Sample records for ultrasonic testing

  1. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  2. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  3. Ultrasonic weld testing.

    DOT National Transportation Integrated Search

    1970-12-01

    The study was broken down into two phases. Phase I consisted of a laboratory investigation of test specimens to determine the reliability of the ultrasonic equipment and testing procedure. Phase II was a field study where the knowledge, skills and ab...

  4. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  5. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  6. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  7. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  8. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    NASA Astrophysics Data System (ADS)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  9. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  10. Antarctic Testing of the European Ultrasonic Planetary Core Drill (UPCD)

    NASA Astrophysics Data System (ADS)

    Timoney, R.; Worrall, K.; Li, X.; Firstbrook, D.; Harkness, P.

    2018-04-01

    An overview of a series of field testing in Antarctica where the Ultrasonic Planetary Core Drill (UPCD) architecture was tested. The UPCD system is the product an EC FP7 award to develop a Mars Sample Return architecture based around the ultrasonic technique.

  11. Ultrasonic Testing, Aviation Quality Control (Advanced): 9227.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This unit of instruction covers the theory of ultrasonic sound, methods of applying soundwaves to test specimens and interpreting results, calibrating the ultrasonic equipment, and the use of standards. Study periods, group discussions, and extensive use of textbooks and training manuals are to be used. These are listed along with references and…

  12. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    PubMed

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  14. Development of an automated ultrasonic testing system

    NASA Astrophysics Data System (ADS)

    Shuxiang, Jiao; Wong, Brian Stephen

    2005-04-01

    Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.

  15. Monitoring crack extension in fracture toughness tests by ultrasonics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Fisher, D. M.; Buzzard, R. J.

    1975-01-01

    An ultrasonic method was used to observe the onset of crack extension and to monitor continued crack growth in fracture toughness specimens during three point bend tests. A 20 MHz transducer was used with commercially available equipment to detect average crack extension less than 0.09 mm. The material tested was a 300-grade maraging steel in the annealed condition. A crack extension resistance curve was developed to demonstrate the usefulness of the ultrasonic method for minimizing the number of tests required to generate such curves.

  16. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    PubMed Central

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-01-01

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating. PMID:29438309

  17. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating.

    PubMed

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-02-13

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  18. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Determination of elastic modulus of ceramics using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  20. Input-output characterization of an ultrasonic testing system by digital signal analysis

    NASA Technical Reports Server (NTRS)

    Karaguelle, H.; Lee, S. S.; Williams, J., Jr.

    1984-01-01

    The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.

  1. Noncontact Acousto-Ultrasonic Testing With Laser Beams

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1994-01-01

    Laser beams used to excite and detect acoustic waves in specimens. Laser/acousto-ultrasonic technique entails no mechanical contact between specimens and testing apparatus. Apparatus located at relatively large distances (meters) from specimens, making it possible to test specimens too hot for contact measurements or located in inaccessible places, vacuums, or hostile environments.

  2. Ultrasonic NDE and mechanical testing of fiber placement composites

    NASA Astrophysics Data System (ADS)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  3. Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave

    NASA Astrophysics Data System (ADS)

    Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai

    Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.

  4. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  5. Nondestructive testing of railroad wheels and rails by ultrasonics

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. M.; Risch, E. R.

    1974-01-01

    Quality control of wheels and rails can be improved by using ultrasonic technique developed for measuring stresses in metallic materials. In addition, parts already in use can be tested and replaced if they are found to be unsafe. Test equipment includes two transducers.

  6. An Ultrasonic Testing Technique for Monitoring the Cure and Mechanical Properties of Polymeric Materials

    DTIC Science & Technology

    1993-08-22

    and W. M. Ferrell, "Determination of Modulus of HTPB Solid Rocket Propellant using Longitudinal and Shear Ultrasonic Waves," Annual report for NASA...SMC-TR-93-64 AEROSPACE REPORT NO. TR-93(3935)-12 AD-A274 536 An Ultrasonic Testing Technique for Monitoring the Cure and Mechanical Properties of...TYPE AND DATES COVERED 22 August 1993 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS An Ultrasonic Testing Technique for Monitoring the Cure and Mechanical

  7. Test and Evaluation of Ultrasonic Additive Manufacturing (UAM) for a Large Aircraft Maintenance Shelter (LAMS) Baseplate

    DTIC Science & Technology

    2015-03-26

    TEST AND EVALUATION OF ULTRASONIC ADDITIVE MANUFACTURING (UAM) FOR A LARGE AREA MAINTENANCE...States Government. AFIT-ENV-MS-15-M-158 TEST AND EVALUATION OF ULTRASONIC ADDITIVE MANUFACTURING FOR A LARGE AREA MAINTENANCE SHELTER...Civil Engineer (CE) operations. This research replicates a Large Area Maintenance Shelter (LAMS) baseplate design for ultrasonic additive

  8. Prototype ultrasonic instrument for quantitative testing

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.

    1972-01-01

    A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.

  9. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  10. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  11. Comparison of Pre and Post Road Test Ultrasonic Inspection Results on 134 Passenger Tires

    DOT National Transportation Integrated Search

    1979-11-01

    A study was conducted to compare ultrasonic inspection data from 134 tires prior and subsequent to road tests in order to determine whether excessive tread wear could be related to characteristics detected by the ultrasonic inspection. Analysis of da...

  12. Advanced Technologies and Methodology for Automated Ultrasonic Testing Systems Quantification

    DOT National Transportation Integrated Search

    2011-04-29

    For automated ultrasonic testing (AUT) detection and sizing accuracy, this program developed a methodology for quantification of AUT systems, advancing and quantifying AUT systems imagecapture capabilities, quantifying the performance of multiple AUT...

  13. VIEW OF ULTRASONIC TESTING EQUIPMENT IN BUILDING 991. THIS EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ULTRA-SONIC TESTING EQUIPMENT IN BUILDING 991. THIS EQUIPMENT NON-DESTRUCTIVELY TESTS WEAPONS COMPONENTS FOR FLAWS AND CRACKS. (9/11/85) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  14. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block. 882.1925 Section 882.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1925...

  15. Rail flaw sizing using conventional and phased array ultrasonic testing.

    DOT National Transportation Integrated Search

    2012-12-01

    An approach to detecting and characterizing internal defects in rail through the use of phased array ultrasonic testing has shown the potential to reduce the risk of missed defects and improve transverse defect characterization. : Transportation Tech...

  16. Apparatus and method for ultrasonic reconstruction and testing of a turbine rotor blade attachment structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.F.

    1995-04-25

    An apparatus and method for ultrasonic reconstruction and testing of a non-visible turbine rotor blade attachment structure is described. The method of the invention includes positioning transducers at a first location to obtain slot region scan data corresponding to a slot region of the non-visible turbine rotor blade attachment structure, and positioning transducers at a second location to obtain straddle-mount region scan data corresponding to a straddle-mount region of the non-visible turbine rotor blade attachment structure. The shape of the non-visible turbine rotor blade attachment structure is reconstructed from the slot region scan data and the straddle-mount region scan datamore » to form reconstruction data. The reconstruction data is used to select test scan positions for ultrasonic testing. Ultrasonic testing is then performed at the selected test scan positions. 11 figs.« less

  17. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  18. Muscle Strength Endurance Testing Development Based Photo Transistor with Motion Sensor Ultrasonic

    NASA Astrophysics Data System (ADS)

    Rusdiana, A.

    2017-03-01

    The endurance of upper-body muscles is one of the most important physical fitness components. As technology develops, the process of test and assessment is now getting digital; for instance, there are a sensor stuck to the shoe (Foot Pod, Polar, and Sunto), Global Positioning System (GPS) and Differential Global Positioning System (DGPS), radar, photo finish, kinematic analysis, and photocells. Those devices aim to analyze the performances and fitness of athletes particularly the endurance of arm, chest, and shoulder muscles. In relation to that, this study attempt to create a software and a hardware for pull-ups through phototransistor with ultrasonic motion sensor. Components needed to develop this device consist of microcontroller MCS-51, photo transistor, light emitting diode, buzzer, ultrasonic sensor, and infrared sensor. The infrared sensor is put under the buffer while the ultrasonic sensor is stuck on the upper pole. The components are integrated with an LED or a laptop made using Visual Basic 12 software. The results show that pull-ups test using digital device (mean; 9.4 rep) is lower than using manual calculation (mean; 11.3 rep). This is due to the fact that digital test requires the test-takers to do pull-ups perfectly.

  19. Ultrasonic interface level analyzer shop test procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAEHR, T.W.

    1999-05-24

    The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less

  20. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  1. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  2. Portable apparatus with CRT display for nondestructive testing of concrete by the ultrasonic pulse method

    NASA Technical Reports Server (NTRS)

    Manta, G.; Gurau, Y.; Nica, P.; Facacaru, I.

    1974-01-01

    The development of methods for the nondestructive study of concrete structures is discussed. The nondestructive test procedure is based on the method of ultrasonic pulse transmission through the material. The measurements indicate that the elastic properties of concrete or other heterogeneous materials are a function of the rate of ultrasonic propagation. Diagrams of the test equipment are provided. Mathematical models are included to support the theoretical aspects.

  3. Clinical tests of an ultrasonic periodontal probe

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.

    2002-05-01

    A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.

  4. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  5. Computerized Ultrasonic Testing System (CUTS) for in-process thickness determination

    NASA Technical Reports Server (NTRS)

    Frankel, J.; Doxbeck, M.; Schroeder, S. C.; Abbate, A.

    1994-01-01

    A Computerized Ultrasonic Testing System (CUTS) was developed to measure, in real-time, the rate of deposition and thickness of chromium plated on the inside of thick steel tubes. The measurements are made from the outside of the tubes with the ultrasonic pulse-echo technique. The resolution of the system is 2.5 micron. (0.0001 in.) and the accuracy is better than 10 micron (0.0004 in.). The thickness is measured using six transducers mounted at different locations on the tube. In addition, two transducers are mounted on two reference standards, thereby allowing the system to be continuously calibrated. The tube temperature varies during the process, thus the input from eight thermocouples, located at the measurement sites, is used to calculate and compensate for the change in return time of the ultrasonic echo due to the temperature dependence of the sound velocity. CUTS is applicable to any commercial process where real-time change of thickness of a sample has to be known, with the advantage of facilitating increased efficiency and of improving process control.

  6. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  7. Analysis of Global Ultrasonic Sensor Data from a Full Scale Wing Panel Test

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.; Martin, Ramaldo S.

    2009-03-01

    A full scale wing panel fatigue test was undertaken in 2007 as a part of the DARPA Structural Integrity Prognosis System (SIPS) program. Both local and global ultrasonic sensors were installed on the wing panel and data were recorded periodically over a period of about seven weeks. The local ultrasonic sensors interrogated a small number of selected fastener holes, and the global ultrasonic sensors were arranged in a spatially distributed array surrounding an area encompassing multiple fastener holes of interest. The global ultrasonic sensor data is the focus of the work reported here. Waveforms were recorded from all pitch-catch sensor pairs as a function of static load while fatiguing was paused. The time windows over which the waveforms were recorded were long enough to include most of the reverberating energy. Partway through the test simulated defects were temporarily introduced by gluing masses onto the surface of the wing panel, and waveforms were recorded immediately before their attachment and after their removal. The overall fatigue test was terminated while cracks originating from the fastener holes were still relatively small and before they reached the surface of the wing panel. Both detection and localization results are shown for the artificial damage, and the overall repeatability and stability of the signals are analyzed. Also shown is an analysis of how the reverberating signals change as a function of applied load. The fastener hole fatigue cracks were not detected by the global transducer array, which is not surprising given the final sizes of the cracks as determined by later destructive analysis. However, signals were stable throughout the entire fatigue test, and effects of load on the received signals were significant, both in the short-time and long-time signal regimes.

  8. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    PubMed

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  9. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    PubMed Central

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-01-01

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode. PMID:29669992

  10. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  11. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential.

    PubMed

    Lokajíček, T; Kuchařová, A; Petružálek, M; Šachlová, Š; Svitek, T; Přikryl, R

    2016-09-01

    Semi-continuous ultrasonic sounding of experimental mortar bars used in the accelerated alkali silica reactivity laboratory test (ASTM C1260) is proposed as a supplementary measurement technique providing data that are highly sensitive to minor changes in the microstructure of hardening/deteriorating concrete mixture. A newly designed, patent pending, heating chamber was constructed allowing ultrasonic sounding of mortar bars, stored in accelerating solution without necessity to remove the test specimens from the bath during the measurement. Subsequent automatic data analysis of recorded ultrasonic signals proved their high correlation to the measured length changes (expansion) and their high sensitivity to microstructural changes. The changes of P-wave velocity, and of the energy, amplitude, and frequency of ultrasonic signal, were in the range of 10-80%, compared to 0.51% change of the length. Results presented in this study thus show that ultrasonic sounding seems to be more sensitive to microstructural changes due to ongoing deterioration of concrete microstructure by alkali-silica reaction than the dimensional changes. Copyright © 2016. Published by Elsevier B.V.

