Sample records for ultrasonic surgery planning

  1. Computational aspects in high intensity ultrasonic surgery planning.

    PubMed

    Pulkkinen, A; Hynynen, K

    2010-01-01

    Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. The Laparosound{trade mark, serif}-an ultrasonic morcellator for use in laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Malinowski, Igor; Łobodzinski, Suave S.; Paśniczek, Roman

    2012-05-01

    The laparoscopic surgery has gained presence in the operating room in cases where it is feasible to spare patient trauma and minimize the hospital stay. One unique challenge in laparoscopic/endoscopic surgery is operating and removing tissue volume through keyhole - trocar. The removal of tissues by fragmentation is generally termed morcellation. We proposed a new method for soft tissue morcellation using laparoscopy. A unique ultrasonic laparoscopic surgical device, termed Laparosound{trade mark, serif}, utilizing laparoscopic high amplitude ultrasonic waveguides, operating in edge mode, has been developed that uses the principle of ultrasonic cavitation phenomenon for excision and morcellation of a variety of tissue types. The local ultrasonic acoustic intensity at the distal waveguide tip is sufficiently high that the liquefaction of moist tissue occurs. The mechanism of tissue morcellation is deemed to be cavitation based, therefore is dependant on water content in tissue, and thus its effectiveness depends on tissue type. This results in ultrasound being efficient in moist tissue and sparing dry, collagen rich blood vessels and thus minimizes bleeding. The applications of such device in particular, commonly encountered, could lay in general and ob/gyn laparoscopic surgery, whereas other applications could emerge. The design of power ultrasonic instruments for mass clinical applications poses however unique challenges, such as ability to design and build ultrasonic resonators that last in conditions of ultrasonic fatigue. These highly non-linear devices, whose behavior is hard to predict, have become the challenge of the author of the present paper. The object of work is to design and build an operating device capable of ultrasonic soft tissue morcellation in laparoscopic surgery. This includes heavy computational ultrasonics verified by testing and manufacturing feasibility using titanium biomedical alloys. The prototype Laparosound{trade mark, serif} device

  3. Novel use of an ultrasonic bone-cutting device for endoscopic-assisted craniosynostosis surgery.

    PubMed

    Chaichana, Kaisorn L; Jallo, George I; Dorafshar, Amir H; Ahn, Edward S

    2013-07-01

    Endoscopic-assisted craniosynostosis surgery is associated with less blood loss and shorter operative times as compared to open surgery. However, in infants who have low circulating blood volumes, the endoscopic approach is still associated with significant blood loss. A major source of blood loss is the bone that is cut during surgery. We discuss the novel use of an ultrasonic bone-cutting device for craniosynostosis surgery, which decreases bone bleeding. This device, which has primarily only been used for spine and skull base surgery, may help reduce blood loss in these infants. All patients with single suture craniosynostosis who were operated on with the use of an ultrasonic bone-cutting device were identified. The information retrospectively recorded from patient charts included patient age, suture involved, blood loss, operative times, complications, preoperative hemoglobin, postoperative hemoglobin, length of hospital stay, and follow-up times. Thirteen patients (12 males, 1 female) underwent surgery with an ultrasonic bone-cutting device during the reviewed period. The average age (±standard deviation) of the patients was 11.8 (±1.6) weeks. Four patients had metopic synostosis and nine patients had sagittal synostosis. The average surgery time was 84 (±13) min. The median (interquartile range) blood loss was 20 (10-70) cc. No patients required blood transfusions. Three patients had dural tears. We demonstrate the novel use of an ultrasonic bone-cutting device for endoscopic-assisted craniosynostosis surgery. This device limited blood loss while maintaining short operative times for infants with low circulating blood volumes.

  4. New application system for laser and ultrasonic therapy in endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Mueller, Gerhard J.

    1996-12-01

    Flexible acoustic waveguides for selective tissue fragmentation are not yet commercially available. Experimental studies have shown the possibility of transmission of acoustical transients via optical silica glass fibers. The aim of this project is the development of a new endoscopic application system that would enable surgeons to use the laser and the ultrasound technique for therapy simultaneously. The concept of this application system is based on the transmission of laser radiation and ultrasound power via flexible silica glass fibers. Theoretical and experimental results on the feasibility of such an application system for an ultrasonic power delivery system are presented. Piezo-electric transducers are used to provide a high efficiency in generating the ultrasonic power. With reference to the CUSA-technique, a special flexible guiding system has been designed for providing aspiration at the tip and for protection of the fiber. The system transmits via an optical fiber up to 100 Watt Nd:YAG laser radiation. The axial oscillation of the fiber tip is +/- micrometers at a frequency of 27 kHz. First results of in vitro experiments are presented. The parenchymatous cells of liver can be fragmented without destruction of the collagenous matrix. The laser can be optionally used to coagulate bleedings or to cut collagenous tissues in contact. Applications for an acoustical and optical waveguide in ultrasonic surgery are demonstrated. This new approach in developing a first application system for the therapeutical use of laser radiation and power ultrasound in minimal invasive surgery via optical waveguides offers new possibilities in surgery. The laser ultrasonic surgical therapy (LUST) with its thin and flexible applicator provides new working fields especially for neuro or liver surgery. The tip can be bent and thus areas which could not be treated before have now been made accessible. Without changing the instrumentation, the surgeon can use the laser for tissue

  5. Use of an ultrasonic osteotome device in spine surgery: experience from the first 128 patients.

    PubMed

    Hu, Xiaobang; Ohnmeiss, Donna D; Lieberman, Isador H

    2013-12-01

    The ultrasonic BoneScalpel is a tissue-specific device that allows the surgeon to make precise osteotomies while protecting collateral or adjacent soft tissue structures. The device is comprised of a blunt ultrasonic blade that oscillates at over 22,500 cycles/s with an imperceptible microscopic amplitude. The recurring impacts pulverize the noncompliant crystalline structure resulting in a precise cut. The more compliant adjacent soft tissue is not affected by the ultrasonic oscillation. The purpose of this study is to report the experience and safety of using this ultrasonic osteotome device in a variety of spine surgeries. Data were retrospectively collected from medical charts and surgical reports for each surgery in which the ultrasonic scalpel was used to perform any type of osteotomy (facetectomy, laminotomy, laminectomy, en bloc resection, Smith Petersen osteotomy, pedicle subtraction osteotomy, etc.). The majority of patients had spinal stenosis, degenerative or adolescent scoliosis, pseudoarthrosis, adjacent segment degeneration, and spondylolisthesis et al. Intra-operative complications were also recorded. A total of 128 consecutive patients (73 female, 55 male) beginning with our first case experience were included in this study. The mean age of the patients was 58 years (range 12-85 years). Eighty patients (62.5 %) had previous spine surgery and/or spinal deformity. The ultrasonic scalpel was used at all levels of the spine and the average levels operated on each patient were 5. The mean operation time (skin to skin) was 4.3 h and the mean blood loss was 425.4 ml. In all cases, the ultrasonic scalpel was used to create the needed osteotomies to facilitate the surgical procedure without any percussion on the spinal column or injury to the underlying nerves. There was a noticeable absence of bleeding from the cut end of the bone consistent with the ultrasonic application. There were 11 instances of dural injuries (8.6 %) and two of which were directly

  6. Time reversal for ultrasonic transcranial surgery and echographic imaging

    NASA Astrophysics Data System (ADS)

    Tanter, Mickael; Aubry, Jean-Francois; Vignon, Francois; Fink, Mathias

    2005-09-01

    High-intensity focused ultrasound (HIFU) is able to induce non-invasively controlled and selective destruction of tissues by focusing ultrasonic beams within organs, analogous to a magnifying glass that concentrates enough sunlight to burn a hole in paper. The brain is an attractive organ in which to perform ultrasonic tissue ablation, but such an application has been hampered by the strong defocusing effect of the skull bone. Our group has been involved in this topic for several years, providing proofs of concept and proposing technological solutions to this problem. Thanks to a high-power time-reversal mirror, presented here are in vivo thermal lesions induced through the skull of 12 sheep. Thermal lesions were confirmed by T2-weighted magnetic resonance post-treatment images and histological examination. These results provide striking evidence that noninvasive ultrasound brain surgery is feasible. A recent approach for high-resolution brain ultrasonic imaging will also be discussed with a skull aberration correction technique based on twin arrays technology. The correction of transcranial ultrasonic images is implemented on a new generation of time-reversal mirrors relying on a fully programmable transmit and receive beamformer.

  7. Application of Ultrasonic Bone Curette in Endoscopic Endonasal Skull Base Surgery: Technical Note

    PubMed Central

    Rastelli, Milton M.; Pinheiro-Neto, Carlos D.; Fernandez-Miranda, Juan C.; Wang, Eric W.; Snyderman, Carl H.; Gardner, Paul A.

    2014-01-01

    Background Endoscopic endonasal surgery (EES) of the skull base often requires extensive bone work in proximity to critical neurovascular structures. Objective To demonstrate the application of an ultrasonic bone curette during EES. Methods Ten patients with skull base lesions underwent EES from September 2011 to April 2012 at the University of Pittsburgh Medical Center. Most of the bone work was done with high-speed drill and rongeurs. The ultrasonic curette was used to remove specific structures. Results All the patients were submitted to fully endoscopic endonasal procedures and had critical bony structures removed with the ultrasonic bone curette. Two patients with degenerative spine diseases underwent odontoid process removal. Five patients with clival and petroclival tumors underwent posterior clinoid removal. Two patients with anterior fossa tumors underwent crista galli removal. One patient underwent unilateral optic nerve decompression. No mechanical or heat injury resulted from the ultrasonic curette. The surrounding neurovascular structures and soft tissue were preserved in all cases. Conclusion In selected EES, the ultrasonic bone curette was successfully used to remove loose pieces of bone in narrow corridors, adjacent to neurovascular structures, and it has advantages to high-speed drills in these specific situations. PMID:24719795

  8. A single-blind controlled study of electrocautery and ultrasonic scalpel smoke plumes in laparoscopic surgery.

    PubMed

    Fitzgerald, J Edward F; Malik, Momin; Ahmed, Irfan

    2012-02-01

    Surgical smoke containing potentially carcinogenic and irritant chemicals is an inevitable consequence of intraoperative energized dissection. Different energized dissection methods have not been compared directly in human laparoscopic surgery or against commonly encountered pollutants. This study undertook an analysis of carcinogenic and irritant volatile hydrocarbon concentrations in electrocautery and ultrasonic scalpel plumes compared with cigarette smoke and urban city air control samples. Once ethical approval was obtained, gas samples were aspirated from the peritoneal cavity after human laparoscopic intraabdominal surgery solely using either electrocautery or ultrasonic scalpels. All were adsorbed in Tenax tubes and concentrations of carcinogenic or irritant volatile hydrocarbons measured by gas chromatography. The results were compared with cigarette smoke and urban city air control samples. The analyzing laboratory was blinded to sample origin. A total of 10 patients consented to intraoperative gas sampling in which only one method of energized dissection was used. Six carcinogenic or irritant hydrocarbons (benzene, ethylbenzene, styrene, toluene, heptene, and methylpropene) were identified in one or more samples. With the exception of styrene (P = 0.016), a nonsignificant trend toward lower hydrocarbon concentrations was observed with ultrasonic scalpel use. Ultrasonic scalpel plumes had significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of methylpropene (P = 0.332). No significant difference was observed with city air. Electrocautery samples contained significantly lower hydrocarbon concentrations than cigarette smoke, with the exception of toluene (P = 0.117) and methyl propene (P = 0.914). Except for toluene (P = 0.028), city air showed no significant difference. Both electrocautery and ultrasonic dissection are associated with significantly lower concentrations of the most commonly detected carcinogenic and

  9. Accuracy of Three-Dimensional Planning in Surgery-First Orthognathic Surgery: Planning Versus Outcome.

    PubMed

    Tran, Ngoc Hieu; Tantidhnazet, Syrina; Raocharernporn, Somchart; Kiattavornchareon, Sirichai; Pairuchvej, Verasak; Wongsirichat, Natthamet

    2018-05-01

    The benefit of computer-assisted planning in orthognathic surgery (OGS) has been extensively documented over the last decade. This study aimed to evaluate the accuracy of three-dimensional (3D) virtual planning in surgery-first OGS. Fifteen patients with skeletal class III malocclusion who underwent bimaxillary OGS with surgery-first approach were included. A composite skull model was reconstructed using data from cone-beam computed tomography and stereolithography from a scanned dental cast. Surgical procedures were simulated using Simplant O&O software, and the virtual plan was transferred to the operation room using 3D-printed splints. Differences of the 3D measurements between the virtual plan and postoperative results were evaluated, and the accuracy was reported using root mean square deviation (RMSD) and the Bland-Altman method. The virtual planning was successfully transferred to surgery. The overall mean linear difference was 0.88 mm (0.79 mm for the maxilla and 1 mm for the mandible), and the overall mean angular difference was 1.16°. The RMSD ranged from 0.86 to 1.46 mm and 1.27° to 1.45°, within the acceptable clinical criteria. In this study, virtual surgical planning and 3D-printed surgical splints facilitated the diagnosis and treatment planning, and offered an accurate outcome in surgery-first OGS.

  10. Accuracy of Three-Dimensional Planning in Surgery-First Orthognathic Surgery: Planning Versus Outcome

    PubMed Central

    Tran, Ngoc Hieu; Tantidhnazet, Syrina; Raocharernporn, Somchart; Kiattavornchareon, Sirichai; Pairuchvej, Verasak; Wongsirichat, Natthamet

    2018-01-01

    Background The benefit of computer-assisted planning in orthognathic surgery (OGS) has been extensively documented over the last decade. This study aimed to evaluate the accuracy of three-dimensional (3D) virtual planning in surgery-first OGS. Methods Fifteen patients with skeletal class III malocclusion who underwent bimaxillary OGS with surgery-first approach were included. A composite skull model was reconstructed using data from cone-beam computed tomography and stereolithography from a scanned dental cast. Surgical procedures were simulated using Simplant O&O software, and the virtual plan was transferred to the operation room using 3D-printed splints. Differences of the 3D measurements between the virtual plan and postoperative results were evaluated, and the accuracy was reported using root mean square deviation (RMSD) and the Bland-Altman method. Results The virtual planning was successfully transferred to surgery. The overall mean linear difference was 0.88 mm (0.79 mm for the maxilla and 1 mm for the mandible), and the overall mean angular difference was 1.16°. The RMSD ranged from 0.86 to 1.46 mm and 1.27° to 1.45°, within the acceptable clinical criteria. Conclusion In this study, virtual surgical planning and 3D-printed surgical splints facilitated the diagnosis and treatment planning, and offered an accurate outcome in surgery-first OGS. PMID:29581806

  11. Computational Planning in Facial Surgery.

    PubMed

    Zachow, Stefan

    2015-10-01

    This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Technical Aspects on the Use of Ultrasonic Bone Shaver in Spine Surgery: Experience in 307 Patients

    PubMed Central

    Hazer, Derya Burcu; Yaşar, Barış; Rosberg, Hans-Eric; Akbaş, Aytaç

    2016-01-01

    Aim. We discuss technical points, the safety, and efficacy of ultrasonic bone shaver in various spinal surgeries within our own series. Methods. Between June 2010 and January 2014, 307 patients with various spinal diseases were operated on with the use of an ultrasonic bone curette with microhook shaver (UBShaver). Patients' data were recorded and analyzed retrospectively. The technique for the use of the device is described for each spine surgery procedure. Results. Among the 307 patients, 33 (10.7%) cases had cervical disorder, 17 (5.5%) thoracic disorder, 3 (0.9%) foramen magnum disorder, and 254 (82.7%) lumbar disorders. Various surgical techniques were performed either assisted or alone by UBShaver. The duration of the operations and the need for blood replacement were relatively low. The one-year follow-up with Neck Disability Index (NDI) and Oswestry Disability Index (ODI) scores were improved. We had 5 cases of dural tears (1.6%) in patients with lumbar spinal disease. No neurological deficit was found in any patients. Conclusion. We recommend this device as an assistant tool in various spine surgeries and as a primary tool in foraminotomies. It is a safe device in spine surgery with very low complication rate. PMID:27195299

  13. Three-Dimensional Analysis and Surgical Planning in Craniomaxillofacial Surgery.

    PubMed

    Steinbacher, Derek M

    2015-12-01

    Three-dimensional (3D) analysis and planning are powerful tools in craniofacial and reconstructive surgery. The elements include 1) analysis, 2) planning, 3) virtual surgery, 4) 3D printouts of guides or implants, and 5) verification of actual to planned results. The purpose of this article is to review different applications of 3D planning in craniomaxillofacial surgery. Case examples involving 3D analysis and planning were reviewed. Common threads pertaining to all types of reconstruction are highlighted and contrasted with unique aspects specific to new applications in craniomaxillofacial surgery. Six examples of 3D planning are described: 1) cranial reconstruction, 2) craniosynostosis, 3) midface advancement, 4) mandibular distraction, 5) mandibular reconstruction, and 6) orthognathic surgery. Planning in craniomaxillofacial surgery is useful and has applicability across different procedures and reconstructions. Three-dimensional planning and virtual surgery enhance efficiency, accuracy, creativity, and reproducibility in craniomaxillofacial surgery. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Three-dimensional planning in craniomaxillofacial surgery.

    PubMed

    Rubio-Palau, Josep; Prieto-Gundin, Alejandra; Cazalla, Asteria Albert; Serrano, Miguel Bejarano; Fructuoso, Gemma Garcia; Ferrandis, Francisco Parri; Baró, Alejandro Rivera

    2016-01-01

    Three-dimensional (3D) planning in oral and maxillofacial surgery has become a standard in the planification of a variety of conditions such as dental implants and orthognathic surgery. By using custom-made cutting and positioning guides, the virtual surgery is exported to the operating room, increasing precision and improving results. We present our experience in the treatment of craniofacial deformities with 3D planning. Software to plan the different procedures has been selected for each case, depending on the procedure (Nobel Clinician, Kodak 3DS, Simplant O&O, Dolphin 3D, Timeus, Mimics and 3-Matic). The treatment protocol is exposed step by step from virtual planning, design, and printing of the cutting and positioning guides to patients' outcomes. 3D planning reduces the surgical time and allows predicting possible difficulties and complications. On the other hand, it increases preoperative planning time and needs a learning curve. The only drawback is the cost of the procedure. At present, the additional preoperative work can be justified because of surgical time reduction and more predictable results. In the future, the cost and time investment will be reduced. 3D planning is here to stay. It is already a fact in craniofacial surgery and the investment is completely justified by the risk reduction and precise results.

  15. Three-dimensional planning in craniomaxillofacial surgery

    PubMed Central

    Rubio-Palau, Josep; Prieto-Gundin, Alejandra; Cazalla, Asteria Albert; Serrano, Miguel Bejarano; Fructuoso, Gemma Garcia; Ferrandis, Francisco Parri; Baró, Alejandro Rivera

    2016-01-01

    Introduction: Three-dimensional (3D) planning in oral and maxillofacial surgery has become a standard in the planification of a variety of conditions such as dental implants and orthognathic surgery. By using custom-made cutting and positioning guides, the virtual surgery is exported to the operating room, increasing precision and improving results. Materials and Methods: We present our experience in the treatment of craniofacial deformities with 3D planning. Software to plan the different procedures has been selected for each case, depending on the procedure (Nobel Clinician, Kodak 3DS, Simplant O&O, Dolphin 3D, Timeus, Mimics and 3-Matic). The treatment protocol is exposed step by step from virtual planning, design, and printing of the cutting and positioning guides to patients’ outcomes. Conclusions: 3D planning reduces the surgical time and allows predicting possible difficulties and complications. On the other hand, it increases preoperative planning time and needs a learning curve. The only drawback is the cost of the procedure. At present, the additional preoperative work can be justified because of surgical time reduction and more predictable results. In the future, the cost and time investment will be reduced. 3D planning is here to stay. It is already a fact in craniofacial surgery and the investment is completely justified by the risk reduction and precise results. PMID:28299272

  16. Planning Strabismus Surgery: How to Avoid Pitfalls and Complications.

    PubMed

    Aroichane, Maryam

    2016-01-01

    Good surgical results following strabismus surgery depend on several factors. In this article, detailed steps for planning strabismus surgery will be reviewed for basic horizontal strabismus surgery, vertical, and oblique muscle surgeries. The thought process behind each case will be presented to help in selecting the best surgical approach to optimize postoperative results. The surgical planning for strabismus will be developed with clinical examples from easy cases to more complex ones. Preoperative pictures of the ocular alignment are an integral part of planning surgery and help in documenting the strabismus before and after surgery. Three cases of strabismus cases will be reviewed with several key factors for planning surgery, including visual acuity, refractive error, potential for stereovision, and risk of postoperative diplopia. The most important factor is accurate orthoptic measurements. The surgical planning for each patient is detailed along with preoperative pictures. Strabismus surgery results can be improved by careful preoperative planning. The surgeon has the ability to discern potential pitfalls that can alter the surgical outcome. Surgical planning allows a dedicated time of reflection before surgery, foreseeing potential problems, and avoiding them during the surgery. © 2016 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 66, 2016, ISSN 0065-955X, E-ISSN 1553-4448.

  17. Virtual Surgical Planning in Craniofacial Surgery

    PubMed Central

    Chim, Harvey; Wetjen, Nicholas; Mardini, Samir

    2014-01-01

    The complex three-dimensional anatomy of the craniofacial skeleton creates a formidable challenge for surgical reconstruction. Advances in computer-aided design and computer-aided manufacturing technology have created increasing applications for virtual surgical planning in craniofacial surgery, such as preoperative planning, fabrication of cutting guides, and stereolithographic models and fabrication of custom implants. In this review, the authors describe current and evolving uses of virtual surgical planning in craniofacial surgery. PMID:25210509

  18. Improved Surgery Planning Using 3-D Printing: a Case Study.

    PubMed

    Singhal, A J; Shetty, V; Bhagavan, K R; Ragothaman, Ananthan; Shetty, V; Koneru, Ganesh; Agarwala, M

    2016-04-01

    The role of 3-D printing is presented for improved patient-specific surgery planning. Key benefits are time saved and surgery outcome. Two hard-tissue surgery models were 3-D printed, for orthopedic, pelvic surgery, and craniofacial surgery. We discuss software data conversion in computed tomography (CT)/magnetic resonance (MR) medical image for 3-D printing. 3-D printed models save time in surgery planning and help visualize complex pre-operative anatomy. Time saved in surgery planning can be as much as two thirds. In addition to improved surgery accuracy, 3-D printing presents opportunity in materials research. Other hard-tissue and soft-tissue cases in maxillofacial, abdominal, thoracic, cardiac, orthodontics, and neurosurgery are considered. We recommend using 3-D printing as standard protocol for surgery planning and for teaching surgery practices. A quick turnaround time of a 3-D printed surgery model, in improved accuracy in surgery planning, is helpful for the surgery team. It is recommended that these costs be within 20 % of the total surgery budget.

  19. Model surgery with a passive robot arm for orthognathic surgery planning.

    PubMed

    Theodossy, Tamer; Bamber, Mohammad Anwar

    2003-11-01

    The aims of the study were to assess the degree of accuracy of model surgery performed manually using the Eastman technique and to compare it with model surgery performed with the aid of a robot arm. Twenty-one patients undergoing orthognathic surgery gave consent for this study. They were divided into 2 groups based on the model surgery technique used. Group A (52%) had model surgery performed manually, whereas group B (48%) had their model surgery performed using the robot arm. Patients' maxillary casts were measured before and after model surgery, and results were compared with those for the original treatment plan in horizontal (x-axis), vertical (y-axis), and transverse (z-axis) planes. Statistical analysis using Mann-Whitney U test for x- and y-axis and independent sample t test for z-axis have shown significant differences between both groups in x-axis (P =.024) and y-axis (P =.01) but not in z-axis (P =.776). Model surgery performed with the aid of a robot arm is significantly more accurate in anteroposterior and vertical planes than is manual model surgery. Robot arm has an important role to play in orthognathic surgery planning and in determining the biometrics of orthognathic surgical change at the model surgery stage.

  20. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  1. [3D planning in maxillofacial surgery].

    PubMed

    Hoarau, R; Zweifel, D; Lanthemann, E; Zrounba, H; Broome, M

    2014-10-01

    The development of new technologies such as three-dimensional (3D) planning has changed the everyday practice in maxillofacial surgery. Rapid prototyping associated with the 3D planning has also enabled the creation of patient specific surgical tools, such as cutting guides. As with all new technologies, uses, practicalities, cost effectiveness and especially benefits for the patients have to be carefully evaluated. In this paper, several examples of 3D planning that have been used in our institution are presented. The advantages such as the accuracy of the reconstructive surgery and decreased operating time, as well as the difficulties have also been addressed.

  2. Improved Virtual Planning for Bimaxillary Orthognathic Surgery.

    PubMed

    Hatamleh, Muhanad; Turner, Catherine; Bhamrah, Gurprit; Mack, Gavin; Osher, Jonas

    2016-09-01

    Conventional model surgery planning for bimaxillary orthognathic surgery can be laborious, time-consuming and may contain potential errors; hence three-dimensional (3D) virtual orthognathic planning has been proven to be an efficient, reliable, and cost-effective alternative. In this report, the 3D planning is described for a patient presenting with a Class III incisor relationship on a Skeletal III base with pan facial asymmetry complicated by reverse overjet and anterior open bite. A combined scan data of direct cone beam computer tomography and indirect dental scan were used in the planning. Additionally, a new method of establishing optimum intercuspation by scanning dental casts in final occlusion and positioning it to the composite-scans model was shown. Furthermore, conventional model surgery planning was carried out following in-house protocol. Intermediate and final intermaxillary splints were produced following the conventional method and 3D printing. Three-dimensional planning showed great accuracy and treatment outcome and reduced laboratory time in comparison with the conventional method. Establishing the final dental occlusion on casts and integrating it in final 3D planning enabled us to achieve the best possible intercuspation.

  3. Clinical evaluation of split-crest technique with ultrasonic bone surgery for narrow ridge expansion: status of soft and hard tissues and implant success.

    PubMed

    Anitua, Eduardo; Begoña, Leire; Orive, Gorka

    2013-04-01

    The aim of this study was to evaluate the split-crest technique with ultrasonic bone surgery for implant placement in patients with narrow ridges, focusing on the status of soft and hard tissues and on implant success rate, at least 6 months after implant loading. During September 2007 and November 2008, 15 patients received 37 implants (BTI implants) with split-crest surgical procedure using ultrasonic bone surgery. Plasma rich in growth factors (PRGF®) was applied during split crest procedure to promote tissue regeneration. Implant surfaces were humidified with PRGF to accelerate osseointegration. Patients were recalled for a final clinical evaluation at least 6 months after implant loading. Clinical assessment included the status of soft and hard tissues around implants, and implants' success rate. Thirty-seven implants in 15 patients were evaluated between July 2009 and January 2010. The status of soft tissues was very good, showing adequate plaque index, bleeding index, and probing depth values. Success rate of implants at the end of follow-up (between 11 and 28 months after insertion) was 100%. Bone ridge was measured and compared at final examination showing a mean ridge expansion of 3.35 mm (SD: 0.34). Split-crest with ultrasonic bone surgery can be considered an effective and safe procedure for narrow ridge expansion. © 2011 Wiley Periodicals, Inc.

  4. Piezoelectric ultrasonic micro-motor system for minimally invasive surgery - the Intellimotor

    NASA Astrophysics Data System (ADS)

    Rogers, Geoffrey W.

    2012-05-01

    True micro-motor systems capable of direct and immediate integration are needed in order to advance the technological state and effectiveness of existing minimally invasive surgery (MIS) equipment. In this study, a three degree-of-freedom (DOF) piezoelectric ultrasonic micro-motor is reported, with a major diameter of only 350 μm; the Intellimotor. Upon integrating the micro-motor with a MIS micro-guidewire, a severe loss of actuation performance to the point of inoperability was observed, due to a detrimental loss of acoustic energy from the micro-motor. To combat this, two diameter 300 μm waveguide micro-Bragg reflectors (micro-BRs) were developed. A prototype micro-BR was constructed and tested to verify the ability to reflect otherwise lost acoustic energy, thereby enabling the integration of a resonant micro-actuator, such as the Intellimotor, with standard MIS equipment.

  5. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art.

    PubMed

    Boudissa, Mehdi; Courvoisier, Aurélien; Chabanas, Matthieu; Tonetti, Jérôme

    2018-01-01

    The development of imaging modalities and computer technology provides a new approach in acetabular surgery. Areas covered: This review describes the role of computer-assisted surgery (CAS) in understanding of the fracture patterns, in the virtual preoperative planning of the surgery and in the use of custom-made plates in acetabular fractures with or without 3D printing technologies. A Pubmed internet research of the English literature of the last 20 years was carried out about studies concerning computer-assisted surgery in acetabular fractures. The several steps for CAS in acetabular fracture surgery are presented and commented by the main author regarding to his personal experience. Expert commentary: Computer-assisted surgery in acetabular fractures is still initial experiences with promising results. Patient-specific biomechanical models considering soft tissues should be developed to allow a more realistic planning.

  6. Lateral temperature spread of monopolar, bipolar and ultrasonic instruments for robot-assisted laparoscopic surgery.

    PubMed

    Hefermehl, Lukas J; Largo, Remo A; Hermanns, Thomas; Poyet, Cédric; Sulser, Tullio; Eberli, Daniel

    2014-08-01

    To assess critical heat spread of cautery instruments used in robot-assisted laparoscopic (RAL) surgery. Thermal spread along bovine musculofascial tissues was examined by infrared camera, histology and enzyme assay. Currently used monopolar, bipolar and ultrasonic laparoscopic instruments were investigated at various power settings and application times. The efficacy of using an additional Maryland clamp as a heat sink was evaluated. A temperature of 45 °C was considered the threshold temperature for possible nerve damage. Monopolar instruments exhibited a mean (sem) critical thermal spread of 3.5 (2.3) mm when applied at 60 W for 1 s. After 2 s, the spread was >20 mm. For adjustable bipolar instruments the mean (sem) critical thermal spread was 2.2 (0.6) mm at 60 W and 1 s, and 3.6 (1.3) mm at 2 s. The PK and LigaSure forceps had mean (sem) critical thermal spreads of 3.9 (0.8) and 2.8 (0.6) mm respectively, whereas the ultrasonic instrument reached 2.9 (0.8) mm. Application of an additional Maryland clamp as a heat sink, significantly reduced the thermal spread. Histomorphometric analyses and enzyme assay supported these findings. All coagulation devices used in RAL surgery have distinct thermal spreads depending on power setting and application time. Cautery may be of concern due to lateral temperature spread, causing potential damage to sensitive structures including nerves. Our results provide surgeons with a resource for educated decision-making when using coagulation devices during robotic procedures. © 2013 The Authors. BJU International © 2013 BJU International.

  7. Computer-supported implant planning and guided surgery: a narrative review.

    PubMed

    Vercruyssen, Marjolein; Laleman, Isabelle; Jacobs, Reinhilde; Quirynen, Marc

    2015-09-01

    To give an overview of the workflow from examination to planning and execution, including possible errors and pitfalls, in order to justify the indications for guided surgery. An electronic literature search of the PubMed database was performed with the intention of collecting relevant information on computer-supported implant planning and guided surgery. Currently, different computer-supported systems are available to optimize and facilitate implant surgery. The transfer of the implant planning (in a software program) to the operative field remains however the most difficult part. Guided implant surgery clearly reduces the inaccuracy, defined as the deviation between the planned and the final position of the implant in the mouth. It might be recommended for the following clinical indications: need for minimal invasive surgery, optimization of implant planning and positioning (i.e. aesthetic cases), and immediate restoration. The digital technology rapidly evolves and new developments have resulted in further improvement of the accuracy. Future developments include the reduction of the number of steps needed from the preoperative examination of the patient to the actual execution of the guided surgery. The latter will become easier with the implementation of optical scans and 3D-printing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Mandibular reconstruction with the vascularized fibula flap: comparison of virtual planning surgery and conventional surgery.

    PubMed

    Wang, Y Y; Zhang, H Q; Fan, S; Zhang, D M; Huang, Z Q; Chen, W L; Ye, J T; Li, J S

    2016-11-01

    This study evaluated the accuracy of mandibular reconstruction and assessed clinical outcomes in both virtual planning and conventional surgery patients. ProPlan CMF surgical planning software was used preoperatively in the virtual planning group. In the virtual planning group, fibula flaps were harvested and osteotomized, and the mandibles were resected and reconstructed assisted by the prefabricated cutting guides and templates. The main outcome measures included the operative time, postoperative computed tomography (CT) scans, facial appearance, and occlusal function. The ischemia time and total operation time were shorter in the virtual planning group than in the conventional surgery group. High precision with the use of the cutting guides and templates was found for both the fibula and mandible, and a good fit was noted among the pre-bent plate, mandible, and fibula segments in the virtual planning group. Postoperative CT scans also showed excellent mandibular contours of the fibula flaps in accordance with virtual plans in the virtual planning group. This study demonstrated that virtual surgical planning was able to achieve more accurate mandibular reconstruction than conventional surgery. The use of prefabricated cutting guides and plates makes fibula flap moulding and placement easier, minimizes the operating time, and improves clinical outcomes. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Intelligent Planning for Laser Refractive Surgeries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yue, Yong; Elsheikh, Ahmed; Bao, Fangjun

    2018-02-01

    Refractive error is one of leading ophthalmic diseases for both genders all over the world. Laser refractive correction surgery, e.g., laser in-situ keratomileusis (LASIK), has been commonly used worldwide. The prediction of surgical parameters, e.g., corneal ablation depth, depends on the doctor’s experience, theoretical formula and surgery reference manual in the preoperative diagnosis. The error of prediction may present a potential surgical risk and complication. Being aware of the surgery parameters is important because these can be used to estimate a patient’s post-operative visual quality and help the surgeon plan a suitable treatment. Therefore, in this paper we discuss data mining techniques that can be utilized for the prediction of laser refractive correction surgery parameters. It can provide the surgeon with a reference for possible surgical parameters and outcomes of the patient before the laser refractive correction surgery.

  10. VERS: a virtual environment for reconstructive surgery planning

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.

    1997-05-01

    The virtual environment for reconstructive surgery (VERS) project at the NASA Ames Biocomputation Center is applying virtual reality technology to aid surgeons in planning surgeries. We are working with a craniofacial surgeon at Stanford to assemble and visualize the bone structure of patients requiring reconstructive surgery either through developmental abnormalities or trauma. This project is an extension of our previous work in 3D reconstruction, mesh generation, and immersive visualization. The current VR system, consisting of an SGI Onyx RE2, FakeSpace BOOM and ImmersiveWorkbench, Virtual Technologies CyberGlove and Ascension Technologies tracker, is currently in development and has already been used to visualize defects preoperatively. In the near future it will be used to more fully plan the surgery and compute the projected result to soft tissue structure. This paper presents the work in progress and details the production of a high-performance, collaborative, and networked virtual environment.

  11. Comparison between the use of an ultrasonic tip and a microhead handpiece in periradicular surgery: a prospective randomised trial.

    PubMed

    Shearer, Jane; McManners, Joseph

    2009-07-01

    Innovations in periradicular surgery for failed treatment of orthograde root canal disease have been well-documented. We know of no prospective studies that have compared success rates of conventional methods with these presumed advances. In this prospective randomised trial we compare the use of an ultrasonic retrotip with a microhead bur in the preparation of a retrograde cavity. Outcome was estimated clinically by estimation of pain, swelling, and sinus, and radiographically by looking at infill of bone and retrograde root filling 2 weeks and 6 months postoperatively. Both methods used other surgical techniques including microinstruments to place the retrograde root filling. The success rate of the ultrasonic method was higher (all patients, n=26) than that of the microhead method (n=19 of 21). A larger study with longer follow up is required to consolidate this evidence.

  12. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint.

    PubMed

    Kim, Dae-Seung; Woo, Sang-Yoon; Yang, Hoon Joo; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Hwang, Soon Jung; Yi, Won-Jin

    2014-12-01

    Accurate surgical planning and transfer of the planning in orthognathic surgery are very important in achieving a successful surgical outcome with appropriate improvement. Conventionally, the paper surgery is performed based on a 2D cephalometric radiograph, and the results are expressed using cast models and an articulator. We developed an integrated orthognathic surgery system with 3D virtual planning and image-guided transfer. The maxillary surgery of orthognathic patients was planned virtually, and the planning results were transferred to the cast model by image guidance. During virtual planning, the displacement of the reference points was confirmed by the displacement from conventional paper surgery at each procedure. The results of virtual surgery were transferred to the physical cast models directly through image guidance. The root mean square (RMS) difference between virtual surgery and conventional model surgery was 0.75 ± 0.51 mm for 12 patients. The RMS difference between virtual surgery and image-guidance results was 0.78 ± 0.52 mm, which showed no significant difference from the difference of conventional model surgery. The image-guided orthognathic surgery system integrated with virtual planning will replace physical model surgical planning and enable transfer of the virtual planning directly without the need for an intermediate splint. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Is Virtual Surgical Planning in Orthognathic Surgery Faster Than Conventional Planning? A Time and Workflow Analysis of an Office-Based Workflow for Single- and Double-Jaw Surgery.

