Villa, Francesco

    1990-01-01

    A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

  17. Doppler effect-based fiber-optic sensor and its application in ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-06-01

    Based on the Doppler effect of light wave transmission in optical fiber, Doppler effect-based fiber-optic (FOD) sensor possesses outstanding advantages in acquiring vibration/acoustic waves with high sensitivity. Furthermore, when shape of the FOD sensor was properly selected, its sensitivity was bonding direction-independent, namely non-directionality. In this paper, characteristics of the FOD sensor were investigated for the purpose of ultrasonic detection. A piezoelectric wafer was applied as an actuator to excite Lamb waves, a kind of ultrasonic wave, in an aluminum-alloy plate. Features of the ultrasonic wave signals, collected using a number of spiral FOD sensors with various inner diameters and outer diameters, were compared to investigate characteristics of FOD sensor. Amplitude curves of the FOD sensors were hereby obtained for the future applications in ultrasonic acquisition. The results demonstrated that sensitivity of the spiral FOD sensor with longer optical fiber length was higher than that with shorter fiber length.

  18. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  19. Ultrasonic wave velocity in the restructuring of disperse media

    NASA Astrophysics Data System (ADS)

    Koltsova, I. S.; Khomutova, A. S.; Deinega, M. A.

    2016-03-01

    The ultrasonic wave velocities in the restructuring of disperse media were measured using interference and pulsed techniques and the coefficient of reflection in suspensions of starch, Al2O3, and SiO2 particles, glass bulbs, their porous sediments, and composites of Fe3O4 particles in 10% gelatin aqueous solution at a frequency of 3 MHz. The experiments showed alternating variation in the concentration velocity coefficient during the transition of the dispersed phase concentration from the subpercolation to percolation region. The minimum ultrasonic wave velocity in the region of discrete clusters correlates with the ratio between the particle and matrix densities. The results obtained are explained using the Isakovich, Chaban, Rytov, Biot, Hausdorff, and other theories.

  20. Thin Wall Pipe Ultrasonic Inspection through Paint Coating

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cătălin

    Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.