  12. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The

  13. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  14. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  15. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  16. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  17. Effects of specimen resonances on acoustic-ultrasonic testing

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Kahn, E. B.; Lee, S. S.

    1983-01-01

    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements.

  18. New contributions to granite characterization by ultrasonic testing.

    PubMed

    Cerrillo, C; Jiménez, A; Rufo, M; Paniagua, J; Pachón, F T

    2014-01-01

    Ultrasound evaluation permits the state of rocks to be determined quickly and cheaply, satisfying the demands faced by today's producers of ornamental stone, such as environmental sustainability, durability and safety of use. The basic objective of the present work is to analyse and develop the usefulness of ultrasound testing in estimating the physico-mechanical properties of granite. Various parameters related to Fast Fourier Transform (FFTs) and attenuation have been extracted from some of the studies conducted (parameters which have not previously been considered in work on this topic, unlike the ultrasonic pulse velocity). The experimental study was carried out on cubic specimens of 30 cm edges using longitudinal and shear wave transducers and equipment which extended the normally used natural resonance frequency range up to 500 kHz. Additionally, a validation study of the laboratory data has been conducted and some methodological improvements have been implemented. The main contribution of the work is the analysis of linear statistical correlations between the aforementioned new ultrasound parameters and physico-mechanical properties of the granites that had not previously been studied, i.e., resistance to salt crystallization and breaking load for anchors. Being properties that directly affect the durability and safety of use of granites, these correlations consolidate ultrasonics as a nondestructive method well suited to this type of material. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  20. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  1. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  2. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  3. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  4. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  5. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    PubMed

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  6. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    NASA Astrophysics Data System (ADS)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  7. Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics

    NASA Astrophysics Data System (ADS)

    Olson, Meghan

    Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.

  8. Simulation of ultrasonic NCF composites testing using 3D finite element model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-04-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness in the order of millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g. fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The effect of porosity as a typical manufacturing imperfection has been considered. The potential for the detection and quantification of such defects is discussed based on the observed influence on the ultrasonic wave propagation and attenuation.

  9. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  10. A preliminary investigation of acousto-ultrasonic NDE of metal matrix composite test specimens

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Lerch, Brad A.

    1991-01-01

    Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of 8 laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The following subject areas are covered: AU signal analysis; tensile behavior; AU and interrupted tensile tests; AU and thermally cycled specimens; AU and stiffness; and AU and specimen geometry.

  11. Scanning ultrasonic probe

    DOEpatents

    Kupperman, David S.; Reimann, Karl J.

    1982-01-01

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.

  12. Scanning ultrasonic probe

    DOEpatents

    Kupperman, D.S.; Reimann, K.J.

    1980-12-09

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and anlayzed at one time and their positions accurately located in a single pass down the test specimen.

  13. Ultrasonic Nondestructive Evaluation of PRSEUS Pressure Cube Article in Support of Load Test to Failure

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    2013-01-01

    The PRSEUS Pressure Cube Test was a joint development effort between the Boeing Company and NASA Langley Research Center, sponsored in part by the Environmentally Responsible Aviation Project and Boeing internal R&D. This Technical Memorandum presents the results of ultrasonic inspections in support of the PRSEUS Pressure Cube Test, and is a companion document with the NASA test report and a report on the acoustic emission measurements made during the test.

  14. Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard

    NASA Astrophysics Data System (ADS)

    Endramawan, T.; Sifa, A.

    2018-02-01

    The purpose of this research is to know the type of discontinuity of SMAW welding result and to determine acceptance criteria based on American Society of Mechanical Engineer (ASME) standard. Material used is mild steel 98,71% Fe and 0,212% C with hardness 230 VHN with specimen diameter 20 cm and thickness 1.2 cm which is welded use SMAW butt joint with electrode for rooting LB 52U diameter 2.6 mm, current 70 Ampere and voltage 380 volt, filler used LB 5218 electrode diameter 3.2 mm with current 80 Ampere and 380 volt. The method used to analyze the welded with non destructive test dye penetrant (PT) method to see indication on the surface of the object and Ultrasonic (UT) to see indication on the sub and inner the surface of the object, the result is discontinuity recorded and analyzed and then the discontinuity is determine acceptance criteria based on the American Society of Mechanical Engineer (ASME) standards. The result show the discontinuity of porosity on the surface of the welded and inclusion on sub material used ultrasonic test, all indication on dye penetrant or ultrasonic test if there were rejected of result of welded that there must be gouging on part which rejected and then re-welding.

  15. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. NEET In-Pile Ultrasonic Sensor Enablement-Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Daw; J. Rempe; J. Palmer

    2014-09-01

    Ultrasonic technologies offer the potential to measure a range of parameters during irradiation of fuels and materials, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes under harsh irradiation test conditions. There are two primary issues that currently limit in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. The harsh nature ofmore » in-pile testing and the variety of desired measurements demand that an enhanced signal processing capability be developed to make in-pile ultrasonic sensors viable. To address these issues, the NEET ASI program funded a three year Ultrasonic Transducer Irradiation and Signal Processing Enhancements project, which is a collaborative effort between the Idaho National Laboratory, the Pacific Northwest National Laboratory, the Argonne National Laboratory, and the Pennsylvania State University. The objective of this report is to document the objectives and accomplishments from this three year project. As summarized within this document, significant work has been accomplished during this three year project.« less

  17. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    NASA Astrophysics Data System (ADS)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  18. A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives

    NASA Astrophysics Data System (ADS)

    Colen, Charles Raymond, Jr.

    There have been numerous studies with ultrasonic nondestructive testing and wood fiber composites. The problem of the study was to ascertain whether ultrasonic nondestructive testing can be used in place of destructive testing to obtain the modulus of elasticity (MOE) of the wood/agricultural material with comparable results. The uniqueness of this research is that it addressed the type of content (cornstalks and switchgrass) being used with the wood fibers and the type of adhesives (soybean-based) associated with the production of these composite materials. Two research questions were addressed in the study. The major objective was to determine if one can predict the destructive test MOE value based on the nondestructive test MOE value. The population of the study was wood/agricultural fiberboards made from wood fibers, cornstalks, and switchgrass bonded together with soybean-based, urea-formaldehyde, and phenol-formaldehyde adhesives. Correlational analysis was used to determine if there was a relationship between the two tests. Regression analysis was performed to determine a prediction equation for the destructive test MOE value. Data were collected on both procedures using ultrasonic nondestructing testing and 3-point destructive testing. The results produced a simple linear regression model for this study which was adequate in the prediction of destructive MOE values if the nondestructive MOE value is known. An approximation very close to the entire error in the model equation was explained from the destructive test MOE values for the composites. The nondestructive MOE values used to produce a linear regression model explained 83% of the variability in the destructive test MOE values. The study also showed that, for the particular destructive test values obtained with the equipment used, the model associated with the study is as good as it could be due to the variability in the results from the destructive tests. In this study, an ultrasonic signal was used

  19. Elastic Moduli of Pyrolytic Boron Nitride Measured Using 3-Point Bending and Ultrasonic Testing

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.; Roth, D. J.

    1999-01-01

    Three-point bending and ultrasonic testing were performed on a flat plate of PBN. In the bending experiment, the deformation mechanism was believed to be shear between the pyrolytic layers, which yielded a shear modulus, c (sub 44), of 2.60 plus or minus .31 GPa. Calculations based on the longitudinal and shear wave velocity measurements yielded values of 0.341 plus or minus 0.006 for Poisson's ratio, 10.34 plus or minus .30 GPa for the elastic modulus (c (sub 33)), and 3.85 plus or minus 0.02 GPa for the shear modulus (c (sub 44)). Since free basal dislocations have been reported to affect the value of c (sub 44) found using ultrasonic methods, the value from the bending experiment was assumed to be the more accurate value.

  20. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  1. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  2. Modelling welded material for ultrasonic testing using MINA: Theory and applications

    NASA Astrophysics Data System (ADS)

    Moysan, J.; Corneloup, G.; Chassignole, B.; Gueudré, C.; Ploix, M. A.

    2012-05-01

    Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure that causes difficulties in the ultrasonic testing. Increasing the material knowledge is a long term research field for LCND laboratory and EDF Les Renardières in France. A specific model has been developed: the MINA model (Modelling an Isotropy from Notebook of Arc welding). Welded material is described in 2D for flat position arc welding with shielded electrode (SMAW) at a functional scale for UT modeling. The grain growth is the result of three physical phenomena: epitaxial growth, influence of temperature gradient, and competition between the grains. The model uses phenomenological rules to combine these three phenomena. A limited number of parameters is used to make the modelling possible from the information written down in a notebook of arc welding. We present all these principles with 10 years' hindsight. To illustrate the model's use, we present conclusions obtained with two recent applications. In conclusion we give also insights on other research topics around this model : inverse problem using a F.E.M. code simulating the ultrasonic propagation, in position welding, 3D prospects, GTAW.

  3. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    PubMed

    Tudisco, Erika; Roux, Philippe; Hall, Stephen A; Viggiani, Giulia M B; Viggiani, Gioacchino

    2015-03-01

    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix.

  4. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  5. Damage Assessment of Creep Tested and Thermally Aged Metallic Alloys Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Baaklini, George Y.

    2001-01-01

    In recent years emphasis has been placed on the early detection of material changes experienced in turbine powerplant components. During the scheduled overhaul of a turbine, the current techniques of examination of various hot section components aim to find flaws such as cracks, wear, and erosion, as well as excessive deformations. Thus far, these localized damage modes have been detected with satisfactory results. However, the techniques used to find these flaws provide no information on life until the flaws are actually detected. Major improvements in damage assessment, safety, as well as more accurate life prediction could be achieved if nondestructive evaluation (NDE) techniques could be utilized to sense material changes that occur prior to the localized defects mentioned. Because of elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and access the current condition of such components. Research at the NASA Glenn Research Center involves developing and utilizing an NDE technique that discloses distributed material changes that occur prior to the localized damage detected by the current methods of inspection. In a recent study, creep processes in a nickel-base alloy were the life-limiting condition of interest, and the NDE technique was acousto-ultrasonics (AU). AU is an NDE technique that utilizes two ultrasonic transducers to interrogate the condition of a test specimen. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen while a receiving transducer detects the signal after it has passed through the material. The goal of the method is to correlate certain parameters of the detected waveform to characteristics of the material between the two transducers. Here, the waveform parameter of interest is the attenuation due to internal damping for which information is being garnered from the frequency domain. The parameters utilized to

  6. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  7. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  8. Development Of Ultrasonic Testing Based On Delphi Program As A Learning Media In The Welding Material Study Of Detection And Welding Disables In The Environment Of Vocational Education

    NASA Astrophysics Data System (ADS)

    Dwi Cahyono, Bagus; Ainur, Chandra

    2018-04-01

    The development of science and technology has a direct impact on the preparation of qualified workers, including the preparation of vocational high school graduates. Law Number 20 the Year 2003 on National Education System explains that the purpose of vocational education is to prepare learners to be ready to work in certain fields. One of the learning materials in Vocational High School is welding and detecting welding defects. Introduction of welding and detecting welding defects, one way that can be done is by ultrasonic testing will be very difficult if only capitalize the book only. Therefore this study aims to adopt ultrasonic testing in a computer system. This system is called Delphi Program-based Ultrasonic Testing Expert System. This system is used to determine the classification and type of welding defects of the welded defect indicator knew. In addition to the system, there is a brief explanation of the notion of ultrasonic testing, calibration procedures and inspection procedures ultrasonic testing. In this system, ultrasonic input data testing that shows defects entered into the computer manually. This system is built using Delphi 7 software and Into Set Up Compiler as an installer. The method used in this research is Research and Development (R & D), with the following stages: (1) preliminary research; (2) manufacture of software design; (3) materials collection; (4) early product development; (5) validation of instructional media experts; (6) product analysis and revision; (8) media trials in learning; And (9) result of end product of instructional media. The result of the research shows that: (1) the result of feasibility test according to ultrasonic material testing expert that the system is feasible to be used as instructional media in welding material subject and welding defect detection in vocational education environment, because it contains an explanation about detection method of welding defect using method Ultrasonic testing in detail; (2

  9. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  10. Ultrasonic linear array validation via concrete test blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegh, Kyle, E-mail: hoeg0021@umn.edu; Khazanovich, Lev, E-mail: hoeg0021@umn.edu; Ferraro, Chris

    2015-03-31

    Oak Ridge National Laboratory (ORNL) comparatively evaluated the ability of a number of NDE techniques to generate an image of the volume of 6.5′ X 5.0′ X 10″ concrete specimens fabricated at the Florida Department of Transportation (FDOT) NDE Validation Facility in Gainesville, Florida. These test blocks were fabricated to test the ability of various NDE methods to characterize various placements and sizes of rebar as well as simulated cracking and non-consolidation flaws. The first version of the ultrasonic linear array device, MIRA [version 1], was one of 7 different NDE equipment used to characterize the specimens. This paper dealsmore » with the ability of this equipment to determine subsurface characterizations such as reinforcing steel relative size, concrete thickness, irregularities, and inclusions using Kirchhoff-based migration techniques. The ability of individual synthetic aperture focusing technique (SAFT) B-scan cross sections resulting from self-contained scans are compared with various processing, analysis, and interpretation methods using the various features fabricated in the specimens for validation. The performance is detailed, especially with respect to the limitations and implications for evaluation of a thicker, more heavily reinforced concrete structures.« less

  11. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  12. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing

    PubMed Central

    Villegas, Irene F.; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  13. Assessment of a Cavity to Optimize Ultrasonic Efficiency to Remove Intraradicular Posts.