    PubMed

    Steinhuber, Thomas; Brunold, Silvia; Gärtner, Catherina; Offermanns, Vincent; Ulmer, Hanno; Ploder, Oliver

    2018-02-01

    The purpose of this study was to measure and compare the working time for virtual surgical planning (VSP) in orthognathic surgery in a largely office-based workflow in comparison with conventional surgical planning (CSP) regarding the type of surgery, staff involved, and working location. This prospective cohort study included patients treated with orthognathic surgery from May to December 2016. For each patient, both CSP with manual splint fabrication and VSP with fabrication of computer-aided design-computer-aided manufacturing splints were performed. The predictor variables were planning method (CSP or VSP) and type of surgery (single or double jaw), and the outcome was time. Descriptive and analytic statistics, including analysis of variance for repeated measures, were computed. The sample was composed of 40 patients (25 female and 15 male patients; mean age, 24.6 years) treated with single-jaw surgery (n = 18) or double-jaw surgery (n = 22). The mean times for planning single-jaw surgery were 145.5 ± 11.5 minutes for CSP and 109.3 ± 10.8 minutes for VSP, and those for planning double-jaw surgery were 224.1 ± 11.2 minutes and 149.6 ± 15.3 minutes, respectively. Besides the expected result that the working time was shorter for single-versus double-jaw surgery (P < .001), it was shown that VSP shortened the working time significantly versus CSP (P < .001). The reduction of time through VSP was relatively stronger for double-jaw surgery (P < .001 for interaction). All differences between CSP and VSP regarding profession (except for the surgeon's time investment) and location were statistically significant (P < .01). The surgeon's time to plan single-jaw surgery was 37.0 minutes for CSP and 41.2 minutes for VSP; for double-jaw surgery, it was 53.8 minutes and 53.6 minutes, respectively. Office-based VSP for orthognathic surgery was significantly faster for single- and double-jaw surgery. The time investment of the surgeon was equal

  14. [Ultrasonic scissors. New vs resterilized instruments].

    PubMed

    Gärtner, D; Münz, K; Hückelheim, E; Hesse, U

    2008-02-01

    The aim of this study was to compare reliability in handling and function of resterilized and single-use disposable ultrasonic scissors. In a prospective randomized study, the surgeon blindly tested new and resterilized ultrasonographic scissors. The parameters were force of activation, cutting effect, coagulation effect, error messages, and disturbing generator noise. Fifty-one new and 49 resterilized instruments in 94 operations were evaluated. The differences in force of activation, cutting effect, and coagulation were not significant. Error messages and disturbing noises were rare in both groups. Six new instruments and two resterilized instruments had to be exchanged because of problems during surgery. This study demonstrates comparable reliability in function and handling of resterilized and new ultrasonic scissors. The use of resterilized instruments leads to distinctly reduced costs and could contribute to efficiency in laparoscopic surgery.

  15. Ultrasonic Apparatus and Method to Assess Compartment Syndrome

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)

    2009-01-01

    A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.

  16. Understanding nonlinear vibration behaviours in high-power ultrasonic surgical devices

    PubMed Central

    Mathieson, Andrew; Cardoni, Andrea; Cerisola, Niccolò; Lucas, Margaret

    2015-01-01

    Ultrasonic surgical devices are increasingly used in oral, craniofacial and maxillofacial surgery to cut mineralized tissue, offering the surgeon high accuracy with minimal risk to nerve and vessel tissue. Power ultrasonic devices operate in resonance, requiring their length to be a half-wavelength or multiple-half-wavelength. For bone surgery, devices based on a half-wavelength have seen considerable success, but longer multiple-half-wavelength endoscopic devices have recently been proposed to widen the range of surgeries. To provide context for these developments, some examples of surgical procedures and the associated designs of ultrasonic cutting tips are presented. However, multiple-half-wavelength components, typical of endoscopic devices, have greater potential to exhibit nonlinear dynamic behaviours that have a highly detrimental effect on device performance. Through experimental characterization of the dynamic behaviour of endoscopic devices, it is demonstrated how geometrical features influence nonlinear dynamic responses. Period doubling, a known route to chaotic behaviour, is shown to be significantly influenced by the cutting tip shape, whereas the cutting tip has only a limited effect on Duffing-like responses, particularly the shape of the hysteresis curve, which is important for device stability. These findings underpin design, aiming to pave the way for a new generation of ultrasonic endoscopic surgical devices. PMID:27547081

  17. Resection planning for robotic acoustic neuroma surgery

    NASA Astrophysics Data System (ADS)

    McBrayer, Kepra L.; Wanna, George B.; Dawant, Benoit M.; Balachandran, Ramya; Labadie, Robert F.; Noble, Jack H.

    2016-03-01

    Acoustic neuroma surgery is a procedure in which a benign mass is removed from the Internal Auditory Canal (IAC). Currently this surgical procedure requires manual drilling of the temporal bone followed by exposure and removal of the acoustic neuroma. This procedure is physically and mentally taxing to the surgeon. Our group is working to develop an Acoustic Neuroma Surgery Robot (ANSR) to perform the initial drilling procedure. Planning the ANSR's drilling region using pre-operative CT requires expertise and around 35 minutes' time. We propose an approach for automatically producing a resection plan for the ANSR that would avoid damage to sensitive ear structures and require minimal editing by the surgeon. We first compute an atlas-based segmentation of the mastoid section of the temporal bone, refine it based on the position of anatomical landmarks, and apply a safety margin to the result to produce the automatic resection plan. In experiments with CTs from 9 subjects, our automated process resulted in a resection plan that was verified to be safe in every case. Approximately 2 minutes were required in each case for the surgeon to verify and edit the plan to permit functional access to the IAC. We measured a mean Dice coefficient of 0.99 and surface error of 0.08 mm between the final and automatically proposed plans. These preliminary results indicate that our approach is a viable method for resection planning for the ANSR and drastically reduces the surgeon's planning effort.

  18. Virtual planning for craniomaxillofacial surgery--7 years of experience.

    PubMed

    Adolphs, Nicolai; Haberl, Ernst-Johannes; Liu, Weichen; Keeve, Erwin; Menneking, Horst; Hoffmeister, Bodo

    2014-07-01

    Contemporary computer-assisted surgery systems more and more allow for virtual simulation of even complex surgical procedures with increasingly realistic predictions. Preoperative workflows are established and different commercially software solutions are available. Potential and feasibility of virtual craniomaxillofacial surgery as an additional planning tool was assessed retrospectively by comparing predictions and surgical results. Since 2006 virtual simulation has been performed in selected patient cases affected by complex craniomaxillofacial disorders (n = 8) in addition to standard surgical planning based on patient specific 3d-models. Virtual planning could be performed for all levels of the craniomaxillofacial framework within a reasonable preoperative workflow. Simulation of even complex skeletal displacements corresponded well with the real surgical result and soft tissue simulation proved to be helpful. In combination with classic 3d-models showing the underlying skeletal pathology virtual simulation improved planning and transfer of craniomaxillofacial corrections. Additional work and expenses may be justified by increased possibilities of visualisation, information, instruction and documentation in selected craniomaxillofacial procedures. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Impact of model-based risk analysis for liver surgery planning.

    PubMed

    Hansen, C; Zidowitz, S; Preim, B; Stavrou, G; Oldhafer, K J; Hahn, H K

    2014-05-01

    A model-based risk analysis for oncologic liver surgery was described in previous work (Preim et al. in Proceedings of international symposium on computer assisted radiology and surgery (CARS), Elsevier, Amsterdam, pp. 353–358, 2002; Hansen et al. Int I Comput Assist Radiol Surg 4(5):469–474, 2009). In this paper, we present an evaluation of this method. To prove whether and how the risk analysis facilitates the process of liver surgery planning, an explorative user study with 10 liver experts was conducted. The purpose was to compare and analyze their decision-making. The results of the study show that model-based risk analysis enhances the awareness of surgical risk in the planning stage. Participants preferred smaller resection volumes and agreed more on the safety margins’ width in case the risk analysis was available. In addition, time to complete the planning task and confidence of participants were not increased when using the risk analysis. This work shows that the applied model-based risk analysis may influence important planning decisions in liver surgery. It lays a basis for further clinical evaluations and points out important fields for future research.

  20. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results.

    PubMed

    Zhang, Nan; Liu, Shuguang; Hu, Zhiai; Hu, Jing; Zhu, Songsong; Li, Yunfeng

    2016-08-01

    This study aims to evaluate the accuracy of virtual surgical planning in two-jaw orthognathic surgery via quantitative comparison of preoperative planned and postoperative actual skull models. Thirty consecutive patients who required two-jaw orthognathic surgery were included. A composite skull model was reconstructed by using Digital Imaging and Communications in Medicine (DICOM) data from spiral computed tomography (CT) and STL (stereolithography) data from surface scanning of the dental arch. LeFort I osteotomy of the maxilla and bilateral sagittal split ramus osteotomy (of the mandible were simulated by using Dolphin Imaging 11.7 Premium (Dolphin Imaging and Management Solutions, Chatsworth, CA). Genioplasty was performed, if indicated. The virtual plan was then transferred to the operation room by using three-dimensional (3-D)-printed surgical templates. Linear and angular differences between virtually simulated and postoperative skull models were evaluated. The virtual surgical planning was successfully transferred to actual surgery with the help of 3-D-printed surgical templates. All patients were satisfied with the postoperative facial profile and occlusion. The overall mean linear difference was 0.81 mm (0.71 mm for the maxilla and 0.91 mm for the mandible); and the overall mean angular difference was 0.95 degrees. Virtual surgical planning and 3-D-printed surgical templates facilitated the diagnosis, treatment planning, and accurate repositioning of bony segments in two-jaw orthognathic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The use of 3D planning in facial surgery: preliminary observations.

    PubMed

    Hoarau, R; Zweifel, D; Simon, C; Broome, M

    2014-12-01

    Three-dimensional (3D) planning is becoming a more commonly used tool in maxillofacial surgery. At first used only virtually, 3D planning now also enables the creation of useful intraoperative aids such as cutting guides, which decrease the operative difficulty. In our center, we have used 3D planning in various domains of facial surgery and have investigated the advantages of this technique. We have also addressed the difficulties associated with its use. 3D planning increases the accuracy of reconstructive surgery, decreases operating time, whilst maintaining excellent esthetic results. However, its use is restricted to osseous reconstruction at this stage and once planning has been undertaken, it cannot be reversed or altered intraoperatively. Despite the attractive nature of this new tool, its uses and practicalities must be further evaluated. In particular, cost-effectiveness, hospital stay, and patient perceived benefits must be assessed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Are virtual planning and guided surgery for head and neck reconstruction economically viable?

    PubMed

    Zweifel, Daniel Fritz; Simon, Christian; Hoarau, Remy; Pasche, Philippe; Broome, Martin

    2015-01-01

    Virtual planning and guided surgery with or without prebent or milled plates are becoming more and more common for mandibular reconstruction with fibular free flaps (FFFs). Although this excellent surgical option is being used more widely, the question of the additional cost of planning and cutting-guide production has to be discussed. In capped payment systems such additional costs have to be offset by other savings if there are no special provisions for extra funding. Our study was designed to determine whether using virtual planning and guided surgery resulted in time saved during surgery and whether this time gain resulted in self-funding of such planning through the time saved. All consecutive cases of FFF surgery were evaluated during a 2-year period. Institutional data were used to determine the price of 1 minute of operative time. The time for fibula molding, plate adaptation, and insetting was recorded. During the defined period, we performed 20 mandibular reconstructions using FFFs, 9 with virtual planning and guided surgery and 11 freehand cases. One minute of operative time was calculated to cost US $47.50. Multiplying this number by the time saved, we found that the additional cost of virtual planning was reduced from US $5,098 to US $1,231.50 with a prebent plate and from US $6,980 to US $3,113.50 for a milled plate. Even in capped health care systems, virtual planning and guided surgery including prebent or milled plates are financially viable. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Acute and subacute effects of the ultrasonic blade and electrosurgery on nerve physiology.

    PubMed

    Chen, Chaoyang; Kallakuri, Srinivasu; Cavanaugh, John M; Broughton, Duan; Clymer, Jeffrey W

    2015-01-01

    Ultrasonic blades have been shown to cause less acute electrophysiological damage when applied near nerves than monopolar electrosurgery (ES). This study was performed to determine whether the acute nerve damage observed for ES, as well as the relative lack of damage observed for ultrasonic dissection, extends through a subacute timeframe. Muscle incisions were made in rat with the Harmonic(®) Blade (HB) and ES at a distance of 2 mm from the sciatic nerve. Sham surgery was also performed which consisted of similar exposure of the sciatic nerve without use of an energized device. Electrophysiological function was assessed acutely over a 3-h period, and subacutely after a 7-day survival, by monitoring the sciatic nerve compound action potential (CAP), conduction velocity (CV), von Frey hair (VFH) stimulation force, leukocyte infiltration, and impaired axonal transport via β-amyloid precursor protein (β-APP) immunocytochemistry. During the acute period, ES produced significantly lower CAP and CV, and higher levels of leukocytes and β-APP than sham, whereas the ultrasonic blade was not significantly different from sham, and had significantly lower VFH force than ES. After the subacute survival, ES continued to display significantly lower CAP and CV, and higher levels of leukocytes and β-APP than sham, whereas ultrasonic blade had higher CAP and CV than sham, and lower VFH than ES. This study confirms that incisions made with an ultrasonic blade cause less acute nerve damage than monopolar ES, and are comparable to sham surgery at a distance of 2 mm from the sciatic nerve. The negative effects of electrosurgery extend through at least a 7-day survival period, whereas subacute recovery after application of the ultrasonic blade was comparable to that of sham surgery. For surgical procedures in the vicinity of vital nerves, use of the ultrasonic blade represents a lower risk than ES for both acute and subacute neural trauma.

  4. Ultrasonic technique for characterizing skin burns

    DOEpatents

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  5. Plastic Surgery Applications Using Three-Dimensional Planning and Computer-Assisted Design and Manufacturing.

    PubMed

    Pfaff, Miles J; Steinbacher, Derek M

    2016-03-01

    Three-dimensional analysis and planning is a powerful tool in plastic and reconstructive surgery, enabling improved diagnosis, patient education and communication, and intraoperative transfer to achieve the best possible results. Three-dimensional planning can increase efficiency and accuracy, and entails five core components: (1) analysis, (2) planning, (3) virtual surgery, (4) three-dimensional printing, and (5) comparison of planned to actual results. The purpose of this article is to provide an overview of three-dimensional virtual planning and to provide a framework for applying these systems to clinical practice. Therapeutic, V.

  6. Intraosseous heat generation during sonic, ultrasonic and conventional osteotomy.

    PubMed

    Rashad, Ashkan; Sadr-Eshkevari, Pooyan; Heiland, Max; Smeets, Ralf; Hanken, Henning; Gröbe, Alexander; Assaf, Alexandre T; Köhnke, Robert H; Mehryar, Pouyan; Riecke, Björn; Wikner, Johannes

    2015-09-01

    To assess heat generation in osteotomies during application of sonic and ultrasonic saws compared to conventional bur. Two glass-fiber isolated nickel-chromium thermocouples, connected to a recording device, were inserted into fresh bovine rib bone blocks and kept in 20 ± 0.5 °C water at determined depths of 1.5 mm (cortical layer) and 7 mm (cancellous layer) and 1.0 mm away from the planned osteotomy site. Handpieces, angulated 24-32°, were mounted in a vertical drill stand, and standardized weights were attached to their tops to exert loads of 5, 8, 15 and 20 N. Irrigation volumes of 20, 50 and 80 ml/min were used for each load. Ten repetitions were conducted using new tips each time for each test condition. The Mann-Whitney-U test was used for statistical analysis (p < 0.05). Both ultrasonic and sonic osteotomies were associated with significantly lower heat generation than conventional osteotomy (p < 0.01). Sonic osteotomy showed non-significantly lower heat generation than ultrasonic osteotomy. Generated heat never exceeded the critical limit of 47 °C in any system. Variation of load had no effect on heat generation in both bone layers for all tested systems. An increased irrigation volume resulted in lower temperatures in both cortical and cancellous bone layers during all tested osteotomies. Although none of the systems under the conditions of the present study resulted in critical heat generation, the application of ultrasonic and sonic osteotomy systems was associated with lower heat generation compared to the conventional saw osteotomy. Copious irrigation seems to play a critical role in preventing heat generation in the osteotomy site. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Virtual Reality Exploration and Planning for Precision Colorectal Surgery.

    PubMed

    Guerriero, Ludovica; Quero, Giuseppe; Diana, Michele; Soler, Luc; Agnus, Vincent; Marescaux, Jacques; Corcione, Francesco

    2018-06-01

    Medical software can build a digital clone of the patient with 3-dimensional reconstruction of Digital Imaging and Communication in Medicine images. The virtual clone can be manipulated (rotations, zooms, etc), and the various organs can be selectively displayed or hidden to facilitate a virtual reality preoperative surgical exploration and planning. We present preliminary cases showing the potential interest of virtual reality in colorectal surgery for both cases of diverticular disease and colonic neoplasms. This was a single-center feasibility study. The study was conducted at a tertiary care institution. Two patients underwent a laparoscopic left hemicolectomy for diverticular disease, and 1 patient underwent a laparoscopic right hemicolectomy for cancer. The 3-dimensional virtual models were obtained from preoperative CT scans. The virtual model was used to perform preoperative exploration and planning. Intraoperatively, one of the surgeons was manipulating the virtual reality model, using the touch screen of a tablet, which was interactively displayed to the surgical team. The main outcome was evaluation of the precision of virtual reality in colorectal surgery planning and exploration. In 1 patient undergoing laparoscopic left hemicolectomy, an abnormal origin of the left colic artery beginning as an extremely short common trunk from the inferior mesenteric artery was clearly seen in the virtual reality model. This finding was missed by the radiologist on CT scan. The precise identification of this vascular variant granted a safe and adequate surgery. In the remaining cases, the virtual reality model helped to precisely estimate the vascular anatomy, providing key landmarks for a safer dissection. A larger sample size would be necessary to definitively assess the efficacy of virtual reality in colorectal surgery. Virtual reality can provide an enhanced understanding of crucial anatomical details, both preoperatively and intraoperatively, which could

  8. Virtual planning in orthognathic surgery.

    PubMed

    Stokbro, K; Aagaard, E; Torkov, P; Bell, R B; Thygesen, T

    2014-08-01

    Numerous publications regarding virtual surgical planning protocols have been published, most reporting only one or two case reports to emphasize the hands-on planning. None have systematically reviewed the data published from clinical trials. This systematic review analyzes the precision and accuracy of three-dimensional (3D) virtual surgical planning of orthognathic procedures compared with the actual surgical outcome following orthognathic surgery reported in clinical trials. A systematic search of the current literature was conducted to identify clinical trials with a sample size of more than five patients, comparing the virtual surgical plan with the actual surgical outcome. Search terms revealed a total of 428 titles, out of which only seven articles were included, with a combined sample size of 149 patients. Data were presented in three different ways: intra-class correlation coefficient, 3D surface area with a difference <2mm, and linear and angular differences in three dimensions. Success criteria were set at 2mm mean difference in six articles; 125 of the 133 patients included in these articles were regarded as having had a successful outcome. Due to differences in the presentation of data, meta-analysis was not possible. Virtual planning appears to be an accurate and reproducible method for orthognathic treatment planning. A more uniform presentation of the data is necessary to allow the performance of a meta-analysis. Currently, the software system most often used for 3D virtual planning in clinical trials is SimPlant (Materialise). More independent clinical trials are needed to further validate the precision of virtual planning. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. All rights reserved.

  9. Three-dimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction.

    PubMed

    Van Hemelen, Geert; Van Genechten, Maarten; Renier, Lieven; Desmedt, Maria; Verbruggen, Elric; Nadjmi, Nasser

    2015-07-01

    Throughout the history of computing, shortening the gap between the physical and digital world behind the screen has always been strived for. Recent advances in three-dimensional (3D) virtual surgery programs have reduced this gap significantly. Although 3D assisted surgery is now widely available for orthognathic surgery, one might still argue whether a 3D virtual planning approach is a better alternative to a conventional two-dimensional (2D) planning technique. The purpose of this study was to compare the accuracy of a traditional 2D technique and a 3D computer-aided prediction method. A double blind randomised prospective study was performed to compare the prediction accuracy of a traditional 2D planning technique versus a 3D computer-aided planning approach. The accuracy of the hard and soft tissue profile predictions using both planning methods was investigated. There was a statistically significant difference between 2D and 3D soft tissue planning (p < 0.05). The statistically significant difference found between 2D and 3D planning and the actual soft tissue outcome was not confirmed by a statistically significant difference between methods. The 3D planning approach provides more accurate soft tissue planning. However, the 2D orthognathic planning is comparable to 3D planning when it comes to hard tissue planning. This study provides relevant results for choosing between 3D and 2D planning in clinical practice. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.

    PubMed

    Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J

    2015-10-01

    The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.

  11. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence

    PubMed Central

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Chen, K.-C.; Li, J.; Zhang, X.; Tang, Z.; Alfi, D. M.

    2015-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. PMID:26573562

  12. Creating an advance-care-planning decision aid for high-risk surgery: a qualitative study.

    PubMed

    Schuster, Anne Lr; Aslakson, Rebecca A; Bridges, John Fp

    2014-01-01

    High-risk surgery patients may lose decision-making capacity as a result of surgical complications. Advance care planning prior to surgery may be beneficial, but remains controversial and is hindered by a lack of appropriate decision aids. This study sought to examine stakeholders' views on the appropriateness of using decision aids, in general, to support advance care planning among high-risk surgery populations and the design of such a decision aid. Key informants were recruited through purposive and snowball sampling. Semi-structured interviews were conducted by phone until data collected reached theoretical saturation. Key informants were asked to discuss their thoughts about advance care planning and interventions to support advance care planning, particularly for this population. Researchers took de-identified notes that were analyzed for emerging concordant, discordant, and recurrent themes using interpretative phenomenological analysis. Key informants described the importance of initiating advance care planning preoperatively, despite potential challenges present in surgical settings. In general, decision aids were viewed as an appropriate approach to support advance care planning for this population. A recipe emerged from the data that outlines tools, ingredients, and tips for success that are needed to design an advance care planning decision aid for high-risk surgical settings. Stakeholders supported incorporating advance care planning in high-risk surgical settings and endorsed the appropriateness of using decision aids to do so. Findings will inform the next stages of developing the first advance care planning decision aid for high-risk surgery patients.

  13. A Micro Ultrasonic Scalpel with Modified Stepped Horn

    NASA Astrophysics Data System (ADS)

    Kurosawa, Minoru; Umehara, Yuji

    A transducer for a micro ultrasonic scalpel has been fabricated. The micro ultrasonic scalpel can be used with an endoscope for a non-abdominal operation or micro surgery, for example, through a microscope. The ultrasonic transducer was 9.8 mm long and 2.7 mm wide and has stepped horn to amplify vibration velocity; tip of the horn is 0.6 mm wide. The scalpel operated at the resonance frequency in longitudinal mode of 278 kHz. The piezoelectric material was lead zirconate titanate (PZT) that was deposited by the hydrothermal method. The vibration velocity at the tip of the horn in longitudinal direction was 4.0 m/s with 40Vp-p driving voltage in both side electrodes. To demonstrate a beneficial effect of the scalpel, a cutting test that the transducer was stuck into pork fat was carried out.

  14. Application of an innovative computerized virtual planning system in acetabular fracture surgery: A feasibility study.

    PubMed

    Wang, Huixiang; Wang, Fang; Newman, Simon; Lin, Yanping; Chen, Xiaojun; Xu, Lu; Wang, Qiugen

    2016-08-01

    Acetabular fracture surgery is amongst the most challenging tasks in the field of trauma surgery and careful preoperative planning is crucial for success. The aim of this paper is to describe the preliminary outcome of the utilization of an innovative computerized virtual planning system for acetabular fractures. 3D models of acetabular fractures and surrounding soft tissues from six patients were constructed from preoperative CT scans. A novel highly-automatic segmentation technique was performed on the 3D model to separate each fracture fragment, then 3D virtual reduction was performed. Additionally, the models were used to assess potential surgical approaches with reference to both the fracture and the surrounding soft tissues. The time required for virtual planning was recorded. After surgery, the virtual plan was compared to the real surgery with respect to surgical approach and reduction sequence. A Likert scale questionnaire was completed by the surgeons to evaluate their satisfaction with the system. Virtual planning was successfully completed in all cases. The planned surgical approach was followed in all cases with the planned reduction sequence followed completely in five cases and partially in one. The mean time required for virtual planning was 38.7min (range 21-57, SD=15.5). The mean time required for planning of B-type fractures was 25.0min (range 21-30, SD=4.6), of C-type fracture 52.3min (range 49-57, SD=4.2). The results of the questionnaire demonstrated a high level of satisfaction with the planning system. This study demonstrates that the virtual planning system is feasible in clinical settings with high satisfaction and acceptability from the surgeons. It provides a viable option for the planning of acetabular fracture surgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Planning nonlinear access paths for temporal bone surgery.

    PubMed

    Fauser, Johannes; Sakas, Georgios; Mukhopadhyay, Anirban

    2018-05-01

    Interventions at the otobasis operate in the narrow region of the temporal bone where several highly sensitive organs define obstacles with minimal clearance for surgical instruments. Nonlinear trajectories for potential minimally invasive interventions can provide larger distances to risk structures and optimized orientations of surgical instruments, thus improving clinical outcomes when compared to existing linear approaches. In this paper, we present fast and accurate planning methods for such nonlinear access paths. We define a specific motion planning problem in [Formula: see text] with notable constraints in computation time and goal pose that reflect the requirements of temporal bone surgery. We then present [Formula: see text]-RRT-Connect: two suitable motion planners based on bidirectional Rapidly exploring Random Tree (RRT) to solve this problem efficiently. The benefits of [Formula: see text]-RRT-Connect are demonstrated on real CT data of patients. Their general performance is shown on a large set of realistic synthetic anatomies. We also show that these new algorithms outperform state-of-the-art methods based on circular arcs or Bézier-Splines when applied to this specific problem. With this work, we demonstrate that preoperative and intra-operative planning of nonlinear access paths is possible for minimally invasive surgeries at the otobasis.

  16. Creating an advance-care-planning decision aid for high-risk surgery: a qualitative study

    PubMed Central

    2014-01-01

    Background High-risk surgery patients may lose decision-making capacity as a result of surgical complications. Advance care planning prior to surgery may be beneficial, but remains controversial and is hindered by a lack of appropriate decision aids. This study sought to examine stakeholders’ views on the appropriateness of using decision aids, in general, to support advance care planning among high-risk surgery populations and the design of such a decision aid. Methods Key informants were recruited through purposive and snowball sampling. Semi-structured interviews were conducted by phone until data collected reached theoretical saturation. Key informants were asked to discuss their thoughts about advance care planning and interventions to support advance care planning, particularly for this population. Researchers took de-identified notes that were analyzed for emerging concordant, discordant, and recurrent themes using interpretative phenomenological analysis. Results Key informants described the importance of initiating advance care planning preoperatively, despite potential challenges present in surgical settings. In general, decision aids were viewed as an appropriate approach to support advance care planning for this population. A recipe emerged from the data that outlines tools, ingredients, and tips for success that are needed to design an advance care planning decision aid for high-risk surgical settings. Conclusions Stakeholders supported incorporating advance care planning in high-risk surgical settings and endorsed the appropriateness of using decision aids to do so. Findings will inform the next stages of developing the first advance care planning decision aid for high-risk surgery patients. PMID:25067908

  17. Physics and Histologic Evaluation of Rotary, Ultrasonic, and Sonic Instruments.

    PubMed

    Ruga, Emanuele; Amerio, Ettore; Carbone, Vincenzo; Volante, Marco; Gandolfo, Sergio

    2017-10-01

    Rotary instruments (RIs) are the most commonly used to perform osteotomies in many fields of medicine. Owing to a new interest in performing a minimally invasive surgery, over last fifteen years new devices have been used in oral surgery such as ultrasonic instruments (UIs) and, lately, sonic instruments (SIs). Nowadays, bone preservation and regeneration are paramount in many clinical situations and, consequently, it is crucial to rely upon instruments, which cause the least tissue damage during the surgery. Concerning SIs, there is still few information about workload to be applied and related temperature increases; furthermore, there are no comparative in-vivo studies, which analyze the thermal and mechanical effects on bone. Thus, SIs have been compared with UIs and RIs in terms of heat generation, operating time, accuracy, and tissue damage. Decalcification and sectioning procedure resulted in no significant differences between the applied instruments in terms of bone damage. RIs resulted more efficient than UIs (P < 0.001), but demonstrated low accuracy (NRS 4.9), whereas SIs (P = 0.005) required more time to perform the osteotomy. The maximum temperature increase occurred in the ultrasonic group. Even though SI were the slowest, they have proved to be the most accurate (NRS 8.4) in comparison with UI (NRS 7.6) and RI (NRS 4.9). Within the limit of this study, sonic instruments could be considered a safe alternative to ultrasonic instruments.

  18. Clinical feasibility and efficacy of using virtual surgical planning in bimaxillary orthognathic surgery without intermediate splint.

    PubMed

    Li, Yunfeng; Jiang, Yangmei; Zhang, Nan; Xu, Rui; Hu, Jing; Zhu, Songsong

    2015-03-01

    Computer-aided jaw surgery has been extensively studied recently. The purpose of this study was to determine the clinical feasibility of performing bimaxillary orthognathic surgery without intermediate splint using virtual surgical planning and rapid prototyping technology. Twelve consecutive patients who underwent bimaxillary orthognathic surgery were included. The presented treatment plan here mainly consists of 6 procedures: (1) data acquisition from computed tomography (CT) of the skull and laser scanning of the dentition; (2) reconstruction and fusion of a virtual skull model with accurate dentition; (3) virtual surgery simulation including osteotomy and movement and repositioning of bony segments; (4) final surgical splint fabrication (no intermediate splint) using computer-aided design and rapid prototyping technology; (5) transfer of the virtual surgical plan to the operating room; and (6) comparison of the actual surgical outcome to the virtual surgical plan. All procedures of the treatment were successfully performed on all 12 patients. In quantification of differences between simulated and actual postoperative outcome, we found that the mean linear difference was less than 1.8 mm, and the mean angular difference was less than 2.5 degrees in all evaluated patients. Results from this study suggested that it was feasible to perform bimaxillary orthognathic surgery without intermediate splint. Virtual surgical planning and the guiding splints facilitated the diagnosis, treatment planning, accurate osteotomy, and bony segments repositioning in orthognathic surgery.

  19. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence.

    PubMed

    Xia, J J; Gateno, J; Teichgraeber, J F; Yuan, P; Chen, K-C; Li, J; Zhang, X; Tang, Z; Alfi, D M

    2015-12-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Implementation of an interactive liver surgery planning system

    NASA Astrophysics Data System (ADS)

    Wang, Luyao; Liu, Jingjing; Yuan, Rong; Gu, Shuguo; Yu, Long; Li, Zhitao; Li, Yanzhao; Li, Zhen; Xie, Qingguo; Hu, Daoyu

    2011-03-01

    Liver tumor, one of the most wide-spread diseases, has a very high mortality in China. To improve success rates of liver surgeries and life qualities of such patients, we implement an interactive liver surgery planning system based on contrastenhanced liver CT images. The system consists of five modules: pre-processing, segmentation, modeling, quantitative analysis and surgery simulation. The Graph Cuts method is utilized to automatically segment the liver based on an anatomical prior knowledge that liver is the biggest organ and has almost homogeneous gray value. The system supports users to build patient-specific liver segment and sub-segment models using interactive portal vein branch labeling, and to perform anatomical resection simulation. It also provides several tools to simulate atypical resection, including resection plane, sphere and curved surface. To match actual surgery resections well and simulate the process flexibly, we extend our work to develop a virtual scalpel model and simulate the scalpel movement in the hepatic tissue using multi-plane continuous resection. In addition, the quantitative analysis module makes it possible to assess the risk of a liver surgery. The preliminary results show that the system has the potential to offer an accurate 3D delineation of the liver anatomy, as well as the tumors' location in relation to vessels, and to facilitate liver resection surgeries. Furthermore, we are testing the system in a full-scale clinical trial.

  1. Protecting exposed tissues with external ultrasonic super-hydration.

    PubMed

    Silberg, Barry Neil

    2006-01-01

    The author contends that a technique preventing dehydration of exposed tissues, such as external ultrasonic super-hydration, will result in a lower morbidity rate, decreasing deep tissue pain, susceptibility to infection, fat necrosis, wound dehiscence, and improving recovery times. He discusses how he uses this technique in his aesthetic surgery practice.

  2. Bladder outlet obstruction treated with transurethral ultrasonic aspiration

    NASA Astrophysics Data System (ADS)

    Malloy, Terrence R.

    1991-07-01

    Fifty-nine males with bladder outlet obstruction were treated with transurethral ultrasonic aspiration of the prostate. Utilizing a 26.5 French urethral sheath, surgery was accomplished with a 10 French, 0-700 micron vibration level ultrasonic tip with an excursion rate of 39 kHz. Complete removal of the adenoma was accomplished, followed by transurethral electrocautery biopsies of both lateral lobes to compare pathologic specimens. One-year follow-up revealed satisfactory voiding patterns in 57 of 59 men (96%). Two men developed bladder neck contractures. Pathologic comparisons showed 100% correlation between aspirated and TUR specimens (56 BPH, 3 adeno-carcinoma). Forty-sevel men were active sexually preoperatively (6 with inflatable penile prostheses). Post ultrasonic aspiration, 46 men had erectile function similar to preoperative levels with one patient suffering erectile dysfunction. Forty men (85%) had antegrade ejaculation while 7 (15%) experienced retrograde or retarded ejaculation. No patients were incontinent.

  3. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery.

    PubMed

    Coelho, Giselle; Chaves, Thailane Marie Feitosa; Goes, Ademil Franco; Del Massa, Emilio C; Moraes, Osmar; Yoshida, Maurício

    2018-04-01

    Surgical correction of frontoethmoidal meningoencephalocele, although rare, is still challenging to neurosurgeons and plastic reconstructive surgeons. It is fundamental to establish reliable and safe surgical techniques. The twenty-first century has brought great advances in medical technology, and the 3D models can mimic the correct tridimensional anatomical relation of a tissue organ or body part. They allow both tactile and spatial understanding of the lesion and organ involved. The 3D printing technology allows the preparation for specific surgery ahead of time, planning the surgical approach and developing plans to deal with uncommon and high-risk intraoperative scenarios. The present report describes a case of frontoethmoidal encephalocele, (nasofrontal subtype) of a 19-month-old girl, whose surgical correction was planned using 3D printing modeling. The 3D model allowed a detailed discussion of the aspects of the surgical approach by having tissues of different consistencies and resistances, and also predicting with millimetric precision the bilateral orbitotomy measurements. Moreover, it was a fundamental and valuable factor in the multidisciplinary preoperative discussion. This approach allowed reducing the time of surgery, accurately planning the location of the osteotomies and precontouring the osteosynthesis material. 3D models can be very helpful tools in planning complex craniofacial operative procedures.

  4. [Design of a plan for patient safety in pediatric surgery service].

    PubMed

    Paredes Esteban, R M; Castillo Fernández, A L; Miñarro del Moral, R; Garrido Pérez, J I; Granero Cendón, R; Gómez Beltrán, O; Berenguer Garcia, M J; Tejedor Fernández, M

    2014-10-01

    Patient safety is a key priority in quality management for healthcare services providers. Every patient is entitled to receive safe and effective healthcare. The aim of this study was to design a patient safety plan for a Paediatric Surgery Department. We carried out a literature review and we established a work group that included healthcare professionals from the Paediatric Surgery Department and the Quality and Medical Records Department. The group identified potential adverse events, failures and causes and established a rating using Failure Mode Effects Analysis. Potential risks were mapped out and a plan was designed establishing actions to reduce risks. We designated leaders to ensure the effective implementation of the plan. A total of 58 adverse events were identified in the Paediatric Surgery Department. We detected 128 failures that were produced by 211 different causes. The group developed a proposal with 424 specific measures to carry out preventive and/or remedial actions that were then narrowed down to 322. The group designed a plan to apply the programme, which is currently being implemented. The methodology used enabled obtaining key information for improvement of patient safety and developing preventive and/or remedial actions. These measures are applicable in practice, as they were designed using proposals and agreements with professionals that take active part in the care of children with surgical conditions.

  5. Current Status of Surgical Planning for Orthognathic Surgery: Traditional Methods versus 3D Surgical Planning

    PubMed Central

    Hammoudeh, Jeffrey A.; Howell, Lori K.; Boutros, Shadi; Scott, Michelle A.

    2015-01-01

    Background: Orthognathic surgery has traditionally been performed using stone model surgery. This involves translating desired clinical movements of the maxilla and mandible into stone models that are then cut and repositioned into class I occlusion from which a splint is generated. Model surgery is an accurate and reproducible method of surgical correction of the dentofacial skeleton in cleft and noncleft patients, albeit considerably time-consuming. With the advent of computed tomography scanning, 3D imaging and virtual surgical planning (VSP) have gained a foothold in orthognathic surgery with VSP rapidly replacing traditional model surgery in many parts of the country and the world. What has yet to be determined is whether the application and feasibility of virtual model surgery is at a point where it will eliminate the need for traditional model surgery in both the private and academic setting. Methods: Traditional model surgery was compared with VSP splint fabrication to determine the feasibility of use and accuracy of application in orthognathic surgery within our institution. Results: VSP was found to generate acrylic splints of equal quality to model surgery splints in a fraction of the time. Drawbacks of VSP splint fabrication are the increased cost of production and certain limitations as it relates to complex craniofacial patients. Conclusions: It is our opinion that virtual model surgery will displace and replace traditional model surgery as it will become cost and time effective in both the private and academic setting for practitioners providing orthognathic surgical care in cleft and noncleft patients. PMID:25750846

  6. Monopolar electrocautery versus ultrasonic dissection of the gallbladder from the gallbladder bed in laparoscopic cholecystectomy: a randomized controlled trial

    PubMed Central

    Mahabaleshwar, Varun; Kaman, Lileswar; Iqbal, Javid; Singh, Rajinder

    2012-01-01

    Background Ultrasonic dissection has been suggested as an alternative to monopolar electrocautery in laparoscopic cholecystectomy because it generates less tissue damage and may have a lower incidence of gallbladder perforation. We compared the 2 methods to determine the incidence of gallbladder perforation and its intraoperative consequences. Methods We conducted a prospective randomized controlled trial between July 2008 and December 2009 involving adult patients with symptomatic gall stone disease who were eligible for laparoscopic cholecystectomy. Patients were randomly assigned before administration of anesthesia to electrocautery or ultrasonic dissection. Both groups were compared for incidence of gallbladder perforation during dissection, bile leak, stones spillage, lens cleaning, duration of surgery and estimation of risk of gall-bladder in the presence of complicating factors. Results We included 60 adult patients in our study. The groups were comparable with respect to demographic characteristics, symptomatology, comorbidities, previous abdominal surgeries, preoperative ultrasonography findings and intraoperative complications. The overall incidence of gallbladder perforation was 28.3% (40.0% in the electrocautery v. 16.7% in the ultrasonic dissection group, p = 0.045). Bile leak occurred in 40.0% of patients in the electrocautery group and 16.7% of patients in ultrasonic group (p = 0.045). Lens cleaning time (p = 0.015) and duration of surgery (p = 0.001) were longer in the electrocautery than the ultrasonic dissection group. There was no statistical difference in stone spillage between the groups (p = 0.62). Conclusion Ultrasonic dissection is safe and effective, and it improves the operative course of laparoscopic cholecystectomy by reducing the incidence of gallbladder perforation. PMID:22854110

  7. Monopolar electrocautery versus ultrasonic dissection of the gallbladder from the gallbladder bed in laparoscopic cholecystectomy: a randomized controlled trial.

    PubMed

    Mahabaleshwar, Varun; Kaman, Lileswar; Iqbal, Javid; Singh, Rajinder

    2012-10-01

    Ultrasonic dissection has been suggested as an alternative to monopolar electrocautery in laparoscopic cholecystectomy because it generates less tissue damage and may have a lower incidence of gallbladder perforation. We compared the 2 methods to determine the incidence of gallbladder perforation and its intraoperative consequences. We conducted a prospective randomized controlled trial between July 2008 and December 2009 involving adult patients with symptomatic gall stone disease who were eligible for laparoscopic cholecystectomy. Patients were randomly assigned before administration of anesthesia to electrocautery or ultrasonic dissection. Both groups were compared for incidence of gallbladder perforation during dissection, bile leak, stones spillage, lens cleaning, duration of surgery and estimation of risk of gallbladder in the presence of complicating factors. We included 60 adult patients in our study. The groups were comparable with respect to demographic characteristics, symptomatology, comorbidities, previous abdominal surgeries, preoperative ultrasonography findings and intraoperative complications. The overall incidence of gallbladder perforation was 28.3% (40.0% in the electrocautery v. 16.7% in the ultrasonic dissection group, p = 0.045). Bile leak occurred in 40.0% of patients in the electrocautery group and 16.7% of patients in ultrasonic group (p = 0.045). Lens cleaning time (p = 0.015) and duration of surgery (p = 0.001) were longer in the electrocautery than the ultrasonic dissection group. There was no statistical difference in stone spillage between the groups (p = 0.62). Ultrasonic dissection is safe and effective, and it improves the operative course of laparoscopic cholecystectomy by reducing the incidence of gallbladder perforation.

  8. [Preoperative imaging/operation planning for liver surgery].

    PubMed

    Schoening, W N; Denecke, T; Neumann, U P

    2015-12-01

    The currently established standard for planning liver surgery is multistage contrast media-enhanced multidetector computed tomography (CM-CT), which as a rule enables an appropriate resection planning, e.g. a precise identification and localization of primary and secondary liver tumors as well as the anatomical relation to extrahepatic and/or intrahepatic vascular and biliary structures. Furthermore, CM-CT enables the measurement of tumor volume, total liver volume and residual liver volume after resection. Under the condition of normal liver function a residual liver volume of 25 % is nowadays considered sufficient and safe. Recent studies in patients with liver metastases of colorectal cancer showed a clear staging advantage of contrast media-enhanced magnetic resonance imaging (CM-MRI) versus CM-CT. In addition, most recent data showed that the use of liver-specific MRI contrast media further increases the sensitivity and specificity of detection of liver metastases. This imaging technology seems to lead closer to the ideal "one stop shopping" diagnostic tool in preoperative planning of liver resection.

  9. Use of Ultrasonic Bone Surgery (Piezosurgery) to Surgically Treat Bisphosphonate-Related Osteonecrosis of the Jaws (BRONJ). A Case Series Report with at Least 1 Year of Follow-Up

    PubMed Central

    Blus, Cornelio; Szmukler-Moncler, Serge; Giannelli, Giulio; Denotti, Gloria; Orrù, Germano

    2013-01-01

    This preliminary work documents the use of a powerful piezosurgery device to treat biphosphonate-related osteonecrosis of the jaw (BRONJ) in combination with classical medication therapy. Eight patients presenting 9 BRONJ sites were treated, 2 in the maxilla and 7 in the mandible. Reason for biphosphonate (BiP) intake was treatment of an oncologic disease for 5 patients and osteoporosis for 3. The oncologic and osteoporosis patients were diagnosed with BRONJ after 35-110 months and 80-183 months of BiP treatment, respectively. BRONJ 2 and 3 was found in 4 patients. Resection of the bone sequestrae was performed with a high power ultrasonic (piezo) surgery and antibiotics were administrated for 2 weeks. Soft tissue healing was incomplete at the 2-week control but it was achieved within 1 month. At the 1-year control, soft tissue healing was maintained at all patients, without symptom recurrence. One patient with paraesthesia had abated; of the 2 pa-tients with trismus, one was healed, severity of the second trismus abated. This case report series suggests that bone resection performed with a high power ultrasonic surgery device combined with antibiotics might lead to BRONJ healing. More patients are warranted to confirm the present findings and assess this treatment approach. PMID:24044030

  10. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  11. Automatic repositioning of jaw segments for three-dimensional virtual treatment planning of orthognathic surgery.

    PubMed

    Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Passeri, Luis Augusto; Attux, Romis Ribeiro de Faissol; Haiter Neto, Francisco

    2017-09-01

    To develop a computer-based method for automating the repositioning of jaw segments in the skull during three-dimensional virtual treatment planning of orthognathic surgery. The method speeds up the planning phase of the orthognathic procedure, releasing surgeons from laborious and time-consuming tasks. The method finds the optimal positions for the maxilla, mandibular body, and bony chin in the skull. Minimization of cephalometric differences between measured and standard values is considered. Cone-beam computed tomographic images acquired from four preoperative patients with skeletal malocclusion were used for evaluating the method. Dentofacial problems of the four patients were rectified, including skeletal malocclusion, facial asymmetry, and jaw discrepancies. The results show that the method is potentially able to be used in routine clinical practice as support for treatment-planning decisions in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Comparison possibilities of ultrasound and its combination with laser in surgery and therapy

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Menyaev, Yulian A.; Kabisov, Ruslan K.; Alkov, Sergey V.; Nesterov, A. V.; Loshchilov, Vladimir I.; Suen, James Y.

    2000-05-01

    This article presents the further developments of combined laser-ultrasound medical technologies with paying attention the possibility ultrasound in surgery and therapy. The analyses of main effects at the low frequency ultrasonic treatment of biotissues including cavitation, acoustic streams, acoustic pressure, mechanical influence etc are analyzed. The main promising areas of application of low frequency ultrasound are considered including bactericidal treatment of infections wounds, spray treatment of wounds in head and neck surgery, tumor treatment etc. In particular the clinical result of using ultrasonic devices based on imposing ultrasonic oscillations in a range of 22-66 kHz on a cutting instrument with a special form, radiation intensity up to 10 W/cm2 and oscillation amplitude up to 40-60 micrometers with respect to oncology for halt bleeding from a tumor, liquidating pain, acoustic denervation are presented. Some limitation of medical application of ultrasound are discussed and perspective combination with laser for increasing efficiency of new combined technologies are found. Among them: combination photodynamic therapy and ultrasonic treatment of tumors, laser-ultrasonic treatment of infections wounds including using spray, laser-ultrasonic drug delivery. The preliminary result of experimental study of some of above-mentioned technologies are presented.

  13. Numbers of Beauty: An Innovative Aesthetic Analysis for Orthognathic Surgery Treatment Planning.

    PubMed

    Marianetti, Tito Matteo; Gasparini, Giulio; Midulla, Giulia; Grippaudo, Cristina; Deli, Roberto; Cervelli, Daniele; Pelo, Sandro; Moro, Alessandro

    2016-01-01

    The aim of this study was to validate a new aesthetic analysis and establish the sagittal position of the maxilla on an ideal group of reference. We want to demonstrate the usefulness of these findings in the treatment planning of patients undergoing orthognathic surgery. We took a reference group of 81 Italian women participating in a national beauty contest in 2011 on which we performed Arnett's soft tissues cephalometric analysis and our new "Vertical Planning Line" analysis. We used the ideal values to elaborate the surgical treatment planning of a second group of 60 consecutive female patients affected by skeletal class III malocclusion. Finally we compared both pre- and postoperative pictures with the reference values of the ideal group. The ideal group of reference does not perfectly fit in Arnett's proposed norms. From the descriptive statistical comparison of the patients' values before and after orthognathic surgery with the reference values we observed how all parameters considered got closer to the ideal population. We consider our "Vertical Planning Line" a useful help for orthodontist and surgeon in the treatment planning of patients with skeletal malocclusions, in combination with the clinical facial examination and the classical cephalometric analysis of bone structures.

  14. Virtual surgical planning in endoscopic skull base surgery.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C

    2013-12-01

    Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (P<.0001) compared to standard planning. Further, it showed that the experience level of the surgeon had a significant effect on the NASA-TLX differences (P<.05). Additional subanalysis did not reveal any significant findings regarding which type of surgeon benefits the most (P>.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  16. The effect of cleaning on blood contamination in the dental surgery following periodontal procedures.

    PubMed

    Edmunds, L M; Rawlinson, A

    1998-10-01

    Blood contamination of 16 surfaces in the dental surgery was investigated using the Kastle-Meyer test for haemoglobin, after three types of periodontal procedures had been performed on a total of 30 patients. The effect of cleaning surfaces contaminated by blood was investigated using the same test. Cleaning materials used in the dental surgery were tested to rule out the possibility of false positive outcomes and the sensitivity of the test was determined prior to the study. The results show a marked variation in the degree of contamination and efficacy of cleaning following treatment. Overall, root planing was associated with the most widespread and frequent blood contamination and gingival surgery the least. The surgery work surface, edge of the spittoon, aspirator tube and ultrasonic scaler handpiece into which the ultrasonic insert fits, were the most frequently contaminated surfaces. The work surface, dentist's pen, light switch and handle were cleaned most effectively. The least effectively cleaned surfaces were the water dispenser switch, aspirator tube, bracket table and ultrasonic scaler handpiece. Methods for reducing this potential source of cross-infection are discussed.

  17. A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases.

    PubMed

    Olsson, Pontus; Nysjö, Fredrik; Hirsch, Jan-Michaél; Carlbom, Ingrid B

    2013-11-01

       Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today's surgery planning systems are primitive, relying mostly on the user's ability to plan complex tasks with a two-dimensional graphical interface.    A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment.    A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result.    Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time.

  18. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  19. [3-dimensional imaging systems: first experience in planning and documentation of plastic surgery procedures].

    PubMed

    Spanholtz, T A; Leitsch, S; Holzbach, T; Volkmer, E; Engelhardt, T; Giunta, R E

    2012-08-01

    A reproducible 3-dimensional photographic system enables plastic surgeons to perform preoperative planning and helps them to understand the patient's expectations. There are a few systems available that allow a reproducible 3-dimensional scans of the patient with direct simulation of the planned procedure. The Vectra Volumetric 3D Surface Imaging® by Canfield® provides such an option and helps the surgeons to document and compare postoperative changes at different time points. Since January 2011 we are digitally documenting all patients receiving form-modulating procedures in our plastic surgery unit. We present the spectrum of clinical implications and discuss advantages and disadvantages of the system. Furthermore, we have studied the accuracy of the system in comparison to direct measurement in 15 volunteers. The system is especially suited for planning and evaluation of breast augmentation, facial aesthetic and reconstructive surgery as well as volumetric measurements before and after liposuction and lipofilling. Computer-assisted measurements correlate with a median deviation of 2.3% with manually measured distances in the face. We found the user-friendly Vectra® system to be a reliable and reproducible device for planning plastic surgery therapies and for documenting postoperative results. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  1. Optimization of spine surgery planning with 3D image templating tools

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Huddleston, Paul M.; Holmes, David R., III; Shridharani, Shyam M.; Robb, Richard A.

    2008-03-01

    The current standard of care for patients with spinal disorders involves a thorough clinical history, physical exam, and imaging studies. Simple radiographs provide a valuable assessment but prove inadequate for surgery planning because of the complex 3-dimensional anatomy of the spinal column and the close proximity of the neural elements, large blood vessels, and viscera. Currently, clinicians still use primitive techniques such as paper cutouts, pencils, and markers in an attempt to analyze and plan surgical procedures. 3D imaging studies are routinely ordered prior to spine surgeries but are currently limited to generating simple, linear and angular measurements from 2D views orthogonal to the central axis of the patient. Complex spinal corrections require more accurate and precise calculation of 3D parameters such as oblique lengths, angles, levers, and pivot points within individual vertebra. We have developed a clinician friendly spine surgery planning tool which incorporates rapid oblique reformatting of each individual vertebra, followed by interactive templating for 3D placement of implants. The template placement is guided by the simultaneous representation of multiple 2D section views from reformatted orthogonal views and a 3D rendering of individual or multiple vertebrae enabling superimposition of virtual implants. These tools run efficiently on desktop PCs typically found in clinician offices or workrooms. A preliminary study conducted with Mayo Clinic spine surgeons using several actual cases suggests significantly improved accuracy of pre-operative measurements and implant localization, which is expected to increase spinal procedure efficiency and safety, and reduce time and cost of the operation.

  2. Model-based surgical planning and simulation of cranial base surgery.

    PubMed

    Abe, M; Tabuchi, K; Goto, M; Uchino, A

    1998-11-01

    Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.

  3. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation.

    PubMed

    Heuts, Samuel; Sardari Nia, Peyman; Maessen, Jos G

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools.

  4. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  5. Comparison of time required for traditional versus virtual orthognathic surgery treatment planning.

    PubMed

    Wrzosek, M K; Peacock, Z S; Laviv, A; Goldwaser, B R; Ortiz, R; Resnick, C M; Troulis, M J; Kaban, L B

    2016-09-01

    Virtual surgical planning (VSP) is a tool for predicting complex surgical movements in three dimensions and it may reduce preoperative laboratory time. A prospective study to compare the time required for standard preoperative planning versus VSP was conducted at Massachusetts General Hospital from January 2014 through January 2015. Workflow data for bimaxillary cases planned by both standard techniques and VSP were recorded in real time. Time spent was divided into three parts: (1) obtaining impressions, face-bow mounting, and model preparation; (2) occlusal analysis and modification, model surgery, and splint fabrication; (3) online VSP session. Average times were compared between standard treatment planning (sum of parts 1 and 2) and VSP (sum of parts 1 and 3). Of 41 bimaxillary cases included, 20 were simple (symmetric) and 21 were complex (asymmetry and segmental osteotomies). Average times for parts 1, 2, and 3 were 4.43, 3.01, and 0.67h, respectively. The average time required for standard treatment planning was 7.45h and for VSP was 5.10h, a 31% time reduction (P<0.001). By eliminating all or some components of part 1, time savings may increase to as much as 91%. This study indicates that in an academic setting, VSP reduces the time required for treatment planning of bimaxillary orthognathic surgery cases. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.

    PubMed

    Polley, John W; Figueroa, Alvaro A

    2013-05-01

    To introduce the concept and use of an occlusal-based "orthognathic positioning system" (OPS) to be used during orthognathic surgery. The OPS consists of intraoperative occlusal-based devices that transfer virtual surgical planning to the operating field for repositioning of the osteotomized dentoskeletal segments. The system uses detachable guides connected to an occlusal splint. An initial drilling guide is used to establish stable references or landmarks. These are drilled on the bone that will not be repositioned adjacent to the osteotomy line. After mobilization of the skeletal segment, a final positioning guide, referenced to the drilled landmarks, is used to transfer the skeletal segment according to the virtual surgical planning. The OPS is digitally designed using 3-dimensional computer-aided design/computer-aided manufacturing technology and manufactured with stereolithographic techniques. Virtual surgical planning has improved the preoperative assessment and, in conjunction with the OPS, the execution of orthognathic surgery. The OPS has the possibility to eliminate the inaccuracies commonly associated with traditional orthognathic surgery planning and to simplify the execution by eliminating surgical steps such as intraoperative measuring, determining the condylar position, the use of bulky intermediate splints, and the use of intermaxillary wire fixation. The OPS attempts precise translation of the virtual plan to the operating field, bridging the gap between virtual and actual surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Preoperative planning of thoracic surgery with use of three-dimensional reconstruction, rapid prototyping, simulation and virtual navigation

    PubMed Central

    Heuts, Samuel; Maessen, Jos G.

    2016-01-01

    For the past decades, surgeries have become more complex, due to the increasing age of the patient population referred for thoracic surgery, more complex pathology and the emergence of minimally invasive thoracic surgery. Together with the early detection of thoracic disease as a result of innovations in diagnostic possibilities and the paradigm shift to personalized medicine, preoperative planning is becoming an indispensable and crucial aspect of surgery. Several new techniques facilitating this paradigm shift have emerged. Pre-operative marking and staining of lesions are already a widely accepted method of preoperative planning in thoracic surgery. However, three-dimensional (3D) image reconstructions, virtual simulation and rapid prototyping (RP) are still in development phase. These new techniques are expected to become an important part of the standard work-up of patients undergoing thoracic surgery in the future. This review aims at graphically presenting and summarizing these new diagnostic and therapeutic tools PMID:29078505

  8. Comparison of dietary habits and plans for dietary changes in black and white women seeking bariatric surgery.

    PubMed

    McLean, Kendall L; Moore, Carolyn E; Miketinas, Derek C; Champagne, Catherine M

    2018-01-01

    Achieving weight loss after bariatric surgery depends on the individual's ability to sustain lifestyle changes involving dietary modifications. Presurgical dietary assessment is critical to evaluate usual dietary habits and identify the need for intervention before surgery. The objective of this study was to identify usual dietary habits of black and white women seeking bariatric surgery and to examine potential differences between these ethnic groups. An additional aim was to describe participants' plans to change dietary behaviors after surgery. This study examined data from an observational study sponsored by a benefits management group in Louisiana. In this cross-sectional study, a presurgical dietary assessment interview questionnaire collected information on dietary habits. Participants (n = 200) were adult women being screened for bariatric surgery; 54% were white, and 46% were black. Descriptive statistics were calculated and differences between groups were tested using 2-way analysis of the variance. Participants reported consuming fast food 2.9 ± 2.6 times per week, fried foods 2.1 ± 1.8 times per week, and desserts 3.4 ± 3.2 times per week. Blacks reported more frequent consumption of fast food (P<.01), sugar-sweetened sodas (P<.05), and sugar-sweetened tea (P<.01) compared with whites. Plans for changing dietary behaviors after surgery were similar between ethnic groups. Findings indicated that frequent consumption of fast foods, fried foods, desserts, and sugar-sweetened beverages was common among women seeking bariatric surgery. Blacks tended to consume these foods and beverages more often than whites. Current dietary habits and future plans to change dietary behaviors should be addressed before surgery for success. Follow-up studies investigating the assessment instrument's ability to predict dietary adherence and weight loss after surgery are warranted. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All

  9. Planning of vessel grafts for reconstructive surgery in congenital heart diseases

    NASA Astrophysics Data System (ADS)

    Rietdorf, U.; Riesenkampff, E.; Schwarz, T.; Kuehne, T.; Meinzer, H.-P.; Wolf, I.

    2010-02-01

    The Fontan operation is a surgical treatment for patients with severe congenital heart diseases, where a biventricular correction of the heart can't be achieved. In these cases, a uni-ventricular system is established. During the last step of surgery a tunnel segment is placed to connect the inferior caval vein directly with the pulmonary artery, bypassing the right atrium and ventricle. Thus, the existing ventricle works for the body circulation, while the venous blood is passively directed to the pulmonary arteries. Fontan tunnels can be placed intra- and extracardially. The location, length and shape of the tunnel must be planned accurately. Furthermore, if the tunnel is placed extracardially, it must be positioned between other anatomical structures without constraining them. We developed a software system to support planning of the tunnel location, shape, and size, making pre-operative preparation of the tunnel material possible. The system allows for interactive placement and adjustment of the tunnel, affords a three-dimensional visualization of the virtual Fontan tunnel inside the thorax, and provides a quantification of the length, circumferences and diameters of the tunnel segments. The visualization and quantification can be used to plan and prepare the tunnel material for surgery in order to reduce the intra-operative time and to improve the fit of the tunnel patch.

  10. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: A comparative study.

    PubMed

    Wu, Ting-Yu; Lin, Hsiu-Hsia; Lo, Lun-Jou; Ho, Cheng-Ting

    2017-08-01

    Compared with conventional two-dimensional (2D) planning, three-dimensional (3D) planning in orthognathic surgery yields more accurate anatomical information and enables the precise positioning of maxillary and mandibular segments, particularly for patients with facial asymmetry. Accordingly, surgical outcomes achieved using 3D planning should be superior. This study determined the differences between the 2D and 3D planning techniques by comparing their surgical outcomes. In this retrospective study, patients who underwent surgery following the traditional 2D planning technique were classified into the 2D planning group. Patients in whom the 2D plan was transferred to a 3D system after surgical simulation were classified into the 3D planning group. Surgical outcomes were compared using cephalometric measurements and patient perception of the results. In the 3D planning group, more favorable results were observed in frontal symmetry, change in the angle between the orbital and occlusal lines, frontal ramus inclination, and the distances from the mandibular central incisor and menton to the midsagittal line. No significant differences were observed in the lateral profiles (SNA, SNB, ANB, and angle convexity) of the two groups. Patient satisfaction was favorable in the two groups, but more patients in the 3D planning group reported being very satisfied. The 3D planning technique provided superior overall outcomes. The study findings can be used to augment clinical planning and surgical execution when using a conventional approach. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Ultrasonic detection technology based on joint robot on composite component with complex surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order tomore » express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.« less

  12. Is There a Difference in Cost Between Standard and Virtual Surgical Planning for Orthognathic Surgery?

    PubMed

    Resnick, Cory M; Inverso, Gino; Wrzosek, Mariusz; Padwa, Bonnie L; Kaban, Leonard B; Peacock, Zachary S

    2016-09-01

    Virtual surgical planning (VSP) and 3-dimensional printing of surgical splints are becoming the standard of care for orthognathic surgery, but costs have not been thoroughly evaluated. The purpose of this study was to compare the cost of VSP and 3-dimensional printing of splints ("VSP") versus that of 2-dimensional cephalometric evaluation, model surgery, and manual splint fabrication ("standard planning"). This is a retrospective cohort study including patients planned for bimaxillary surgery from January 2014 to January 2015 at Massachusetts General Hospital. Patients were divided into 3 groups by case type: symmetric, nonsegmental (group 1); asymmetric (group 2); and segmental (group 3). All cases underwent both VSP and standard planning with times for all activities recorded. The primary and secondary predictor variables were method of treatment planning and case type, respectively. Time-driven activity-based micro-costing analysis was used to quantify the differences in cost. Results were analyzed using a paired t test and analysis of variance. The sample included 43 patients (19 in group 1, 17 in group 2, and 7 in group 3). The average times and costs were 194 ± 14.1 minutes and $2,765.94, respectively, for VSP and 540.9 ± 99.5 minutes and $3,519.18, respectively, for standard planning. For the symmetric, nonsegmental group, the average times and costs were 188 ± 17.8 minutes and $2,700.52, respectively, for VSP and 524.4 ± 86.1 minutes and $3,380.17, respectively, for standard planning. For the asymmetric group, the average times and costs were 187.4 ± 10.9 minutes and $2,713.69, respectively, for VSP and 556.1 ± 94.1 minutes and $3,640.00, respectively, for standard planning. For the segmental group, the average times and costs were 208.8 ± 13.5 minutes and $2,883.62, respectively, for VSP and 542.3 ± 118.4 minutes and $3,537.37, respectively, for standard planning. All time and cost differences were statistically significant (P < .001

  13. Using predicted 30 day mortality to plan postoperative colorectal surgery care: a cohort study.

    PubMed

    Swart, M; Carlisle, J B; Goddard, J

    2017-01-01

    Preoperative identification of high-risk surgical patients might help to reduce postoperative morbidity and mortality. Using a patient's predicted 30 day mortality to plan postoperative high-dependency unit (HDU) care after elective colorectal surgery might be associated with reduced postoperative morbidity. The 30 day postoperative mortality was predicted for 504 elective colorectal surgical patients in a preoperative clinic. The prediction was used to determine postoperative surgical ward or HDU care. Those with a predicted 30 day mortality of 1-3% mortality, and thus deemed at intermediate risk, had either planned HDU care (n=68) or planned ward care (n=139). The main outcome measures were emergency laparotomy and unplanned critical care admission. There were more emergency laparotomies and unplanned critical care admissions in patients with a predicted 30 day mortality of 1-3% who went to an HDU after surgery compared with patients who went to a ward: 0 vs 14 (10%), P=0.0056 and 0 vs 22 (16%), P=0.0002, respectively. Planned postoperative critical care was associated with a lower rate of complications after elective colorectal surgery. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Timing of three-dimensional virtual treatment planning of orthognathic surgery: a prospective single-surgeon evaluation on 350 consecutive cases.

    PubMed

    Swennen, Gwen R J

    2014-11-01

    The purpose of this article is to evaluate the timing for three-dimensional (3D) virtual treatment planning of orthognathic surgery in the daily clinical routine. A total of 350 consecutive patients were included in this study. All patients were scanned following the standardized "Triple CBCT Scan Protocol" in centric relation. Integrated 3D virtual planning and actual surgery were performed by the same surgeon in all patients. Although clinically acceptable, still software improvements especially toward 3D virtual occlusal definition are mandatory to make 3D virtual planning of orthognathic surgery less time-consuming and more user-friendly to the clinician. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. [Values of computed tomography angiogram in non-cardiac surgery planning and cardiac risk assessment of coronary atherosclerosis during perioperative period].

    PubMed

    Chang, Rui-ping; Ju, Hai-yue; Zhang, Xing-hua; Wu, Jian; Zhang, Fan; Mi, Wei-dong; Cao, Xiu-tang; Gao, Chang-qing; Yang, Li

    2013-02-19

    To explore the values of detecting coronary atherosclerosis by computed tomography angiogram (CTA) on non-cardiac surgery planning and cardiac risk assessment of coronary atherosclerosis during perioperative period. A total of 89 patients with suspected coronary heart disease (CHD) scheduled for non-cardiac surgery underwent coronary CTA to evaluate luminal stenosis and calculate calcification score. There were 56 males and 33 females with a mean age of 65.1 years. Operative sites included chests (n = 29), abdomens and pelvis (n = 26), large vessels (n = 3), bones and joints (n = 19) and other regions (n = 12). Reasons of abandoned or postponed surgery were documented to analyze the influence of CTA results on surgery planning. Cardiac events were recorded to assess the correlation with coronary atherosclerosis. Among them, 75 patients (84.27%) were diagnosed as atherosclerosis while 10 patients (11.24%) were negative; 2 patients had coronary artery bypass and another 2 had stent implantation. According to the results of CTA, 12 operations (13.48%) were canceled and 8 (8.98%) postponed after interventions. Severe stenosis of coronary lumen had significant effects on surgery planning (P = 0.003) while calcification score did not. In patients undergoing surgery as scheduled or after intervention, 1 had atrial fibrillation at post-operation. For the patients with suspected CHD scheduled for non-cardiac surgery, severity of coronary stenosis may greatly influence surgery planning. Preoperative coronary CTA may decrease the incidence of cardiac events during perioperative period.

  16. Career plans and perceptions in readiness to practice of graduating general surgery residents in Canada.

    PubMed

    Nadler, Ashlie; Ashamalla, Shady; Escallon, Jaime; Ahmed, Najma; Wright, Frances C

    2015-01-01

    Overall, 25% of American general surgery residents identified as not feeling confident operating independently at graduation, which may contribute to 70% pursuing further training. This study was undertaken to identify intended career plans of general surgery graduates in Canada on a national level, and perceived strengths and weaknesses of training that would affect transition to early practice. Questionnaires were distributed to graduating general surgery residents at a Canadian national review course in 2012 and 2013. Data were analyzed for overall trends. Overall, 75% (78/104) of graduating residents responded in 2012 and 53% (50/95) in 2013. Greater than 60% of respondents were entering a fellowship program upon graduation (49/78 in 2012 and 37/50 in 2013); the most common fellowship choices were minimally invasive surgery (24% in 2012 and 39% in 2013) or surgical oncology (16% in 2012). Most residents reported that they were completing subspecialty training to meet career goals (64/85 overall) rather than feeling unprepared for practice (0/85 overall). Most residents planned on practicing in urban centers (54%) and academic hospitals (73%). Residents perceived a need for assistance for laparoscopic adrenalectomy, neck dissection, laparoscopic splenectomy, laparoscopic low anterior resection, groin dissection, and thyroidectomy. An overwhelming majority of general surgery graduates plan to pursue fellowship training to meet career goals of working in urban, academic centers, rather than a perceived lack of competence. It is vital to describe operative competency expectations for residents and to promote a variety of practice opportunities following graduation. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  17. Ultrasonic biomicroscopy in ophthalmology and eye banking

    NASA Astrophysics Data System (ADS)

    Rosenwasser, George O. D.

    1999-06-01

    Echography has become a valuable diagnostic tool in ophthalmology. Ultrasonic biomicroscopy (UBM) in particular may be applied to the evaluation of small lesions of the anterior segment of the eye. Disease processes such as conjunctival and iris melanoma, other forms of neoplasia, intraocular cysts, narrow angle glaucoma, and intraocular foreign bodies can be diagnostically evaluated and followed longitudinally by UBM. Combining UBM with spectroscopy may become useful in determining cell type origins of a variety of tumors. Eye banking also has an increased need for UBM in corneal tissue banking. The recent development of the Laser In Situ Keratomileusis procedure has allowed corneal surgeries to create a partial thickness flap of tissue in the cornea, remove tissue from the base of the cornea with excimer laser ablation, and replace the hinged flap. This causes a substantial change in refractive error while thinning the cornea and leaving an interface within the corneal stroma. The ability to detect this type of surgery is essential in eye banking. Ultrasonic pachymetry to determine central thickness and biomicroscopy to detect the presence of an interface are essential in avoiding the use of these corneas for transplantation purposes. Determining the topography of the preserved corneas is another potential application for ultrasonography. Using this information to reduce optical aberration after transplant is crucial in improving visual performance post transplantation. A review of the anatomy of the eye, pathology of ocular diseases relevant to UBM, and principles of eye banking will be presented.

  18. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    NASA Astrophysics Data System (ADS)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  19. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  20. Development of preoperative planning software for transforaminal endoscopic surgery and the guidance for clinical applications.

    PubMed

    Chen, Xiaojun; Cheng, Jun; Gu, Xin; Sun, Yi; Politis, Constantinus

    2016-04-01

    Preoperative planning is of great importance for transforaminal endoscopic techniques applied in percutaneous endoscopic lumbar discectomy. In this study, a modular preoperative planning software for transforaminal endoscopic surgery was developed and demonstrated. The path searching method is based on collision detection, and the oriented bounding box was constructed for the anatomical models. Then, image reformatting algorithms were developed for multiplanar reconstruction which provides detailed anatomical information surrounding the virtual planned path. Finally, multithread technique was implemented to realize the steady-state condition of the software. A preoperative planning software for transforaminal endoscopic surgery (TE-Guider) was developed; seven cases of patients with symptomatic lumbar disc herniations were planned preoperatively using TE-Guider. The distances to the midlines and the direction of the optimal paths were exported, and each result was in line with the empirical value. TE-Guider provides an efficient and cost-effective way to search the ideal path and entry point for the puncture. However, more clinical cases will be conducted to demonstrate its feasibility and reliability.

  1. Transition from paediatric surgery: how many patients do we need to plan for?

    PubMed

    Jones, A R; John, M; Singh, S J; Williams, A R

    2016-11-01

    INTRODUCTION Transitional care is an NHS priority with newly published NICE guidance. Many paediatric surgical patients need quality care to continue into adulthood. We undertook an evaluation of our departmental activity to assess the magnitude of this issue. METHODS We identified all outpatients ≥ 15 years (potentially requiring imminent transition) seen over a 12 month period for all five general paediatric surgery consultants in our tertiary centre. Those patients requiring transition were highlighted and the appropriate adult team for referral recorded. RESULTS There were 2989 general paediatric surgery clinic appointments within the year; 289 (9.7%) were for young people aged 15 years or older; 62 patients (28% of those ≥ 15years) were deemed to require transition into adult care. Significantly more patients having colorectal surgery required follow-up (P = 0.0009 Chi-square test) compared with patients in other subspecialties. CONCLUSIONS More patients than expected required transition. This may be the case in other units. Current best practice includes time intensive preclinic planning, careful preparation of patient and family, followed by joint clinics. A joint clinic appointment takes 30 minutes, allowing for comprehensive handover and forging new relationships. In our department, we need at least ten transition clinics across 2 years. Coalition with adult colleagues is vital. These data enable us to plan services to provide quality care for our adolescent patients and highlights colorectal surgery as a priority.

  2. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  3. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    PubMed

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  4. Flexible Carbon Dioxide Laser Fiber Versus Ultrasonic Scalpel in Robot-Assisted Laparoscopic Myomectomy.

    PubMed

    Choussein, Souzana; Srouji, Serene S; Farland, Leslie V; Gargiulo, Antonio R

    2015-01-01

    To compare the effectiveness and safety of a flexible carbon dioxide (CO2) laser fiber to the ultrasonic scalpel when employed through a robotic surgical system. Retrospective cohort study. Level II-2 evidence. Reproductive surgery practice at an academic hospital. Two hundred thirty-six women who had undergone robot-assisted laparoscopic myomectomy with either CO2 laser (n = 85) or the ultrasonic scalpel (n = 151). Robot-assisted laparoscopic myomectomy employing either a flexible CO2 laser fiber or a robotic ultrasonic scalpel as the primary energy tool. Perioperative outcomes (estimated blood loss, operative time, length of hospital stay) of patients undergoing robot-assisted myomectomy with a flexible laser fiber or ultrasonic scalpel. Estimated blood loss and operative time were comparable (p = .95 and p = .55, respectively) between the 2 groups after adjusting for all confounders, whereas length of hospital stay remained significantly different (p = .004). Odds ratio for complications was 0.35 (95% confidence interval 0.08-1.56; p = .17), which denotes no difference in the risk for complications between the 2 groups. Robot-assisted laparoscopic myomectomy with a flexible CO2 laser fiber is safe and has comparable operative outcomes to the ultrasonic scalpel. The small size and flexibility of this device allows robotic surgeons to employ safe focal energy without sacrificing operative ergonomics. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  5. Ultrasonic sensing of GMAW: Laser/EMAT defect detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Larsen, E.D.

    1992-08-01

    In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less

  6. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  7. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  8. Physically Based Virtual Surgery Planning and Simulation Tools for Personal Health Care Systems

    NASA Astrophysics Data System (ADS)

    Dogan, Firat; Atilgan, Yasemin

    The virtual surgery planning and simulation tools have gained a great deal of importance in the last decade in a consequence of increasing capacities at the information technology level. The modern hardware architectures, large scale database systems, grid based computer networks, agile development processes, better 3D visualization and all the other strong aspects of the information technology brings necessary instruments into almost every desk. The last decade’s special software and sophisticated super computer environments are now serving to individual needs inside “tiny smart boxes” for reasonable prices. However, resistance to learning new computerized environments, insufficient training and all the other old habits prevents effective utilization of IT resources by the specialists of the health sector. In this paper, all the aspects of the former and current developments in surgery planning and simulation related tools are presented, future directions and expectations are investigated for better electronic health care systems.

  9. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  10. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  11. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  12. Accommodative Esotropia Treatment Plan Utilizing Simultaneous Strabismus Surgery and Photorefractive Keratectomy.