    PubMed

    Graça, Izabela Araujo Aguiar; Sponchiado Júnior, Emílio Carlos; Marques, André Augusto Franco; de Moura Martins, Leandro; Garrido, Ângela Delfina Bittencourt

    2017-08-01

    The study assessed an in vitro protocol for the removal of cast metal posts using ultrasonic vibration in multirooted teeth by drilling a cavity in the coronal portion of the post followed by ultrasound application in the cavity. Forty endodontically treated molars received intraradicular cast posts and were divided into 4 groups according to the removal protocol: the control group, no cavity and no ultrasonic vibration; the ultrasonic group, no cavity and ultrasonic vibration in the coronal portion of the core; the cavity group, a cavity in the core and no ultrasonic vibration; and the cavity ultrasonic group, a cavity in the core and ultrasonic vibration inside the cavity. The traction test was performed on all samples using a universal testing machine (EMIC DL-2000; EMIC Equipamentos e Sistemas de Ensaio LTDA, São José dos Pinhais, PR, Brazil) at a speed of 1 mm/min, obtaining values in Newtons. The data were statistically analyzed using analysis of variance and the Tukey-Kramer test (P < .05). The results showed statistically significant differences between the tested groups (control group = 322.74 N, ultrasonic group = 283.09 N, cavity group = 244.00 N, and cavity ultrasonic group = 237.69 N). The lowest mean strength was found in the group that received ultrasonic vibration inside the cavity. Preparing a cavity in the coronal core followed by ultrasonic vibration reduces the traction force required for removal. The removal protocol was effective for removing posts in multirooted teeth cemented with zinc phosphate. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.

    1975-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys were considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. Some RF and spectral data on ten sets of ultrasonic reference blocks were taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and microstructural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response.

  15. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  16. Ultrasonic fatigue of a high strength steel

    NASA Astrophysics Data System (ADS)

    Koster, M.; Wagner, G.; Eifler, D.

    2010-07-01

    At the Institute of Materials Science and Engineering at the University of Kaiserslautern an ultrasonic testing system for the fatigue assessment of metallic materials in the very high cycle fatigue (VHCF) regime was developed. The ultrasonic testing system allows to control the test and to measure detailed fatigue data. The achieved results can be used to describe the cyclic deformation behaviour of wheel steels at ultrasonic frequencies. In load increase tests (LIT), the critical stress amplitude can be determined, which leads to a defined change of process parameters like generator power, dissipated energy and specimen temperature. With SEM investigations it was proved that the change of the process parameters correlates with irreversible changes in the microstructure. It can be shown that the stress amplitude, leading to first irreversible changes in the microstructure, strongly depends on the depth position within the original wheel rim. New and basic results on the fatigue mechanisms of high strength steels in the VHCF-regime can be achieved.

  17. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  18. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  19. Testing Accuracy of Long-Range Ultrasonic Sensors for Olive Tree Canopy Measurements

    PubMed Central

    Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L.; Rodríguez-Lizana, Antonio

    2015-01-01

    Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414

  20. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    NASA Astrophysics Data System (ADS)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  1. Effect of ultrasonic tip designs on intraradicular post removal.

    PubMed

    Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti

    2014-11-01

    To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.

  2. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  3. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    NASA Astrophysics Data System (ADS)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  4. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  5. Method for Ultrasonic Imaging and Device for Performing the Method

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I. (Inventor)

    1997-01-01

    A method for ultrasonic imaging of interior structures and flaws in a test specimen with a smooth or irregular contact surfaces, in which an ultrasonic transducer is coupled acoustically to the contact surface via a plurality of ultrasonic wave guides with equal delay times. The wave guides are thin and bendable, so they adapt to variations in the distance between the transducer and different parts of the contact surface by bending more or less. All parts of the irregular contact surface accordingly receive sound waves that are in phase, even when the contact surface is irregular, so a coherent sound wave is infused in the test specimen. The wave guides can be arranged in the form of an ultrasonic brush, with a flat head for coupling to a flat transducer, and free bristles that can be pressed against the test specimen. By bevelling the bristle ends at a suitable angle, shear mode waves can be infused into the test specimen from a longitudinal mode transducer.

  6. Ultrasonic propulsion of kidney stones.

    PubMed

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  7. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  8. Aircraft components structural health monitoring using flexible ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.

    2011-04-01

    A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.

  9. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  10. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.; Sushinsky, G. F.; Chwirut, D. J.; Bechtoldt, C. J.; Ruff, A. W.

    1976-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized.

  11. Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions

    NASA Astrophysics Data System (ADS)

    Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.

    2012-05-01

    In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.

  12. Ultrasonic imaging of textured alumina

    NASA Technical Reports Server (NTRS)

    Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.

    1989-01-01

    Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.

  13. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  14. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  15. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1995-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  16. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1994-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Div. of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation; frequency vs. cleaning effectiveness; the two types of transducers; and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  17. Geometric Limitations Of Ultrasonic Measurements

    NASA Astrophysics Data System (ADS)

    von Nicolai, C.; Schilling, F.

    2006-12-01

    Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.

  18. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  19. Ultrasonic nebulization platforms for pulmonary drug delivery.

    PubMed

    Yeo, Leslie Y; Friend, James R; McIntosh, Michelle P; Meeusen, Els N T; Morton, David A V

    2010-06-01

    Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific requirements of a patient, taking into account the patient's breathing pattern, physiological profile and disease state. Nevertheless, owing to the difficulties and limitations associated with conventional designs and technologies, ultrasonic nebulizers have never been widely adopted, and have in recent years been in a state of decline. An overview is provided on the advances in new miniature ultrasonic nebulization platforms in which large increases in lung dose efficiency have been reported. In addition to a discussion of the underlying mechanisms governing ultrasonic nebulization, in which there appears to be widely differing views, the advantages and shortcomings of conventional ultrasonic nebulization technology are reviewed and advanced state-of-the-art technologies that have been developed recently are discussed. Recent advances in ultrasonic nebulization technology demonstrate significant potential for the development of smart, portable inhalation therapy platforms for the future. Nevertheless, there remain considerable challenges that need to be addressed before such personalized delivery systems can be realized. These have to be addressed across the spectrum from fundamental physics through to in vivo device testing and dealing with the relevant regulatory framework.

  20. Ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several aerospace materials

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun

    2008-03-01

    The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.

  1. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  2. Errors in measurements by ultrasonic thickness gauges caused by the variation in ultrasonic velocity in constructional steels and metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, V.A.; Tarasenko, V.L.; Tselser, L.B.

    1988-09-01

    Numerical values of the variation in ultrasonic velocity in constructional metal alloys and the measurement errors related to them are systematized. The systematization is based on the measurement results of the group ultrasonic velocity made in the All-Union Scientific-Research Institute for Nondestructive Testing in 1983-1984 and also on the measurement results of the group velocity made by various authors. The variations in ultrasonic velocity were systematized for carbon, low-alloy, and medium-alloy constructional steels; high-alloy iron base alloys; nickel-base heat-resistant alloys; wrought aluminum constructional alloys; titanium alloys; and cast irons and copper alloys.

  3. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    NASA Astrophysics Data System (ADS)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  4. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  5. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  6. Dynamic acousto-elastic testing of concrete with a coda-wave probe: comparison with standard linear and nonlinear ultrasonic techniques.

    PubMed

    Shokouhi, Parisa; Rivière, Jacques; Lake, Colton R; Le Bas, Pierre-Yves; Ulrich, T J

    2017-11-01

    The use of nonlinear acoustic techniques in solids consists in measuring wave distortion arising from compliant features such as cracks, soft intergrain bonds and dislocations. As such, they provide very powerful nondestructive tools to monitor the onset of damage within materials. In particular, a recent technique called dynamic acousto-elasticity testing (DAET) gives unprecedented details on the nonlinear elastic response of materials (classical and non-classical nonlinear features including hysteresis, transient elastic softening and slow relaxation). Here, we provide a comprehensive set of linear and nonlinear acoustic responses on two prismatic concrete specimens; one intact and one pre-compressed to about 70% of its ultimate strength. The two linear techniques used are Ultrasonic Pulse Velocity (UPV) and Resonance Ultrasound Spectroscopy (RUS), while the nonlinear ones include DAET (fast and slow dynamics) as well as Nonlinear Resonance Ultrasound Spectroscopy (NRUS). In addition, the DAET results correspond to a configuration where the (incoherent) coda portion of the ultrasonic record is used to probe the samples, as opposed to a (coherent) first arrival wave in standard DAET tests. We find that the two visually identical specimens are indistinguishable based on parameters measured by linear techniques (UPV and RUS). On the contrary, the extracted nonlinear parameters from NRUS and DAET are consistent and orders of magnitude greater for the damaged specimen than those for the intact one. This compiled set of linear and nonlinear ultrasonic testing data including the most advanced technique (DAET) provides a benchmark comparison for their use in the field of material characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOEpatents

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  8. NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JE Daw; JL Rempe; BR Tittmann

    2012-09-01

    Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are lessmore » intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.« less

  9. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    NASA Astrophysics Data System (ADS)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  10. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total

  11. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    PubMed

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  12. Ultrasonic characterization of porosity using the Kramers-Kronig relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, J.H.; Hsu, D.K.; Adler, L.

    1985-01-01

    A new algorithm is proposed to determine the volume fraction of pores in solids using the frequency dependent ultrasonic attenuation. The algorithm was developed by examining the Kramers-Kronig relation between the porosity induced ultrasonic attenuation and the change in sound velocity. The method is tested using data measured for several porous aluminum samples.

  13. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  14. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  15. Ultrasonic monitoring of the setting of silicone elastomeric impression materials.

    PubMed

    Kanazawa, Tomoe; Murayama, Ryosuke; Furuichi, Tetsuya; Imai, Arisa; Suda, Shunichi; Kurokawa, Hiroyasu; Takamizawa, Toshiki; Miyazaki, Masashi

    2017-01-31

    This study used an ultrasonic measurement device to monitor the setting behavior of silicone elastomeric impression materials, and the influence of temperature on setting behavior was determined. The ultrasonic device consisted of a pulser-receiver, transducers, and an oscilloscope. The two-way transit time through the mixing material was divided by two to account for the down-and-back travel path; then it was multiplied by the sonic velocity. Analysis of variance and the Tukey honest significant difference test were used. In the early stages of the setting process, most of the ultrasonic energy was absorbed by the elastomers and the second echoes were relatively weak. As the elastomers hardened, the sonic velocities increased until they plateaued. The changes in sonic velocities varied among the elastomers tested, and were affected by temperature conditions. The ultrasonic method used in this study has considerable potential for determining the setting processes of elastomeric impression materials.

  16. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    NASA Astrophysics Data System (ADS)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  17. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  18. Underwater detection by using ultrasonic sensor

    NASA Astrophysics Data System (ADS)

    Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.

  19. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  20. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  1. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  2. Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review

    Treesearch

    Adam C. Senalik; Greg Schueneman; Robert J. Ross

    2014-01-01

    The authors conducted a review of ultrasonic testing and evaluation of wood and wood products, starting with a description of basic ultrasonic inspection setups and commonly used equations. The literature review primarily covered wood research presented between 1965 and 2013 in the Proceedings of the Nondestructive Testing of Wood Symposiums. A table that lists the...

  3. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  4. Study of ultrasonic sensor that is effective for all direction using an electromagnetic force

    NASA Astrophysics Data System (ADS)

    Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro

    2015-03-01

    Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.