    PubMed

    Eustis, H Sprague; Shah, Pulin

    2018-03-01

    Accommodative esotropia is a common cause of acquired esotropia. Pathogenesis varies among patients but usually includes excessive hyperopia and a high accommodative convergence/accommodation ratio or tight medial recti. The present study reviews an individualized treatment plan combining photorefractive keratectomy (PRK) and strabismus surgery to correct these problems. This study is a retrospective, interventional case series. Records for 15 patients who were treated for accommodative esotropia were reviewed. Patient ages ranged from 11 to 19 years. PRK and strabismus surgery were performed on 11 patients, and PRK only on 4 patients. The goal was to create a physiologic refractive error, good visual acuity (VA), and straight eyes without correction. All patients were spectacle free at 6-month follow-up. Twenty-four of 30 eyes had VA equal to preoperative VA without correction. Three eyes had a 1-line reduction and 2-line reduction in VA. The alignment results were ±10 prism diopters in 13 of 15 patients. Spherical refractive outcomes were 18 of 30 eyes within 1 diopter (D) of target and 12 of 30 eyes within 2 D of target. Astigmatism refractive outcomes were 21 of 30 eyes <1 D, 7 eyes 1-2 D, and 2 eyes >2 D. Two patients complained of halos at night, and 1 patient had peripheral corneal haze. Simultaneous PRK and strabismus surgery is safe and effective in treating accommodative esotropia. An individualized treatment plan can result in a physiologic refractive error, good VA, and a spectacle-free existence. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Intention and planning predicting medication adherence following coronary artery bypass graft surgery.

    PubMed

    Pakpour, Amir H; Gellert, Paul; Asefzadeh, Saeed; Updegraff, John A; Molloy, Gerard J; Sniehotta, Falko F

    2014-10-01

    Medication adherence rates after coronary artery bypass graft (CABG) surgery are low due to intentional (e.g., deliberately choosing not to take medication) and unintentional (e.g., forgetting to take the medication) person-related factors. There is a lack of studies examining the psychological factors related to non-adherence in CABG patients. Intentions to take medication and planning when, where, and how to take medication and to overcome unintentional forgetting to take medication were hypothesized to be independently related to medication adherence. Furthermore, planning to overcome forgetting was hypothesized to be more strongly associated with medication adherence in patients who have stronger intentions to take medication, reflecting the idea that planning is a factor that specifically helps in patients who are willing to take medication, but fail to do so. Measures of medication adherence, intention and planning were collected in a sample of (N=197) post-CABG surgery patients followed from discharge (baseline; Time 1) over a 12-month period (Time 2) in Boo-Ali Hospital in Qazvin, Iran. A series of hierarchical multiple regression analyses were performed in which medication adherence at Time 2 was regressed onto socio-demographic and clinical factors, the hypothesized psychological variables (adherence-related intention and planning), and interaction terms. Intentions to take medication (B=.30, P<.01), action planning when, where, and how to take the medication (B=.19, P<.01), and coping planning how to avoid forgetting to take the medication (B=.16, P<.01) were independently related to medication adherence. Beyond that, action planning × intention to take medication (B=.06, P<.05) and coping planning × intention (B=.07, P<.01) interaction also significantly predicted adherence. Intention to take medication was associated with better medication adherence and action and coping planning strategies to avoid forgetting to take the medication added

  14. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  15. Necessity of suction drains in gynecomastia surgery.

    PubMed

    Keskin, Mustafa; Sutcu, Mustafa; Cigsar, Bulent; Karacaoglan, Naci

    2014-05-01

    The aim of gynecomastia surgery is to restore a normal chest contour with minimal signs of breast surgery. The authors examine the rate of complications in gynecomastia surgery when no closed-suction drains are placed. One hundred thirty-eight consecutive male patients who underwent gynecomastia surgery without drains were retrospectively analyzed to determine whether the absence of drains adversely affected patient outcomes. Patients were managed by ultrasonic-assisted liposuction both with and without the pull-through technique. The mean age of the patients was 29 years, and the mean volume of breast tissue aspirated was 350 mL per beast. Pull-through was needed in 23 cases. There was only 1 postoperative hematoma. These results are comparable with previously published data for gynecomastia surgery in which drains were placed, suggesting that the absence of drains does not adversely affect postoperative recovery. Routine closed-suction drainage after gynecomastia surgery is unnecessary, and it may be appropriate to omit drains after gynecomastia surgery.

  16. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Piezosurgery to perform hyoid bone osteotomies in thyroglossal duct cyst surgery.

    PubMed

    Salgarelli, Attilio Carlo; Robiony, Massimo; Consolo, Ugo; Collini, Marco; Bellini, Pierantonio

    2011-11-01

    Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The device used is unique in that the cutting action occurs when the tool is used on mineralized tissues and stops on soft tissues. This work describes the use of piezosurgery for hyoid bone resection in thyroglossal duct cyst surgery, briefly reviews the literature on the surgical technique, and reports our experience with 12 cases.

  18. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming

    2017-07-01

    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  19. Post-thyroidectomy complications. The role of the device: bipolar vs ultrasonic device: Collection of data from 1,846 consecutive patients undergoing thyroidectomy.

    PubMed

    De Palma, Maurizio; Rosato, Ludovico; Zingone, Fabiana; Orlando, Giulio; Antonino, Antonio; Vitale, Mario; Puzziello, Alessandro

    2016-07-01

    Specific complications after thyroid surgery, such as recurrent laryngeal nerve injury (RLN) or hypoparathyroidism, are feared because they may give rise to a lifelong disability for the patient. The aim of this study was to evaluate the possible association between the types of device used (bipolar vs ultrasound-based harmonic scalpel defined Harmonic Focus) and major postoperative complications. During a 1-year period, between October 2010 and October 2011, Italian Endocrine Surgery Units affiliated with the Italian Endocrine Surgery Units Association collected data on all consecutive patients older than 18 years who had undergone primary total thyroidectomy, near total thyroidectomy, and completion thyroidectomy. The data were included in a dataset, listing demographic variables, details on the surgical procedure, and 2 major complications of the thyroid surgery: postoperative RLN palsy/hypomobility and hypocalcemia. Our population comprised 1,846 subjects (78.6% women, median age 52 years). Six hundred four (32.7%) subjects underwent thyroidectomy by bipolar forceps and 1,242 (67.3%) by ultrasonic device. The risk of hypocalcemia in subjects undergoing thyroidectomy by ultrasonic device was similar to those undergoing thyroidectomy by bipolar after adjusting for sex, type of thyroidectomy, and central lymphadenectomy (odds ratio .94, 95% confidence interval .76 to 1.17). Subjects who underwent thyroidectomy by ultrasonic device had a lower risk of RLN paralysis compared with those undergoing thyroidectomy by bipolar forceps also after adjusting for central lymphadenectomy (odds ratio .39, 95% confidence interval .2 to .7). This multicenter study acknowledges the value of the ultrasonic device as a protective factor only for RLN palsy, confirming nodal dissection as a risk factor for postoperative hypocalcemia and vocal folds disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  1. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  2. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning.

    PubMed

    Ritto, F G; Schmitt, A R M; Pimentel, T; Canellas, J V; Medeiros, P J

    2018-02-01

    The aim of this study was to determine whether virtual surgical planning (VSP) is an accurate method for positioning the maxilla when compared to conventional articulator model surgery (CMS), through the superimposition of computed tomography (CT) images. This retrospective study included the records of 30 adult patients submitted to bimaxillary orthognathic surgery. Two groups were created according to the treatment planning performed: CMS and VSP. The treatment planning protocol was the same for all patients. Pre- and postoperative CT images were superimposed and the linear distances between upper jaw reference points were measured. Measurements were then compared to the treatment planning, and the difference in accuracy between CMS and VSP was determined using the t-test for independent samples. The success criterion adopted was a mean linear difference of <2mm. The mean linear difference between planned and obtained movements for CMS was 1.27±1.05mm, and for VSP was 1.20±1.08mm. With CMS, 80% of overlapping reference points had a difference of <2mm, while for VSP this value was 83.6%. There was no statistically significant difference between the two techniques regarding accuracy (P>0.05). Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Percutaneous ultrasonic tenotomy for chronic elbow tendinosis: a prospective study.

    PubMed

    Barnes, Darryl E; Beckley, James M; Smith, Jay

    2015-01-01

    Elbow tendinopathy is the most common cause of elbow pain affecting active populations. Surgical excision is reserved for patients with refractory symptoms. Percutaneous ultrasonic tenotomy performed under local anesthesia also removes degenerated tissue and therefore provides an alternative treatment option to surgical excision. This investigation prospectively documented the safety and 1-year efficacy of ultrasonic percutaneous tenotomy performed by a single operator. Nineteen patients, aged 38 to 67 years, in whom >6 months of conservative management for medial (7) or lateral (12) elbow tendinopathy had failed were prospectively studied. All patients were treated with percutaneous ultrasonic tenotomy of the elbow by a single operator. Visual analog scale (VAS) for pain, the 11-item version of the Disabilities of the Arm, Shoulder, and Hand (Quick DASH) index, and the Mayo Elbow Performance Score (MEPS) were assessed by an independent observer before treatment and at 6 weeks, 3 months, 6 months, and 12 months after treatment. No procedural complications occurred. Total treatment time was <15 minutes, and ultrasonic energy time averaged 38.6 ± 8.8 seconds per procedure. Average VAS scores were significantly improved from 6.4 to 2.6 at 6 weeks and were 0.7 at 12 months (P < .0001). Similar improvement occurred with the Quick DASH (pretreatment, 44.1; 12 months, 8.6, P < .0001) and MEPS (pretreatment, 59.1; 12 months, 83.4; P < .0001). Percutaneous ultrasonic tenotomy performed under local anesthesia appears to be a safe and effective treatment option for chronic, refractory lateral or medial elbow tendinopathy up to 1 year after the procedure. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  5. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  6. Accuracy of virtual surgical planning of orthognathic surgery with aid of CAD/CAM fabricated surgical splint-A novel 3D analyzing algorithm.

    PubMed

    Chin, Shih-Jan; Wilde, Frank; Neuhaus, Michael; Schramm, Alexander; Gellrich, Nils-Claudius; Rana, Majeed

    2017-12-01

    The benefit of computer-assisted planning in orthognathic surgery has been extensively documented over the last decade. This study aims to evaluate the accuracy of a virtual orthognathic surgical plan by a novel three dimensional (3D) analysis method. Ten patients who required orthognathic surgery were included in this study. A virtual surgical plan was achieved by the combination of a 3D skull model acquired from computed tomography (CT) and surface scanning of the upper and lower dental arch respectively and final occlusal position. Osteotomies and movement of maxilla and mandible were simulated by Dolphin Imaging 11.8 Premium ® (Dolphin Imaging and Management Solutions, Chatsworth, CA). The surgical plan was transferred to surgical splints fabricated by means of Computer Aided Design/Computer Aided Manufacturing (CAD/CAM). Differences of three dimensional measurements between the virtual surgical plan and postoperative results were evaluated. The results from all parameters showed that the virtual surgical plans were successfully transferred by the assistance of CAD/CAM fabricated surgical splint. Wilcoxon's signed rank test showed that no statistically significant deviation between surgical plan and post-operational result could be detected. However, deviation of angle U1 axis-HP and distance of A-CP could not fulfill the clinical success criteria. Virtual surgical planning and CAD/CAM fabricated surgical splint are proven to facilitate treatment planning and offer an accurate surgical result in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. An environmental scan of advance care planning decision AIDS for patients undergoing major surgery: a study protocol.

    PubMed

    Aslakson, Rebecca A; Schuster, Anne L R; Miller, Judith; Weiss, Matthew; Volandes, Angelo E; Bridges, John F P

    2014-01-01

    Patients who undergo major surgery are at risk for perioperative morbidity and mortality. It would be appropriate to initiate advance care planning with patients prior to surgery, but surgeons may experience difficulty initiating such conversations. Rather than focus on changing clinician behavior, advance care planning decision aids can be an innovative vehicle to motivate advance care planning among surgical patients and their families. The purpose of this paper is to describe a study protocol for conducting an environmental scan concerning advance care planning decision aids that may be relevant to patients undergoing high-risk surgery. This study will gather information from written or verbal data sources that incorporate professional and lay perspectives: a systematic review, a grey literature review, key informant interviews, and patient and family engagement. It is envisioned that this study will generate three outcomes: a synthesis of current evidence, a summary of gaps in knowledge, and a taxonomy of existing advance care planning decision aids. This environmental scan will demonstrate principles of patient-centered outcomes research, and it will exemplify a pioneering approach for reviewing complex interventions. Anticipated limitations are that information will be gathered from a small sample of patients and families, and that potentially relevant information could also be missing from the environmental scan due to the inclusion/exclusion criteria. Outcomes from the environmental scan will inform future patient-centered research to develop and evaluate a new decision aid.

  8. The effect of urodynamic testing on clinical diagnosis, treatment plan and outcomes in women undergoing stress urinary incontinence surgery.

    PubMed

    Sirls, Larry T; Richter, Holly E; Litman, Heather J; Kenton, Kimberly; Lemack, Gary E; Lukacz, Emily S; Kraus, Stephen R; Goldman, Howard B; Weidner, Alison; Rickey, Leslie; Norton, Peggy; Zyczynski, Halina M; Kusek, John W

    2013-01-01

    We evaluated the influence of preoperative urodynamic studies on diagnoses, global treatment plans and outcomes in women treated with surgery for uncomplicated stress predominant urinary incontinence. We performed a secondary analysis from a multicenter, randomized trial of the value of preoperative urodynamic studies. Physicians provided diagnoses before and after urodynamic studies and global treatment plans, defined as proceeding with surgery, surgery type, surgical modification and nonoperative therapy. Treatment plan changes and surgical outcomes between office evaluation and office evaluation plus urodynamic studies were compared by the McNemar test. Of 315 subjects randomized to urodynamic studies after office evaluation 294 had evaluable data. Urodynamic studies changed the office evaluation diagnoses in 167 women (56.8%), decreasing the diagnoses of overactive bladder-wet (41.6% to 25.2%, p <0.001), overactive bladder-dry (31.4% to 20.8%, p = 0.002) and intrinsic sphincter deficiency (19.4% to 12.6%, p = 0.003) but increasing the diagnosis of voiding dysfunction (2.2% to 11.9%, p <0.001). After urodynamic studies physicians canceled surgery in 4 of 294 women (1.4%), changed the incontinence procedure in 13 (4.4%) and planned to modify mid urethral sling tension (more or less obstructive) in 20 women (6.8%). Nonoperative treatment plans changed in 40 of 294 women (14%). Urodynamic study driven treatment plan changes were not associated with treatment success (OR 0.96, 95% CI 0.41, 2.25, p = 0.92) but they were associated with increased postoperative treatment for urge urinary incontinence (OR 3.23, 95% CI 1.46, 7.14, p = 0.004). Urodynamic studies significantly changed clinical diagnoses but infrequently changed the global treatment plan or influenced surgeon decision to cancel, change or modify surgical plans. Global treatment plan changes were associated with increased treatment for postoperative urgency urinary incontinence. Copyright © 2013 American

  9. Statistical analysis plan for the Urodynamics for Prostate Surgery Trial; Randomised Evaluation of Assessment Methods (UPSTREAM).

    PubMed

    Young, Grace J; Lewis, Amanda L; Lane, J Athene; Winton, Helen L; Drake, Marcus J; Blair, Peter S

    2017-10-03

    Current management for men with lower urinary tract symptoms (LUTS) is a pathway that results in prostate surgery in a significant proportion. While helpful in relieving benign prostatic obstruction (BPO), surgery may be ineffective for men suffering from difficulties not relating to BPO. The UPSTREAM trial started recruitment in October 2014 with the aim of establishing whether a care pathway including urodynamics (a diagnostic tool for BPO and thus an indication of whether surgery is needed) is no worse for men, in terms of symptomatic outcome, than one without (routine care). This analysis plan outlines the main outcomes of the study and specific design choices, such as non-inferiority margins. The trial is currently recruiting in 26 hospitals across the UK, randomising men to either urodynamics or routine care, with recruitment set to end on the 31 December 2016. All outcomes will be measured 18 months after randomisation to allow sufficient time for surgical procedures and recovery. The primary outcome is based on a non-inferiority design with a margin of 1 point on the International Prostate Symptom Score (IPSS) scale. The key secondary outcome for this trial is surgery rate per arm, which is estimated to be at least 18% lower in the urodynamics arm. Surgery rates, adverse events, flow rate, urinary symptoms and sexual symptoms are secondary outcomes to be assessed for superiority. This is an update to the UPSTREAM protocol, which has already been published in this journal. This a priori statistical analysis plan aims to reduce reporting bias by allowing access to the trial's objectives and plans in advance of recruitment end. The results of the trial are expected to be published soon after the trial end date of 30 September 2018. ISRCTN registry, ISRCTN56164274 . Registered on 8 April 2014.

  10. Alteration of Occlusal Plane in Orthognathic Surgery: Clinical Features to Help Treatment Planning on Class III Patients

    PubMed Central

    Costa, Tony Eduardo; Barbosa, Saulo de Matos; Pereira, Rodrigo Alvitos; Chaves Netto, Henrique Duque de Miranda

    2018-01-01

    Dentofacial deformities (DFD) presenting mainly as Class III malocclusions that require orthognathic surgery as a part of definitive treatment. Class III patients can have obvious signs such as increasing the chin projection and chin throat length, nasolabial folds, reverse overjet, and lack of upper lip support. However, Class III patients can present different facial patterns depending on the angulation of occlusal plane (OP), and only bite correction does not always lead to the improvement of the facial esthetic. We described two Class III patients with different clinical features and inclination of OP and had undergone different treatment planning based on 6 clinical features: (I) facial type; (II) upper incisor display at rest; (III) dental and gingival display on smile; (IV) soft tissue support; (V) chin projection; and (VI) lower lip projection. These patients were submitted to orthognathic surgery with different treatment plannings: a clockwise rotation and counterclockwise rotation of OP according to their facial features. The clinical features and OP inclination helped to define treatment planning by clockwise and counterclockwise rotations of the maxillomandibular complex, and two patients undergone to bimaxillary orthognathic surgery showed harmonic outcomes and stables after 2 years of follow-up. PMID:29854480

  11. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  12. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.

    PubMed

    Alam, K; Mitrofanov, A V; Silberschmidt, V V

    2011-03-01

    Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. Drilling tests were performed with two drilling techniques, and the influence of drilling speed, feed rate and parameters of ultrasonic vibration on the forces and torque was studied. Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation.

    PubMed

    Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou

    2016-01-01

    Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is regularly missed in conventional 2D planning.

  14. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation

    PubMed Central

    Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou

    2016-01-01

    Background Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. Patients and Methods This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. Results 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Conclusion Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is

  15. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  16. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  17. Which hemostatic device in thyroid surgery? A network meta-analysis of surgical technologies.

    PubMed

    Garas, George; Okabayashi, Koji; Ashrafian, Hutan; Shetty, Kunal; Palazzo, Fausto; Tolley, Neil; Darzi, Ara; Athanasiou, Thanos; Zacharakis, Emmanouil

    2013-09-01

    Energy-based hemostatic devices are increasingly being used in thyroid surgery. However, there are several limitations with regard to the existing evidence and a paucity of guidelines on the subject. The goal of this review is to employ the novel evidence synthesis technique of a network meta-analysis to assess the comparative effectiveness of surgical technologies in thyroid surgery and contribute to enhanced governance in the field of thyroid surgery. Articles published between January 2000 and June 2012 were identified from Embase, Medline, Cochrane Library, and PubMed databases. Randomized controlled trials of any size comparing the use of ultrasonic coagulation (harmonic scalpel) or Ligasure either head-to-head or against the "clamp-and-tie" technique were included. Two reviewers independently critically appraised and extracted the data from each study. The number of patients who experienced postoperative events was extracted in dichotomous format or continuous outcomes. Odds ratios were calculated by a Bayesian network meta-analysis, and metaregression was used for pair-wise comparisons. Indirect and direct comparisons were performed and inconsistency was assessed. Thirty-five randomized controlled trials with 2856 patients were included. Ultrasonic coagulation ranked first (followed by Ligasure and then clamp-and-tie) with the lowest risk of postoperative hypoparathyroidism (odds ratio 1.43 [95% confidence interval (CI) 0.77-2.67] and 0.70 [CI 0.43-1.13], ultrasonic coagulation vs. Ligasure and ultrasonic coagulation vs. clamp-and-tie, respectively), least blood loss (-0.25 [CI -0.84 to -0.35] and -1.22 [CI -1.85 to -0.59]), and drain output (0.28 [CI -0.35 to -0.91] and -0.36 [CI -0.70 to -0.03]). From a health technology viewpoint, ultrasonic coagulation was associated with the shortest operative time (-0.66 [CI -1.17 to -0.14] and -1.29 [CI -1.59 to -1.00]) and hospital stay (-0.28 [CI -0.78 to 0.22] and -0.56 [CI -1.28 to 0.15]). The only exception

  18. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  19. Optimization of white matter tractography for pre-surgical planning and image-guided surgery.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2006-01-01

    Accurate localization of white matter fiber tracts in relation to brain tumors is a goal of critical importance to the neurosurgical community. White matter fiber tractography by means of diffusion tensor magnetic resonance imaging (DTI) is the only non-invasive method that can provide estimates of brain connectivity. However, conventional tractography methods are based on data acquisition techniques that suffer from image distortions and artifacts. Thus, a large percentage of white matter fiber bundles are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber tractography in pre-surgical planning and image-guided surgery. In contrast, Turboprop-DTI is a technique that provides images with significantly fewer distortions and artifacts than conventional DTI data acquisition methods. The purpose of this study was to evaluate fiber tracking results obtained from Turboprop-DTI data. It was demonstrated that Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers than conventional DTI methods, especially in applications such as pre-surgical planning and image-guided surgery.

  20. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  1. Applications of piezoelectric surgery in endodontic surgery: a literature review.

    PubMed

    Abella, Francesc; de Ribot, Joan; Doria, Guillermo; Duran-Sindreu, Fernando; Roig, Miguel

    2014-03-01

    Piezosurgery (piezoelectric bone surgery) devices were developed to cut bone atraumatically using ultrasonic vibrations and to provide an alternative to the mechanical and electrical instruments used in conventional oral surgery. Indications for piezosurgery are increasing in oral and maxillofacial surgery, as in other disciplines, such as endodontic surgery. Key features of piezosurgery instruments include their ability to selectively cut bone without damaging adjacent soft tissue, to provide a clear operative field, and to cut without generating heat. Although piezosurgery instruments can be used at most stages of endodontic surgery (osteotomy, root-end resection, and root-end preparation), no published data are available on the effect of piezosurgery on the outcomes of endodontic surgery. To our knowledge, no study has evaluated the effect of piezosurgery on root-end resection, and only 1 has investigated root-end morphology after retrograde cavity preparation using piezosurgery. We conducted a search of the PubMed and Cochrane databases using appropriate terms and keywords related to the use and applications of piezoelectric surgery in endodontic surgery. A hand search also was conducted of issues published in the preceding 2 years of several journals. Two independent reviewers obtained and analyzed the full texts of the selected articles. A total of 121 articles published between January 2000 and December 2013 were identified. This review summarizes the operating principles of piezoelectric devices and outlines the applications of piezosurgery in endodontic surgery using clinical examples. Piezosurgery is a promising technical modality with applications in several aspects of endodontic surgery, but further studies are necessary to determine the influence of piezosurgery on root-end resection and root-end preparation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  3. Safe Surgery for All: Early Lessons from Implementing a National Government-Driven Surgical Plan in Ethiopia.

    PubMed

    Burssa, Daniel; Teshome, Atlibachew; Iverson, Katherine; Ahearn, Olivia; Ashengo, Tigistu; Barash, David; Barringer, Erin; Citron, Isabelle; Garringer, Kaya; McKitrick, Victoria; Meara, John; Mengistu, Abraham; Mukhopadhyay, Swagoto; Reynolds, Cheri; Shrime, Mark; Varghese, Asha; Esseye, Samson; Bekele, Abebe

    2017-12-01

    Recognizing the unmet need for surgical care in Ethiopia, the Federal Ministry of Health (FMOH) has pioneered innovative methodologies for surgical system development with Saving Lives through Safe Surgery (SaLTS). SaLTS is a national flagship initiative designed to improve access to safe, essential and emergency surgical and anaesthesia care across all levels of the healthcare system. Sustained commitment from the FMOH and their recruitment of implementing partners has led to notable accomplishments across the breadth of the surgical system, including but not limited to: (1) Leadership, management and governance-a nationally scaled surgical leadership and mentorship programme, (2) Infrastructure-operating room construction and oxygen delivery plan, (3) Supplies and logistics-a national essential surgical procedure and equipment list, (4) Human resource development-a Surgical Workforce Expansion Plan and Anaesthesia National Roadmap, (5) Advocacy and partnership-strong FMOH partnership with international organizations, including GE Foundation's SafeSurgery2020 initiative, (6) Innovation-facility-driven identification of problems and solutions, (7) Quality of surgical and anaesthesia care service delivery-a national peri-operative guideline and WHO Surgical Safety Checklist implementation, and (8) Monitoring and evaluation-a comprehensive plan for short-term and long-term assessment of surgical quality and capacity. As Ethiopia progresses with its commitment to prioritize surgery within its Health Sector Transformation Plan, disseminating the process and outcomes of the SaLTS initiative will inform other countries on successful national implementation strategies. The following article describes the process by which the Ethiopian FMOH established surgical system reform and the preliminary results of implementation across these eight pillars.

  4. A Systematic Review to Uncover a Universal Protocol for Accuracy Assessment of 3-Dimensional Virtually Planned Orthognathic Surgery.

    PubMed

    Gaber, Ramy M; Shaheen, Eman; Falter, Bart; Araya, Sebastian; Politis, Constantinus; Swennen, Gwen R J; Jacobs, Reinhilde

    2017-11-01

    The aim of this study was to systematically review methods used for assessing the accuracy of 3-dimensional virtually planned orthognathic surgery in an attempt to reach an objective assessment protocol that could be universally used. A systematic review of the currently available literature, published until September 12, 2016, was conducted using PubMed as the primary search engine. We performed secondary searches using the Cochrane Database, clinical trial registries, Google Scholar, and Embase, as well as a bibliography search. Included articles were required to have stated clearly that 3-dimensional virtual planning was used and accuracy assessment performed, along with validation of the planning and/or assessment method. Descriptive statistics and quality assessment of included articles were performed. The initial search yielded 1,461 studies. Only 7 studies were included in our review. An important variability was found regarding methods used for 1) accuracy assessment of virtually planned orthognathic surgery or 2) validation of the tools used. Included studies were of moderate quality; reviewers' agreement regarding quality was calculated to be 0.5 using the Cohen κ test. On the basis of the findings of this review, it is evident that the literature lacks consensus regarding accuracy assessment. Hence, a protocol is suggested for accuracy assessment of virtually planned orthognathic surgery with the lowest margin of error. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps.

    PubMed

    Leiggener, C; Messo, E; Thor, A; Zeilhofer, H-F; Hirsch, J-M

    2009-02-01

    The free fibular flap is the standard procedure for reconstructing mandibular defects. The graft has to be contoured to fit the defect so preoperative planning is required. The systems used previously do not allow transfer of the surgical plan to the operation room in an optimal way. The authors present a method to bring the virtual plan to real time surgery using a rapid prototyping guide. Planning was conducted using the Surgicase CMF software simulating surgery on a workstation. The osteotomies were translated into a rapid prototyping guide, sterilised and applied during surgery on the fibula allowing for the osteotomies and osteosynthesis to be performed with intact circulation. During reconstruction the authors were able to choose the best site for the osteotomies regarding circulation and as a result increased the precision and speed of treatment.

  6. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  7. Heart Valve Surgery Recovery and Follow Up

    MedlinePlus

    ... Winning Recovery Plan Post Surgery Milestones • Personal Stories Video: Preparing For Your Surgery Find helpful tips from ... how to plan and prepare for your surgery. Video: Recovering From Your Surgery Find helpful tips from ...

  8. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  9. Precision Cleaning Verification of Nonvolatile Residues by Using Water, Ultrasonics, and Turbidity Analyses

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1991-01-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  10. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  11. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  12. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  13. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  14. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  15. Rehabilitation with 4 zygomatic implants with a new surgical protocol using ultrasonic technique.

    PubMed

    Mozzati, Marco; Mortellaro, Carmen; Arata, Valentina; Gallesio, Giorgia; Previgliano, Valter

    2015-05-01

    When the residual bone crest cannot allow the placement of standard implants, the treatment for complete arch rehabilitation of severely atrophic maxillae can be performed with 4 zygomatic implants (ZIs) and immediate function with predictable results in terms of aesthetics, function, and comfort for the patient. However, even if ZIs' rehabilitations showed a good success rate, this surgery is difficult and need a skillful operator. Complications in this kind of rehabilitation are not uncommon; the main difficulties can be related to the reduced surgical visibility and instrument control in a critical anatomic area. All the surgical protocols described in the literature used drilling techniques. Furthermore, the use of ultrasonic instruments in implant surgery compared with drilling instruments have shown advantages in many aspects of surgical procedures, tissues management, enhancement of control, surgical visualization, and healing. The aim of this study was to report on the preliminary experience using ultrasound technique for ZIs surgery in terms of safety and technical improvement. Ten consecutive patients with severely atrophic maxilla have been treated with 4 ZIs and immediate complete arch acrylic resin provisional prostheses. The patients were followed up from 30 to 32 months evaluating implant success, prosthetic success, and patient satisfaction with a questionnaire. No implants were lost during the study period, with a 100% implant and prosthetic success rate. Within the limitations of this preliminary study, these data indicate that ultrasonic implant site preparation for ZIs can be a good alternative to the drilling technique and an improvement for the surgeon.

  16. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  17. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  18. Computer‐assisted surgical planning and intraoperative guidance in fetal surgery: a systematic review†

    PubMed Central

    Deprest, Jan; Vercauteren, Tom; Ourselin, Sebastien; David, Anna L.

    2015-01-01

    Abstract Fetal surgery has become a clinical reality, with interventions for twin‐to‐twin transfusion syndrome (TTTS) and spina bifida demonstrated to improve outcome. Fetal imaging is evolving, with the use of 3D ultrasound and fetal MRI becoming more common in clinical practise. Medical imaging analysis is also changing, with technology being developed to assist surgeons by creating 3D virtual models that improve understanding of complex anatomy, and prove powerful tools in surgical planning and intraoperative guidance. We introduce the concept of computer‐assisted surgical planning, and present the results of a systematic review of image reconstruction for fetal surgical planning that identified six articles using such technology. Indications from other specialities suggest a benefit of surgical planning and guidance to improve outcomes. There is therefore an urgent need to develop fetal‐specific technology in order to improve fetal surgical outcome. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd. PMID:26235960

  19. Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography.

    PubMed

    Sánchez-Gómez, Serafín; Herrero-Salado, Tomás F; Maza-Solano, Juan M; Ropero-Romero, Francisco; González-García, Jaime; Ambrosiani-Fernández, Jesús

    2015-01-01

    The high variability of sinonasal anatomy requires the best knowledge of its three-dimensional (3D) conformation to perform surgery more safely and efficiently. The aim of the study was to validate the utility of Osirix® and stereolithography in improving endoscopic sinonasal surgery planning. Osirix® was used as a viewer and Digital Imaging and Communications in Medicine (DICOM) 3D imaging manager to improve planning for 114 sinonasal endoscopic operations with polyposis (86) and chronic rhinosinusitis (CRS) (28). Stereolithography rapid prototyping was used for 7 frontoethmoidal mucoceles. Using Osirix® and stereolithography, a greater number of anatomical structures were identified and this was done faster, with a statistically-significant clinical-radiological correlation (P<.01) compared with 2D CT plates. With a share of more than 75% of surgery performed by residents, surgical time was reduced by 38±12.3min in CRS and 42±27.9 in sinonasal polyposis. The fourth-year residents reached 100% surgical competence in critical surgical milestones with 16 surgeries (CI 12-19). The systematic use of Osirix® for visualisation and treatment of 3D sinonasal images from DICOM data files, along with the surgical team's ability to manipulate them as virtual reality, allows surgeons to perform endoscopic sinonasal surgery with greater confidence and in less time than using 2D images. Residents also achieve surgical competence faster, more safely and with fewer complications. This beneficial impact is increased when the surgical team has stereolithography rapid prototyping in more complex cases. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  20. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  1. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  2. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  3. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  4. Traditional surgical planning of liver surgery is modified by 3D interactive quantitative surgical planning approach: a single-center experience with 305 patients.

    PubMed

    Wang, Xue-Dong; Wang, Hong-Guang; Shi, Jun; Duan, Wei-Dong; Luo, Ying; Ji, Wen-Bin; Zhang, Ning; Dong, Jia-Hong

    2017-06-01

    Decision making and surgical planning are to achieve the precise balance of maximal removal of target lesion, maximal sparing of functional liver remnant volume, and minimal surgical invasiveness and therefore, crucial in liver surgery. The aim of this prospective study was to validate the accuracy and predictability of 3D interactive quantitative surgical planning approach (IQSP), and to evaluate the impact of IQSP on traditional surgical plans based on 2D images. A total of 305 consecutive patients undergoing hepatectomy were included in this study. Surgical plans were created by traditional 2D approach using picture archiving and communication system (PACS) and 3D approach using IQSP respectively by two groups of physicians who did not know the surgical plans of the other group. The two surgical plans were submitted to the chief surgeon for selection before operation. The specimens were weighed. The two surgical plans were compared and analyzed retrospectively based on the operation results. The two surgical plans were successfully developed in all 305 patients and all the 3D IQSP surgical plans were selected as the final decision. Total 278 patients successfully underwent surgery, including 147 uncomplex hepatectomy and 131 complex hepatectomy. Twenty-seven patients were withdrawn from hepatectomy. In the uncomplex group, the two surgical plans were the same in all 147 patients and no statistically significant difference was found among 2D calculated resection volume (2D-RV), 3D IQSP calculated resection volume (IQSP-RV) and the specimen volume. In the complex group, the two surgical plans were different in 49 patients (49/131, 37.4%). According to the significance of differences, the 49 different patients were classified into three grades. No statistically significant difference was found between IQSP-RV and specimen volume. The coincidence rate of territory analysis of IQSP with operation was 92.1% (93/101) for 101 patients of anatomic hepatectomy. The

  5. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  6. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  7. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  8. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  9. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  10. The accuracy of two-dimensional planning for routine orthognathic surgery.

    PubMed

    Rustemeyer, Jan; Groddeck, Alexander; Zwerger, Stefan; Bremerich, Andreas

    2010-06-01

    Two-dimensional cephalometric planning software should be helpful for prediction of hard tissue outcome after bilateral sagittal split ramus osteotomy (BSSRO) or bimaxillary osteotomy, but transferring two-dimensional data to three-dimensions (including mock operation and surgery) may result in errors. The objective of this retrospective study was to analyze deviations between predicted results and postoperative outcome using cephalometric analyses, and to evaluate this procedure for daily use. Fifty-four subjects (mean (SD) age 26 (8) years) had a BSSRO (n=21) alone or in combination with Le Fort I osteotomy (n=33). Predictions were made for each case by cephalometric planning software and mock operations done with study models. Postoperative cephalograms were obtained after 14 days and compared with predicted cephalograms for sagittal (SNA, SNB, ANB,) and vertical (ArMeGo, ML-NSL, NL-NSL) measurements. Mean (SD) differences for all measurements varied between 1.3 degrees (1.1 degrees) and 2.2 degrees (1.6 degrees) for BSSRO; and between 1.1 degrees (1.3 degrees) and 2.2 degrees (1.6 degrees) for bimaxillary osteotomy. There were no significant differences between measurements or operations, indicating that the predictions were accurate. A difference of up to 8.5 degrees could be measured in a single case. Cephalometric prediction therefore remains an accurate tool for planning, particularly maxillary rearrangement in the vertical and sagittal dimension for routine operations. If greater shifts in the transversal dimension are necessary, exact planning should be adapted with three-dimensional planning devices to avoid significant differences. Copyright 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.

    PubMed

    Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G

    2013-08-01

    To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance

  12. Comparative study of conventional and ultrasonically-assisted bone drilling.

    PubMed

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  13. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  14. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  15. Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery.

    PubMed

    Ferrero, Emmanuelle; Mazda, Keyvan; Simon, Anne-Laure; Ilharreborde, Brice

    2018-04-24

    Preoperative planning of scoliosis surgery is essential in the effective treatment of spine pathology. Thus, precontoured rods have been recently developed to avoid iatrogenic sagittal misalignment and rod breakage. Some specific issues exist in adolescent idiopathic scoliosis (AIS), such as a less distal lower instrumented level, a great variability in the location of inflection point (transition from lumbar lordosis to thoracic kyphosis), and sagittal correction is limited by both bone-implant interface. Since 2007, stereoradiographic imaging system is used and allows for 3D reconstructions. Therefore, a software was developed to perform preoperative 3D surgical planning and to provide rod's shape and length. The goal of this preliminary study was to assess the feasibility, reliability, and the clinical relevance of this new software. Retrospective study on 47 AIS patients operated with the same surgical technique: posteromedial translation through posterior approach with lumbar screws and thoracic sublaminar bands. Pre- and postoperatively, 3D reconstructions were performed on stereoradiographic images (EOS system, Paris, France) and compared. Then, the software was used to plan the surgical correction and determine rod's shape and length. Simulated spine and rods were compared to postoperative real 3D reconstructions. 3D reconstructions and planning were performed by an independent observer. 3D simulations were performed on the 47 patients. No difference was found between the simulated model and the postoperative 3D reconstructions in terms of sagittal parameters. Postoperatively, 21% of LL were not within reference values. Postoperative SVA was 20 mm anterior in 2/3 of the cases. Postoperative rods were significantly longer than precontoured rods planned with the software (mean 10 mm). Inflection points were different on the rods used and the planned rods (2.3 levels on average). In this preliminary study, the software based on 3D stereoradiography low

  16. The Use of Harmonic Scalpel for Free Flap Dissection in Head and Neck Reconstructive Surgery

    PubMed Central

    Albert, Sebastien; Guedon, Charles; Halimi, Caroline; Cristofari, Jean Pierre; Barry, Beatrix

    2012-01-01

    Surgeons conventionally use electrocautery dissection and surgical clip appliers to harvest free flaps. The ultrasonic Harmonic Scalpel is a new surgical instrument that provides high-quality dissection and hemostasis and minimizes tissue injury. The aim of this study was to evaluate the effectiveness and advantages of the ultrasonic Harmonic Scalpel compared to conventional surgical instruments in free flap surgery. This prospective study included 20 patients who underwent head and neck reconstructive surgery between March 2009 and May 2010. A forearm free flap was used for reconstruction in 12 patients, and a fibular flap was used in 8 patients. In half of the patients, electrocautery and surgical clips were used for free flap harvesting (the EC group), and in the other half of the patients, ultrasonic dissection was performed using the Harmonic Scalpel (the HS group). The following parameters were significantly lower in the HS group compared to the EC group: the operative time of flap dissection (35% lower in the HS group), blood loss, number of surgical clips and cost of surgical materials. This study demonstrated the effectiveness of the Harmonic Scalpel in forearm and fibular free flap dissections that may be extended to other free flaps. PMID:22693666

  17. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  19. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  20. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  1. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  2. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  3. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  4. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  5. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  6. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  7. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  8. Utility of 3D Reconstruction of 2D Liver Computed Tomography/Magnetic Resonance Images as a Surgical Planning Tool for Residents in Liver Resection Surgery.