  5. Pilot-scale continuous ultrasonic cleaning equipment reduces Listeria monocytogenes levels on conveyor belts.

    PubMed

    Tolvanen, Riina; Lundén, Janne; Hörman, Ari; Korkeala, Hannu

    2009-02-01

    Ultrasonic cleaning of a conveyor belt was studied by building a pilot-scale conveyor with an ultrasonic cleaning bath. A piece of the stainless steel conveyor belt was contaminated with meat-based soil and Listeria monocytogenes strains (V1, V3, and B9) and incubated for 72 h to allow bacteria to attach to the conveyor belt surfaces. The effect of ultrasound with a potassium hydroxide-based cleaning detergent was determined by using the cleaning bath at 45 and 50 degrees C for 30 s with and without ultrasound. The detachment of L. monocytogenes from the conveyor belt caused by the ultrasonic treatment was significantly greater at 45 degrees C (independent samples t test, P < 0.001) and at 50 degrees C (independent samples t test, P = 0.04) than without ultrasound. Ultrasonic cleaning efficiency was tested with different cleaning durations (10, 15, 20, and 30 s) and temperatures (30, 45, and 50 degrees C). The differences in the log reduction between cleaning treatments were analyzed by analysis of variance with Tamhane's T2 posthoc test using SPSS (Chicago, IL). The lengthening of the treatment time from 10 to 30 s did not significantly increase the detachment of L. monocytogenes (ANOVA 0.633). At 30 degrees C and at the longest time tested (30 s), the treatment reduced L. monocytogenes counts by only 2.68 log units. However, an increase in temperature from 30 to 50 degrees C improved the effect of the ultrasonic treatment significantly (P < 0.01). Ultrasonic cleaning for 10 s at 50 degrees C reduced L. monocytogenes counts by more than 5 log units. These results indicate that ultrasonic cleaning of a conveyor belt is effective even with short treatment times.

  6. An ultrasonic technique for measuring stress in fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, K. J.; Day, P.; Byron, D.

    1999-12-02

    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less

  7. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming

    2017-07-01

    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  9. Temperature compensation of ultrasonic velocity during the malolactic fermentation process

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Novoa-Díaz, D.; Chávez, J. A.; Turó, A.; García-Hernández, M. J.; Salazar, J.

    2015-12-01

    Ultrasonic properties of materials present a strong dependence on temperature and in turn the ultrasonic velocity of propagation in the material under test. It is precisely for this reason that most ultrasonic measurements are often carried out with thermostated samples by using either water tanks or climate chambers. This approach is viable in a laboratory and when the measured or characterized samples are relatively small. However, this procedure is highly improbable to be applied when in situ measurements in industrial environments must be performed. This goes for the case of, for example, ultrasonic velocity measurements in wine while it is performing malolactic fermentation inside a tank of hundreds of thousands of litres. In this paper two different practical approaches to temperature compensation are studied. Then, the two temperature compensation methods are applied to the measured ultrasonic velocity values along a whole malolactic fermentation process. The results of each method are discussed.

  10. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  11. Infrared Thermal Imaging During Ultrasonic Aspiration of Bone

    NASA Astrophysics Data System (ADS)

    Cotter, D. J.; Woodworth, G.; Gupta, S. V.; Manandhar, P.; Schwartz, T. H.

    Ultrasonic surgical aspirator tips target removal of bone in approaches to tumors or aneurysms. Low profile angled tips provide increased visualization and safety in many high risk surgical situations that commonly were approached using a high speed rotary drill. Utilization of the ultrasonic aspirator for bone removal raised questions about relative amount of local and transmitted heat energy. In the sphenoid wing of a cadaver section, ultrasonic bone aspiration yielded lower thermal rise in precision bone removal than rotary mechanical drills, with maximum temperature of 31 °C versus 69 °C for fluted and 79 °C for diamond drill bits. Mean ultrasonic fragmentation power was about 8 Watts. Statistical studies using tenacious porcine cranium yielded mean power levels of about 4.5 Watts to 11 Watts and mean temperature of less than 41.1 °C. Excessively loading the tip yielded momentary higher power; however, mean thermal rise was less than 8 °C with bone removal starting at near body temperature of about 37 °C. Precision bone removal and thermal management were possible with conditions tested for ultrasonic bone aspiration.

  12. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  13. Ultrasonic detection technology based on joint robot on composite component with complex surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order tomore » express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.« less

  14. Ultrasonic measurement of stress in 2219-T87 aluminum plate

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Risch, E. R.

    1976-01-01

    The basic relationship of ultrasonic signal velocity to directional subsurface stress is reviewed. Inappropriateness of dependency on a single correlative value of constant for a three dimensional stress field in metallic materials is discussed. Implementation of conventional ultrasonic nondestructive testing capabilities integrated to provide a composite technique for the measurement of orthogonal stress components is described, and the procedures for performing the preparatory calibration and subsequent stress field measurements are presented. In conclusion, the prime effect of stress on ultrasonic signal velocity occurs only in the direction of material excitation or particle motion.

  15. Stress measurement in thick plates using nonlinear ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Zeynab, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu; Ozevin, Didem, E-mail: zabbas5@uic.edu, E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interactionmore » of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.« less

  16. The ultrasonic characteristics of high frequency modulated arc and its application in material processing.

    PubMed

    He, Longbiao; Yang, Ping; Li, Luming; Wu, Minsheng

    2014-12-01

    To solve the difficulty of introducing traditional ultrasonic transducers to welding molten pool, high frequency current is used to modulate plasma arc and ultrasonic wave is excited successfully. The characteristics of the excited ultrasonic field are studied. The results show that the amplitude-frequency response of the ultrasonic emission is flat. The modulating current is the main factor influencing the ultrasonic power and the sound pressure depends on the variation of arc plasma stream force. Experimental study of the welding structure indicates grain refinement by the ultrasonic emission of the modulated arc and the test results showed there should be an energy region for the arc ultrasonic to get best welding joints. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ultrasonic detection of plate cracks in railway wheels

    DOT National Transportation Integrated Search

    1976-07-31

    The results of experimental efforts established the feasibility of the detection of railway wheel plate cracks by an ultrasonic pulse echo testing technique from the tread surface. Feasibility and test sensitivities were established using artificial ...

  18. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  19. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  20. Research on ultrasonic excitation for the removal of drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug for near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng

    2017-05-01

    Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  2. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen

    2018-04-01

    Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.

  3. Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    PubMed Central

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r 2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced. PMID:24511286

  4. Prediction of building limestone physical and mechanical properties by means of ultrasonic P-wave velocity.

    PubMed

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r(2) between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.

  5. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  6. Input-output characterization of an ultrasonic testing system by digital signal analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.

    1986-01-01

    Ultrasonic test system input-output characteristics were investigated by directly coupling the transmitting and receiving transducers face to face without a test specimen. Some of the fundamentals of digital signal processing were summarized. Input and output signals were digitized by using a digital oscilloscope, and the digitized data were processed in a microcomputer by using digital signal-processing techniques. The continuous-time test system was modeled as a discrete-time, linear, shift-invariant system. In estimating the unit-sample response and frequency response of the discrete-time system, it was necessary to use digital filtering to remove low-amplitude noise, which interfered with deconvolution calculations. A digital bandpass filter constructed with the assistance of a Blackman window and a rectangular time window were used. Approximations of the impulse response and the frequency response of the continuous-time test system were obtained by linearly interpolating the defining points of the unit-sample response and the frequency response of the discrete-time system. The test system behaved as a linear-phase bandpass filter in the frequency range 0.6 to 2.3 MHz. These frequencies were selected in accordance with the criterion that they were 6 dB below the maximum peak of the amplitude of the frequency response. The output of the system to various inputs was predicted and the results were compared with the corresponding measurements on the system.

  7. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    interface binding force, a quantitative method was presented. Recently, a comparison between the experimental and simulated results based on a similar theoretical model was presented. A through-transmission setup for water immersion mode-converted shear waves was used to analyze the ultrasonic nonlinear parameter of an adhesive bond. In addition, ultrasonic guided waves have been used to analyze adhesive or diffusion bonded joints. In this paper, the ultrasonic nonlinear parameter is used to characterize the curing state of a polymer/aluminum adhesive joint. Ultrasonic through-transmission tests were conducted on samples cured under various conditions. The magnitude of the second order harmonic was measured and the corresponding ultrasonic nonlinear parameter was evaluated. A fairly good correlation between the curing condition and the nonlinear parameter is observed. The results show that the nonlinear parameter might be used as a good indicator of the cure state for adhesive joints.

  8. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    NASA Astrophysics Data System (ADS)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  9. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  10. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  11. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  12. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  13. An experimental study of ultrasonic vibration and the penetration of granular material

    PubMed Central

    Firstbrook, David; Worrall, Kevin; Timoney, Ryan; Suñol, Francesc; Gao, Yang

    2017-01-01

    This work investigates the potential use of direct ultrasonic vibration as an aid to penetration of granular material. Compared with non-ultrasonic penetration, required forces have been observed to reduce by an order of magnitude. Similarly, total consumed power can be reduced by up to 27%, depending on the substrate and ultrasonic amplitude used. Tests were also carried out in high-gravity conditions, displaying a trend that suggests these benefits could be leveraged in lower gravity regimes. PMID:28293134

  14. Relation between hardness and ultrasonic velocity on pipeline steel welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barrera, G.; Natividad, C.; Salazar, M.; Contreras, A.

    2016-04-01

    In general, the ultrasonic techniques have been used to determine the mechanical properties of materials based on their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic wave velocity, hardness and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performed in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal, weld material of studied joints is anisotropic too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable. This technique is proposed to assist pipeline operators in estimating the hardness through ultrasonic measures to evaluate the susceptibility to stress sulphide cracking and hydrogen-induced cracking due to hard spots in steel pipeline welded joints in service. Sound wave velocity and hardness measurements have been carried out on a steel welded joint. For each section of the welding, weld bead, fusion zone, heat affected zone and base metal were found to correspond particular values of the ultrasound velocity. These results were correlated with electron microscopy observations of the microstructure and sectorial scan view of welded joints by ultrasonic phased array.

  15. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  16. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)

    2017-01-01

    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  17. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  18. Experiment and numerical simulation for laser ultrasonic measurement of residual stress.

    PubMed

    Zhan, Yu; Liu, Changsheng; Kong, Xiangwei; Lin, Zhongya

    2017-01-01

    Laser ultrasonic is a most promising method for non-destructive evaluation of residual stress. The residual stress of thin steel plate is measured by laser ultrasonic technique. The pre-stress loading device is designed which can easily realize the condition of the specimen being laser ultrasonic tested at the same time in the known stress state. By the method of pre-stress loading, the acoustoelastic constants are obtained and the effect of different test directions on the results of surface wave velocity measurement is discussed. On the basis of known acoustoelastic constants, the longitudinal and transverse welding residual stresses are measured by the laser ultrasonic technique. The finite element method is used to simulate the process of surface wave detection of welding residual stress. The pulsed laser is equivalent to the surface load and the relationship between the physical parameters of the laser and the load is established by the correction coefficient. The welding residual stress of the specimen is realized by the ABAQUS function module of predefined field. The results of finite element analysis are in good agreement with the experimental method. The simple and effective numerical and experimental methods for laser ultrasonic measurement of residual stress are demonstrated. Copyright © 2016. Published by Elsevier B.V.

  19. Carbon nanotube composites prepared by ultrasonically assisted twin screw extrusion

    NASA Astrophysics Data System (ADS)

    Lewis, Todd

    Two ultrasonic twin screw extrusion systems were designed and manufactured for the ultrasonic dispersion of multi-walled carbon nanotubes in viscous polymer matrices at residence times of the order of seconds in the ultrasonic treatment zones. The first design consisted of an ultrasonic slit die attachment in which nanocomposites were treated. A second design incorporated an ultrasonic treatment section into the barrel of the extruder to utilize the shearing of the polymer during extrusion while simultaneously applying treatment. High performance, high temperature thermoset phenylethynyl terminate imide oligomer (PETI-330) and two different polyetherether ketones (PEEK) were evaluated at CNT loadings up to 10 wt%. The effects of CNT loading and ultrasonic amplitude on the processing characteristics and rheological, mechanical, electrical, thermal and morphological properties of nanocomposites were investigated. PETI and PEEK nanocomposites showed a decrease in resistivity, an increase in modulus and strength and a decrease in strain at break and toughness with increased CNT loading. Ultrasonically treated samples showed a decrease in die pressure and extruder torque with increasing ultrasonic treatment and an increase in complex viscosity and storage modulus at certain ultrasonic treatment levels. Optical microscopy showed enhanced dispersion of the CNT bundles in ultrasonically treated samples. However, no significant improvement of mechanical properties was observed with ultrasonic treatment due to lack of adhesion between the CNT and matrix in the solid state. A curing model for PETI-330 was proposed that includes the induction and curing stages to predict the degree of cure of PETI-330 under non-isothermal conditions. Induction time parameters, rate constant and reaction order of the model were obtained based on differential scanning calorimetry (DSC) data. The model correctly predicted experimentally measured degrees of cure of compression molded plaques cured

  20. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  1. NDE application of ultrasonic tomography to a full-scale concrete structure.

    PubMed

    Choi, Hajin; Popovics, John S

    2015-06-01

    Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.

  2. Experimental and simulated ultrasonic characterization of complex damage in fused silica.

    PubMed

    Martin, L Peter; Chambers, David H; Thomas, Graham H

    2002-02-01

    The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.

  3. Elastic-plastic cube model for ultrasonic friction reduction via Poisson's effect.

    PubMed

    Dong, Sheng; Dapino, Marcelo J

    2014-01-01

    Ultrasonic friction reduction has been studied experimentally and theoretically. This paper presents a new elastic-plastic cube model which can be applied to various ultrasonic lubrication cases. A cube is used to represent all the contacting asperities of two surfaces. Friction force is considered as the product of the tangential contact stiffness and the deformation of the cube. Ultrasonic vibrations are projected onto three orthogonal directions, separately changing contact parameters and deformations. Hence, the overall change of friction forces. Experiments are conducted to examine ultrasonic friction reduction using different materials under normal loads that vary from 40 N to 240 N. Ultrasonic vibrations are generated both in longitudinal and vertical (out-of-plane) directions by way of the Poisson effect. The tests show up to 60% friction reduction; model simulations describe the trends observed experimentally. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  5. Ultrasonic velocity technique for monitoring property changes in fiber-reinforced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.; Bhatt, Ramakrishna T.

    1991-01-01

    A technique for measuring ultrasonic velocity was used to monitor changes that occur during processing and heat treatment of a SiC/RBSM composite. Results indicated that correlations exist between the ultrasonic velocity data and elastic modulus and interfacial shear strength data determined from mechanical tests. The ultrasonic velocity data can differentiate strength. The advantages and potential of this nondestructive evaluation method for fiber reinforced ceramic matrix composite applications are discussed.

  6. An Ultrasonic Compactor for Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    The Badger Explorer is a rig-less oil and gas exploration tool which drills into the subsea environment to collect geological data. Drill spoil is transported from the front end of the system to the rear, where the material is compacted. Motivated by the need to develop a highly efficient compaction system, an ultrasonic compactor for application with granular geological materials encountered in subsea environments is designed and fabricated as part of this study. The finite element method is used to design a compactor configuration suitable for subsea exploration, consisting of a vibrating ultrasonic horn called a resonant compactor head, which operates in a longitudinal mode at 20 kHz, driven by a Langevin piezoelectric transducer. A simplified version of the compactor is also designed, due to its ease of incorporating in a lab-based experimental rig, in order to demonstrate enhanced compaction using ultrasonics. Numerical analysis of this simplified compactor system is supported with experimental characterisation using laser Doppler vibrometry. Compaction testing is then conducted on granular geological material, showing that compaction can be enhanced through the use of an ultrasonic compactor.

  7. Air- coupled ultrasonic testing of CFRP rods by means of guided waves

    NASA Astrophysics Data System (ADS)

    Kažys, Rymantas; Raišutis, Renaldas; Žukauskas, Egidijus; Mažeika, Liudas; Vladišauskas, Alfonsas

    2010-01-01

    One of the most important parts of the gliders is a lightweight longeron reinforcement made of carbon fibre reinforced plastics (CFRP) rods. These small diameter (a few millimetres) rods during manufacturing are glued together in epoxy filled matrix in order to build the arbitrary spar profile. However, the defects presenting in the rods such as brake of fibres, lack of bonding, reduction of density affect essentially the strength of the construction and are very complicated in repairing. Therefore, appropriate non-destructive testing techniques of carbon fibber rods should be applied before gluing them together. The objective of the presented work was development of NDT technique of CFRP rods used for aerospace applications, which is based on air- coupled excitation/reception of guided waves. The regularities of ultrasonic guided waves propagating in both circular and rectangular cross-section CFRP rods immersed into water were investigated and it was shown that the guided waves propagating along sample of the rod create leaky waves which are radiated into a surrounding medium. The ultrasonic receiver scanned over the rod enables to pick-up the leaky waves and to determine the non-uniformities of propagation caused by the defects. Theoretical investigations were carried out by means of numerical simulations based on a 2D and 3D finite differences method. By modelling and experimental investigations it was demonstrated that presence of any type of the defect disturbs the leaky wave and enables to detect them. So, the spatial position of defects can be determined also. It was shown that such important defects as a disbond of the plies essentially reduce or even completely suppress the leaky wave, so they can be detected quit easily.

  8. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    PubMed

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  9. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  10. Multi-Source 3d Models Supporting Ultrasonic Test to Investigate AN Egyptian Sculpture of the Archaeological Museum in Bologna

    NASA Astrophysics Data System (ADS)

    Di Pietra, V.; Donadio, E.; Picchi, D.; Sambuelli, L.; Spanò, A.

    2017-02-01

    The paper presents the workflow and the results of an ultrasonic 3D investigation and a 3D survey application aimed at the assessment of the internal integrity of an ancient sculpture. The work aimed at highlighting the ability of methods devoted to the 3D geometry acquisition of small objects when applied to diagnosis performed by geophysical investigation. In particular, two methods widely applied for small objects modelling are considered and compared, the digital Photogrammetry with the Structure from Motion (SFM) technique and hand-held 3D scanners. The study concludes with the aim to enhance the final graphical representation of the tomographic results and to subject the obtained results to a quantitative analysis. The survey is applied to the Egyptian naophorous statue of Amenmes and Reshpu, which dates to the reign of Ramses II (1279-1213 BC) or later and is now preserved in the Civic Archaeological Museum in Bologna. In order to evaluate the internal persistency of fractures and visible damages, a 3D Ultrasonic Tomographic Imaging (UTI) test has been performed and a multi-sensor survey (image and range based) was conducted, in order to evaluate the locations of the source and receiver points as accurate as possible The presented test allowed to evaluate the material characteristics, its porosity and degradation state, which particularly affect the lower part of the statue. More in general, the project demonstrated how solution coming from the field of 3D modelling of Cultural Heritage allow the application of 3D ultrasonic tomography also on objects with complex shapes, in addition to the improved representation of the obtained results.

  11. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    PubMed

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sandwich Panels Evaluated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2004-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment systems for next-generation engines. The bond strength between the core and face sheets is critical in maintaining the structural integrity of the sandwich structure. To improve the inspection and production of these systems, researchers at the NASA Glenn Research Center are using nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, to evaluate the brazing quality between the face plates and the metallic foam core. The capabilities and limitations of a swept-frequency approach to ultrasonic spectroscopy were evaluated with respect to these sandwich structures. This report discusses results from three regions of a sandwich panel representing different levels of brazing quality between the outer face plates and a metallic foam core. Each region was investigated with ultrasonic spectroscopy. Then, on the basis of the NDE results, three shear specimens sectioned from the sandwich panel to contain each of these regions were mechanically tested.

  13. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  14. Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures

    PubMed Central

    Raisutis, Renaldas; Samaitis, Vykintas

    2017-01-01

    This work proposes a novel hybrid signal processing technique to extract information on disbond-type defects from a single B-scan in the process of non-destructive testing (NDT) of glass fiber reinforced plastic (GFRP) material using ultrasonic guided waves (GW). The selected GFRP sample has been a segment of wind turbine blade, which possessed an aerodynamic shape. Two disbond type defects having diameters of 15 mm and 25 mm were artificially constructed on its trailing edge. The experiment has been performed using the low-frequency ultrasonic system developed at the Ultrasound Institute of Kaunas University of Technology and only one side of the sample was accessed. A special configuration of the transmitting and receiving transducers fixed on a movable panel with a separation distance of 50 mm was proposed for recording the ultrasonic guided wave signals at each one-millimeter step along the scanning distance up to 500 mm. Finally, the hybrid signal processing technique comprising the valuable features of the three most promising signal processing techniques: cross-correlation, wavelet transform, and Hilbert–Huang transform has been applied to the received signals for the extraction of defects information from a single B-scan image. The wavelet transform and cross-correlation techniques have been combined in order to extract the approximated size and location of the defects and measurements of time delays. Thereafter, Hilbert–Huang transform has been applied to the wavelet transformed signal to compare the variation of instantaneous frequencies and instantaneous amplitudes of the defect-free and defective signals. PMID:29232845

  15. Continuous long-term health monitoring using ultrasonic wave propagation.

    DOT National Transportation Integrated Search

    2016-12-01

    This report presents the findings of a research project on using ultrasonic testing to : continuously monitor reinforced concrete bridge decks for the onset of delamination. The : report first presents a review of current nondestructive testing techn...

  16. Semi-Automated Pulse-Echo Ultrasonic System for Inspecting Tires

    DOT National Transportation Integrated Search

    1977-07-01

    A nondestructive tire-testing system has been developed using the pulse-echo ultrasonic technique, which offers substantial advantages over all other physical nondestructive-testing methods and shows promise of reducing the cost of production-tire in...

  17. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  18. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  19. Ultrasonic Communication Project, Phase 1, FY1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, H.D.; Akerman, M.A.; Baylor, V.M.

    2000-06-01

    This Phase 1 project has been successful in identifying, exploring, and demonstrating methods for ultrasonic-based communication with an emphasis on the application of digital signal processing techniques. During the project, at the direction of the agency project monitor, particular attention was directed at sending and receiving ultrasonic data through air and through pipes that would be commonly found in buildings. Efforts were also focused on development of a method for transmitting computer files ultrasonically. New methods were identified and evaluated for ultrasonic communication. These methods are based on a technique called DFS. With DFS, individual alphanumeric characters are broken downmore » into a sequence of bits, and each bit is used to generate a discrete ultrasonic frequency. Characters are then transmitted one-bit-at-a-time, and reconstructed by the receiver. This technique was put into practice through the development of LabVIEW{trademark}VIs. These VIs were integrated with specially developed electronic circuits to provide a system for demonstrating the transmission and reception/reconstruction of typed messages and computer files. Tests were performed to determine the envelope for ultrasound transmission through pipes (with and without water) versus through air. The practical aspects of connections, efficient electronics, impedance matching, and the effect of damping mechanisms were all investigated. These tests resulted in a considerable number of reference charts that illustrate the absorption of ultrasound through different pipe materials, both with and without water, as a function of distance. Ultrasound was found to be least attenuated by copper pipe and most attenuated by PVC pipe. Water in the pipe provides additional damping and attenuation of ultrasonic signals. Dramatic improvements are observed, however, in ultrasound signal strength if the transducers are directly coupled to the water, rather than simply attaching them to the

  20. A support vector machine approach for classification of welding defects from ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  1. Radiographic and ultrasonic characterization of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Abel, P. B.

    1988-01-01

    The capabilities were investigated of projection microfocus X-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  2. A Micro Ultrasonic Scalpel with Modified Stepped Horn

    NASA Astrophysics Data System (ADS)

    Kurosawa, Minoru; Umehara, Yuji

    A transducer for a micro ultrasonic scalpel has been fabricated. The micro ultrasonic scalpel can be used with an endoscope for a non-abdominal operation or micro surgery, for example, through a microscope. The ultrasonic transducer was 9.8 mm long and 2.7 mm wide and has stepped horn to amplify vibration velocity; tip of the horn is 0.6 mm wide. The scalpel operated at the resonance frequency in longitudinal mode of 278 kHz. The piezoelectric material was lead zirconate titanate (PZT) that was deposited by the hydrothermal method. The vibration velocity at the tip of the horn in longitudinal direction was 4.0 m/s with 40Vp-p driving voltage in both side electrodes. To demonstrate a beneficial effect of the scalpel, a cutting test that the transducer was stuck into pork fat was carried out.