    PubMed

    Yeo, Caitlin T; MacDonald, Andrew; Ungi, Tamas; Lasso, Andras; Jalink, Diederick; Zevin, Boris; Fichtinger, Gabor; Nanji, Sulaiman

    A fundamental aspect of surgical planning in liver resections is the identification of key vessel tributaries to preserve healthy liver tissue while fully resecting the tumor(s). Current surgical planning relies primarily on the surgeon's ability to mentally reconstruct 2D computed tomography/magnetic resonance (CT/MR) images into 3D and plan resection margins. This creates significant cognitive load, especially for trainees, as it relies on image interpretation, anatomical and surgical knowledge, experience, and spatial sense. The purpose of this study is to determine if 3D reconstruction of preoperative CT/MR images will assist resident-level trainees in making appropriate operative plans for liver resection surgery. Ten preoperative patient CT/MR images were selected. Images were case-matched, 5 to 2D planning and 5 to 3D planning. Images from the 3D group were segmented to create interactive digital models that the resident can manipulate to view the tumor(s) in relation to landmark hepatic structures. Residents were asked to evaluate the images and devise a surgical resection plan for each image. The resident alternated between 2D and 3D planning, in a randomly generated order. The primary outcome was the accuracy of resident's plan compared to expert opinion. Time to devise each surgical plan was the secondary outcome. Residents completed a prestudy and poststudy questionnaire regarding their experience with liver surgery and the 3D planning software. Senior level surgical residents from the Queen's University General Surgery residency program were recruited to participate. A total of 14 residents participated in the study. The median correct response rate was 2 of 5 (40%; range: 0-4) for the 2D group, and 3 of 5 (60%; range: 1-5) for the 3D group (p < 0.01). The average time to complete each plan was 156 ± 107 seconds for the 2D group, and 84 ± 73 seconds for the 3D group (p < 0.01). A total 13 of 14 residents found the 3D model easier to use than the 2D

  9. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  10. [Computer-assisted operational planning for pediatric abdominal surgery. 3D-visualized MRI with volume rendering].

    PubMed

    Günther, P; Tröger, J; Holland-Cunz, S; Waag, K L; Schenk, J P

    2006-08-01

    Exact surgical planning is necessary for complex operations of pathological changes in anatomical structures of the pediatric abdomen. 3D visualization and computer-assisted operational planning based on CT data are being increasingly used for difficult operations in adults. To minimize radiation exposure and for better soft tissue contrast, sonography and MRI are the preferred diagnostic methods in pediatric patients. Because of manifold difficulties 3D visualization of these MRI data has not been realized so far, even though the field of embryonal malformations and tumors could benefit from this.A newly developed and modified raycasting-based powerful 3D volume rendering software (VG Studio Max 1.2) for the planning of pediatric abdominal surgery is presented. With the help of specifically developed algorithms, a useful surgical planning system is demonstrated. Thanks to the easy handling and high-quality visualization with enormous gain of information, the presented system is now an established part of routine surgical planning.

  11. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  12. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  13. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  14. Using an Ultrasonic Instrument to Size Extravascular Bubbles

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Kline-Schroder, J.; Kenton, Marc A.

    2004-01-01

    In an ongoing development project, microscopic bubbles in extravascular tissue in a human body will be detected by use of an enhanced version of the apparatus described in Ultrasonic Bubble- Sizing Instrument (MSC-22980), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 62. To recapitulate: The physical basis of the instrument is the use of ultrasound to excite and measure the resonant behavior (oscillatory expansion and contraction) of bubbles. The resonant behavior is a function of the bubble diameter; the instrument exploits the diameter dependence of the resonance frequency and the general nonlinearity of the ultrasonic response of bubbles to detect bubbles and potentially measure their diameters. In the cited prior article, the application given most prominent mention was the measurement of gaseous emboli (essentially, gas bubbles in blood vessels) that cause decompression sickness and complications associated with cardiopulmonary surgery. According to the present proposal, the instrument capabilities would be extended to measure extravascular bubbles with diameters in the approximate range of 1 to 30 m. The proposed use of the instrument could contribute further to the understanding and prevention of decompression sickness: There is evidence that suggests that prebreathing oxygen greatly reduces the risk of decompression sickness by reducing the number of microscopic extravascular bubbles. By using the ultrasonic bubble-sizing instrument to detect and/or measure the sizes of such bubbles, it might be possible to predict the risk of decompression sickness. The instrument also has potential as a tool to guide the oxygen-prebreathing schedules of astronauts; high-altitude aviators; individuals who undertake high-altitude, low-opening (HALO) parachute jumps; and others at risk of decompression sickness. For example, an individual at serious risk of decompression sickness because of high concentrations of extravascular microscopic bubbles could be given a

  15. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  16. Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator

    NASA Astrophysics Data System (ADS)

    Yun, Cheol-Ho; Yeo, Leslie Y.; Friend, James R.; Yan, Bernard

    2012-04-01

    A 240-μm diameter ultrasonic micromotor is presented as a potential solution for an especially difficult task in minimally invasive neurosurgery, navigating a guidewire to an injury in the neurovasculature as the first step of surgery. The peak no-load angular velocity and maximum torque were 600 rad/s and 1.6 nN-m, respectively, and we obtained rotation about all three axes. By using a burst drive scheme, open-loop position and speed control were achieved. The construction method and control scheme proposed in this study remove most of the current limitations in minimally invasive, catheter-based actuation, enabling minimally invasive vascular surgery concepts to be pursued for a broad variety of applications.

  17. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  18. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  19. Technological innovations in tissue removal during rhinologic surgery.

    PubMed

    Sindwani, Raj; Manz, Ryan

    2012-01-01

    The modern rhinologist has a wide variety of technological innovations at his/her disposal for the removal of soft tissue and bone during endoscopic surgery. We identified and critically evaluated four leading tissue removal technologies that have impacted, or are poised to impact, rhinological surgery. A literature review was conducted. Technological functions, strengths and limitations of microdebriders, radio frequency ablation, endoscopic drills, and ultrasonic aspirators were explored. The primary drawback of powered instruments continues to be the higher costs associated with their use, and their main advantage is the ability to accomplish multiple functions such as tissue removal, suction, and irrigation, all with one tool. The effective and safe use of any powered instrument requires an intimate understanding of its function, capabilities, and limitations. Powered instrumentation continues to play a significant and evolving role in soft tissue and bone removal during rhinologic surgery.

  20. Large-Vessel Sealing in Laparoscopic Colectomy with an Ultrasonic Device

    PubMed Central

    Plasencia, Gustavo; Van der Speeten, Kurt; Hinoul, Piet; Batiller, Jonathan; Severin, Kimberley S.; Schwiers, Michael L.; Rockall, Tim

    2016-01-01

    Background and Objective: The Harmonic ACE+7 Shears with Advanced Hemostasis Mode (Ethicon, Somerville, NJ, USA) is an ultrasonic device designed to transect and seal vessels up to 7 mm in diameter. The device applies an algorithm that optimizes ultrasonic energy delivery combined with a longer sealing cycle. The purpose of this study was to assess the initial clinical experience with the Harmonic device by evaluating large-vessel sealing during laparoscopic colectomy in consecutive cases. Methods: This prospective, multicenter, observational series involved 40 adult patients who were to undergo elective laparoscopic colectomy where dissection and transection of the inferior mesenteric artery was indicated. The primary study endpoint was first-pass hemostasis, defined as a single activation of the Advanced Hemostasis Mode to transect and seal the inferior mesenteric artery. The use of any additional energy device or hemostatic product to establish or maintain hemostasis was noted. Patients were observed after surgery for ∼4 weeks for adverse events that were considered to be related to the study procedure or study device. Descriptive statistical analyses were performed for study endpoints. Results: Forty patients underwent the laparoscopic colectomy procedure. First-pass hemostasis of the inferior mesenteric artery was achieved and maintained in all 40 patients, with no required additional hemostatic measures. Exposure of the vessel was reported as skeletonized in 22 of 40 (55%) patients. Mean transection time was 21.9 ± 7.4 s. One adverse event (postoperative anemia) was considered possibly related to the study device. Conclusion: In this initial clinical consecutive series, the device demonstrated successful transection and sealing of the large mesenteric vessels during laparoscopic colorectal surgery. PMID:27186065

  1. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  2. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  3. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  4. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  5. Destruction of giant cluster-like vesicles by an ultrasonically activated device

    NASA Astrophysics Data System (ADS)

    Yahagi, Ryosuke; Yoshida, Kenji; Zhang, Yiting; Ebata, Masahiko; Toyota, Taro; Yamaguchi, Tadashi; Hayashi, Hideki

    2016-07-01

    In this paper, we propose a technically simple method of destroying a tissue marker composed of giant cluster-like vesicles (GCVs) to facilitate laparoscopic surgeries; the method releases various biological tracers contained in GCVs. An ultrasonically activated device (USAD) emitting 55.5 kHz ultrasound was employed for this purpose. Optical microscopy and fluorospectrophotometry revealed the destruction of GCVs after ultrasound irradiation when the blade tip was set 1.0 mm or closer to, but not directly in contact with, a GCV-containing cell. This means that USAD could be safely used for destroying this GCV tissue marker in clinical settings.

  6. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  7. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  8. Computer-assisted surgery planning in children with complex liver tumors identifies variability of the classical Couinaud classification.

    PubMed

    Warmann, Steven W; Schenk, Andrea; Schaefer, Juergen F; Ebinger, Martin; Blumenstock, Gunnar; Tsiflikas, Ilias; Fuchs, Joerg

    2016-11-01

    In complex malignant pediatric liver tumors there is an ongoing discussion regarding surgical strategy; for example, primary organ transplantation versus extended resection in hepatoblastoma involving 3 or 4 sectors of the liver. We evaluated the possible role of computer-assisted surgery planning in children with complex hepatic tumors. Between May 2004 and March 2016, 24 Children with complex liver tumors underwent standard multislice helical CT scan or MRI scan at our institution. Imaging data were processed using the software assistant LiverAnalyzer (Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany). Results were provided as Portable Document Format (PDF) with embedded interactive 3-dimensional surface mesh models. Median age of patients was 33months. Diagnoses were hepatoblastoma (n=14), sarcoma (n=3), benign parenchyma alteration (n=2), as well as hepatocellular carcinoma, rhabdoid tumor, focal nodular hyperplasia, hemangioendothelioma, or multiple hepatic metastases of a pancreas carcinoma (each n=1). Volumetry of liver segments identified remarkable variations and substantial aberrances from the Couinaud classification. Computer-assisted surgery planning was used to determine surgical strategies in 20/24 children; this was especially relevant in tumors affecting 3 or 4 liver sectors. Primary liver transplantation could be avoided in 12 of 14 hepaoblastoma patients who theoretically were candidates for this approach. Computer-assisted surgery planning substantially contributed to the decision for surgical strategies in children with complex hepatic tumors. This tool possibly allows determination of specific surgical procedures such as extended surgical resection instead of primary transplantation in certain conditions. Copyright © 2016. Published by Elsevier Inc.

  9. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  10. Ultrasonic dissection versus conventional electrocautery during gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials.

    PubMed

    Sun, Z C; Xu, W G; Xiao, X M; Yu, W H; Xu, D M; Xu, H M; Gao, H L; Wang, R X

    2015-04-01

    Use of ultrasonic surgical instrument is gaining popularity for dissection and coagulation in open surgery. However, there is still no consensus on the efficacy and safety of its use compared with conventional surgical technique in open gastrectomy for gastric cancer. The aim of this meta-analysis was to evaluate the role and surgical outcomes of ultrasonic dissection (UD) compared with conventional electrocautery (EC). A systematic literature search was performed to identify all studies comparing UD and EC in gastric cancer surgery. Intraoperative and postoperative outcomes were compared using weighted mean differences (WMDs) and odds ratios (ORs). Five studies were included in this meta-analysis, comprising 489 patients. Meta-analysis results showed that compared with EC, UD was associated with significantly shorter operation time (P = 0.03), less intraoperative blood loss (P = 0.002), lower morbidity (P = 0.02), and reduced postoperative hospital stay (P = 0.03). However, there was no significant difference between the two surgical techniques with regards to postoperative abdominal drainage (P = 0.17), and total cost in hospital (P = 0.59). Compared to EC, the use of UD during open gastrectomy can provide several improved outcomes for operation time, intraoperative blood loss, overall morbidity, and postoperative hospital stay. It appears that UD can be used instead of conventional EC in open gastric cancer surgery, although more larger trials with long follow-up should be performed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Achievability of 3D planned bimaxillary osteotomies: maxilla-first versus mandible-first surgery.

    PubMed

    Liebregts, Jeroen; Baan, Frank; de Koning, Martien; Ongkosuwito, Edwin; Bergé, Stefaan; Maal, Thomas; Xi, Tong

    2017-08-24

    The present study was aimed to investigate the effects of sequencing a two-component surgical procedure for correcting malpositioned jaws (bimaxillary osteotomies); specifically, surgical repositioning of the upper jaw-maxilla, and the lower jaw-mandible. Within a population of 116 patients requiring bimaxillary osteotomies, the investigators analyzed whether there were statistically significant differences in postoperative outcome as measured by concordance with a preoperative digital 3D virtual treatment plan. In one group of subjects (n = 58), the maxillary surgical procedure preceded the mandibular surgery. In the second group (n = 58), the mandibular procedure preceded the maxillary surgical procedure. A semi-automated analysis tool (OrthoGnathicAnalyser) was applied to assess the concordance of the postoperative maxillary and mandibular position with the cone beam CT-based 3D virtual treatment planning in an effort to minimize observer variability. The results demonstrated that in most instances, the maxilla-first surgical approach yielded closer concordance with the 3D virtual treatment plan than a mandibular-first procedure. In selected circumstances, such as a planned counterclockwise rotation of both jaws, the mandible-first sequence resulted in more predictable displacements of the jaws.

  12. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  13. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  14. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Yuecheng; Ruan, Haowen; Brodie, Frank L.; Wong, Terence T. W.; Yang, Changhuei; Wang, Lihong V.

    2018-01-01

    Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.

  15. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer. (a) Identification. A diagnostic ultrasonic transducer is a device made of a piezoelectric material...

  16. Physical mechanism of ultrasonic machining

    NASA Astrophysics Data System (ADS)

    Isaev, A.; Grechishnikov, V.; Kozochkin, M.; Pivkin, P.; Petuhov, Y.; Romanov, V.

    2016-04-01

    In this paper, the main aspects of ultrasonic machining of constructional materials are considered. Influence of coolant on surface parameters is studied. Results of experiments on ultrasonic lathe cutting with application of tangential vibrations and with use of coolant are considered.

  17. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  18. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  20. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  1. Comparison among ultrasonic, electrical apparatus, and toxic chemicals for vestibular lesion in mice.

    PubMed

    Yamaoka, Yusuke; Abe, Chikara; Morita, Hironobu

    2018-02-01

    The vestibular lesion (VL) is required to examine the physiological function of the vestibular system in animals. Toxic chemicals or electrical apparatus have been used for the VL, however, they are not ideal as they have low specificity, and can result in unintended damage, and systemic toxic effect. Localized vibration-induced VL, using an ultrasonicator, is expected to overcome the problems associated with chemical and electrical lesions. Thus, we examined the effect of the ultrasonication on the VL from the aspects of both the physiological function and histology in the present study. and Comparison with Existing Method(s) Complete VL, which was evaluated by deterioration of swimming skills, righting reflex, and body stability, was induced using an ultrasonicator or electrical apparatus. Histological evaluation shows that hair cell layers in the saccule and utricle were completely destroyed in both methods Furthermore, significant drop in body mass was observed in VL. However, abscess at the cranial base was observed in VL induced by the electrical apparatus in ICR mice. Complete chemically-induced VL was observed in C57BL/6J but not ICR mice, and systemic leakage of the toxic chemicals (arsenic) was not detectable even 1day after surgery. Compared to the electrical apparatus, the ultrasonicator is useful for inducing VL in ICR and C57BL/6J mice, as it results in less non-specific damage. Toxic chemicals can be used for inducing VL in C57BL/6J mice; however, this method does not ensure complete disruption of the hair cells in the saccule and utricle. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Method and apparatus to characterize ultrasonically reflective contrast agents

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  3. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.

    PubMed

    Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco

    2012-01-01

    The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.

  4. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  5. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  6. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  7. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  8. Ultrasonic propulsion of kidney stones.

    PubMed

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  9. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  10. Integration of oncologic margins in three-dimensional virtual planning for head and neck surgery, including a validation of the software pathway.

    PubMed

    Kraeima, Joep; Schepers, Rutger H; van Ooijen, Peter M A; Steenbakkers, Roel J H M; Roodenburg, Jan L N; Witjes, Max J H

    2015-10-01

    Three-dimensional (3D) virtual planning of reconstructive surgery, after resection, is a frequently used method for improving accuracy and predictability. However, when applied to malignant cases, the planning of the oncologic resection margins is difficult due to visualisation of tumours in the current 3D planning. Embedding tumour delineation on a magnetic resonance image, similar to the routinely performed radiotherapeutic contouring of tumours, is expected to provide better margin planning. A new software pathway was developed for embedding tumour delineation on magnetic resonance imaging (MRI) within the 3D virtual surgical planning. The software pathway was validated by the use of five bovine cadavers implanted with phantom tumour objects. MRI and computed tomography (CT) images were fused and the tumour was delineated using radiation oncology software. This data was converted to the 3D virtual planning software by means of a conversion algorithm. Tumour volumes and localization were determined in both software stages for comparison analysis. The approach was applied to three clinical cases. A conversion algorithm was developed to translate the tumour delineation data to the 3D virtual plan environment. The average difference in volume of the tumours was 1.7%. This study reports a validated software pathway, providing multi-modality image fusion for 3D virtual surgical planning. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  12. Preoperative planning of left-sided valve surgery with 3D computed tomography reconstruction models: sternotomy or a minimally invasive approach?

    PubMed

    Heuts, Samuel; Maessen, Jos G; Sardari Nia, Peyman

    2016-05-01

    With the emergence of a new concept aimed at individualization of patient care, the focus will shift from whether a minimally invasive procedure is better than conventional treatment, to the question of which patients will benefit most from which technique? The superiority of minimally invasive valve surgery (MIVS) has not yet been proved. We believe that through better patient selection advantages of this technique can become more pronounced. In our current study, we evaluate the feasibility of 3D computed tomography (CT) imaging reconstruction in the preoperative planning of patients referred for MIVS. We retrospectively analysed all consecutive patients who were referred for minimally invasive mitral valve surgery (MIMVS) and minimally invasive aortic valve replacement (MIAVR) to a single surgeon in a tertiary referral centre for MIVS between March 2014 and 2015. Prospective preoperative planning was done for all patients and was based on evaluations by a multidisciplinary heart-team, an echocardiography, conventional CT images and 3D CT reconstruction models. A total of 39 patients were included in our study; 16 for mitral valve surgery (MVS) and 23 patients for aortic valve replacement (AVR). Eleven patients (69%) within the MVS group underwent MIMVS. Five patients (31%) underwent conventional MVS. Findings leading to exclusion for MIMVS were a tortuous or slender femoro-iliac tract, calcification of the aortic bifurcation, aortic elongation and pericardial calcifications. Furthermore, 2 patients had a change of operative strategy based on preoperative planning. Seventeen (74%) patients in the AVR group underwent MIAVR. Six patients (26%) underwent conventional AVR. Indications for conventional AVR instead of MIAVR were an elongated ascending aorta, ascending aortic calcification and ascending aortic dilatation. One patient (6%) in the MIAVR group was converted to a sternotomy due to excessive intraoperative bleeding. Two mortalities were reported during

  13. Unfavourable outcomes in orthognathic surgery.

    PubMed

    Bonanthaya, Krishnamurthy; Anantanarayanan, P

    2013-05-01

    Unfavourable outcomes are part and parcel of performing surgeries of any kind. Unfavourable outcomes are results of such work, which the patient and or the clinician does not like. This is an attempt to review various causes for unfavorable outcomes in orthognathic surgery and discuss them in detail. All causes for unfavorable outcomes may be classified as belonging to one of the following periods A) Pre- Treatment B) During treatment Pre-Treatment: In orthognathic surgery- as in any other discipline of surgery- which involves changes in both aesthetics and function, the patient motivation for seeking treatment is a very important input which may decide, whether the outcome is going to be favorable or not. Also, inputs in diagnosis and plan for treatment and its sequencing, involving the team of the surgeon and the orthodontist, will play a very important role in determining whether the outcome will be favorable. In other words, an unfavorable outcome may be predetermined even before the actual treatment process starts. During Treatment: Good treatment planning itself does not guarantee favorable results. The execution of the correct plan could go wrong at various stages which include, Pre-Surgical orthodontics, Intra and Post-Operative periods. A large number of these unfavorable outcomes are preventable, if attention is paid to detail while carrying out the treatment plan itself. Unfavorable outcomes in orthognathic surgery may be minimized If pitfalls are avoided both, at the time of treatment planning and execution.

  14. Unfavourable outcomes in orthognathic surgery

    PubMed Central

    Bonanthaya, Krishnamurthy; Anantanarayanan, P.

    2013-01-01

    Unfavourable outcomes are part and parcel of performing surgeries of any kind. Unfavourable outcomes are results of such work, which the patient and or the clinician does not like. This is an attempt to review various causes for unfavorable outcomes in orthognathic surgery and discuss them in detail. All causes for unfavorable outcomes may be classified as belonging to one of the following periods A) Pre- Treatment B) During treatment Pre-Treatment: In orthognathic surgery- as in any other discipline of surgery- which involves changes in both aesthetics and function, the patient motivation for seeking treatment is a very important input which may decide, whether the outcome is going to be favorable or not. Also, inputs in diagnosis and plan for treatment and its sequencing, involving the team of the surgeon and the orthodontist, will play a very important role in determining whether the outcome will be favorable. In other words, an unfavorable outcome may be predetermined even before the actual treatment process starts. During Treatment: Good treatment planning itself does not guarantee favorable results. The execution of the correct plan could go wrong at various stages which include, Pre-Surgical orthodontics, Intra and Post-Operative periods. A large number of these unfavorable outcomes are preventable, if attention is paid to detail while carrying out the treatment plan itself. Unfavorable outcomes in orthognathic surgery may be minimized If pitfalls are avoided both, at the time of treatment planning and execution. PMID:24501454

  15. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  16. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  17. Ultrasonic humidification for telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, F.

    1994-03-01

    This article examines two installations which demonstrate that ultrasonic humidification is an excellent option for large-scale commercial installations. Many existing telephone switching centers constructed 20 to 30 years ago were equipped with electro-mechanical switching equipment that was not sensitive to humidity. Today's sophisticated solid-state telecommunications equipment requires specific levels of relative humidity to operate properly. Over the last several years, Einhorn Yaffee Prescott (formerly Rose Beaton + Rose) designed two of the largest ultrasonic humidification systems at telecommunications buildings located in Cheshire, Conn., and White Plains, N.Y. The Cheshire project was a retrofit to the existing system in a 1960smore » building; the White Plains project involved an upgrade to a totally new air handling system, including an ultrasonic humidification component, in a 1950s building.« less

  18. Semiconductor measurement technology: Microelectronic ultrasonic bonding

    NASA Technical Reports Server (NTRS)

    Harman, G. G. (Editor)

    1974-01-01

    Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.

  19. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  20. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery.

    PubMed

    Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X

    2017-09-08

    Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.

  1. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  2. Prediction of ultrasonic properties from grain angle

    Treesearch

    M.F. Kabir

    2001-01-01

    The ultrasonic properties of rubber wood were evaluated in three main symmetry axes – longitudinal (L), radial (R) and tangential direction and also at an angle rotating from the symmetry axes at different moisture content. The ultrasonic velocity were determined with a commercial ultrasonic tester of 45 kHz pulsed longitudinal waves. The experimental results were...

  3. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  4. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  5. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  6. Adverse outcomes after planned surgery with anticipated intensive care admission in out-of-office-hours time periods: a multicentre cohort study.

    PubMed

    Morgan, D J; Ho, K M; Kolybaba, M L; Ong, Y J

    2018-06-01

    Increasing mortality for patients admitted to hospitals during the weekend is a contentious but well described phenomenon. However, it remains uncertain whether adverse outcomes, including prolonged hospital length-of-stay (LOS), may also occur after patients undergoing major planned surgery are admitted to an intensive care unit (ICU) out-of-office-hours, either during weeknights (after 18:00) or on weekends. All planned surgical admissions requiring admission to one of 183 ICUs across Australia and New Zealand between 2006 and 2016 were included in this retrospective population-based cohort study. Primary outcomes were hospital LOS and hospital mortality. Of the total 504 713 planned postoperative ICU admissions, 33.6% occurred during out-of-office-hours. After adjusting for available risk factors, out-of-office-hours ICU admissions were associated with a significant increase in hospital LOS [+2.6 days, 95% confidence interval (CI) 2.5-2.6], mortality [odd ratio (OR) 1.5, 95%CI 1.4-1.6], and a reduced chance of being directly discharged home (OR 0.8, 95%CI 0.8-0.8). The strongest association for adverse outcomes occurred with weekend ICU admissions (hospital LOS: +3.0 days, 95%CI 3.2-3.6; hospital mortality: OR 1.7, 95%CI 1.6-1.8). Clustering of adverse outcomes by hospitals was not observed in the generalised estimating equation analyses. Despite a greater clinical staff availability and higher monitoring levels, planned surgery requiring anticipated out-of-office-hours ICU admission was associated with a prolonged hospital LOS, reduced discharge directly home, and increased mortality compared with in-office-hours admissions. Our findings have potential clinical, economic and health policy implications on how complex planned surgery should be planned and managed. Copyright © 2018 British Journal of Anaesthesia. All rights reserved.

  7. Imaging, Virtual Planning, Design, and Production of Patient-Specific Implants and Clinical Validation in Craniomaxillofacial Surgery

    PubMed Central

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-01-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes®, Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and

  8. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    PubMed

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and

  9. Positioning In Macular hole Surgery (PIMS): statistical analysis plan for a randomised controlled trial.

    PubMed

    Bell, Lauren; Hooper, Richard; Bunce, Catey; Pasu, Saruban; Bainbridge, James

    2017-06-13

    The treatment of idiopathic full-thickness macular holes involves surgery to close the hole. Some surgeons advise patients to adopt a face-down position to increase the likelihood of successful macular hole closure. However, patients often find the face-down positioning arduous. There is a lack of conclusive evidence that face-down positioning improves the outcome. The 'Positioning In Macular hole Surgery' (PIMS) trial will assess whether advice to position face-down after surgery improves the surgical success rate for the closure of large (≥400 μm) macular holes. The PIMS trial is a multicentre, parallel-group, superiority clinical trial with 1:1 randomisation. Patients (n = 192) with macular holes (≥400 μm) will be randomised after surgery to either face-down positioning or face-forward positioning for at least 8 h (which can be either consecutive or nonconsecutive) a day, for 5 days following surgery. Inclusion criteria are: presence of an idiopathic full-thickness macular hole ≥400 μm in diameter, as measured by optical coherence tomography (OCT) scans, on either or both eyes; patients electing to have surgery for a macular hole, with or without simultaneous phacoemulsification and intraocular lens implant; ability and willingness to position face-down or in an inactive face-forward position; a history of visual loss suggesting a macular hole of 12 months' or less duration. The primary outcome is successful macular hole closure at 3 months post surgery. The treatment effect will be reported as an odds ratio with 95% confidence interval, adjusted for size of macular hole and phakic lens status at baseline. Secondary outcome measures at 3 months are: further surgery for macular holes performed or planned (of those with unsuccessful closure); patient-reported experience of positioning; whether patients report they would still have elected to have the operation given what they know at follow-up; best-corrected visual acuity (BCVA) measured

  10. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  11. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  12. Preparing for surgery when you have diabetes

    MedlinePlus

    ... care provider to come up with the safest surgery plan for you. Focus more on controlling your diabetes ... anesthesiologist. You will meet with this doctor before surgery to discuss the plan to control your blood sugar during the operation.

  13. Ultrasonic nebulization platforms for pulmonary drug delivery.

    PubMed

    Yeo, Leslie Y; Friend, James R; McIntosh, Michelle P; Meeusen, Els N T; Morton, David A V

    2010-06-01

    Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific requirements of a patient, taking into account the patient's breathing pattern, physiological profile and disease state. Nevertheless, owing to the difficulties and limitations associated with conventional designs and technologies, ultrasonic nebulizers have never been widely adopted, and have in recent years been in a state of decline. An overview is provided on the advances in new miniature ultrasonic nebulization platforms in which large increases in lung dose efficiency have been reported. In addition to a discussion of the underlying mechanisms governing ultrasonic nebulization, in which there appears to be widely differing views, the advantages and shortcomings of conventional ultrasonic nebulization technology are reviewed and advanced state-of-the-art technologies that have been developed recently are discussed. Recent advances in ultrasonic nebulization technology demonstrate significant potential for the development of smart, portable inhalation therapy platforms for the future. Nevertheless, there remain considerable challenges that need to be addressed before such personalized delivery systems can be realized. These have to be addressed across the spectrum from fundamental physics through to in vivo device testing and dealing with the relevant regulatory framework.

  14. Effects of suture material and ultrasonic transmitter size on survival, growth, wound healing, and tag expulsion in rainbow trout

    USGS Publications Warehouse

    Ivasauskas, Tomas J.; Bettoli, P.W.; Holt, T.

    2012-01-01

    We examined the effects of suture material (braided silk versus Monocryl) and relative ultrasonic transmitter size on healing, growth, mortality, and tag retention in rainbow trout Oncorhynchus mykiss. In experiment 1, 40 fish (205-281mmtotal length [TL], 106-264 g) were implanted with Sonotronics IBT-96-2 (23??7 mm; weight in air, 4.4 g; weight in water, 2.4 g) or IBT 96-2E (30 ?? 7 mm; weight in air, 4.9 g; weight in water, 2.4 g) ultrasonic telemetry tags. In experiment 2, 20 larger fish (342-405 mm TL; 520-844 g) were implanted with Sonotronics IBT-96-5 ultrasonic tags (36 ?? 11 mm; weight in air, 9.1 g; weight in water, 4.1 g). The tag burdens for all implanted fish ranged from 1.1% to 3.4%, and fish in both studies were held at 10-15??C. At the conclusion of both experiments (65 d after surgery), no mortalities were observed in any of the 60 tagged fish, most incisions were completely healed, and all fish in both experiments grew in length, although tagged fish grew more slowly than control fish in experiment 1. In both experiments, fish sutured with silk expelled tags more frequently than those sutured with Monocryl. Expulsion was observed in 45-50% of the fish sutured with silk and 0-25% of the fish sutured withMonocryl. Tag expulsion was not observed until 25-35 d after surgery. Fish sutured with silk exhibited a more severe inflammatory response 3 weeks after surgery than those sutured with Monocryl. In experiment 1, the rate of expulsion was linked to the severity of inflammation. Although braided silk sutures were applied faster than Moncryl sutures in both experiments, knots tied with either material were equally reliable and fish sutured with Monocryl experienced less inflammation and lower rates of tag expulsion. American Fisheries Society 2012.

  15. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant woman...

  16. Ultrasonic assisted hot metal powder compaction.

    PubMed

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  18. Lumber defect detection by ultrasonics

    Treesearch

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  19. Incidence and outcome of re-entry injury in redo cardiac surgery: benefits of preoperative planning.

    PubMed

    Imran Hamid, Umar; Digney, Ruairi; Soo, Lorraine; Leung, Samantha; Graham, Alastair N J

    2015-05-01

    Repeat sternotomy for redo cardiac surgery may be associated with catastrophic injuries to mediastinal structures. The purpose of this study was to determine the frequency of these injuries, associated outcome and if a preoperative computerized tomography (CT) scan reduces the risk of re-entry injury. Five hundred and forty-four patients who underwent redo cardiac surgery between 2001 and 2011 were identified by review of our unit's prospectively maintained cardiac surgery database. Demographic details, surgical strategy, re-entry injuries, hospital stay, in-hospital mortality and long-term survival were analysed. The mean age was 61 years; 326 were male, 218 were female. Four hundred and eighty six patients underwent first time redo surgery, while 58 patients had multiple previous operations. The median logistic EuroSCORE was 11, in-hospital mortality rate was 9.5% and observed to expected mortality rate was 0.8. Re-entry complications occurred in 15 cases (2.7%). These included injuries to the aorta (n = 2), right atrium (n = 1), innominate vein (n = 2), internal mammary artery (n = 2), pulmonary artery (n = 2), lung parenchyma (n = 1), saphenous vein graft (n = 2), right ventricle (n = 2) and ventricular fibrillation (n = 1). The mortality rate in patients with re-entry injury was 26% (n = 4) compared with 9% (n = 48) in those without re-entry complications. Preoperative planning by CT scan was performed in 162 cases and adherence of vital structures to the sternum was found in 60 cases; the right ventricle, innominate vein and bypass grafts in 41, 11 and 8, respectively. The incidence rate of re-entry injury was 0.6% in these patients vs 3.6% in those who did not have a preoperative CT scan (P = 0.046). Peripheral arterial cannulation was carried out in 35 patients (6.4%) to establish cardiopulmonary bypass (CPB) prior to sternotomy, and there were no mediastinal injuries observed in these cases. Multivariate logistic regression analysis revealed re

  20. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  1. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    PubMed

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  2. Apparatus for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.

    2000-01-01

    An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.

  3. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  4. Catalytic effect on ultrasonic decomposition of cellulose

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Wakida, Kousuke; Mukasa, Shinobu; Toyota, Hiromichi

    2018-07-01

    Cellulase used as a catalyst is introduced into the ultrasonic welding method for cellulose decomposition in order to obtain glucose. By adding cellulase in the welding process, filter paper decomposes cellulose into glucose, 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharides. The amount of glucose from hydrolysis was increased by ultrasonic welding in filter paper immersed in water. Most glucose was obtained by 100 W ultrasonic irradiation; however, when was applied 200 W, the dehydration of the glucose itself occurred, and was converted into 5-HMF owing to the thermolysis of ultrasonics. Therefore, there is an optimum welding power for the production of glucose from cellulose decomposition.

  5. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  6. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  7. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  8. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  9. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.

    1975-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys were considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. Some RF and spectral data on ten sets of ultrasonic reference blocks were taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and microstructural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response.

  10. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  11. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  12. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  14. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  15. Pulmonary Artery Sealing With an Ultrasonic Energy Device in Video-Assisted Thoracoscopic Surgery Lobectomy: An Animal Survival Study.

    PubMed

    Goudie, Eric; Khereba, Mohamed; Tahiri, Mehdi; Hegde, Pravachan; Thiffault, Vicky; Hadjeres, Rachid; Berdugo, Jérémie; Ferraro, Pasquale; Liberman, Moishe

    2016-10-01

    Pulmonary artery (PA) sealing in video-assisted thoracoscopic surgery (VATS) lobectomy is typically accomplished using vascular endostaplers. Endostaplers may be associated with iatrogenic PA branch injury, especially in short, small PA branches. We evaluated PA branch sealing with the HARMONIC ACE +7 (ACE) shears (Ethicon, Cincinnati, OH) in VATS lobectomy in a canine survival model. Ten adult dogs underwent VATS lobectomy. Standard VATS lobectomy operative technique was used for the entire operation, except for PA branch sealing. The ACE was used for all PA branch sealing. Dogs were kept alive for 30 days. The 10 dogs underwent VATS right upper (n = 5) and right lower (n = 5) lobectomy. The ACE was used to seal 21 PA branches. No PA branch was divided with an endostapler. There were no intraoperative complications or conversions to thoracotomy. Mean in vivo PA diameter was 5.6 mm (range, 2 to 12 mm). One 10-mm PA branch had a partial seal failure immediately at the time of sealing. The device was reapplied on the stump, and the PA branch was successfully sealed. All dogs survived 30 days without hemothorax. Necropsy at 30 days did not reveal any signs of postoperative bleeding. Pathology of the sealed PA branches at 30 days revealed fibrosis, giant cell reaction, neovascularization, and thermal changes of the vessel wall. The use of the ACE for PA branch sealing in VATS lobectomy is safe and effective in an animal survival model. Human studies are needed to determine the clinical safety of ultrasonic PA branch sealing before widespread clinical use. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  17. The Dynamic Performance of Flexural Ultrasonic Transducers.