  3. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  4. The Laparosound{trade mark, serif}-an ultrasonic morcellator for use in laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Malinowski, Igor; Łobodzinski, Suave S.; Paśniczek, Roman

    2012-05-01

    The laparoscopic surgery has gained presence in the operating room in cases where it is feasible to spare patient trauma and minimize the hospital stay. One unique challenge in laparoscopic/endoscopic surgery is operating and removing tissue volume through keyhole - trocar. The removal of tissues by fragmentation is generally termed morcellation. We proposed a new method for soft tissue morcellation using laparoscopy. A unique ultrasonic laparoscopic surgical device, termed Laparosound{trade mark, serif}, utilizing laparoscopic high amplitude ultrasonic waveguides, operating in edge mode, has been developed that uses the principle of ultrasonic cavitation phenomenon for excision and morcellation of a variety of tissue types. The local ultrasonic acoustic intensity at the distal waveguide tip is sufficiently high that the liquefaction of moist tissue occurs. The mechanism of tissue morcellation is deemed to be cavitation based, therefore is dependant on water content in tissue, and thus its effectiveness depends on tissue type. This results in ultrasound being efficient in moist tissue and sparing dry, collagen rich blood vessels and thus minimizes bleeding. The applications of such device in particular, commonly encountered, could lay in general and ob/gyn laparoscopic surgery, whereas other applications could emerge. The design of power ultrasonic instruments for mass clinical applications poses however unique challenges, such as ability to design and build ultrasonic resonators that last in conditions of ultrasonic fatigue. These highly non-linear devices, whose behavior is hard to predict, have become the challenge of the author of the present paper. The object of work is to design and build an operating device capable of ultrasonic soft tissue morcellation in laparoscopic surgery. This includes heavy computational ultrasonics verified by testing and manufacturing feasibility using titanium biomedical alloys. The prototype Laparosound{trade mark, serif} device

  5. Ultrasonic Technique for Predicting Grittiness of Salted Duck Egg

    NASA Astrophysics Data System (ADS)

    Erawan, S.; Budiastra, I. W.; Subrata, I. D. M.

    2018-05-01

    Grittiness of egg yolk is a major factor in consumer acceptance of salted duck egg product. Commonly, the grittiness level is determined by the destructive method. Salted egg industries need a grading system that can judge the grittiness accurately and nondestructively. The purpose of this study was to develop a method for determining grittiness of salted duck eggs nondestructively based on ultrasonic method. This study used 100 samples of salted duck eggs with 7,10,14 and 21 days of salting age. Velocity and attenuation were measured by an ultrasonic system at frequency 50 kHz, followed by physicochemical properties measurement (hardness of egg yolks and salt content), and organoleptic test. Ultrasonic wave velocity in salted duck eggs ranged from 620.6 m/s to 1334.6 m/s, while the coefficient of attenuation value ranged from – 0.76 dB/m to -0.51 dB/m. Yolk hardness was 2.68 N at 7 days to 5.54 N at 21 days of salting age. Salt content was 1.81 % at 7 days to 5.71 % at 21 days of salting age. Highest scores of organoleptic tests on salted duck eggs were 4.23 and 4.18 for 10 and 14 days of salting age, respectively. Discriminant function using ultrasonic velocity variables in minor and major diameter could predict grittiness with 95 % accuracy.

  6. Ultrasonic Surface Measurements for the investigation of superficial alteration of natural stones

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Auras, Michael; Bilgili, Filiz; Christen, Sandra; Cristiano, Luigia; Krompholz, Rolf; Mosca, Ilaria; Rose, David

    2013-04-01

    Seismic waveform analysis is applicable also to the centimeter and decimeter scale for non-destructive testing of pavement, facades, plaster, sculptures, or load-bearing structures like pillars. Mostly transmission measurements are performed and travel-times of first arriving P-waves are considered that have limited resolution for the upper centimeters of an object. In contrast, surface measurements are well suited to quantify superficial alterations of material properties e.g. due to weathering. A number of surface measurements have been carried out in the laboratory as well as on real structures in order to study systematically the information content of ultrasonic waveforms and their variability under real conditions. As a preposition for ultrasonic waveform analysis, reproducible, broad-band measurements have to be carried out with a definite radiation pattern and an about 1 mm accuracy of the measurement geometry. We used special coupling devices for effective ultrasonic surface measurements in the laboratory as well as at real objects. Samples of concrete with varying composition and samples of natural stone - marble, tuff, and sandstone - were repeatedly weathered and tested by ultrasonic measurements. The resistance of the samples to weathering and the penetration depth of the weathering are analyzed. Furthermore, material specific calibration curves for changes in velocities of elastic waves due to weathering can be obtained by these tests. Tests on real structures have been carried out for marble (Schlossbrücke, Berlin) and sandstone (Porta Nigra, Trier). Altogether, these test measurements show clearly that despite of the internal inhomogeneity of many real objects, their surface roughness and topography especially ultrasonic Rayleigh waves are well suited to study material alterations in the upper centimeters. Dispersion of Rayleigh waves may be inverted for shear-wave velocity as a function of depth.

  7. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    NASA Astrophysics Data System (ADS)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  8. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  9. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  10. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  11. Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength

    NASA Astrophysics Data System (ADS)

    Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.

    2018-02-01

    To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.

  12. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  13. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  14. Integrated ultrasonic and petrographical characterization of carbonate building materials

    NASA Astrophysics Data System (ADS)

    Ligas, Paola; Fais, Silvana; Cuccuru, Francesco

    2014-05-01

    This paper presents the application of non-destructive ultrasonic techniques in evaluating the conservation state and quality of monumental carbonate building materials. Ultrasonic methods are very effective in detecting the elastic characteristics of the materials and thus their mechanical behaviour. They are non-destructive and effective both for site and laboratory tests, though it should be pointed out that ultrasonic data interpretation is extremely complex, since elastic wave velocity heavily depends on moisture, heterogeneity, porosity and other physical properties of the materials. In our study, considering both the nature of the building materials and the constructive types of the investigated monuments, the ultrasonic investigation was carried out in low frequency ultrasonic range (24 kHz - 54 kHz) with the aim of detecting damages and degradation zones and assessing the alterability of the investigated stones by studying the propagation of the longitudinal ultrasonic pulses. In fact alterations in the materials generally cause a decrease in longitudinal pulse velocity values. Therefore starting from longitudinal velocity values the elasto-mechanical behaviour of the stone materials can be deduced. To this aim empirical and effective relations between longitudinal velocity and mechanical properties of the rocks can be used, by transferring the fundamental concepts of the studies of reservoir rocks in the framework of hydrocarbon research to the diagnostic process on stone materials. The ultrasonic measurements were performed both in laboratory and in situ using the Portable Ultrasonic Non-Destructive Digital Indicating Tester (PUNDIT) by C.N.S. Electronics LTD. A number of experimental sessions were carried out choosing different modalities of data acquisition. On the basis of the results of the laboratory measurements, an in situ ultrasonic survey on significant monuments, have been carried out. The ultrasonic measurements were integrated by a

  15. Micromachined ultrasonic transducers for air-coupled nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Hansen, Sean T.; Degertekin, F. Levent; Khuri-Yakub, Butrus T.

    1999-01-01

    Conventional methods of ultrasonic non-destructive evaluation (NDE) use liquids to couple sound waves into the test samples. This either requires immersion of the parts to be examined or the use of complex and bulky water squirting systems that must be scanned over the structure. Air-coupled ultrasonic systems eliminate these requirements if the losses at air-solid interfaces are tolerable. Micromachined capacitive ultrasonic transducers (cMUTs) have been shown to have more than 100 dB dynamic range when used in the bistatic transmission mode. In this paper, we present results of a pitch-catch transmission system using cMUTs that achieves a 103 dB dynamic range. Each transducer consists of 10,000 silicon nitride membranes of 100 micrometers diameter connected in parallel. This geometry result in transducers with a resonant frequency around 2.3 MHz. These transducers can be used in transmission experiments at normal incident to the sample or to excite and detect guided waves in aluminum and composite plates. In this paper we present ultrasonic defect detection results from both through transmission and guided Lamb wave experiments in aluminum and composite plates, such as those used in aircraft.

  16. Intraosseous heat generation during sonic, ultrasonic and conventional osteotomy.

    PubMed

    Rashad, Ashkan; Sadr-Eshkevari, Pooyan; Heiland, Max; Smeets, Ralf; Hanken, Henning; Gröbe, Alexander; Assaf, Alexandre T; Köhnke, Robert H; Mehryar, Pouyan; Riecke, Björn; Wikner, Johannes

    2015-09-01

    To assess heat generation in osteotomies during application of sonic and ultrasonic saws compared to conventional bur. Two glass-fiber isolated nickel-chromium thermocouples, connected to a recording device, were inserted into fresh bovine rib bone blocks and kept in 20 ± 0.5 °C water at determined depths of 1.5 mm (cortical layer) and 7 mm (cancellous layer) and 1.0 mm away from the planned osteotomy site. Handpieces, angulated 24-32°, were mounted in a vertical drill stand, and standardized weights were attached to their tops to exert loads of 5, 8, 15 and 20 N. Irrigation volumes of 20, 50 and 80 ml/min were used for each load. Ten repetitions were conducted using new tips each time for each test condition. The Mann-Whitney-U test was used for statistical analysis (p < 0.05). Both ultrasonic and sonic osteotomies were associated with significantly lower heat generation than conventional osteotomy (p < 0.01). Sonic osteotomy showed non-significantly lower heat generation than ultrasonic osteotomy. Generated heat never exceeded the critical limit of 47 °C in any system. Variation of load had no effect on heat generation in both bone layers for all tested systems. An increased irrigation volume resulted in lower temperatures in both cortical and cancellous bone layers during all tested osteotomies. Although none of the systems under the conditions of the present study resulted in critical heat generation, the application of ultrasonic and sonic osteotomy systems was associated with lower heat generation compared to the conventional saw osteotomy. Copious irrigation seems to play a critical role in preventing heat generation in the osteotomy site. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  18. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study.

    PubMed

    Suda, Tomonari; Kobayashi, Hiroaki; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-09-01

    Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency.

  19. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  20. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  1. Production of ultrasonic vocalizations by Peromyscus mice in the wild

    PubMed Central

    Kalcounis-Rueppell, Matina C; Metheny, Jackie D; Vonhof, Maarten J

    2006-01-01

    Background There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. Results We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. Conclusion The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context. PMID:16507093

  2. Tumour cell dispersion by the ultrasonic aspirator during brain tumour resection.

    PubMed

    Preston, J K; Masciopinto, J; Salamat, M S; Badie, B

    1999-10-01

    Ultrasonic aspirators are commonly used to resect brain tumours because they allow safe, rapid and accurate removal of diseased tissue. Since ultrasonic aspirators generate a spray of aerosolized irrigating fluid around the instrument tip, we questioned whether this spray might contain viable tumours cells that could contribute to intraoperative spread of tumour fragments. To test this hypothesis, we collected the spray produced during the resection of nine brain tumours with an ultrasonic aspirator and semi-quantitatively analysed it for tumour presence. The aerosolized irrigation fluid was found to contain intact tumour cells or clumps of tumour cells in all nine instances, and there was a trend of increasing tumour cell dispersion with increasing ultrasonic aspiration times. Further examination is required to determine if this intraoperative dispersion of apparently viable tumour fragments contributes to local neoplasm recurrence.

  3. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  4. Numerical analysis of bubble-cluster formation in an ultrasonic field

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Son, Gihun

    2016-11-01

    Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.

  5. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of ultrasonication on anaerobic degradability of solid waste digestate.

    PubMed

    Boni, M R; D'Amato, E; Polettini, A; Pomi, R; Rossi, A

    2016-02-01

    This paper evaluates the effect of ultrasonication on anaerobic biodegradability of lignocellulosic residues. While ultrasonication has been commonly applied as a pre-treatment of the feed substrate, in the present study a non-conventional process configuration based on recirculation of sonicated digestate to the biological reactor was evaluated at the lab-scale. Sonication tests were carried out at different applied energies ranging between 500 and 50,000kJ/kg TS. Batch anaerobic digestion tests were performed on samples prepared by mixing sonicated and untreated substrate at two different ratios (25:75 and 75:25 w/w). The results showed that when applied as a post-treatment of digestate, ultrasonication can positively affect the yield of anaerobic digestion, mainly due to the dissolution effect of complex organic molecules that have not been hydrolyzed by biological degradation. A good correlation was found between the CH4 production yield and the amount of soluble organic matter at the start of digestion tests. The maximum gain in biogas production was 30% compared to that attained with the unsonicated substrate, which was tentatively related to the type and concentration of the metabolic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  8. Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-07-01

    Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.

  9. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  10. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  11. A multi points ultrasonic detection method for material flow of belt conveyor

    NASA Astrophysics Data System (ADS)

    Zhang, Li; He, Rongjun

    2018-03-01

    For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.

  12. Ultrasonic Characterization of Fatigue Cracks in Composite Materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Watson, Jason; Johnson, Devin; Walker, James; Russell, Sam; Thom, Robert (Technical Monitor)

    2002-01-01

    Microcracking in composite structures due to combined fatigue and cryogenic loading can cause leakage and failure of the structure and can be difficult to detect in-service. In aerospace systems, these leaks may lead to loss of pressure/propellant, increased risk of explosion and possible cryo-pumping. The success of nondestructive evaluation to detect intra-ply microcracking in unlined pressure vessels fabricated from composite materials is critical to the use of composite structures in future space systems. The work presented herein characterizes measurements of intraply fatigue cracking through the thickness of laminated composite material by means of correlation with ultrasonic resonance. Resonant ultrasound spectroscopy provides measurements which are sensitive to both the microscopic and macroscopic properties of the test article. Elastic moduli, acoustic attenuation, and geometry can all be probed. The approach is based on the premise of half-wavelength resonance. The method injects a broadband ultrasonic wave into the test structure using a swept frequency technique. This method provides dramatically increased energy input into the test article, as compared to conventional pulsed ultrasonics. This relative energy increase improves the ability to measure finer details in the materials characterization, such as microcracking and porosity. As the microcrack density increases, more interactions occur with the higher frequency (small wavelength) components of the signal train causing the spectrum to shift toward lower frequencies. Several methods are under investigation to correlate the degree of microcracking from resonance ultrasound measurements on composite test articles including self organizing neural networks, chemometric techniques used in optical spectroscopy and other clustering algorithms.

  13. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  14. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This papermore » will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.« less

  15. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    NASA Astrophysics Data System (ADS)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  16. Light-scattering analysis of ultrasonic wave's influence on the RBC agglutination in vitro

    NASA Astrophysics Data System (ADS)

    Doubrovski, Valeri A.; Dvoretski, Costanten N.

    1999-04-01

    Elastic light scattering is one of the most often used optical methods to analyze the cells agglutination reaction - the base of a great number of medical diagnostic test and biomedical investigations. The increase of the resolution of methods and apparatus towards the induced cells aggregation - the foundation of the reaction of agglutination, is quite an actual problem. The solution of this problem increases the reliability of the diagnostic test and gives an opportunity to achieve the diagnostic information in the cases when the traditional approaches do not lead to the diagnostic results. The attempt to increase the resolution of the immune reaction analyzer by means of ultrasonic waves action on the reagent mixture in vitro is taken in this paper. The RBC agglutination reaction which is usually used for the blood group type examination is chosen as an example of an object of the investigation. Different laser optical trains of the devices based on the turbidimetric and nephelometric methods and their combination are analyzed here. The influence of the ultrasonic wave time interval action and of the features of the sample preparation procedure on the resolution towards the agglutination process was investigated in this work. It is shown that the ultrasonic wave action on the reagent mixture leads to a large gain in the resolution of the device towards the RBC agglutination process. The experiments showed that the resolution of the device was enough to register the agglutination process even for the erythrocytes with weak agglutination ability when the reaction was invisible without ultrasonic action. It occurred that the diagnostic test time was more than by an order shortened due to the ultrasonic wave action. The optimal ultrasonic time interval action, the sample preparation technology and experimental technique were defined. The principle of the ultrasonic wave action on the cells agglutination process suggested here can be spread out on the immune

  17. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study

    PubMed Central

    Suda, Tomonari; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-01-01

    Background Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. Aim This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. Materials and Methods This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. Results The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. Conclusion This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency. PMID:26501012

  18. Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Jae; Song, Sung-Jin

    2000-05-01

    A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.

  19. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  1. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    PubMed

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  2. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  3. Aggregate formation affects ultrasonic disruption of microalgal cells.

    PubMed

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [Ultrasonic scissors. New vs resterilized instruments].

    PubMed

    Gärtner, D; Münz, K; Hückelheim, E; Hesse, U

    2008-02-01

    The aim of this study was to compare reliability in handling and function of resterilized and single-use disposable ultrasonic scissors. In a prospective randomized study, the surgeon blindly tested new and resterilized ultrasonographic scissors. The parameters were force of activation, cutting effect, coagulation effect, error messages, and disturbing generator noise. Fifty-one new and 49 resterilized instruments in 94 operations were evaluated. The differences in force of activation, cutting effect, and coagulation were not significant. Error messages and disturbing noises were rare in both groups. Six new instruments and two resterilized instruments had to be exchanged because of problems during surgery. This study demonstrates comparable reliability in function and handling of resterilized and new ultrasonic scissors. The use of resterilized instruments leads to distinctly reduced costs and could contribute to efficiency in laparoscopic surgery.

  5. Lack of antimicrobial effect on periodontopathic bacteria by ultrasonic and sonic scalers in vitro.

    PubMed

    Schenk, G; Flemmig, T F; Lob, S; Ruckdeschel, G; Hickel, R

    2000-02-01

    The purpose of this study was to assess the antimicrobial effects of a sonic and ultrasonic scaler generally used for subgingival scaling on gram-negative and gram-positive periodontopathic bacteria. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Campylobacter rectus, or Peptostreptococcus micros were suspended in Schaedler's broth medium and treated by a sonic or a magnetostrictive ultrasonic scaler for 30 s and 150 s in vitro. Bacterial suspensions treated by an ultrasonic cell disruptor served as a positive control and untreated bacterial suspensions served as a negative control. Following sonication, samples were serially diluted, streaked on blood agar plates and incubated for 2-5 days at 37 degrees C. Treatment by the sonic or ultrasonic scaler for up to 150 s did not reduce the viability of any of the tested periodontal pathogens. Compared to untreated controls, the viability of A. actinomycetemcomitans and P. gingivalis was significantly (p<0.05) reduced only following ultrasonication with the cell disruptor after 30 s (0.72 and 0.54 log CFU/ml, respectively) and of A. actinomycetemcomitans, P. gingivalis, C. rectus, and P. micros after 150 s (1.98, 1.34, 1.95 and 1.98 log CFU/ml, respectively). The data of the study may indicate that the assessed sonic and ultrasonic scaler used for subgingival debridement do not result in killing of the tested periodontal pathogens.

  6. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  7. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  8. Split-mode ultrasonic transducer.

    PubMed

    Ostrovskii, Igor; Cremaldi, Lucien

    2013-08-01

    A split-mode ultrasonic transducer is investigated in both theory and experiment. This transducer is a two-dimensional structure of periodically poled domains in a ferroelectric wafer with free surfaces. The acoustic vibrations are excited by a radio frequency electric current applied along the length of the wafer, which allows the basal-plane surfaces to be free of metal coatings and thus ready for further biomedical applications. A specific physical property of this transducer consists of the multiple acousto-electric resonances, which occur due to an acoustic mode split when the acoustic half-wavelength is equal to the domain length. Possible applications include ultrasonic generation and detection at the micro-scale, intravascular sonification and visualization, ultrasound therapy of localized small areas such as the eye, biomedical applications for cell cultures, and traditional nondestructive testing including bones and tissues. A potential use of a non-metallized wafer is a therapeutic application with double action that is both ultrasound itself and an electric field over the wafer. The experimental measurements and theoretical calculations are in good agreement.

  9. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  10. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  11. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  12. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  13. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  14. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  15. Noncontact acousto-ultrasonics using laser generation and laser interferometric detection

    NASA Technical Reports Server (NTRS)

    Green, Robert E., Jr.; Huber, Robert D.

    1991-01-01

    A compact, portable fiber-optic heterodyne interferometer designed to detect out-of-plane motion on surfaces is described. The interferometer provides a linear output for displacements over a broad frequency range and can be used for ultrasonic, acoustic emission, and acousto-ultrasonic (AU) testing. The interferometer in conjunction with a compact pulsed Nd:YAG laser represents a noncontact testing system. This system was tested to determine its usefulness for the AU technique. The results obtained show that replacement of conventional piezoelectric transducers (PZT) with a laser generation/detection system make it possible to carry out noncontact AU measurements. The waveforms recorded were 5 MHZ PZT-generated ultrasound propagating through an aluminum block, detection of the acoustic emission event, and laser AU waveforms from graphite-epoxy laminates and a filament-wound composite.

  16. Reducing forces during drilling brittle hard materials by using ultrasonic and variation of coolant

    NASA Astrophysics Data System (ADS)

    Schopf, C.; Rascher, R.

    2016-11-01

    The process of ultrasonic machining is especially used for brittle hard materials as the additional ultrasonic vibration of the tool at high frequencies and low amplitudes acts like a hammer on the surface. With this technology it is possible to drill holes with lower forces, therefor the machining can be done faster and the worktime is much less than conventionally. A three-axis dynamometer was used to measure the forces, which act between the tool and the sample part. A focus is set on the sharpness of the tool. The results of a test series are based on the Sauer Ultrasonic Grinding Centre. On the same machine it is possible to drill holes in the conventional way. Additional to the ultasonic Input the type an concentration of coolant is important for the Drilling-force. In the test there were three different coolant and three different concentrations tested. The combination of ultrasonic vibration and the right coolant and concentration is the best way to reduce the Forces. Another positive effect is, that lower drilling-forces produce smaller chipping on the edge of the hole. The way to reduce the forces and chipping is the main issue of this paper.

  17. Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, T.; Prabhakar Reddy, P.

    2017-08-01

    Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the

  18. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  19. A Low-Wear Driving Method of Ultrasonic Motors

    NASA Astrophysics Data System (ADS)

    Ishii, Takaaki; Takahashi, Hisanori; KentaroNakamura, KentaroNakamura; Ueha, Sadayuki

    1999-05-01

    The life of ultrasonic motors is limited by the wear of friction materials used for the contact surfaces. In order to reduce the wear of the friction material, we have to reduce the sliding speed between the sliding surfaces of the motor. In this report, we propose a new driving method to reduce the sliding speed of the motor by shaping the vibration speed waveform. The sliding loss was calculated and wear reduction effect was confirmed. A wear test was carried out under no-load condition. This method prolongs the life of an ultrasonic motor by about 3.4-fold. The results and wear reduction effects are also described.

  20. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  1. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less

  2. Direct laser writing of polymer micro-ring resonator ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Krishnaswamy, Sridhar

    2017-04-01

    With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.

  3. A computerized self-compensating system for ultrasonic inspection of airplane structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komsky, I.N.; Achenbach, J.D.; Hagemaier, D.

    1993-12-31

    Application of a self-compensating technique for ultrasonic inspection of airplane structures makes it possible not only to detect cracks in the different layers of joints but also to obtain information on crack sizes. A prototype computerized ultrasonic system, which utilizes the self-compensating method, has been developed for non-destructive inspection of multilayered airplane structures with in-between sealants, such as bolted joints in tail connections. Industrial applications of the system would require deployment of commercially available portable modules for data acquisition and processing. A portable ultrasonic flaw detector EPOCH II manual scanners and HandiScan, and SQL and FCS software modules form themore » PC-based TestPro system have been selected for initial tests. A pair of contact angle-beam transducers were used to generate shear waves in the material. Both hardware and software components of the system have been modified for the application in conjunction with the self-compensating technique. The system has bene tested on two calibration specimens with artificial flaws of different sizes in internal layers of multilayered structures. Ultrasonic signals transmitted through and reflected from the artificial flaws have bene discriminated and characterized using multiple time domain amplitude gates. Then the ratios of the reflection and transmission coefficients, R/T, were calculated for several positions of the transducers. Inspection of measured R/T curves shows it is difficult to visually associate curve shapes with corresponding flaw sizes and orientation. Hence for online classification of these curve shapes, application of an adaptive signal classifier was considered. Several different types and configurations of the classifiers, including a neural network, have been tested. Test results showed that improved performance of the classifier can be achieved by combination of a back-propagation neural network with a signal pre-processing module.« less

  4. Effect of Ultrasonic Melt Treatment on Microstructure and Mechanical Properties of 35CrMo Steel Casting

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Li, Fan; Liang, Gen; Mao, Daheng

    2018-01-01

    Effects of different power ultrasonic on microstructure and mechanical properties of 35CrMo steel casting were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and hardness testing. A self-developed experiment apparatus was used for the propagation of ultrasonic vibration into the 35CrMo steel melt to carry out ultrasonic treatment. The experimental results showed that compared to the traditional casting, ultrasonic treatment can obviously change the solidification microstructure of 35CrMo steel, which is changed from coarse dendrites to fined dendrites or equiaxed grains. With the increase of ultrasonic power, equiaxed crystal is remarkably refined and its area is broadened. The micro porosity percentage of ingot casting decreases significantly and the porosity defects can be suppressed under ultrasonic treatment. The mechanical properties of 35CrMo steel ingot after heat treatment were enhanced by ultrasonic treatment: the maximum tensile strength is improved by 8.4% and the maximum elongation increased by 1.5 times.

  5. [Research in high frequency ultrasonic for degradation of azo dye wastewater containing MX-5B].