    PubMed

    Feeney, Andrew; Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-18

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  18. The Dynamic Performance of Flexural Ultrasonic Transducers

    PubMed Central

    Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-01

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems. PMID:29346297

  19. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors

    PubMed Central

    Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji

    2017-01-01

    High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345

  20. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  1. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  2. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  3. Reoperative Cardiac Surgery: Part I - Preoperative Planning.

    PubMed

    Tribble, Curt

    2018-02-26

    While reoperative cardiac surgery has become safer in recent years, it is still more difficult and dangerous than a primary operation. In a recent review of the Cleveland Clinic's experience, 7% of the patients undergoing cardiac reoperations had major intraoperative adverse events (IAEs). In that report, if an IAE occurred, there was a 5% mortality and a 19% incidence of myocardial infarction (MI), stroke, or death [Roselli 2011]. Those are sobering statistics, particularly when reported by one of the busiest cardiac surgical services in the world. The take-home message is that reoperative cardiac surgery is riskier than primary cardiac operations and that there are strategies that should be employed at each juncture to lower the risks of a reoperation.However, many of these strategies and recommendations have been more implicit than explicit. In fact, surprisingly little has been written about reoperative cardiac surgery. Thus, it seems appropriate to collect some of the lessons, adages, tricks, and tools that might make reoperations a click safer.

  4. Using the theory of planned behavior to predict the use of incentive spirometry among cardiac surgery patients in Taiwan.

    PubMed

    Tung, Heng-Hsin; Jan, Ming-Shan; Huang, Chiu-Mieh; Shih, Chun-Che; Chang, Chung-Yi; Liau, Cheu-Ye

    2011-01-01

    The use of incentive spirometry (IS) is reported to prevent and treat postoperative pulmonary complications. This study sought to use the theory of planned behavior to predict the use of IS in this population. The study used a prospective design, with convenience sampling, to recruit a total of 116 postcardiac-surgery patients from 2 medical centers in Taipei, Taiwan, from November 2008 to May 2009. Data were collected through 2 instruments: a demographic questionnaire, and an IS questionnaire. Descriptive analysis, independent t test, one-way analysis of variance, binary regression, and liner regression were used to analyze the data. Perceived behavioral control, but not intention, was a predictor of the use of IS. Our findings provide partial support for the utility of the theory of planned behavior in explaining the use of IS behavior for cardiac surgery patients. Copyright © 2011. Published by Mosby, Inc.

  5. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Digital approach to planning computer-guided surgery and immediate provisionalization in a partially edentulous patient.

    PubMed

    Arunyanak, Sirikarn P; Harris, Bryan T; Grant, Gerald T; Morton, Dean; Lin, Wei-Shao

    2016-07-01

    This report describes a digital approach for computer-guided surgery and immediate provisionalization in a partially edentulous patient. With diagnostic data obtained from cone-beam computed tomography and intraoral digital diagnostic scans, a digital pathway of virtual diagnostic waxing, a virtual prosthetically driven surgical plan, a computer-aided design and computer-aided manufacturing (CAD/CAM) surgical template, and implant-supported screw-retained interim restorations were realized with various open-architecture CAD/CAM systems. The optional CAD/CAM diagnostic casts with planned implant placement were also additively manufactured to facilitate preoperative inspection of the surgical template and customization of the CAD/CAM-fabricated interim restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  8. Impact of bariatric surgery on health care costs of obese persons: a 6-year follow-up of surgical and comparison cohorts using health plan data.

    PubMed

    Weiner, Jonathan P; Goodwin, Suzanne M; Chang, Hsien-Yen; Bolen, Shari D; Richards, Thomas M; Johns, Roger A; Momin, Soyal R; Clark, Jeanne M

    2013-06-01

    Bariatric surgery is a well-documented treatment for obesity, but there are uncertainties about the degree to which such surgery is associated with health care cost reductions that are sustained over time. To provide a comprehensive, multiyear analysis of health care costs by type of procedure within a large cohort of privately insured persons who underwent bariatric surgery compared with a matched nonsurgical cohort. Longitudinal analysis of 2002-2008 claims data comparing a bariatric surgery cohort with a matched nonsurgical cohort. Seven BlueCross BlueShield health insurance plans with a total enrollment of more than 18 million persons. A total of 29 820 plan members who underwent bariatric surgery between January 1, 2002, and December 31, 2008, and a 1:1 matched comparison group of persons not undergoing surgery but with diagnoses closely associated with obesity. Standardized costs (overall and by type of care) and adjusted ratios of the surgical group's costs relative to those of the comparison group. Total costs were greater in the bariatric surgery group during the second and third years following surgery but were similar in the later years. However, the bariatric group's prescription and office visit costs were lower and their inpatient costs were higher. Those undergoing laparoscopic surgery had lower costs in the first few years after surgery, but these differences did not persist. Bariatric surgery does not reduce overall health care costs in the long term. Also, there is no evidence that any one type of surgery is more likely to reduce long-term health care costs. To assess the value of bariatric surgery, future studies should focus on the potential benefit of improved health and well-being of persons undergoing the procedure rather than on cost savings.

  9. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  10. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not

  11. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    PubMed

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  12. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  13. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  14. Treatment of Brodie's Syndrome using parasymphyseal distraction through virtual surgical planning and RP assisted customized surgical osteotomy guide-A mock surgery report

    NASA Astrophysics Data System (ADS)

    Dahake, Sandeep; Kuthe, Abhaykumar; Mawale, Mahesh

    2017-10-01

    This paper aims to describe virtual surgical planning (VSP), computer aided design (CAD) and rapid prototyping (RP) systems for the preoperative planning of accurate treatment of the Brodie's Syndrome. 3D models of the patient's maxilla and mandible were separately generated based on computed tomography (CT) image data and fabricated using RP. During the customized surgical osteotmy guide (CSOG) design process, the correct position was identified and the geometry of the CSOG was generated based on affected mandible of the patient and fabricated by a RP technique. Surgical approach such as preoperative planning and simulation of surgical procedures was performed using advanced software. The VSP and RP assisted CSOG was used to avoid the damage of the adjacent teeth and neighboring healthy tissues. Finally the mock surgery was performed on the biomodel (i.e. diseased RP model) of mandible with reference to the normal maxilla using osteotomy bur with the help of CSOG. Using this CSOG the exact osteotomy of the mandible and the accurate placement of the distractor were obtained. It ultimately improved the accuracy of the surgery in context of the osteotomy and distraction. The time required in cutting the mandible and placement of the distractor was found comparatively less than the regular free hand surgery.

  15. Model Prediction Results for 2007 Ultrasonic Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Joon; Song, Sung-Jin

    2008-02-01

    The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.

  16. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  17. Recent improvements in SPE3D: a VR-based surgery planning environment

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Sitnik, Robert; Verdonschot, Nico

    2014-02-01

    SPE3D is a surgery planning environment developed within TLEMsafe project [1] (funded by the European Commission FP7). It enables the operator to plan a surgical procedure on the customized musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the biomechanical analysis module, and export the scenario's parameters to the surgical navigation system. The personalized patient-specific three-dimensional (3-D) MS model is registered with 3-D MRI dataset of lower limbs and the two modalities may be visualized simultaneously. Apart from main planes, any arbitrary MRI cross-section can be rendered on the 3-D MS model in real time. The interface provides tools for: bone cutting, manipulating and removal, repositioning muscle insertion points, modifying muscle force, removing muscles and placing implants stored in the implant library. SPE3D supports stereoscopic viewing as well as natural inspection/manipulation with use of haptic devices. Alternatively, it may be controlled with use of a standard computer keyboard, mouse and 2D display or a touch screen (e.g. in an operating room). The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their operative plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for training.

  18. Shape-based approach for the estimation of individual facial mimics in craniofacial surgery planning

    NASA Astrophysics Data System (ADS)

    Gladilin, Evgeny; Zachow, Stefan; Deuflhard, Peter; Hege, Hans-Christian

    2002-05-01

    Besides the static soft tissue prediction, the estimation of basic facial emotion expressions is another important criterion for the evaluation of craniofacial surgery planning. For a realistic simulation of facial mimics, an adequate biomechanical model of soft tissue including the mimic musculature is needed. In this work, we present an approach for the modeling of arbitrarily shaped muscles and the estimation of basic individual facial mimics, which is based on the geometrical model derived from the individual tomographic data and the general finite element modeling of soft tissue biomechanics.

  19. Improvements in Low-cost Ultrasonic Measurements of Blood Flow in "by-passes" Using Narrow & Broad Band Transit-time Procedures

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Calas, H.; Diez, L.; Moreno, E.; Prohías, J.; Villar, A.; Carrillo, E.; Jiménez, A.; Pereira, W. C. A.; Von Krüger, M. A.

    The cardio-pathology by ischemia is an important cause of death, but the re-vascularization of coronary arteries (by-pass operation) is an useful solution to reduce associated morbidity improving quality of life in patients. During these surgeries, the flow in coronary vessels must be measured, using non-invasive ultrasonic methods, known as transit time flow measurements (TTFM), which are the most accurate option nowadays. TTFM is a common intra-operative tool, in conjunction with classic Doppler velocimetry, to check the quality of these surgery processes for implanting grafts in parallel with the coronary arteries. This work shows important improvements achieved in flow-metering, obtained in our research laboratories (CSIC, ICIMAF, COPPE) and tested under real surgical conditions in Cardiocentro-HHA, for both narrowband NB and broadband BB regimes, by applying results of a CYTED multinational project (Ultrasonic & computational systems for cardiovascular diagnostics). mathematical models and phantoms were created to evaluate accurately flow measurements, in laboratory conditions, before our new electronic designs and low-cost implementations, improving previous ttfm systems, which include analogic detection, acquisition & post-processing, and a portable PC. Both regimes (NB and BB), with complementary performances for different conditions, were considered. Finally, specific software was developed to offer facilities to surgeons in their interventions.

  20. Overview of the ultrasonic instrumentation research in the MYRRHA project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierckx, M.; Leysen, W.; Van Dyck, D.

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the requiredmore » ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  1. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  2. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  3. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  4. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  5. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  6. Ultrasonic surface measurements at the Porta Nigra, Trier, and the Neptungrotte, Park Sanssouci Potsdam

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Auras, Michael; Fehr, Moritz; Köhn, Daniel

    2015-04-01

    Ultrasonic measurements along profiles at the surface of an object are well suited to characterize non-destructively weathering of natural stone near the surface. Ultrasonic waveforms of surface measurements in the frequency range between 10 kHz and 300 kHz are often dominated by the Rayleigh wave - a surface wave that is mainly sensitive to the velocity and attenuation of S-waves in the upper 0.3 cm to 3 cm. The frequency dependence of the Rayleigh wave velocity may be used to analyze variations of the material properties with depth. Applications of ultrasonic surface measurements are shown for two buildings: the Roman Porta Nigra in Trier from the 3rd century AD and the Neptungrotte at Park Sanssouci in Potsdam designed by von Knobelsdorff in the 18th century. Both buildings belong to the world cultural heritage and restorations are planned for the near future. It is interesting to compare measurements at these two buildings because they show the applicability of ultrasonic surface measurements to different natural stones. The Porta Nigra is made of local sandstones whereas the facades of the Neptungrotte are made of Carrara and Kauffunger marble. 71 and 46 surface measurements have been carried out, respectively. At both buildings, Rayleigh-wave group velocities show huge variations. At the Porta Nigra they vary between ca. 0.4 km/s and 1.8 km/s and at the Neptungrotte between ca. 0.7 km/s and 3.0 km/s pointing to alterations in the Rayleigh- and S-wave velocities of more than 50 % due to weathering. Note that velocities of elastic waves may increase e.g. because of the formation of black crusts like at the Porta Nigra or they may be strongly reduced due to weathering. The accuracy of the ultrasonic surface measurements, its reproducibility, and the influence of varying water saturation are discussed. Options for the analysis of ultrasonic waveforms are presented ranging from dispersion analysis to full waveform inversions for one-dimensional and two

  7. Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics

    NASA Astrophysics Data System (ADS)

    Olson, Meghan

    Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.

  8. Air-jet power ultrasonic field applied to electrical discharge

    NASA Astrophysics Data System (ADS)

    Balek, Rudolf; Pekarek, Stanislav

    2010-01-01

    We describe a new setup of the Hartmann air-jet ultrasonic generator combined with electrical discharge in the nozzle-resonator gap. Using the schlieren visualization of air jet and ultrasonic field we investigated the shape and structure of the discharge and we determined relationship among the acoustic field in the nozzle-resonator gap, generator ultrasonic emission and discharge behavior. Apart of the fact that the discharge in the nozzle-resonator gap is stabilized and becomes more uniform, it increases its volume when the generator works in the regime of ultrasonic emission. At the same time the discharge light emission distribution is more over uniform in the gap. In the regime without the ultrasonic emission the discharge light emission is fragmented. We also found that the impedance of the discharge is decreased in case when the generator works in the regime of ultrasonic emission.

  9. In and ex-vivo Myocardial Tissue Temperature Monitoring by Combined Infrared and Ultrasonic Thermometries

    NASA Astrophysics Data System (ADS)

    Engrand, C.; Laux, D.; Ferrandis, J.-Y.; Sinquet, J.-C.; Demaria, R.; Le Clézio, E.

    The success of cardiac surgery essentially depends on tissue preservation during intervention. Consequently a hypothermic cardio-plegia is applied in order to avoid ischemia. However, myocardial temperature is not monitored during operation. The aim of this study is then to find a relevant and simple method for myocardial global temperature estimation in real time using both ultrasounds and infra-red thermography. In order to quantify the sensitivity of ultrasonic velocity to temperature, a 2.25 MHz ultrasonic probe was used for ex-vivo tests. Pig myocards (n=25) were placed in a thermostatically-controlled water bath and measurements of the ultrasound velocity were realized from 10 to 30 ˚C. The results of this study indicate that the specificity and sensitivity of the ultrasonic echo delay induced by the modification of temperature can be exploited for in-depth thermometry. In parallel, for TIR experiments, a bolometer was used to detect the myocardium surface thermal evolution during in-vivo pig heart experiments. Hypothermic cardioplegic solutions were injected and infra-red surface imaging was performed during one hour. In the near futur, the correlation of the ultrasound and the infrared measurements should allow the real time estimation of the global temperature of the heart. The final objective being to realize in vivo measurements on human hearts, this information may have a very high importance in terms of per-operation inspection as well as decision making process during medical interventions.

  10. Long-term outcomes of ultrasonic scalpel treatment in giant cell tumor of long bones

    PubMed Central

    SUN, SHENG; ZHANG, QIANG; ZHAO, CHANG-SONG; CAI, JUAN

    2014-01-01

    Giant cell tumors (GCTs) are generally benign, locally aggressive lesions with the potential to metastasize and a tendency of local recurrence. The present study aimed to investigate the advantages and long-term outcomes of application of ultrasonic scalpel in the treatment of GCT of long bones. This study retrospectively analyzed 32 cases of GCT of long bones, including 24 males and eight females. The age range was from 8 to 34 years old (mean age, 23.5 years old). The 32 cases were randomly divided into an observation group (n=10) and a control group (n=22). Patients in the observation group received curettage by ultrasonic scalpel combined with local methotrexate gelfoam adjuvant treatment, and then the cavity was filled with allograft and/or homograft bone. Patients in the control group eceived curettage by local methotrexate gelfoam adjuvant treatment and bone grafting. No local recurrence or pulmonary metastases were observed among patients in the observation group, however, six patients in the control group exhibited recurrence following surgery, although none of the patients demonstrated distant metastasis (P<0.05). Additionally, all 10 patients showed good bone knitting and rehabilitation without deformity and functional issues. The segmental bone graft was perfectly incorporated without obvious immune rejection, collapse and fracture. Curettage by ultrasonic scalpel with local methotrexate gelfoam adjuvant treatment and filling the site by allograft and/or homograft bone showed satisfactory results. PMID:24959235

  11. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.; Sushinsky, G. F.; Chwirut, D. J.; Bechtoldt, C. J.; Ruff, A. W.

    1976-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized.

  12. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  13. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  14. Ultrasonic superlensing jets and acoustic-fork sheets

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.

  15. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  16. A checklist for endonasal transsphenoidal anterior skull base surgery.

    PubMed

    Laws, Edward R; Wong, Judith M; Smith, Timothy R; de Los Reyes, Kenneth; Aglio, Linda S; Thorne, Alison J; Cote, David J; Esposito, Felice; Cappabianca, Paolo; Gawande, Atul

    2016-06-01

    , monitoring, and other special considerations (e.g., Valsalva, jugular compression, lumbar drain, and so on). The Surgical Pause is composed of personnel introductions, planned procedural elements, estimation of duration of surgery, anticipated blood loss and fluid management, imaging, specimen collection, and questions of a surgical nature. The Equipment Pause assures proper function and availability of the microscope, endoscope, cameras and recorders, guidance systems, special instruments, ultrasonic microdoppler, microdebrider, drills, and other adjunctive supplies (e.g., Avitene, cotton balls, nasal packs, and so on). The Closure Pause is dedicated to issues of immediate postoperative patient disposition, orders, and management. CONCLUSIONS Surgical complications are a considerable cause of death and disability worldwide. Checklists have been shown to be an effective tool for reducing preventable errors surrounding surgery and decreasing associated complications. Although general checklists are already in place in most institutions, a specific checklist for endonasal transsphenoidal anterior skull base surgery was developed to help safeguard patients, improve outcomes, and enhance teambuilding.

  17. Digital ultrasonic signal processing: Primary ultrasonics task and transducer characterization use and detailed description

    NASA Technical Reports Server (NTRS)

    Hammond, P. L.

    1979-01-01

    This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.

  18. Guide surgery osteotomy system (GSOS) a new device for treatment in orthognathic surgery.

    PubMed

    Salvato, Giuseppe; Chiavenna, Carlo; Meazzini, Maria Costanza

    2014-04-01

    This article proposes an innovative and revolutionary diagnostic and therapeutic protocol for performing dentoalveolar osteotomies in office under local anaesthesia with piezoelectric surgery using a surgical acrylic guide produced through software-based planning. The method was applied in the correction of crossbites, changing in the curve of Spee, incisal decompensations and dental ankylosis. Performing a preoperative CT with a special splint, optical scanning of the models and the subsequent planning with software has enabled us to produce a model with rapid prototyping with the design of the osteotomy on which the surgical guide was shaped, the use of the guide associated with piezoelectric surgery, allowed to perform surgery under local anaesthesia, with minimal invasiveness and high accuracy. Dentoalveolar immediate movements, with preservation of the roots of teeth involved, allow for rapid treatment of malocclusions which would be long and often difficult if not impossible to treat with orthodontics only. Dentoalveolar osteotomies associated to osteodistraction concepts, allow the orthodontist to achieve with accuracy the objectives required by the treatment plan. GSOS is a new method, which, utilizing 3D optical scanning images of models, software and piezoelectric surgery, allows to perform dentoalveolar movements which may be dangerous to the roots or for the periodontal support, with orthodontics only. It dramatically reduces total surgical-orthodontic treatment time, with obvious great patient satisfaction. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  20. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  1. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  2. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Deviation from a preoperative surgical and anaesthetic care plan is associated with increased risk of adverse intraoperative events in major abdominal surgery.

    PubMed

    Gauss, T; Merckx, P; Brasher, C; Kavafyan, J; Le Bihan, E; Aussilhou, B; Belghiti, J; Mantz, J

    2013-02-01

    Perioperative coordination facilitates team communication and planning. The aim of this study was to determine how often deviation from predicted surgical conditions and a pre-established anaesthetic care plan in major abdominal surgery occurred, and whether this was associated with an increase in adverse clinical events. In this prospective observational study, weekly preoperative interdisciplinary team meetings were conducted according to a joint care plan checklist in a tertiary care centre in France. Any discordance with preoperative predictions and deviation from the care plan were noted. A link to the incidence of predetermined adverse intraoperative events was investigated. Intraoperative adverse clinical events (ACEs) occurred in 15 % of all cases and were associated with postoperative complications [relative risk (RR) = 1.5; 95 % confidence interval (1.1; 2.2)]. Quality of prediction of surgical procedural items was modest, with one in five to six items not correctly predicted. Discordant surgical prediction was associated with an increased incidence of ACE. Deviation from the anaesthetic care plan occurred in around 13 %, which was more frequent when surgical prediction was inaccurate (RR > 3) and independently associated with ACE (odds ratio 6). Surgery was more difficult than expected in up to one out of five cases. In a similar proportion, disagreement between preoperative care plans and observed clinical management was independently associated with an increased risk of adverse clinical events.

  4. Subsurface imaging of grain microstructure using picosecond ultrasonics

    DOE PAGES

    Khafizov, M.; Pakarinen, J.; He, L.; ...

    2016-04-21

    We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors GHz Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonicmore » propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. An image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this volumetric imaging capability using a polycrystalline UO 2 sample. As a result, cross section liftout analysis of the grain boundaries using electron microscopy were used to verify our imaging results.« less

  5. Use of ultrasonic dissection in the early surgical management of periorbital haemangiomas.

    PubMed

    Claude, O; Picard, A; O'Sullivan, N; Baccache, S; Momtchilova, M; Enjolras, O; Vazquez, M P; Diner, P A

    2008-12-01

    To evaluate the efficacy and safety of the early surgical excision of periorbital haemangiomas with an ultrasonic scalpel in infants at risk of visual impairment. A retrospective analysis of 67 infants diagnosed to be at risk of amblyopia from periorbital haemangiomas, treated consecutively with the Dissectron between 1994 and 2005. Ophthalmic outcome parameters included the pre- and postoperative measurement of visual axis occlusion, strabismus, astigmatism, and degree of amblyopia. Visual performance showed an overall improvement of 30% following treatment. Seventy-six patients were found to have abnormal ophthalmic examinations preoperatively, compared to 46 following surgery. After surgery, visual axis occlusion decreased from 73 to 6%; amblyopia decreased from 67 to 22%, strabismus decreased from 26 to 18% and astigmatism (>onedioptre) decreased from 66 to 31%. Mean astigmatism values decreased from 3.5 to 1.9 dioptres. No new cases of astigmatism, strabismus or amblyopia were diagnosed postoperatively. Three minor complications resolved with conservative treatment. All patients were satisfied with the outcome of their surgery. Early surgical excision of periorbital haemangiomas using the Dissectron in infants with an established risk of visual impairment is a safe and effective alternative to pharmacological therapy. The use of the Dissectron is associated with reduced operative times and a shorter hospital stay.

  6. Ultrasonic sensing of GMAW: Laser/EMAT defect detection system. [Gas Metal Arc Welding (GMAW), Electromagnetic acoustic transducer (EMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, N.M.; Johnson, J.A.; Larsen, E.D.

    1992-01-01

    In-process ultrasonic sensing of welding allows detection of weld defects in real time. A noncontacting ultrasonic system is being developed to operate in a production environment. The principal components are a pulsed laser for ultrasound generation and an electromagnetic acoustic transducer (EMAT) for ultrasound reception. A PC-based data acquisition system determines the quality of the weld on a pass-by-pass basis. The laser/EMAT system interrogates the area in the weld volume where defects are most likely to occur. This area of interest is identified by computer calculations on a pass-by-pass basis using weld planning information provided by the off-line programmer. Themore » absence of a signal above the threshold level in the computer-calculated time interval indicates a disruption of the sound path by a defect. The ultrasonic sensor system then provides an input signal to the weld controller about the defect condition. 8 refs.« less

  7. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  8. Piezosurgery in head and neck oncological and reconstructive surgery: personal experience on 127 cases

    PubMed Central

    Crosetti, E; Battiston, B; Succo, G

    2009-01-01

    Summary Piezoelectric bone surgery, known simply as piezosurgery, is a new technique of osteotomy and osteoplasty, which requires the use of microvibrations of ultrasonic frequency scalpels. The principle of piezosurgery is ultrasonic transduction, obtained by piezoelectric ceramic contraction and expansion. The vibrations thus obtained are amplified and transferred onto the insert of a drill which, when rapidly applied, with slight pressure, upon the bony tissue, results, in the presence of irrigation with physiological solution, in the cavitation phenomenon, with a mechanical cutting effect, exclusively on mineralized tissues. Personal experience with the use of piezosurgery in head and neck oncological and reconstructive surgery is relatively recent, having been developed in 2002-2006, and, so far, involves 127 cases; preliminary results are interesting and improving in the, hopefully, developmental phases of inserts with specific geometrics on account of the characteristics of the various aspects of surgical ENT operations. Furthermore, with piezoelectric surgery it has been possible to perform precise osteotomy lines, micrometric and curvilinear with absolute confidence, particularly in close proximity to the vessels and nerves and other important facial structures (dura mater). There can be no doubt, since this is a new cutting method, that piezosurgery involves a different learning curve compared to other techniques, requiring obstacles of a psychological nature to be overcome as well as that concerning surgical expertise. Given the numbers of cases treated and the relative power of this instrument, analysis of complications, intra-operative time (which would appear, on average, to be 20% longer) and, therefore, morbility, shows interesting potentiality of the technique. This new ultrasound cutting method will, no doubt, in the future, be increasingly used in ENT surgery, particularly with improvements in power and geometry of the inserts, with possible

  9. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  10. Digital Signal Processing Methods for Ultrasonic Echoes.

    PubMed

    Sinding, Kyle; Drapaca, Corina; Tittmann, Bernhard

    2016-04-28

    Digital signal processing has become an important component of data analysis needed in industrial applications. In particular, for ultrasonic thickness measurements the signal to noise ratio plays a major role in the accurate calculation of the arrival time. For this application a band pass filter is not sufficient since the noise level cannot be significantly decreased such that a reliable thickness measurement can be performed. This paper demonstrates the abilities of two regularization methods - total variation and Tikhonov - to filter acoustic and ultrasonic signals. Both of these methods are compared to a frequency based filtering for digitally produced signals as well as signals produced by ultrasonic transducers. This paper demonstrates the ability of the total variation and Tikhonov filters to accurately recover signals from noisy acoustic signals faster than a band pass filter. Furthermore, the total variation filter has been shown to reduce the noise of a signal significantly for signals with clear ultrasonic echoes. Signal to noise ratios have been increased over 400% by using a simple parameter optimization. While frequency based filtering is efficient for specific applications, this paper shows that the reduction of noise in ultrasonic systems can be much more efficient with regularization methods.

  11. Mapping cavitation activity around dental ultrasonic tips.

    PubMed

    Walmsley, A Damien; Lea, Simon C; Felver, Bernhard; King, David C; Price, Gareth J

    2013-05-01

    Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.

  12. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  13. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P.; Posakony, Gerald J.; Bond, Leonard J.; Bruckner-Lea, Cynthia J.

    2006-04-04

    The present invention is an apparatus for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  14. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  15. Gain-Compensating Circuit For NDE and Ultrasonics

    NASA Technical Reports Server (NTRS)

    Kushnick, Peter W.

    1987-01-01

    High-frequency gain-compensating circuit designed for general use in nondestructive evaluation and ultrasonic measurements. Controls gain of ultrasonic receiver as function of time to aid in measuring attenuation of samples with high losses; for example, human skin and graphite/epoxy composites. Features high signal-to-noise ratio, large signal bandwidth and large dynamic range. Control bandwidth of 5 MHz ensures accuracy of control signal. Currently being used for retrieval of more information from ultrasonic signals sent through composite materials that have high losses, and to measure skin-burn depth in humans.

  16. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion.

    PubMed

    Jin, Yiying; Li, Huan; Mahar, Rasool Bux; Wang, Zhiyu; Nie, Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment > NaOH treatment followed by ultrasonic treatment > ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  17. Anatomy-driven multiple trajectory planning (ADMTP) of intracranial electrodes for epilepsy surgery.

    PubMed

    Sparks, Rachel; Vakharia, Vejay; Rodionov, Roman; Vos, Sjoerd B; Diehl, Beate; Wehner, Tim; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sebastien

    2017-08-01

    Epilepsy is potentially curable with resective surgery if the epileptogenic zone (EZ) can be identified. If non-invasive imaging is unable to elucidate the EZ, intracranial electrodes may be implanted to identify the EZ as well as map cortical function. In current clinical practice, each electrode trajectory is determined by time-consuming manual inspection of preoperative imaging to find a path that avoids blood vessels while traversing appropriate deep and superficial regions of interest (ROIs). We present anatomy-driven multiple trajectory planning (ADMTP) to find safe trajectories from a list of user-defined ROIs within minutes rather than the hours required for manual planning. Electrode trajectories are automatically computed in three steps: (1) Target Point Selection to identify appropriate target points within each ROI; (2) Trajectory Risk Scoring to quantify the cumulative distance to critical structures (blood vessels) along each trajectory, defined as the skull entry point to target point. (3) Implantation Plan Computation: to determine a feasible combination of low-risk trajectories for all electrodes. ADMTP was evaluated on 20 patients (190 electrodes). ADMTP lowered the quantitative risk score in 83% of electrodes. Qualitative results show ADMTP found suitable trajectories for 70% of electrodes; a similar portion of manual trajectories were considered suitable. Trajectory suitability for ADMTP was 95% if traversing sulci was not included in the safety criteria. ADMTP is computationally efficient, computing between 7 and 12 trajectories in 54.5 (17.3-191.9) s. ADMTP efficiently compute safe and surgically feasible electrode trajectories.

  18. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    PubMed Central

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  19. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  20. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    NASA Astrophysics Data System (ADS)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  1. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  2. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searfass, Clifford T.; Malinowski, Owen M.; Van Velsor, Jason K.

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and targetmore » vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.« less

  3. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull.

    PubMed

    Tanter, M; Thomas, J L; Fink, M

    1998-05-01

    The time-reversal process is applied to focus pulsed ultrasonic waves through the human skull bone. The aim here is to treat brain tumors, which are difficult to reach with classical surgery means. Such a surgical application requires precise control of the size and location of the therapeutic focal beam. The severe ultrasonic attenuation in the skull reduces the efficiency of the time reversal process. Nevertheless, an improvement of the time reversal process in absorbing media has been investigated and applied to the focusing through the skull [J.-L. Thomas and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 1122-1129 (1996)]. Here an extension of this technique is presented in order to focus on a set of points surrounding an initial artificial source implanted in the tissue volume to treat. From the knowledge of the Green's function matched to this initial source location a new Green's function matched to various points of interest is deduced in order to treat the whole volume. In a homogeneous medium, conventional steering consists of tilting the wave front focused on the acoustical source. In a heterogeneous medium, this process is only valid for small angles or when aberrations are located in a layer close to the array. It is shown here how to extend this method to aberrating and absorbing layers, like the skull bone, located at any distance from the array of transducers.

  4. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Daw; J. Rempe; J. Palmer

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature ofmore » in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.« less

  5. Effect of ultrasonic tip designs on intraradicular post removal.

    PubMed

    Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti

    2014-11-01

    To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.

  6. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.

    PubMed

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing

    2018-04-01

    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Virtual Surgical Planning: The Pearls and Pitfalls

    PubMed Central

    Efanov, Johnny I.; Roy, Andrée-Anne; Huang, Ke N.

    2018-01-01

    Objective: Over the past few years, virtual surgical planning (VSP) has evolved into a useful tool for the craniofacial surgeon. Virtual planning and computer-aided design and manufacturing (CAD/CAM) may assist in orthognathic, cranio-orbital, traumatic, and microsurgery of the craniofacial skeleton. Despite its increasing popularity, little emphasis has been placed on the learning curve. Methods: A retrospective analysis of consecutive virtual surgeries was done from July 2012 to October 2016 at the University of Montreal Teaching Hospitals. Orthognathic surgeries and free vascularized bone flap surgeries were included in the analysis. Results: Fifty-four virtual surgeries were done in the time period analyzed. Forty-six orthognathic surgeries and 8 free bone transfers were done. An analysis of errors was done. Eighty-five percentage of the orthognathic virtual plans were adhered to completely, 4% of the plans were abandoned, and 11% were partially adhered to. Seventy-five percentage of the virtual surgeries for free tissue transfers were adhered to, whereas 25% were partially adhered to. The reasons for abandoning the plans were (1) poor communication between surgeon and engineer, (2) poor appreciation for condyle placement on preoperative scans, (3) soft-tissue impedance to bony movement, (4) rapid tumor progression, (5) poor preoperative assessment of anatomy. Conclusion: Virtual surgical planning is a useful tool for craniofacial surgery but has inherent issues that the surgeon must be aware of. With time and experience, these surgical plans can be used as powerful adjuvants to good clinical judgement. PMID:29464146

  8. Assessment of variability in cerebral vasculature for neuro-anatomical surgery planning in rodent brain

    NASA Astrophysics Data System (ADS)

    Rangarajan, J. R.; Van Kuyck, K.; Himmelreich, U.; Nuttin, B.; Maes, F.; Suetens, P.

    2011-03-01

    Clinical and pre-clinical studies show that deep brain stimulation (DBS) of targeted brain regions by neurosurgical techniques ameliorate psychiatric disorder such as anorexia nervosa. Neurosurgical interventions in preclinical rodent brain are mostly accomplished manually with a 2D atlas. Considering both the large number of animals subjected to stereotactic surgical experiments and the associated imaging cost, feasibility of sophisticated pre-operative imaging based surgical path planning and/or robotic guidance is limited. Here, we spatially normalize vasculature information and assess the intra-strain variability in cerebral vasculature for a neurosurgery planning. By co-registering and subsequently building a probabilistic vasculature template in a standard space, we evaluate the risk of a user defined electrode trajectory damaging a blood vessel on its path. The use of such a method may not only be confined to DBS therapy in small animals, but also could be readily applicable to a wide range of stereotactic small animal surgeries like targeted injection of contrast agents and cell labeling applications.

  9. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  10. Geometric Limitations Of Ultrasonic Measurements

    NASA Astrophysics Data System (ADS)

    von Nicolai, C.; Schilling, F.

    2006-12-01

    Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.

  11. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P [Richland, WA; Posakony, Gerald J [Richland, WA; Bond, Leonard J [Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA

    2003-01-14

    The present invention is an apparatus and method for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  12. The efficiency of ultrasonic oscillations transfer into the load

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Abramov, V. O.; Mullakaev, M. S.; Artem'ev, V. V.

    2009-11-01

    The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.

  13. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  14. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.

    PubMed

    Aboul-Hosn Centenero, Samir; Hernández-Alfaro, Federico

    2012-02-01

    The aim of this article is to determine the advantages of 3D planning in predicting postoperative results and manufacturing surgical splints using CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) technology in orthognathic surgery when the software program Simplant OMS 10.1 (Materialise(®), Leuven, Belgium) was used for the purpose of this study which was carried out on 16 patients. A conventional preoperative treatment plan was devised for each patient following our Centre's standard protocol, and surgical splints were manufactured. These splints were used as study controls. The preoperative treatment plans devised were then transferred to a 3D-virtual environment on a personal computer (PC). Surgery was simulated, the prediction of results on soft and hard tissue produced, and surgical splints manufactured using CAD/CAM technology. In the operating room, both types of surgical splints were compared and the degree of similitude in results obtained in three planes was calculated. The maxillary osteotomy line was taken as the point of reference. The level of concordance was used to compare the surgical splints. Three months after surgery a second set of 3D images were obtained and used to obtain linear and angular measurements on screen. Using the Intraclass Correlation Coefficient these postoperative measurements were compared with the measurements obtained when predicting postoperative results. Results showed that a high degree of correlation in 15 of the 16 cases. A high coefficient of correlation was obtained in the majority of predictions of results in hard tissue, although less precise results were obtained in measurements in soft tissue in the labial area. The study shows that the software program used in the study is reliable for 3D planning and for the manufacture of surgical splints using CAD/CAM technology. Nevertheless, further progress in the development of technologies for the acquisition of 3D images, new versions of software programs

  16. Sparse signal representation and its applications in ultrasonic NDE.

    PubMed

    Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M

    2012-03-01

    Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  18. Ten steps to plan, design, and implement an endocrinology and endocrine surgery module for the Faculty of Medicine, Al-Baha University.

    PubMed

    Elfakey, Walyeldin Em; Al-Ghamdi, Ahmed H

    2016-01-01

    The Faculty of Medicine, Al-Baha University (FMBU), is a newly established medical school that implements a community-oriented and integrated system-based curriculum which is suitable for both medical students and serving the needs of the local community. The aim of this study is to describe the steps that were followed to plan, design, and implement an endocrinology and endocrine surgery module (EESM) for the fourth-year medical students, as an example of how system-based modules are designed at FMBU. Ten questions based on Harden's methodolgy were asked in order to design, plan, and implement an endocrinology and endocrine surgery module. The module committee determined the needs of the module and accordingly stated the aims and objectives of the module. The module planners selected the relevant contents, teaching methods, and assessment strategies and organized them. After addressing each of the ten questions, the results indicated the need, aim, objectives, and contents for the endocrinology and endocrine surgery module at FMBU. The implementation strategies were chosen according to the SPICES model. The teaching methods and the assessment strategies were selected and arranged. The module is well communicated at all levels, and the module committee used every effort to create a productive teaching environment. The module is well managed and follows the hierarchy of FMBU. Implementing Harden's ten steps methodology resulted in an integrated module of endocrinology and endocrine surgery where related disciplines and systems were merged and medical and surgical endocrine topics were included.

  19. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  20. Surgical Efficacy Among Laparoscopic Ultrasonic Dissectors: Are We Advancing Safely? A Review of Literature.

    PubMed

    Devassy, Rajesh; Gopalakrishnan, Sreelatha; De Wilde, Rudy Leon

    2015-10-01

    The specialty of laparoscopy has evolved with the advent of new technologies over the last few years. Energy-based devices and Ultrasonic dissectors are used with a lot of factors in play-including ergonomics and economics during surgery. Here an attempt is based to review the surgical efficacy and safety of these dissectors with importance to plume production and lateral thermal damage. The factors contributing to adversities to the dissectors are also to be noted. The strategy adopted was aimed at finding relevant studies from PubMed from 1995 to 2014. The basic principle of plume production and thermal damage are studied in this review. Factors contributing to the same that can lead to adversities during laparoscopic surgeries are identified. Summarizing key points that increase lateral thermal damage and plume production amongst different ultrasonic shears and suggesting a technique to identify the right balance between the existing dissectors was possible. The RF Device and USS are both useful and widely used and are more safer than monopolar devices. RF Device is considerably slower than USS, as it cannot achieve coagulation and cutting at the same time. Although USS definitely improvises dissection and has less thermal injury than RF Device, the clinical implications in balancing dissection efficacy with hemostasis need to be investigated further. The ideal haemostatic energy-based shear device would be one with excellent hemostatic results and visual acuity while allowing none or minimal thermal energy escape at the point of application. In our current setting, a combined use of both RF and USS device usage as applied in the particular situations has potential.

  1. The Clinical Value of Prenatal 3D Ultrasonic Diagnosis on Fetus Hemivertebra Deformity- A Preliminary Study.

    PubMed

    Wen, Yanting; Xiang, Guishuang; Liang, Xiaoqiu; Tong, Xiaoqian

    2018-02-01

    The present study is planned to discuss the clinical value of prenatal 3D ultra-sonic diagnosis on fetus hemivertebra deformity through the retrospective analysis of clinical data of fetus hemivertebra deformity. Selected 9 fetus hemivertebra deformity cases, which have been admitted to our hospital during the period from January, 2010 to January, 2016 as study samples, and analyzed their 2D and 3D ultrasonic examination data. 4 cases of the fetus hemivertebra deformity occurred at lumbar vertebra, 3 cases at thoracic vertebra, and 2 cases at thoracolumbar vertebra. There were scoliosis and opened spine bifida (OSB). In 7 cases, there was absence of ribs in fetus. The 2D ultrasonic image showed that: The echo at the center of fetus vertebral arch lesion was blurred or lost. The coronal section showed the deformity of the spine. There was obvious loss of the ossification center. From the cross section, we could see that the vertebral body of the fetus was shrinking and the edges were relatively blurred. The 3D ultrasonic image showed that: the echo at the ossification center of the fetus vertebra was relatively blurred, or even lost. The image also indicated scoliosis deformity of the spine. The vertebral body lesion could be accurately located. 9 cases of fetus hemivertebra deformity have been detected through examination. Labor inductions have been carried out after getting the permission from the family members. The X-ray examination of the fetus after labor induction showed that the diagnosis was correct. Prenatal ultra-sonic examination holds strong potential for the diagnosis of fetus hemivertebra deformity quite early and deserves further clinical evaluation with large sample size.

  2. Endoscopic endonasal trans-sphenoid surgery of pituitary adenoma

    PubMed Central

    Yadav, YR; Sachdev, S; Parihar, V; Namdev, H; Bhatele, PR

    2012-01-01

    Endoscopic endonasal trans-sphenoid surgery (EETS) is increasingly used for pituitary lesions. Pre-operative CT and MRI scans and peroperative endoscopic visualization can provide useful anatomical information. EETS is indicated in sellar, suprasellar, intraventricular, retro-infundibular, and invasive tumors. Recurrent and residual lesions, pituitary apoplexy and empty sella syndrome can be managed by EETS. Modern neuronavigation techniques, ultrasonic aspirators, ultrasonic bone curette can add to the safety. The binostril approach provides a wider working area. High definition camera is much superior to three-chip camera. Most of the recent reports favor EETS in terms of safety, quality of life and tumor resection, hospital stay, better endocrinological, and visual outcome as compared to the microscopic technique. Nasal symptoms, blood loss, operating time are less in EETS. Various naso-septal flaps and other techniques of CSF leak repair could help reduce complications. Complications can be further reduced after achieving the learning curve, good understanding of limitations with proper patient selection. Use of neuronavigation, proper post-operative care of endocrine function, establishing pituitary center of excellence and more focused residency and endoscopic fellowship training could improve results. The faster and safe transition from microscopic to EETS can be done by the team concept of neurosurgeon/otolaryngologist, attending hands on cadaveric dissection, practice on models, and observation of live surgeries. Conversion to a microscopic or endoscopic-assisted approach may be required in selected patients. Multi-modality treatment could be required in giant and invasive tumors. EETS appears to be a better surgical option in most pituitary adenoma. PMID:23188987

  3. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section 892.1570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer...

  4. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  5. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  6. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-04-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  7. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed

  8. Energy characterisation of ultrasonic systems for industrial processes.

    PubMed

    Al-Juboori, Raed A; Yusaf, Talal; Bowtell, Leslie; Aravinthan, Vasantha

    2015-03-01

    Obtaining accurate power characteristics of ultrasonic treatment systems is an important step towards their industrial scalability. Calorimetric measurements are most commonly used for quantifying the dissipated ultrasonic power. However, accuracy of these measurements is affected by various heat losses, especially when working at high power densities. In this work, electrical power measurements were conducted at all locations in the piezoelectric ultrasonic system equipped with ½″ and ¾″ probes. A set of heat transfer calculations were developed to estimate the convection heat losses from the reaction solution. Chemical dosimeters represented by the oxidation of potassium iodide, Fricke solution and 4-nitrophenol were used to chemically correlate the effect of various electrical amplitudes and treatment regimes. This allowed estimation of sonochemical-efficiency (SE) and energy conversion (XUS) of the ultrasonic system. Results of this study showed overall conversion efficiencies of 60-70%. This correlated well with the chemical dosimeter yield curves of both organic and inorganic aqueous solutions. All dosimeters showed bubble shielding and coalescence effects at higher ultrasonic power levels, less pronounced for the ½″ probe case. SE and XUS values in the range of 10(-10) mol/J and 10(-3) J/J respectively confirmed that conversion of ultrasonic power to chemical yield declined with amplitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Stress measurement in thick plates using nonlinear ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less

  10. Integrated ultrasonic and petrographical characterization of carbonate building materials

    NASA Astrophysics Data System (ADS)

    Ligas, Paola; Fais, Silvana; Cuccuru, Francesco

    2014-05-01

    This paper presents the application of non-destructive ultrasonic techniques in evaluating the conservation state and quality of monumental carbonate building materials. Ultrasonic methods are very effective in detecting the elastic characteristics of the materials and thus their mechanical behaviour. They are non-destructive and effective both for site and laboratory tests, though it should be pointed out that ultrasonic data interpretation is extremely complex, since elastic wave velocity heavily depends on moisture, heterogeneity, porosity and other physical properties of the materials. In our study, considering both the nature of the building materials and the constructive types of the investigated monuments, the ultrasonic investigation was carried out in low frequency ultrasonic range (24 kHz - 54 kHz) with the aim of detecting damages and degradation zones and assessing the alterability of the investigated stones by studying the propagation of the longitudinal ultrasonic pulses. In fact alterations in the materials generally cause a decrease in longitudinal pulse velocity values. Therefore starting from longitudinal velocity values the elasto-mechanical behaviour of the stone materials can be deduced. To this aim empirical and effective relations between longitudinal velocity and mechanical properties of the rocks can be used, by transferring the fundamental concepts of the studies of reservoir rocks in the framework of hydrocarbon research to the diagnostic process on stone materials. The ultrasonic measurements were performed both in laboratory and in situ using the Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT) by C.N.S. Electronics LTD. A number of experimental sessions were carried out choosing different modalities of data acquisition. On the basis of the results of the laboratory measurements, an in situ ultrasonic survey on significant monuments, have been carried out. The ultrasonic measurements were integrated by a

  11. Covering bariatric surgery has minimal effect on insurance premium costs within the Affordable Care Act.

    PubMed

    English, Wayne; Williams, Brandon; Scott, John; Morton, John

    2016-06-01

    Currently, of the 51 state health exchanges operating under the Affordable Care Act, only 23 include benchmark plans that cover bariatric surgery coverage. Bariatric surgery coverage is not considered an essential health benefit in 28 state exchanges, and this lack of coverage has a discriminatory and detrimental impact on millions of Americans participating in state exchanges that do not provide bariatric surgery coverage. We examined 3 state exchanges in which a portion of their plans provided coverage for bariatric surgery to determine if bariatric surgery coverage is correlated with premium costs. State health exchanges; United States. Data from the 2015 state exchange plans were analyzed using information from the Centers for Medicare & Medicaid Services' Individual Market Landscape file and Benefits and Cost Sharing public use files. Only 3 states (Oklahoma, Oregon, and Virginia) in the analysis have 1 or more rating regions in which a portion of the plans cover bariatric surgery. In Oklahoma and Oregon, the average monthly premiums for all bronze, silver, and gold coverage levels are higher for plans covering bariatric surgery. Only 1 of these states included platinum plans that cover bariatric surgery. The average difference in premiums was between $1 to $45 higher in Oklahoma, and $18 to $32 higher in Oregon. Conversely, in Virginia, the average monthly premiums are between $2 and $21 lower for each level for plans covering bariatric surgery. Monthly premiums for plans covering versus not covering bariatric surgery ranged from 6% lower to 15% higher in the same geographic rating region. Across all 3 states in the sample, the average monthly premiums do not differ consistently on the basis of whether the state exchange plans cover bariatric surgery. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  12. Computer-assisted virtual preoperative planning in orthopedic surgery for acetabular fractures based on actual computed tomography data.

    PubMed

    Wang, Guang-Ye; Huang, Wen-Jun; Song, Qi; Qin, Yun-Tian; Liang, Jin-Feng

    2016-12-01

    Acetabular fractures have always been very challenging for orthopedic surgeons; therefore, appropriate preoperative evaluation and planning are particularly important. This study aimed to explore the application methods and clinical value of preoperative computer simulation (PCS) in treating pelvic and acetabular fractures. Spiral computed tomography (CT) was performed on 13 patients with pelvic and acetabular fractures, and Digital Imaging and Communications in Medicine (DICOM) data were then input into Mimics software to reconstruct three-dimensional (3D) models of actual pelvic and acetabular fractures for preoperative simulative reduction and fixation, and to simulate each surgical procedure. The times needed for virtual surgical modeling and reduction and fixation were also recorded. The average fracture-modeling time was 45 min (30-70 min), and the average time for bone reduction and fixation was 28 min (16-45 min). Among the surgical approaches planned for these 13 patients, 12 were finally adopted; 12 cases used the simulated surgical fixation, and only 1 case used a partial planned fixation method. PCS can provide accurate surgical plans and data support for actual surgeries.

  13. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  14. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  15. A traveling wave ultrasonic motor of high torque.

    PubMed

    Chen, Y; Liu, Q L; Zhou, T Y

    2006-12-22

    A traveling wave ultrasonic motor of high torque with a new configuration is proposed in this paper. In the new design, a part of the motor serves as the stator. The rotor is the vibrator consisting of a toothed metal ring with piezoelectric ceramic bonded, which generates ultrasonic vibration. The rotor is in contact with the shell of motor and is driven by the friction between the rotor and the stator. This configuration not only removes the rotor in a conventional type of traveling wave ultrasonic motor but also changes the interaction between the rotor and the stator of the motor so that it improves the output performance of the motor. Although an electric brush is added to the ultrasonic motor, it is easy to be fabricated because of the low speed of motor. The finite element method was used to compute the vibration modes of an ultrasonic motor with a diameter of 100mm to optimize the design of the motor. A 9th mode was chosen as the operation mode with a resonance frequency about 25 kHz. According to the design, a prototype was fabricated. Its performance was measured. The rotation speed-torque curves for various frequencies were obtained. The result shows that its stall torque is greater than 4 Nm within a range of 400 Hz. This ultrasonic motor was used to drive the window glass of a mobile car and the result was satisfactory. In the further the research on the friction material between the stator and the rotor is under way to improve the efficiency of the ultrasonic motor.

  16. Ultrasonic fingerprinting by phased array transducer

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.

    2016-06-01

    Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.

  17. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  18. Literature review of the energy sources for performing laparoscopic colorectal surgery

    PubMed Central

    Hotta, Tsukasa; Takifuji, Katsunari; Yokoyama, Shozo; Matsuda, Kenji; Higashiguchi, Takashi; Tominaga, Toshiji; Oku, Yoshimasa; Watanabe, Takashi; Nasu, Toru; Hashimoto, Tadamichi; Tamura, Koichi; Ieda, Junji; Yamamoto, Naoyuki; Iwamoto, Hiromitsu; Yamaue, Hiroki

    2012-01-01

    Laparoscopic surgery for colorectal disease has become widespread as a minimally invasive treatment. This is important because the increasing availability of new devices allows us to perform procedures with a reduced length of surgery and decreased blood loss. We herein report the results of a literature review of energy sources for laparoscopic colorectal surgery, focused especially on 6 studies comparing ultrasonic coagulating shears (UCS) and other instruments. We also describe our laparoscopic dissection techniques using UCS for colorectal cancer. The short-term outcomes of surgeries using UCS and Ligasure for laparoscopic colorectal surgery were superior to conventional electrosurgery. Some authors have reported that the length of surgery or blood loss when Ligasure was used for laparoscopic colorectal surgery is less than when UCS was used. On the other hand, a recent study demonstrated that there were no significant differences between the short-term outcomes of UCS and Ligasure for laparoscopic colorectal surgery. It is therefore suggested that the choice of technique used should be made according to the surgeon’s preference. We also describe our laparoscopic dissection techniques using UCS (Harmonic ACE) for colorectal cancer with regard to the retroperitoneum dissection, dissection technique, dissection technique around the feeding artery, and various other dissection techniques. We therefore review the outcomes of using various energy sources for laparoscopic colorectal surgery and describe our laparoscopic dissection techniques with UCS (Harmonic ACE) for colorectal cancer. PMID:22347536

  19. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  20. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  1. Ultrasonic imaging of textured alumina

    NASA Technical Reports Server (NTRS)

    Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.

    1989-01-01

    Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.

  2. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  3. On Limitations of the Ultrasonic Characterization of Pieces Manufactured with Highly Attenuating Materials

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.

    Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.

  4. Ultrasonic interface level analyzer shop test procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAEHR, T.W.

    1999-05-24

    The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less

  5. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  6. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  7. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  8. Ultrasonic enhancing amorphization during synthesis of calcium phosphate.

    PubMed

    He, Kun; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2014-03-01

    Amorphous calcium phosphate (ACP) has great application potential in biomaterials field due to its non-cytotoxicity, high bioactivity, good cytocompatibility, and so on. The results of this research demonstrated that ultrasonic obviously enhanced amorphization during synthesis of calcium phosphate. The ACP phase was relatively ideal when the solvent of Ca(NO3)2·4H2O was ethanol and the solvent of (NH4)2HPO4 was a mixture of water and ethanol, under ultrasonic. In-situ crystallization of ACP could be observed by HRTEM. The mechanism on the effects of ultrasonic on amorphization of the synthesized calcium phosphate was discussed. It was suggested that ultrasonic synthesis might be a facile method to prepare pure and safe ACP related biomaterials. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Rapid prototyping in planning reconstructive surgery of the head and neck. Review and evaluation of indications in clinical use].

    PubMed

    Bill, J S; Reuther, J F

    2004-05-01

    The aim was to define the indications for use of rapid prototyping models based on data of patients treated with this technique. Since 1987 our department has been developing methods of rapid prototyping in surgery planning. During the study, first the statistical and reproducible anatomical precision of rapid prototyping models was determined on pig skull measurements depending on CT parameters and method of rapid prototyping. Measurements on stereolithography models and on selective laser sintered models confirmed an accuracy of +/-0.88 mm or 2.7% (maximum deviation: -3.0 mm to +3.2 mm) independently from CT parameters or method of rapid prototyping, respectively. With the same precision of models multilayer helical CT with a higher rate is the preferable method of data acquisition compared to conventional helical CT. From 1990 to 2002 in atotal of 122 patients, 127 rapid prototyping models were manufactured: in 112 patients stereolithography models, in 2 patients an additional stereolithography model, in 2 patients an additional selective laser sinter model, in 1 patient an additional milled model, and in 10 patients just a selective laser sinter model. Reconstructive surgery, distraction osteogenesis including midface distraction, and dental implantology are proven to be the major indications for rapid prototyping as confirmed in a review of the literature. Surgery planning on rapid prototyping models should only be used in individual cases due to radiation dose and high costs. Routine use of this technique only seems to be indicated in skull reconstruction and distraction osteogenesis.

  10. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  11. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  12. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  13. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    NASA Astrophysics Data System (ADS)

    Corona, E.; García-Pérez, J. V.; Santacatalina, J. V.; Peña, R.; Benedito, J.

    2012-12-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  15. New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.

  16. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    PubMed

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  17. Transfusion Indication Threshold Reduction (TITRe2) randomized controlled trial in cardiac surgery: statistical analysis plan.

    PubMed

    Pike, Katie; Nash, Rachel L; Murphy, Gavin J; Reeves, Barnaby C; Rogers, Chris A

    2015-02-22

    The Transfusion Indication Threshold Reduction (TITRe2) trial is the largest randomized controlled trial to date to compare red blood cell transfusion strategies following cardiac surgery. This update presents the statistical analysis plan, detailing how the study will be analyzed and presented. The statistical analysis plan has been written following recommendations from the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, prior to database lock and the final analysis of trial data. Outlined analyses are in line with the Consolidated Standards of Reporting Trials (CONSORT). The study aims to randomize 2000 patients from 17 UK centres. Patients are randomized to either a restrictive (transfuse if haemoglobin concentration <7.5 g/dl) or liberal (transfuse if haemoglobin concentration <9 g/dl) transfusion strategy. The primary outcome is a binary composite outcome of any serious infectious or ischaemic event in the first 3 months following randomization. The statistical analysis plan details how non-adherence with the intervention, withdrawals from the study, and the study population will be derived and dealt with in the analysis. The planned analyses of the trial primary and secondary outcome measures are described in detail, including approaches taken to deal with multiple testing, model assumptions not being met and missing data. Details of planned subgroup and sensitivity analyses and pre-specified ancillary analyses are given, along with potential issues that have been identified with such analyses and possible approaches to overcome such issues. ISRCTN70923932 .

  18. Non-destructive ultrasonic measurements of case depth. [in steel

    NASA Technical Reports Server (NTRS)

    Flambard, C.; Lambert, A.

    1978-01-01

    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described.

  19. Spare-Part Surgery

    PubMed Central

    Peng, Yeong Pin; Lahiri, Amitabha

    2013-01-01

    The authors discuss the use of scavenged tissue for reconstruction of an injured limb, also referred to as “spare-part surgery.” It forms an important part of overall reconstructive strategy. Though some principles can be laid down, there is no “textbook” method for the surgeon to follow. Successful application of this strategy requires understanding of the concept, accurate judgment, and the ability to plan “on-the-spot,” as well as knowledge and skill to improvise composite flaps from nonsalvageable parts. Requirements for limb reconstruction vary from simple solutions such as tissue coverage, which include skin grafts or flaps to more complex planning as in functional reconstruction of the hand, where the functional importance of individual digits as well as the overall prehensile function of the hand needs to be addressed right from the time of primary surgery. The incorporation of the concept of spare-part surgery allows the surgeon to carry out primary reconstruction of the limb without resorting to harvest tissue from other regions of the body. PMID:24872768

  20. Cone Beam Computed Tomography Evaluation of the Diagnosis, Treatment Planning, and Long-Term Followup of Large Periapical Lesions Treated by Endodontic Surgery: Two Case Reports

    PubMed Central

    Shekhar, Vijay; Shashikala, K.

    2013-01-01

    The aim of this case report is to present two cases where cone beam computed tomography (CBCT) was used for the diagnosis, treatment planning, and followup of large periapical lesions in relation to maxillary anterior teeth treated by endodontic surgery. Periapical disease may be detected sooner using CBCT, and their true size, extent, nature, and position can be assessed. It allows clinician to select the most relevant views of the area of interest resulting in improved detection of periapical lesions. CBCT scan may provide a better, more accurate, and faster method to differentially diagnose a solid (granuloma) from a fluid-filled lesion or cavity (cyst). In the present case report, endodontic treatment was performed for both the cases followed by endodontic surgery. Biopsy was done to establish the confirmatory histopathological diagnosis of the periapical lesions. Long-term assessment of the periapical healing following surgery was done in all the three dimensions using CBCT and was found to be more accurate than IOPA radiography. It was concluded that CBCT was a useful modality in making the diagnosis and treatment plan and assessing the outcome of endodontic surgery for large periapical lesions. PMID:23762646

  1. Decomposition of cellulose by ultrasonic welding in water

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Miyagawa, Seiya; Mukasa, Shinobu; Toyota, Hiromichi

    2016-07-01

    The use of ultrasonic welding in water to decompose cellulose placed in water was examined experimentally. Filter paper was used as the decomposition material with a horn-type transducer 19.5 kHz adopted as the ultrasonic welding power source. The frictional heat at the point where the surface of the tip of the ultrasonic horn contacts the filter paper decomposes the cellulose in the filter paper into 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharide through hydrolysis and thermolysis that occurs in the welding process.

  2. Clinical tests of an ultrasonic periodontal probe

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.

    2002-05-01

    A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.

  3. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  4. A web-based computer aided system for liver surgery planning: initial implementation on RayPlus

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Yuan, Rong; Sun, Zhi; Li, Tianhong; Xie, Qingguo

    2016-03-01

    At present, computer aided systems for liver surgery design and risk evaluation are widely used in clinical all over the world. However, most systems are local applications that run on high-performance workstations, and the images have to processed offline. Compared with local applications, a web-based system is accessible anywhere and for a range of regardless of relative processing power or operating system. RayPlus (http://rayplus.life.hust.edu.cn), a B/S platform for medical image processing, was developed to give a jump start on web-based medical image processing. In this paper, we implement a computer aided system for liver surgery planning on the architecture of RayPlus. The system consists of a series of processing to CT images including filtering, segmentation, visualization and analyzing. Each processing is packaged into an executable program and runs on the server side. CT images in DICOM format are processed step by to interactive modeling on browser with zero-installation and server-side computing. The system supports users to semi-automatically segment the liver, intrahepatic vessel and tumor from the pre-processed images. Then, surface and volume models are built to analyze the vessel structure and the relative position between adjacent organs. The results show that the initial implementation meets satisfactorily its first-order objectives and provide an accurate 3D delineation of the liver anatomy. Vessel labeling and resection simulation are planned to add in the future. The system is available on Internet at the link mentioned above and an open username for testing is offered.

  5. Development of an Ultrasonic Resonator for Ballast Water Disinfection

    NASA Astrophysics Data System (ADS)

    Osman, Hafiiz; Lim, Fannon; Lucas, Margaret; Balasubramaniam, Prakash

    Ultrasonic disinfection involves the application of low-frequency acoustic energy in a water body to induce cavitation. The implosion of cavitation bubbles generates high speed microjets >1 km/s, intense shock wave >1 GPa, localized hot spots >1000 K, and free-radicals, resulting in cell rupture and death of micro-organisms and pathogens. Treatment of marine ballast water using power ultrasonics is an energy-intensive process. Compared with other physical treatment methods such as ultraviolet disinfection, ultrasonic disinfection require 2 to 3 orders of magnitude more energy to achieve similar rate of micro-organism mortality. Current technology limits the amount of acoustic energy that can be transferred per unit volume of fluid and presents challenges when it comes to high-flow applications. Significant advancements in ultrasonic processing technology are needed before ultrasound can be recognized as a viable alternative disinfection method. The ultrasonic resonator has been identified as one of the areas of improvement that can potentially contribute to the overall performance of an ultrasonic disinfection system. The present study focuses on the design of multiple-orifice resonators (MOR) for generating a well-distributed cavitation field. Results show that the MOR resonator offers significantly larger vibrational surface area to mass ratio. In addition, acoustic pressure measurements indicate that the MOR resonators are able to distribute the acoustic energy across a larger surface area, while generating 2-4 times higher pressures than existing ultrasonic probes.

  6. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  7. Ultrasonically assisted drilling of rocks

    NASA Astrophysics Data System (ADS)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  8. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  9. Ultrasonic control of ceramic membrane fouling by particles: effect of ultrasonic factors.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-07-01

    Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.

  10. Calibration of ultrasonic power output in water, ethanol and sodium polytungstate

    NASA Astrophysics Data System (ADS)

    Mentler, Axel; Schomakers, Jasmin; Kloss, Stefanie; Zechmeister-Boltenstern, Sophie; Schuller, Reinhard; Mayer, Herwig

    2017-10-01

    Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm-3 and 1.8 g cm-3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.

  11. Chemical coloring on stainless steel by ultrasonic irradiation.

    PubMed

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Method and system having ultrasonic sensor movable by translation device for ultrasonic profiling of weld samples

    DOEpatents

    Panyard, James; Potter, Timothy; Charron, William; Hopkins, Deborah; Reverdy, Frederic

    2010-04-06

    A system for ultrasonic profiling of a weld sample includes a carriage movable in opposite first and second directions. An ultrasonic sensor is coupled to the carriage to move over the sample as the carriage moves. An encoder determines the position of the carriage to determine the position of the sensor. A spring is connected at one end of the carriage. Upon the carriage being moved in the first direction toward the spring such that the carriage and the sensor are at a beginning position and the spring is compressed the spring decompresses to push the carriage back along the second direction to move the carriage and the sensor from the beginning position to an ending position. The encoder triggers the sensor to take the ultrasonic measurements of the sample when the sensor is at predetermined positions while the sensor moves over the sample between the beginning and positions.

  13. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    NASA Astrophysics Data System (ADS)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  14. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  15. Ultrasonic Nondestructive Evaluation of Damage in Continuous Fiber Composites

    DTIC Science & Technology

    1989-01-01

    Security Classification) Ultrasonic Nondestructive Evalustion of Damage in Continuous Fiber Composites 12. PERSONAL AUTHOR(S) Vikram K. Kinra 13a...Attenuatiorn Composites , Damage / " UltrasonicNondestructive Evaluation. \\ ’k 19. ABSTRACT (Continue on reverse if necessary and identify by block n,,ber) A...n SIrIE -~ 2 4IiCUi’.ZIEfEi Ultrasonic nondestructive evaluation of fibre-reinforced composite materials - a review VIKRAM K KINRA and VINAY DAYAL

  16. Ultrasonic weld testing.

    DOT National Transportation Integrated Search

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  17. System and technique for ultrasonic determination of degree of cooking

    DOEpatents

    Bond, Leonard J [Richland, WA; Diaz, Aaron A [W. Richland, WA; Judd, Kayte M [Richland, WA; Pappas, Richard A [Richland, WA; Cliff, William C [Richland, WA; Pfund, David M [Richland, WA; Morgen, Gerald P [Kennewick, WA

    2007-03-20

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  18. Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.

    PubMed

    Chen, Kunkun; Zhang, Yansong; Wang, Hongze

    2017-03-01

    Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Computational Modeling in Liver Surgery

    PubMed Central

    Christ, Bruno; Dahmen, Uta; Herrmann, Karl-Heinz; König, Matthias; Reichenbach, Jürgen R.; Ricken, Tim; Schleicher, Jana; Ole Schwen, Lars; Vlaic, Sebastian; Waschinsky, Navina

    2017-01-01

    The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery. PMID:29249974

  20. Errors in measurements by ultrasonic thickness gauges caused by the variation in ultrasonic velocity in constructional steels and metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, V.A.; Tarasenko, V.L.; Tselser, L.B.

    1988-09-01

    Numerical values of the variation in ultrasonic velocity in constructional metal alloys and the measurement errors related to them are systematized. The systematization is based on the measurement results of the group ultrasonic velocity made in the All-Union Scientific-Research Institute for Nondestructive Testing in 1983-1984 and also on the measurement results of the group velocity made by various authors. The variations in ultrasonic velocity were systematized for carbon, low-alloy, and medium-alloy constructional steels; high-alloy iron base alloys; nickel-base heat-resistant alloys; wrought aluminum constructional alloys; titanium alloys; and cast irons and copper alloys.

  1. Ultrasonically activated scalpel versus monopolar electrocautery shovel in laparoscopic total mesorectal excision for rectal cancer.

    PubMed

    Zhou, Bao-Jun; Song, Wei-Qing; Yan, Qing-Hui; Cai, Jian-Hui; Wang, Feng-An; Liu, Jin; Zhang, Guo-Jian; Duan, Guo-Qiang; Zhang, Zhan-Xue

    2008-07-07

    To investigate the feasibility and safety of monopolar electrocautery shovel (ES) in laparoscopic total mesorectal excision (TME) with anal sphincter preservation for rectal cancer in order to reduce the cost of the laparoscopic operation, and to compare ES with the ultrasonically activated scalpel (US). Forty patients with rectal cancer, who underwent laparoscopic TME with anal sphincter preservation from June 2005 to June 2007, were randomly divided into ultrasonic scalpel group and monopolar ES group, prospectively. White blood cells (WBC) were measured before and after operation, operative time, blood loss, pelvic volume of drainage, time of anal exhaust, visual analogue scales (VAS) and surgery-related complications were recorded. All the operations were successful; no one was converted to open procedure. No significant differences were observed in terms of preoperative and postoperative d 1 and d 3 WBC counts (P=0.493, P=0.375, P=0.559), operation time (P=0.235), blood loss (P=0.296), anal exhaust time (P=0.431), pelvic drainage volume and VAS in postoperative d 1 (P=0.431, P=0.426) and d 3 (P=0.844, P=0.617) between ES group and US group. The occurrence of surgery-related complications such as anastomotic leakage and wound infection was the same in the two groups. ES is a safe and feasible tool as same as US used in laparoscopic TME with anal sphincter preservation for rectal cancer on the basis of the skillful laparoscopic technique and the complete understanding of laparoscopic pelvic anatomy. Application of ES can not only reduce the operation costs but also benefit the popularization of laparoscopic operation for rectal cancer patients.

  2. Ultrasonically activated scalpel versus monopolar electrocautery shovel in laparoscopic total mesorectal excision for rectal cancer

    PubMed Central

    Zhou, Bao-Jun; Song, Wei-Qing; Yan, Qing-Hui; Cai, Jian-Hui; Wang, Feng-An; Liu, Jin; Zhang, Guo-Jian; Duan, Guo-Qiang; Zhang, Zhan-Xue

    2008-01-01

    AIM: To investigate the feasibility and safety of monopolar electrocautery shovel (ES) in laparoscopic total mesorectal excision (TME) with anal sphincter preservation for rectal cancer in order to reduce the cost of the laparoscopic operation, and to compare ES with the ultrasonically activated scalpel (US). METHODS: Forty patients with rectal cancer, who underwent laparoscopic TME with anal sphincter preservation from June 2005 to June 2007, were randomly divided into ultrasonic scalpel group and monopolar ES group, prospectively. White blood cells (WBC) were measured before and after operation, operative time, blood loss, pelvic volume of drainage, time of anal exhaust, visual analogue scales (VAS) and surgery-related complications were recorded. RESULTS: All the operations were successful; no one was converted to open procedure. No significant differences were observed in terms of preoperative and postoperative d 1 and d 3 WBC counts (P = 0.493, P = 0.375, P = 0.559), operation time (P = 0.235), blood loss (P = 0.296), anal exhaust time (P = 0.431), pelvic drainage volume and VAS in postoperative d 1 (P = 0.431, P = 0.426) and d 3 (P = 0.844, P = 0.617) between ES group and US group. The occurrence of surgery-related complications such as anastomotic leakage and wound infection was the same in the two groups. CONCLUSION: ES is a safe and feasible tool as same as US used in laparoscopic TME with anal sphincter preservation for rectal cancer on the basis of the skillful laparoscopic technique and the complete understanding of laparoscopic pelvic anatomy. Application of ES can not only reduce the operation costs but also benefit the popularization of laparoscopic operation for rectal cancer patients. PMID:18609692

  3. Ultrasonic probe for inspecting double-wall tube

    DOEpatents

    Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  4. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  5. Customized "In-Office" Three-Dimensional Printing for Virtual Surgical Planning in Craniofacial Surgery.

    PubMed

    Mendez, Bernardino M; Chiodo, Michael V; Patel, Parit A

    2015-07-01

    Virtual surgical planning using three-dimensional (3D) printing technology has improved surgical efficiency and precision. A limitation to this technology is that production of 3D surgical models requires a third-party source, leading to increased costs (up to $4000) and prolonged assembly times (averaging 2-3 weeks). The purpose of this study is to evaluate the feasibility, cost, and production time of customized skull models created by an "in-office" 3D printer for craniofacial reconstruction. Two patients underwent craniofacial reconstruction with the assistance of "in-office" 3D printing technology. Three-dimensional skull models were created from a bioplastic filament with a 3D printer using computed tomography (CT) image data. The cost and production time for each model were measured. For both patients, a customized 3D surgical model was used preoperatively to plan split calvarial bone grafting and intraoperatively to more efficiently and precisely perform the craniofacial reconstruction. The average cost for surgical model production with the "in-office" 3D printer was $25 (cost of bioplastic materials used to create surgical model) and the average production time was 14  hours. Virtual surgical planning using "in office" 3D printing is feasible and allows for a more cost-effective and less time consuming method for creating surgical models and guides. By bringing 3D printing to the office setting, we hope to improve intraoperative efficiency, surgical precision, and overall cost for various types of craniofacial and reconstructive surgery.

  6. Ultrasonic Method for Measuring Internal Temperature Profile in Heated Materials

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Takahashi, M.

    2008-02-01

    A new ultrasonic method for internal temperature measurement is presented. The principle of the method is based on temperature dependence of the velocity of the ultrasonic wave propagating through the material. An inverse analysis to determine the temperature profile in a heated material is developed and an experiment is carried out to verify the validity of the developed method. A single side of a silicone rubber plate of 30 mm thickness is heated and ultrasonic pulse-echo measurements are then performed during heating. A change in transit time of ultrasonic wave in the heated rubber plate is monitored and used to determine the transient variation in internal temperature distribution of the rubber. The internal temperature distribution determined ultrasonically agrees well with both obtained using commercial thermocouples installed in the rubber and estimated theoretically.

  7. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  8. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ultrasonic dental scaler: associated hazards.

    PubMed

    Trenter, S C; Walmsley, A D

    2003-02-01

    The ultrasonic dental scaler is a valuable tool in the prevention of periodontal disease; however, this equipment has a number of hazards with which it is associated. These include heating of the tooth during scaling, vibrational hazards causing cell disruption, possible platelet damage by cavitation, associated electromagnetic fields that can interrupt pacemakers, auditory damage to patient and clinician and the release of aerosols containing dangerous bacteria. To collate the research reported on the various hazards associated with the ultrasonic dental scaler and discuss possible future research areas. The scientific literature was searched using Web of Science, EMBASE and Medline, and the results of these were then hand-searched to eliminate nonrelevant papers. This review outlines some of the research conducted into these areas of associated hazard in order to assess their significance in the clinical situation, and discusses ideas for future research. Suggestions of recommendations are given, which have been previously investigated for their aid in reducing possible hazards, to ensure the safe working of ultrasonic scalers in the dental practice.

  10. Standardized Protocol for Virtual Surgical Plan and 3-Dimensional Surgical Template-Assisted Single-Stage Mandible Contour Surgery.

    PubMed

    Fu, Xi; Qiao, Jia; Girod, Sabine; Niu, Feng; Liu, Jian Feng; Lee, Gordon K; Gui, Lai

    2017-09-01

    Mandible contour surgery, including reduction gonioplasty and genioplasty, has become increasingly popular in East Asia. However, it is technically challenging and, hence, leads to a long learning curve and high complication rates and often needs secondary revisions. The increasing use of 3-dimensional (3D) technology makes accurate single-stage mandible contour surgery with minimum complication rates possible with a virtual surgical plan (VSP) and 3-D surgical templates. This study is to establish a standardized protocol for VSP and 3-D surgical templates-assisted mandible contour surgery and evaluate the accuracy of the protocol. In this study, we enrolled 20 patients for mandible contour surgery. Our protocol is to perform VSP based on 3-D computed tomography data. Then, design and 3-D print surgical templates based on preoperative VSP. The accuracy of the method was analyzed by 3-D comparison of VSP and postoperative results using detailed computer analysis. All patients had symmetric, natural osteotomy lines and satisfactory facial ratios in a single-stage operation. The average relative error of VSP and postoperative result on the entire skull was 0.41 ± 0.13 mm. The average new left gonial error was 0.43 ± 0.77 mm. The average new right gonial error was 0.45 ± 0.69 mm. The average pognion error was 0.79 ± 1.21 mm. Patients were very satisfied with the aesthetic results. Surgeons were very satisfied with the performance of surgical templates to facilitate the operation. Our standardized protocol of VSP and 3-D printed surgical templates-assisted single-stage mandible contour surgery results in accurate, safe, and predictable outcome in a single stage.

  11. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  12. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  13. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total

  14. Actively adjustable step-type ultrasonic horns in longitudinal vibration

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu; Guo, Hao; Xu, Jie

    2018-04-01

    Actively adjustable longitudinal step-type ultrasonic horns are proposed and studied. The horn is composed of a traditional ultrasonic horn and piezoelectric material. In practical applications, this kind of step-type ultrasonic horn is mechanically excited by an ultrasonic transducer and the piezoelectric material is connected to an adjustable electric impedance. In this research, the effects of the electric impedance and of the location of the piezoelectric material on the performance of the horn are studied. It is shown that when the electric resistance is increased, the resonance frequency of the horn is increased; the displacement magnification is increased when the piezoelectric material is located in the large end and decreased when the piezoelectric material is located in the small end of the horn. The displacement magnification for the piezoelectric material in the large end is larger than that for the piezoelectric material in the small end of the horn. Some step-type ultrasonic horns are designed and manufactured; the resonance frequency and the displacement magnification are measured by means of POLYTEC Laser Scanning vibrometer. It is shown that the theoretical resonance frequency and the displacement magnification are in good agreement with the measured results. It is concluded that by means of the insertion of the piezoelectric material in the longitudinal horn, the horn performance can be adjusted by changing the electric impedance and the location of the piezoelectric material in the horn. It is expected that this kind of adjustable ultrasonic horns can be used in traditional and potential ultrasonic technologies where the vibrational performance adjustment is needed.

  15. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  16. Virtual surgery in a (tele-)radiology framework.

    PubMed

    Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P

    1999-09-01

    This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.

  17. Research on ultrasonic excitation for the removal of drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng

    2017-05-01

    Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Planned Subtotal Resection of Vestibular Schwannoma Differs from the Ideal Radiosurgical Target Defined by Adaptive Hybrid Surgery.

    PubMed

    Sheppard, John P; Lagman, Carlito; Prashant, Giyarpuram N; Alkhalid, Yasmine; Nguyen, Thien; Duong, Courtney; Udawatta, Methma; Gaonkar, Bilwaj; Tenn, Stephen E; Bloch, Orin; Yang, Isaac

    2018-06-01

    To retrospectively compare ideal radiosurgical target volumes defined by a manual method (surgeon) to those determined by Adaptive Hybrid Surgery (AHS) operative planning software in 7 patients with vestibular schwannoma (VS). Four attending surgeons (3 neurosurgeons and 1 ear, nose, and throat surgeon) manually contoured planned residual tumors volumes for 7 consecutive patients with VS. Next, the AHS software determined the ideal radiosurgical target volumes based on a specified radiotherapy plan. Our primary measure was the difference between the average planned residual tumor volumes and the ideal radiosurgical target volumes defined by AHS (dRV AHS-planned ). We included 7 consecutive patients with VS in this study. The planned residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (1.6 vs. 4.5 cm 3 , P = 0.004). On average, the actual post-operative residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (2.2 cm 3 vs. 4.5 cm 3 ; P = 0.02). The average difference between the ideal radiosurgical target volume defined by AHS and the planned residual tumor volume (dRV AHS-planned ) was 2.9 ± 1.7 cm 3 , and we observed a trend toward larger dRV AHS-planned in patients who lost serviceable facial nerve function compared with patients who maintained serviceable facial nerve function (4.7 cm 3 vs. 1.9 cm 3 ; P = 0.06). Planned subtotal resection of VS diverges from the ideal radiosurgical target defined by AHS, but whether that influences clinical outcomes is unclear. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Combined use of ultrasonic liposuction with the pull-through technique for the treatment of gynecomastia.

    PubMed

    Hammond, Dennis C; Arnold, Jame F; Simon, Amy M; Capraro, Philippe A

    2003-09-01

    The authors present a method of treatment for gynecomastia that combines the use of two techniques of soft-tissue contouring. This method uses ultrasonic liposuction in conjunction with the pull-through technique of direct excision to effectively remove the fibrofatty tissue of the male breast and the fibrous breast bud through a single 1-cm incision. Fifteen patients were treated in this fashion, and each patient demonstrated a smooth, masculine breast contour with a well-concealed scar, which eliminates the stigma of breast surgery. The procedure is technically straightforward and provides consistent results. It is offered as an additional option for the treatment of gynecomastia.

  20. Removing function model and experiments on ultrasonic polishing molding die

    NASA Astrophysics Data System (ADS)

    Huang, Qitai; Ni, Ying; Yu, Jingchi

    2010-10-01

    Low temperature glass molding technology is the main method on volume-producing high precision middle and small diameter optical cells in the future. While the accuracy of the molding die will effect the cell precision, so the high precision molding die development is one of the most important part of the low temperature glass molding technology. The molding die is manufactured from high rigid and crisp metal alloy, with the ultrasonic vibration character of high vibration frequency and concentrative energy distribution; abrasive particles will impact the rigid metal alloy surface with very high speed that will remove the material from the work piece. Ultrasonic can make the rigid metal alloy molding die controllable polishing and reduce the roughness and surface error. Different from other ultrasonic fabrication method, untouched ultrasonic polishing is applied on polish the molding die, that means the tool does not touch the work piece in the process of polishing. The abrasive particles vibrate around the balance position with high speed and frequency under the drive of ultrasonic vibration in the liquid medium and impact the workspace surface, the energy of abrasive particles come from ultrasonic vibration, while not from the direct hammer blow of the tool. So a nummular vibrator simple harmonic vibrates on an infinity plane surface is considered as a model of ultrasonic polishing working condition. According to Huygens theory the sound field distribution on a plane surface is analyzed and calculated, the tool removing function is also deduced from this distribution. Then the simple point ultrasonic polishing experiment is proceeded to certificate the theory validity.

  1. Surgery of language-eloquent tumors in patients not eligible for awake surgery: the impact of a protocol based on navigated transcranial magnetic stimulation on presurgical planning and language outcome, with evidence of tumor-induced intra-hemispheric plasticity.

    PubMed

    Raffa, Giovanni; Quattropani, Maria C; Scibilia, Antonino; Conti, Alfredo; Angileri, Filippo Flavio; Esposito, Felice; Sindorio, Carmela; Cardali, Salvatore Massimiliano; Germanò, Antonino; Tomasello, Francesco

    2018-05-01

    Awake surgery and intraoperative monitoring represent the gold standard for surgery of brain tumors located in the perisylvian region of the dominant hemisphere due to their ability to map and preserve the language network during surgery. Nevertheless, in some cases awake surgery is not feasible. This could increase the risk of postoperative language deficit. Navigated transcranial magnetic stimulation (nTMS) and nTMS-based DTI fiber tracking (DTI-FT) provide a preoperative mapping and reconstruction of the cortico-subcortical language network. This can be used to plan and guide the surgical strategy to preserve the language function. The objective if this study is to describe the impact of a non-invasive preoperative protocol for mapping the language network through the nTMS and nTMS-based DTI-FT in patients not eligible for awake surgery and thereby operated under general anesthesia for suspected language-eloquent brain tumors. We reviewed clinical data of patients not eligible for awake surgery and operated under general anaesthesia between 2015 and 2016. All patients underwent nTMS language cortical mapping and nTMS-based DTI-FT of subcortical language fascicles. The nTMS findings were used to plan and guide the maximal safe resection of the tumor. The impact on postoperative language outcome and the accuracy of the nTMS-based mapping in predicting language deficits were evaluated. Twenty patients were enrolled in the study. The nTMS-based reconstruction of the language network was successful in all patients. Interestingly, we observed a significant association between tumor localization and the cortical distribution of the nTMS errors (p = 0.004), thereby suggesting an intra-hemispheric plasticity of language cortical areas, probably induced by the tumor itself. The nTMS mapping disclosed the true-eloquence of lesions in 12 (60%) of all suspected cases. In the remaining 8 cases (40%) the suspected eloquence of the lesion was disproved. The n

  2. Survey of minimally invasive general surgery fellows training in robotic surgery.

    PubMed

    Shaligram, Abhijit; Meyer, Avishai; Simorov, Anton; Pallati, Pradeep; Oleynikov, Dmitry

    2013-06-01

    Minimally invasive surgery fellowships offer experience in robotic surgery, the nature of which is poorly defined. The objective of this survey was to determine the current status and opportunities for robotic surgery training available to fellows training in the United States and Canada. Sixty-five minimally invasive surgery fellows, attending a fundamentals of fellowship conference, were asked to complete a questionnaire regarding their demographics and experiences with robotic surgery and training. Fifty-one of the surveyed fellows completed the questionnaire (83 % response). Seventy-two percent of respondents had staff surgeons trained in performing robotic procedures, with 55 % of respondents having general surgery procedures performed robotically at their institution. Just over half (53 %) had access to a simulation facility for robotic training. Thirty-three percent offered mechanisms for certification and 11 % offered fellowships in robotic surgery. One-third of the minimally invasive surgery fellows felt they had been trained in robotic surgery and would consider making it part of their practice after fellowship. However, most (80 %) had no plans to pursue robotic surgery fellowships. Although a large group (63 %) felt optimistic about the future of robotic surgery, most respondents (72.5 %) felt their current experience with robotic surgery training was poor or below average. There is wide variation in exposure to and training in robotic surgery in minimally invasive surgery fellowship programs in the United States and Canada. Although a third of trainees felt adequately trained for performing robotic procedures, most fellows felt that their current experience with training was not adequate.

  3. The University Münster Model Surgery System for Orthognathic Surgery. Part II -- KD-MMS.

    PubMed

    Ehmer, Ulrike; Joos, Ulrich; Ziebura, Thomas; Flieger, Stefanie; Wiechmann, Dirk

    2013-01-04

    Model surgery is an integral part of the planning procedure in orthognathic surgery. Most concepts comprise cutting the dental cast off its socket. The standardized spacer plates of the KD-MMS provide for a non-destructive, reversible and reproducible means of maxillary and/or mandibular plaster cast separation. In the course of development of the system various articulator types were evaluated with regard to their capability to provide a means of realizing the concepts comprised of the KD-MMS. Special attention was dedicated to the ability to perform three-dimensional displacements without cutting of plaster casts. Various utilities were developed to facilitate maxillary displacement in accordance to the planning. Objectives of this development comprised the ability to implement the values established in the course of two-dimensional ceph planning. The system - KD-MMS comprises a set of hardware components as well as a defined procedure. Essential hardware components are red spacer and blue mounting plates. The blue mounting plates replace the standard yellow SAM mounting elements. The red spacers provide for a defined leeway of 8 mm for three-dimensional movements. The non-destructive approach of the KD-MMS makes it possible to conduct different model surgeries with the same plaster casts as well as to restore the initial, pre-surgical situation at any time. Thereby, surgical protocol generation and gnathologic splint construction are facilitated. The KD-MMS hardware components in conjunction with the defined procedures are capable of increasing efficiency and accuracy of model surgery and splint construction. In cases where different surgical approaches need to be evaluated in the course of model surgery, a significant reduction of chair time may be achieved.

  4. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  5. Ultrasonic hot powder compaction of Ti-6Al-4V.

    PubMed

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-07-01

    Power ultrasonic has been recently employed in a wide variety of manufacturing processes among which ultrasonic assisted powder compaction is a promising powder materials processing technique with significant industrial applications. The products manufactured by the powder metallurgy commonly consist of residual porosities, material impurities, structural non-homogeneities and residual stress. In this paper, it is aimed to apply power ultrasonic to the hot consolidation process of Ti-6Al-4V titanium alloy powder in order to improve mechanical properties. To do this, the effects of ultrasonic power and process temperature and pressure were considered and then deeply studied through a series of experiments. It was shown that the addition of ultrasonic vibration leads to a significant improvement in the consolidation performance and the mechanical strength of the fabricated specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ultrasonically-assisted Polymer Molding: An Evaluation

    NASA Astrophysics Data System (ADS)

    Moles, Matthew; Roy, Anish; Silberschmidt, Vadim

    Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.

  7. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  8. Assessment of a Cavity to Optimize Ultrasonic Efficiency to Remove Intraradicular Posts.

    PubMed

    Graça, Izabela Araujo Aguiar; Sponchiado Júnior, Emílio Carlos; Marques, André Augusto Franco; de Moura Martins, Leandro; Garrido, Ângela Delfina Bittencourt

    2017-08-01

    The study assessed an in vitro protocol for the removal of cast metal posts using ultrasonic vibration in multirooted teeth by drilling a cavity in the coronal portion of the post followed by ultrasound application in the cavity. Forty endodontically treated molars received intraradicular cast posts and were divided into 4 groups according to the removal protocol: the control group, no cavity and no ultrasonic vibration; the ultrasonic group, no cavity and ultrasonic vibration in the coronal portion of the core; the cavity group, a cavity in the core and no ultrasonic vibration; and the cavity ultrasonic group, a cavity in the core and ultrasonic vibration inside the cavity. The traction test was performed on all samples using a universal testing machine (EMIC DL-2000; EMIC Equipamentos e Sistemas de Ensaio LTDA, São José dos Pinhais, PR, Brazil) at a speed of 1 mm/min, obtaining values in Newtons. The data were statistically analyzed using analysis of variance and the Tukey-Kramer test (P < .05). The results showed statistically significant differences between the tested groups (control group = 322.74 N, ultrasonic group = 283.09 N, cavity group = 244.00 N, and cavity ultrasonic group = 237.69 N). The lowest mean strength was found in the group that received ultrasonic vibration inside the cavity. Preparing a cavity in the coronal core followed by ultrasonic vibration reduces the traction force required for removal. The removal protocol was effective for removing posts in multirooted teeth cemented with zinc phosphate. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Direct Digital Manufacturing of Integrated Naval Systems Using Ultrasonic Consolidation, Support Material Deposition and Direct Write Technologies

    DTIC Science & Technology

    2012-02-17

    tool should be combined with a user-friendly Windows-based software interface that utilizes the best practices for process planning developed by us and...best practices developed through this project, resulting in the commercial availability of machines for the Navy and others. These machines will...research 2011 Outstanding Paper Award, VRAP 2011, for paper "Some Studies on Dislocation Density based Finite Element Modeling of Ultrasonic

  10. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  11. Cavitation Bubble Streaming in Ultrasonic-Standing-Wave Field

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Mukasa, Shinobu; Kuroiwa, Masaya; Okada, Yasuyuki; Murakami, Koichi

    2005-05-01

    The mechanism of cavitation bubble streaming by ultrasonic vibration in a water tank was experimentally investigated. A standard ultrasonic cleaner unit with a resonant frequency of 40 kHz was used as an ultrasonic generator. The behavior of the streaming was visualized by the schlieren method and sonochemical luminescence, and the velocity of the streaming was measured by laser Doppler velocity measurement equipment (LDV). The cavitation bubble streaming has two structures. A cavitation cloud, which consists of many cavitation bubbles, is shaped like a facing pair of bowls with a diameter of approximately 1/3 the wavelength of the standing wave, and moves inside the standing-wave field with a velocity of 30 to 60 mm/s. The cavitation bubbles move intensely in the cloud with a velocity of 5 m/s at an ultrasonic output power of 75 W. The streaming is completely different from conventional acoustic streaming. Also the cavitation bubble is generated neither at the pressure node nor at the antinode.

  12. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    NASA Astrophysics Data System (ADS)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  13. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  14. Polymer subtrates for dry-coupled ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2003-07-01

    Dry-coupled inspection techniques are very important for applications on components with non-uniform surfaces and for inspections of advanced materials or coatings that are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, a number of polymer films have been developed to transmit the ultrasound through a dry interface. These materials are very flexible so even low pressure loading is sufficient to adapt the films to the irregular inspection surfaces. Several polymer films have been evaluated to develop dry-coupled substrates for transducer modules. The modules will be utilized to detect and characterize fatigue cracks and corrosion spots in the aircraft structures. Ultrasonic properties of the polymer films were measured and compared with the properties of plastic or rubber-like materials commonly used for ultrasonic applications. Experiments have been carried out to analyze propagation of longitudinal and shear waves in the films. Two different types of the ultrasonic modules with the flexible polymer substrates are being developed. The influence of the surface condition on the module performance was evaluated for both types of the modules.

  15. Ultrasonic Imaging Techniques for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.

    2008-02-01

    Improving the resolution and specificity of current ultrasonic imaging technology is needed to enhance its relevance to breast cancer detection. A novel ultrasonic imaging reconstruction method is described that exploits classical straight-ray migration. This novel method improves signal processing for better image resolution and uses novel staging hardware options using a pulse-echo approach. A breast phantom with various inclusions is imaged using the classical migration method and is compared to standard computed tomography (CT) scans. These innovative ultrasonic methods incorporate ultrasound data acquisition, beam profile characterization, and image reconstruction. For an ultrasonic frequency of 2.25 MHz, imaged inclusions of approximately 1 cm are resolved and identified. Better resolution is expected with minor modifications. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors thus reducing the number of biopsies performed, increasing treatment options, and lowering remission percentages. Using these new techniques the inclusions in the phantom are resolved and compared to the results of standard methods. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also discussed.

  16. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Taejon Ch'ungmam; Yan Li.

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figures.

  17. Ultrasonic fluid densitometer for process control

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  18. Temperature compensation of ultrasonic velocity during the malolactic fermentation process

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Novoa-Díaz, D.; Chávez, J. A.; Turó, A.; García-Hernández, M. J.; Salazar, J.

    2015-12-01

    Ultrasonic properties of materials present a strong dependence on temperature and in turn the ultrasonic velocity of propagation in the material under test. It is precisely for this reason that most ultrasonic measurements are often carried out with thermostated samples by using either water tanks or climate chambers. This approach is viable in a laboratory and when the measured or characterized samples are relatively small. However, this procedure is highly improbable to be applied when in situ measurements in industrial environments must be performed. This goes for the case of, for example, ultrasonic velocity measurements in wine while it is performing malolactic fermentation inside a tank of hundreds of thousands of litres. In this paper two different practical approaches to temperature compensation are studied. Then, the two temperature compensation methods are applied to the measured ultrasonic velocity values along a whole malolactic fermentation process. The results of each method are discussed.

  19. Rapid fabrication of surface-relief plastic diffusers by ultrasonic embossing

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Jung; Huang, Yu-Chin; Yang, Sen-Yeu; Hsieh, Kuo-Huang

    2010-07-01

    This paper discusses an innovative and effective ultrasonic embossing process, which enables the rapid fabrication of surface-relief plastic diffusers. The metallic mold bearing the microstructures is fabricated using a tungsten carbide turning machine. A 1500-W ultrasonic vibrator with an output frequency of 20 kHz was used to replicate the microstructure onto 1-mm-thick PMMA plates in the experiments. During ultrasonic embossing, the ultrasonic energy is converted into heat through intermolecular friction at the master mold/plastic plate interface due to asperities to melt the thermoplastic at the interface and thereby to replicate the microstructure. Under the proper processing conditions, high-performance plastic diffusers have been successfully fabricated. The cycle time required to successfully fabricate a diffuser is less than 2 s. The experimental results suggest that ultrasonic embossing could provide an effective way of fabricating high-performance plastic diffusers with a high throughput.

  20. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  1. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  2. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    PubMed

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  4. Cavitation effects in ultrasonic cleaning baths

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1995-01-01

    In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.

  5. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  6. Quality control in gastrointestinal surgery.

    PubMed

    Ramírez-Barba, Ector Jaime; Arenas-Moya, Diego; Vázquez-Guerrero, Arturo

    2011-01-01

    We analyzed the Mexican legal framework, identifying the vectors that characterize quality and control in gastrointestinal surgery. Quality is contemplated in the health protection rights determined according to the Mexican Constitution, established in the general health law and included as a specific goal in the actual National Development Plan and Health Sector Plan. Quality control implies planning, verification and application of corrective measures. Mexico has implemented several quality strategies such as certification of hospitals and regulatory agreements by the General Salubrity Council, creation of the National Health Quality Committee, generation of Clinical Practice Guidelines and the Certification of Medical Specialties, among others. Quality control in gastrointestinal surgery must begin at the time of medical education and continue during professional activities of surgeons, encouraging multidisciplinary teamwork, knowledge, abilities, attitudes, values and skills that promote homogeneous, safe and quality health services for the Mexican population.

  7. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  8. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  9. Common uses and cited complications of energy in surgery.

    PubMed

    Sankaranarayanan, Ganesh; Resapu, Rajeswara R; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu

    2013-09-01

    Instruments that apply energy to cut, coagulate, and dissect tissue with minimal bleeding facilitate surgery. The improper use of energy devices may increase patient morbidity and mortality. The current article reviews various energy sources in terms of their common uses and safe practices. For the purpose of this review, a general search was conducted through NCBI, SpringerLink, and Google. Articles describing laparoscopic or minimally invasive surgeries using single or multiple energy sources are considered, as are articles comparing various commercial energy devices in laboratory settings. Keywords, such as laparoscopy, energy, laser, electrosurgery, monopolar, bipolar, harmonic, ultrasonic, cryosurgery, argon beam, laser, complications, and death were used in the search. A review of the literature shows that the performance of the energy devices depends upon the type of procedure. There is no consensus as to which device is optimal for a given procedure. The technical skill level of the surgeon and the knowledge about the devices are both important factors in deciding safe outcomes. As new energy devices enter the market increases, surgeons should be aware of their indicated use in laparoscopic, endoscopic, and open surgery.

  10. The role of high-frequency oscillations in epilepsy surgery planning.

    PubMed

    Gloss, David; Nolan, Sarah J; Staba, Richard

    2014-01-15

    Epilepsy is a serious brain disorder characterized by recurrent unprovoked seizures. Approximately two-thirds of seizures can be controlled with antiepileptic medications (Kwan 2000). For some of the others, surgery can completely eliminate or significantly reduce the occurrence of disabling seizures. Localization of epileptogenic areas for resective surgery is far from perfect, and new tools are being investigated to more accurately localize the epileptogenic zone (the zone of the brain where the seizures begin) and improve the likelihood of freedom from postsurgical seizures. Recordings of pathological high-frequency oscillations (HFOs) may be one such tool. To assess the ability of HFOs to improve the outcomes of epilepsy surgery by helping to identify more accurately the epileptogenic areas of the brain. We searched the Cochrane Epilepsy Group Specialized Register (15 April 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2013, Issue 3), MEDLINE (Ovid) (1946 to 15 April 2013), CINAHL (EBSCOhost) (15 April 2013), Web of Knowledge (Thomson Reuters) (15 April 2013), www.clinicaltrials.gov (15 April 2013), and the World Health Organization International Clinical Trials Registry Platform (15 April 2013). We included studies that provided information on the outcomes of epilepsy surgery at at least six months and which used high-frequency oscillations in making decisions about epilepsy surgery. The primary outcome of the review was the Engel Class Outcome System. Secondary outcomes were responder rate, International League Against Epilepsy (ILAE) epilepsy surgery outcome, frequency of adverse events from any source and quality of life outcomes. We intended to analyse outcomes via an aggregated data fixed-effect model meta-analysis. Two studies met the inclusion criteria. Both studies were small non-randomised trials, with no control group and no blinding. The quality of evidence for all outcomes was very low. The combination

  11. Ultrasonic Device Would Open Pipe Bombs

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael S.; Adams, Marc A.; Zwissler, James G.

    1991-01-01

    Piezoelectric ultrasonic transducer, energized by frequency generator and power supply, vibrates shell of pipe bomb while hardly disturbing explosive inner material. Frequency-control circuitry senses resonance in shell and holds generator at that frequency to induce fatigue cracking in threads of end cap. In addition to disarming bombs, ultrasonically induced fatigue may have other applications. In manufacturing, replaces some machining and cutting operations. In repair of equipment, cleanly and quickly disassembles corroded parts. In demolition of buildings used to dismember steel framework safely and controllably.

  12. A capacitive ultrasonic transducer based on parametric resonance.

    PubMed

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  13. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  14. Carbon nanotube composites prepared by ultrasonically assisted twin screw extrusion

    NASA Astrophysics Data System (ADS)

    Lewis, Todd

    Two ultrasonic twin screw extrusion systems were designed and manufactured for the ultrasonic dispersion of multi-walled carbon nanotubes in viscous polymer matrices at residence times of the order of seconds in the ultrasonic treatment zones. The first design consisted of an ultrasonic slit die attachment in which nanocomposites were treated. A second design incorporated an ultrasonic treatment section into the barrel of the extruder to utilize the shearing of the polymer during extrusion while simultaneously applying treatment. High performance, high temperature thermoset phenylethynyl terminate imide oligomer (PETI-330) and two different polyetherether ketones (PEEK) were evaluated at CNT loadings up to 10 wt%. The effects of CNT loading and ultrasonic amplitude on the processing characteristics and rheological, mechanical, electrical, thermal and morphological properties of nanocomposites were investigated. PETI and PEEK nanocomposites showed a decrease in resistivity, an increase in modulus and strength and a decrease in strain at break and toughness with increased CNT loading. Ultrasonically treated samples showed a decrease in die pressure and extruder torque with increasing ultrasonic treatment and an increase in complex viscosity and storage modulus at certain ultrasonic treatment levels. Optical microscopy showed enhanced dispersion of the CNT bundles in ultrasonically treated samples. However, no significant improvement of mechanical properties was observed with ultrasonic treatment due to lack of adhesion between the CNT and matrix in the solid state. A curing model for PETI-330 was proposed that includes the induction and curing stages to predict the degree of cure of PETI-330 under non-isothermal conditions. Induction time parameters, rate constant and reaction order of the model were obtained based on differential scanning calorimetry (DSC) data. The model correctly predicted experimentally measured degrees of cure of compression molded plaques cured

  15. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    PubMed

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  16. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  17. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  18. Ultrasonic Testing, Aviation Quality Control (Advanced): 9227.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction covers the theory of ultrasonic sound, methods of applying soundwaves to test specimens and interpreting results, calibrating the ultrasonic equipment, and the use of standards. Study periods, group discussions, and extensive use of textbooks and training manuals are to be used. These are listed along with references and…

  19. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    NASA Astrophysics Data System (ADS)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  20. Method for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.; Larsen, Eric D.; Miller, Karen S.; Smartt, Herschel B.; McJunkin, Timothy R.

    2002-01-01

    A method for the concurrent ultrasonic inspection of partially completed welds is disclosed and which includes providing a pair of transducers which are individually positioned on the opposite sides of a partially completed weld to be inspected; moving the transducers along the length of and laterally inwardly and outwardly relative to the partially completed weld; pulsing the respective transducers to produce an ultrasonic signal which passes through or is reflected from the partially completed weld; receiving from the respective transducers ultrasonic signals which pass through or are reflected from the partially completed welds; and analyzing the ultrasonic signal which has passed through or is reflected from the partially completed weld to determine the presence of any weld defects.

  1. Ultrasonically assisted turning of aviation materials: simulations and experimental study.

    PubMed

    Babitsky, V I; Mitrofanov, A V; Silberschmidt, V V

    2004-04-01

    Ultrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration (frequency f approximately 20 kHz, amplitude a approximately 15 microm) superimposed on the cutting tool movement. An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration throughout the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented. The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state, cutting forces and contact conditions at the workpiece/tool interface.

  2. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  3. Ultrasonic Apparatus for Pulverizing Brittle Material

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Bar-Cohen, Yoseph; Dolgin, Benjamin; Chang, Zensheu

    2004-01-01

    The figure depicts an apparatus that pulverizes brittle material by means of a combination of ultrasonic and sonic vibration, hammering, and abrasion. The basic design of the apparatus could be specialized to be a portable version for use by a geologist in collecting powdered rock samples for analysis in the field or in a laboratory. Alternatively, a larger benchtop version could be designed for milling and mixing of precursor powders for such purposes as synthesis of ceramic and other polycrystalline materials or preparing powder samples for x-ray diffraction or x-ray fluorescence measurements to determine crystalline structures and compositions. Among the most attractive characteristics of this apparatus are its light weight and the ability to function without need for a large preload or a large power supply: It has been estimated that a portable version could have a mass <0.5 kg, would consume less than 1 W h of energy in milling a 1-cm3 volume of rock, and could operate at a preload <10 N. The basic design and principle of operation of this apparatus are similar to those of other apparatuses described in a series of prior NASA Tech Briefs articles, the two most relevant being Ultrasonic/ Sonic Drill/Corers With Integrated Sensors (NPO-20856), Vol. 25, No. 1 (January 2001), page 38 and Ultrasonic/ Sonic Mechanisms for Deep Drilling and Coring (NPO-30291), Vol. 27, No. 9 (September 2003), page 65. As before, vibrations are excited by means of a piezoelectric actuator, an ultrasonic horn, and a mass that is free to move axially over a limited range. As before, the ultrasonic harmonic motion of the horn drives the free-mass in a combination of ultrasonic harmonic and lower-frequency hammering motion. In this case, the free-mass is confined within a hollow cylinder that serves as a crushing chamber, and the free-mass serves as a crushing or milling tool. The hammering of the free-mass against a material sample at the lower end of the chamber grinds the sample into

  4. NDE application of ultrasonic tomography to a full-scale concrete structure.

    PubMed

    Choi, Hajin; Popovics, John S

    2015-06-01

    Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.

  5. Experimental and simulated ultrasonic characterization of complex damage in fused silica.

    PubMed

    Martin, L Peter; Chambers, David H; Thomas, Graham H

    2002-02-01

    The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.

  6. Global cancer surgery: delivering safe, affordable, and timely cancer surgery.

    PubMed

    Sullivan, Richard; Alatise, Olusegun Isaac; Anderson, Benjamin O; Audisio, Riccardo; Autier, Philippe; Aggarwal, Ajay; Balch, Charles; Brennan, Murray F; Dare, Anna; D'Cruz, Anil; Eggermont, Alexander M M; Fleming, Kenneth; Gueye, Serigne Magueye; Hagander, Lars; Herrera, Cristian A; Holmer, Hampus; Ilbawi, André M; Jarnheimer, Anton; Ji, Jia-Fu; Kingham, T Peter; Liberman, Jonathan; Leather, Andrew J M; Meara, John G; Mukhopadhyay, Swagoto; Murthy, Shilpa S; Omar, Sherif; Parham, Groesbeck P; Pramesh, C S; Riviello, Robert; Rodin, Danielle; Santini, Luiz; Shrikhande, Shailesh V; Shrime, Mark; Thomas, Robert; Tsunoda, Audrey T; van de Velde, Cornelis; Veronesi, Umberto; Vijaykumar, Dehannathparambil Kottarathil; Watters, David; Wang, Shan; Wu, Yi-Long; Zeiton, Moez; Purushotham, Arnie

    2015-09-01

    Surgery is essential for global cancer care in all resource settings. Of the 15.2 million new cases of cancer in 2015, over 80% of cases will need surgery, some several times. By 2030, we estimate that annually 45 million surgical procedures will be needed worldwide. Yet, less than 25% of patients with cancer worldwide actually get safe, affordable, or timely surgery. This Commission on global cancer surgery, building on Global Surgery 2030, has examined the state of global cancer surgery through an analysis of the burden of surgical disease and breadth of cancer surgery, economics and financing, factors for strengthening surgical systems for cancer with multiple-country studies, the research agenda, and the political factors that frame policy making in this area. We found wide equity and economic gaps in global cancer surgery. Many patients throughout the world do not have access to cancer surgery, and the failure to train more cancer surgeons and strengthen systems could result in as much as US $6.2 trillion in lost cumulative gross domestic product by 2030. Many of the key adjunct treatment modalities for cancer surgery--e.g., pathology and imaging--are also inadequate. Our analysis identified substantial issues, but also highlights solutions and innovations. Issues of access, a paucity of investment in public surgical systems, low investment in research, and training and education gaps are remarkably widespread. Solutions include better regulated public systems, international partnerships, super-centralisation of surgical services, novel surgical clinical trials, and new approaches to improve quality and scale up cancer surgical systems through education and training. Our key messages are directed at many global stakeholders, but the central message is that to deliver safe, affordable, and timely cancer surgery to all, surgery must be at the heart of global and national cancer control planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An ultrasonic technique for measuring stress in fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, K. J.; Day, P.; Byron, D.

    1999-12-02

    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less

  8. Ultrasonic Ranging System With Increased Resolution

    NASA Technical Reports Server (NTRS)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  9. An Ultrasonic Compactor for Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    The Badger Explorer is a rig-less oil and gas exploration tool which drills into the subsea environment to collect geological data. Drill spoil is transported from the front end of the system to the rear, where the material is compacted. Motivated by the need to develop a highly efficient compaction system, an ultrasonic compactor for application with granular geological materials encountered in subsea environments is designed and fabricated as part of this study. The finite element method is used to design a compactor configuration suitable for subsea exploration, consisting of a vibrating ultrasonic horn called a resonant compactor head, which operates in a longitudinal mode at 20 kHz, driven by a Langevin piezoelectric transducer. A simplified version of the compactor is also designed, due to its ease of incorporating in a lab-based experimental rig, in order to demonstrate enhanced compaction using ultrasonics. Numerical analysis of this simplified compactor system is supported with experimental characterisation using laser Doppler vibrometry. Compaction testing is then conducted on granular geological material, showing that compaction can be enhanced through the use of an ultrasonic compactor.

  10. Effect of dissolved oxygen level of water on ultrasonic power measured using calorimetry

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Yoshioka, Masahiro; Horiuchi, Ryuzo

    2018-07-01

    Ultrasonic therapeutic equipment, which exposes the human body to high-power ultrasound, is used in clinical practice to treat cancer. However, the safety of high-power ultrasound has been questioned because the equipment affects not only cancer cells but also normal cells. To evaluate the safety of ultrasound, it is necessary to accurately measure the ultrasonic power of the equipment. This is because ultrasonic power is a key quantity related to the thermal hazard of ultrasound. However, precise techniques for measuring ultrasonic power in excess of 15 W are yet to be established. We have been studying calorimetry as a precise measurement technique. In this study, we investigated the effect of the dissolved oxygen (DO) level of water on ultrasonic power by calorimetry. The results show that the measured ultrasonic power differed significantly between water samples of different DO levels. This difference in ultrasonic power arose from acoustic cavitation.

  11. Surgery applications of virtual reality

    NASA Technical Reports Server (NTRS)

    Rosen, Joseph

    1994-01-01

    Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.

  12. Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles.

    PubMed

    Klinkaewnarong, Jutharatana; Utara, Songkot

    2018-09-01

    Needle-like hydroxyapatite nanoparticles were successfully synthesized via a reaction between calcium oxide (CaO) that was obtained from calcined limestone and orthophosphoric acid (H 3 PO 4 ) under ultrasonic irradiation at 25 °C. The reaction systems were exposed to ultrasonic waves of 20 kHz for various times ranging from 0 to 4 h. The initial and final pH values of the mixtures of CaO and H 3 PO 4 solution were continuously observed (pH < 4.0) after ultrasonic irradiation. The powder was then dried at 60 °C and calcined at 300 °C for 3 h (3 °C/min). The products were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that the formation of needle-like hydroxyapatite (HAp) nanoparticles was substantially accelerated compared with the reaction without ultrasonic irradiation. The HAp phase was increasingly visible with longer ultrasonic irradiation time compared with the monetite phase (CaHPO 4 ). This suggests that ultrasonic waved induced a phase transition from the monetite to HAp phase. A smaller needle-like structure of HAp (diameter ∼ 7.4 nm) with a lower contamination of monetite phase was obtained following sonication for 3 h. This study shows that Thai limestone can used as a starting material for synthesizing needle-like HAp nanoparticles with the aid of ultrasonic methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  14. Scanning ultrasonic probe

    DOEpatents

    Kupperman, David S.; Reimann, Karl J.

    1982-01-01

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.

  15. Scanning ultrasonic probe

    DOEpatents

    Kupperman, D.S.; Reimann, K.J.

    1980-12-09

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and anlayzed at one time and their positions accurately located in a single pass down the test specimen.

  16. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery.

    PubMed

    Tian, Shu; Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness.

  17. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1995-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  18. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1994-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Div. of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation; frequency vs. cleaning effectiveness; the two types of transducers; and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  19. Folded Resonant Horns for Power Ultrasonic Applications

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Askins, Stephen; Gradziel, Michael; Bao, Xiaoqi; Chang, Zensheu; Dolgin, Benjamin; Bar-Cohen, Yoseph; Peterson, Tom

    2003-01-01

    Folded horns have been conceived as alternatives to straight horns used as resonators and strain amplifiers in power ultrasonic systems. Such systems are used for cleaning, welding, soldering, cutting, and drilling in a variety of industries. In addition, several previous NASA Tech Briefs articles have described instrumented drilling, coring, and burrowing machines that utilize combinations of sonic and ultrasonic vibrational actuation. The main advantage of a folded horn, relative to a straight horn of the same resonance frequency, is that the folded horn can be made shorter (that is, its greatest linear dimension measured from the outside can be made smaller). Alternatively, for a given length, the resonance frequency can be reduced. Hence, the folded-horn concept affords an additional degree of design freedom for reducing the length of an ultrasonic power system that includes a horn.

  20. Effects of high power ultrasonic vibration on the cold compaction of titanium.

    PubMed

    Fartashvand, Vahid; Abdullah, Amir; Ali Sadough Vanini, Seyed

    2017-05-01

    Titanium has widely been used in chemical and aerospace industries. In order to overcome the drawbacks of cold compaction of titanium, the process was assisted by an ultrasonic vibration system. For this purpose, a uniaxial ultrasonic assisted cold powder compaction system was designed and fabricated. The process variables were powder size, compaction pressure and initial powder compact thickness. Density, friction force, ejection force and spring back of the fabricated samples were measured and studied. The density was observed to improve under the action of ultrasonic vibration. Fine size powders showed better results of consolidation while using ultrasonic vibration. Under the ultrasonic action, it is thought that the friction forces between the die walls and the particles and those friction forces among the powder particles are reduced. Spring back and ejection force didn't considerably change when using ultrasonic vibration. Copyright © 2016 Elsevier B.V. All rights reserved.