    PubMed

    Xie, Wei-Ping; Qin, Yan; Zou, Yuan; He, De-Wen; Song, Dan

    2010-09-01

    The degradation of azo dye wastewater, containing MX-5B, was investigated by using high frequency ultrasonic irradiation. The effect of different factors like the initial pH of solution, sonolysis parameters, air-blowing, Fe2+ concentration were studied, the synergistic action of complex frequency and the mechanism of degradation was explored primarily. The results show that MX-5B in aqueous solution can be degraded efficiently by ultrasonic irradiation, when the pH 3.5, ultrasonic frequency 418.3 kHz, ultrasonic power 69 W, color removal rate up to 100% in 180 min. Adding of Fe2+ and blowing air had some effects. The results also indicated that radical-oxidation controlled the ultrasonic decompose of MX-5B and MX-5B ultrasonic removal was observed to behave as pseudo-first-order kinetics under different experimental conditions tested in the present work. Comparison of UV-Vis absorption spectrums before and after treatment showed that all of the conjugate structure and part of aromatic structure were destroyed after being ultrasonic irradiation.

  6. Ultrasonic diagnostic in porous media and suspensions

    NASA Astrophysics Data System (ADS)

    Bacri, J.-C.; Hoyos, M.; Rakotomalala, N.; Salin, D.; Bourlion, M.; Daccord, G.; Lenormand, R.; Soucemarianadin, S.

    1991-08-01

    An apparatus has been constructed to characterize transient fluid displacements in porous media, and probe sedimenting suspensions. The technique used is to propagate an ultrasonic wave in the sample. Both ultrasonic attenuation and velocity are related to the static and hydrodynamic properties of the medium. The system was built so as to perform array imaging (mapping) and tested with different fluids and suspensions. It is suggested that the ultrasonic technique can be suitable whenever transient, low cost and safe saturation and concentration measurements are to be performed. Nous avons réalisé un appareil pour étudier l'évolution temporelle des écoulements en milieux poreux et au cours de la sédimentation des suspensions. La technique employée utilise la propagation d'une onde ultrasonore dans l'échantillon. L'atténuation et la vitesse ultrasonores sont toutes deux reliées aux propriétés statique et dynamique du mileu. Le système d'imagerie acoustique permet une cartographie à deux dimensions de l'échantillon , ce système a été testé avec différents fluides et suspensions. Notre étude montre que la technique ultrasonore est bien adaptée à la détermination de la dépendance temporelle de la concentration et de la saturation dans des conditions de sécurité et de coût optimales.

  7. A new approach to correct yaw misalignment in the spinning ultrasonic anemometer

    NASA Astrophysics Data System (ADS)

    Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.

    2018-01-01

    Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.

  8. Air-Coupled Ultrasonic Measurements in Composites

    NASA Astrophysics Data System (ADS)

    Kommareddy, V.; Peters, J. J.; Dayal, V.; Hsu, D. K.

    2004-02-01

    Air-coupled ultrasound is a non-contact technique and has clear advantages over water-coupled testing. Research of air-coupled ultrasonics, especially using capacitance and micromachined transducers, has been extensively reported in the literature. This paper reports our experience of applying piezoceramic air-coupled transducers for nondestructive evaluation of composites. The beam profiles of air-coupled piezoceramic transducers, with and without apodization, were mapped out. The transmission of air-coupled ultrasonic energy through composite plates of different thickness was measured experimentally; model calculation of the transmission coefficient, taking into account the frequency bandwidth of the transducer, agreed with the measurement results. The occurrence of diffraction phenomenon ("Poisson bright spot") while imaging flaws in composite laminates was investigated. The resolution of scanned images obtained with air-coupled transducers was investigated for different frequency, focusing, and apodization conditions.

  9. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  10. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    PubMed

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  11. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  12. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  13. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.

  14. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    inspection and the mechanical modulus (stiffness) seen during fatigue experiments with silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite samples. As shown in the figure, ultrasonic decay increased as the modulus decreased for the ceramic matrix composite tensile fatigue samples. The likely microstructural reason for the decrease in modulus (and increase in ultrasonic decay) is the matrix microcracking that commonly occurs during fatigue testing of these materials. Ultrasonic decay has shown the capability to track the pattern of transverse cracking and fiber breakage in these composites.

  15. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  16. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  17. Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.

    PubMed

    Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong

    2017-11-27

    In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

  18. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  19. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  20. Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats.

    PubMed

    Natusch, C; Schwarting, R K W

    2010-09-01

    Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may

  1. Efficiency of professional tooth brushing before ultrasonic scaling.

    PubMed

    Kim, M J; Noh, H; Oh, H Y

    2015-05-01

    This study aimed to examine the effect of dental plaque biofilm removal with a toothbrush, an interdental brush and dental floss by a dental hygienist prior to ultrasonic scaling on treatment times and client satisfaction. This study was conducted among adults who received scaling after agreeing to participate in this study at a dental clinic in Seoul, Korea, from July to September 2012. Thirty-seven subjects received modified scaling (M-scaling) which is ultrasonic scaling after plaque control with a toothbrush and dental floss by a dental hygienist, and 37 subjects received routine ultrasonic scaling (R-scaling). Univariate and multivariate analyses and chi-squared and t-tests were conducted using SAS. This study was approved by the Kangwon Institutional Review Board. Significant differences were found between the outcomes of M- and R-scaling for both the ultrasonic scaling time (M-scaling, 7.41 ± 6.18 min; R-scaling, 23.22 ± 6.92 min) and the total tooth cleaning time (M-scaling, 15.92 ± 7.70 min; R-scaling, 23.22 ± 6.92 min) (P < 0.001). Subject satisfaction with the scaling process was not significantly different between M-scaling (4.54 ± 0.80) and R-scaling (4.84 ± 0.44). These findings indicated that removing the dental plaque biofilm with a toothbrush and dental floss by a hygienist before scaling with an ultrasonic device was more effective in reducing the working time of the dental hygienist. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  3. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  4. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  5. A high precision ultrasonic system for vibration measurements

    NASA Astrophysics Data System (ADS)

    Young, M. S.; Li, Y. C.

    1992-11-01

    A microcomputer-aided ultrasonic system that can be used to measure the vibratory displacements of an object is presented. A pair of low cost 40-kHz ultrasonic transducers is used to transmit ultrasound toward an object and receive the ultrasound reflected from the object. The relative motion of the object modulates the phase angle difference between the transmitted and received ultrasound signals. A single-chip microcomputer-based phase detector was designed to record and analyze the phase shift information which is then sent to a PC-AT microcomputer for processing. We have developed an ingenious method to reconstruct the relative motion of an object from the acquired data of the phase difference changes. A digital plotter based experiment was also designed for testing the performance of the whole system. The measured accuracy of the system in the reported experiments is within +/- 0.4 mm and the theoretical maximal measurable speed of the object is 89.6 cm/s. The main advantages of this ultrasonic vibration measurement system are high resolution, low cost, noncontact measurement, and easy installation.

  6. Decontamination of blood soaked electronic devices using ultrasonic technology.

    PubMed

    Dudeck, Kimberly C; Brennan, Tamara C; Embury, Daniel J

    2012-01-10

    With advancements in technology allowing for the miniaturization of consumer electronics, criminal investigations of all types frequently involve the forensic examination of electronic devices, such as cellular telephones, smartphones, and portable flash memory; in some extreme, violent cases, these devices are found covered in blood. Due to the complexity of such devices, standard operating procedures for the complete removal of blood had not previously been established by the Royal Canadian Mounted Police prior to this study. The electronics industry has adopted the use of the ultrasonic cleaner for sanitizing printed circuit boards (PCBs) by removing residues and contaminants. High frequency sound waves created by the machine penetrate and remove dirt and residues; however, early research during the 1950s recorded these sound waves breaking the internal bonds of integrated circuit chips. Experimentation with modern ultrasonic technology was used to determine if internal components were damaged, as well as if ultrasonic cleaning was the most suitable method for the removal of dried and liquid blood from a PCB. Several disinfectant solutions were compared against the 0.5% Triton(®) X-100 detergent solution in the ultrasonic cleaner, including: 10% sodium hypochlorite bleach, 85% isopropyl alcohol, and Conflikt(®) disinfectant spray. The results not only demonstrated that the ultrasonic cleaner did not damage the vital memory chip on the PCB, but also, with the assistance of Conflikt(®), was able to remove all traces of blood as indicated by Hemastix(®) reagent strips. Of five methods experimented with, two cycles of ultrasonic cleaning followed by sanitization with Conflikt(®) proved to be the only procedure capable of removing all traces of blood, as confirmed with both Hemastix(®) reagent strips and the hemochromogen test. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  8. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Implantable pulsed Doppler ultrasonic flowmeter development has resulted in designs for application to the aortas of dogs and humans, and to human renal and coronary arteries. A figure of merit was derived for each design, indicating the degree of its precision. An H-array design for transcutaneous observation of blood flow was developed and tested in vitro. Two other simplified designs for the same purpose obviate the need to determine vessel orientation. One of these will be developed in the next time period. Techniques for intraoperative use and for implantation have had mixed success. While satisfactory on large vessels, higher ultrasonic frequencies and alteration of transducer design are required for satisfactory operation of pulsed Doppler flowmeters with small vessels.

  9. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  10. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  11. Ultrasonic analysis to discriminate bread dough of different types of flour

    NASA Astrophysics Data System (ADS)

    García-Álvarez, J.; Rosell, C. M.; García-Hernández, M. J.; Chávez, J. A.; Turó, A.; Salazar, J.

    2012-12-01

    Many varieties of bread are prepared using flour coming from wheat. However, there are other types of flours milled from rice, legumes and some fruits and vegetables that are also suitable for baking purposes, used alone or in combination with wheat flour. The type of flour employed strongly influences the dough consistency, which is a relevant property for determining the dough potential for breadmaking purposes. Traditional methods for dough testing are relatively expensive, time-consuming, off-line and often require skilled operators. In this work, ultrasonic analysis are performed in order to obtain acoustic properties of bread dough samples prepared using two different types of flour, wheat flour and rice flour. The dough acoustic properties can be related to its viscoelastic characteristics, which in turn determine the dough feasibility for baking. The main advantages of the ultrasonic dough testing can be, among others, its low cost, fast, hygienic and on-line performance. The obtained results point out the potential of the ultrasonic analysis to discriminate doughs of different types of flour.

  12. Ultrasonic characterization of damage in a simulated CF-18 composite structure

    NASA Astrophysics Data System (ADS)

    McRae, K. I.; Finlayson, R. D.; Sturrock, W. R.; Liesch, D. S.

    1993-02-01

    A simulated CF-18 aircraft door component was constructed and subjected to treatment during manufacturing with the object of inducing damage in the composite material in a known and well-defined manner. The simulated component was then sent to participants in a nondestructive evaluation study. Results are reported for tests conducted with a scanning apparatus and data acquisition system which consisted of three components: ultrasonic transducer and scanner comprising a two-axis scanning frame to which a modified commercial transducer was attached; an acquisition system for ultrasonic data known as Signal Processing Ultrasonic Device (SPUD); and a data analysis and display system (DETECT/NDE) specifically designed to manipulate large three dimensional ultrasonic data sets. A series of five large-area scans was performed, each scan about 52 cm square. A total of eight regions of interest were identified for a more detailed analysis of the delamination damage, seven detailed scans covering a 13-cm square and one covering a 20.8-cm square. It was often possible to identify the probable source of the damage as that resulting from impact or caused by overloading of fasteners. Flaws of all significant dimensions were located and fully characterized using the ultrasonic procedure.

  13. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  14. Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.

    2018-01-01

    Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in

  15. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  16. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  17. The assessment of ultrasonic tests as a tool for qualification and diagnostic study of traditional highly porous and soft stone materials used in the built heritage of the past.

    NASA Astrophysics Data System (ADS)

    Calia, A.; Sileo, M.; Leucci, G.

    2012-04-01

    Ultrasonic tests are performing tools for the quality assessment and selection of stone as building materials, as well as for the detection of faults within architectural and structural elements. The use of the non destructive and non invasive diagnostic techniques has always advantages in the activities on pre-existing buildings, in terms of sustainability; moreover, it is a need with respect to the conservation constraints when we act on the historical-architectural heritage. Ultrasonic technique is widely and successfully performed in the diagnosis and control of the restoration works on concrete and compact stone artefacts. Specific problems arise from its use with reference to highly porous and soft stones, in particular bi-component materials with grains-cement binder structure, such as calcarenites. Low ultrasonic propagation velocity, typically associated to the soft and porous materials can be easily affected by disturbing factors, in primis water (in vapour or liquid state), that can easily and frequently penetrates inside them and in significant amounts, due to their high open porosity. The analysis and interpretation of the data acquired by in situ investigations have to take into account this additional contribution. In the same way, on site structures and materials can be easily interested by salt presence and deposition within the pores, that can furtherly interfere on the data significance, as well as it is important to know the variability of data due to the different state of conservation of the stones. The influence of all these factors on the response to the ultrasonic tests needs to be investigated by laboratory controlled conditions, preliminarily to the in situ application. The present work refers to the experimental activity devoted to investigate the critical aspects that have been mentioned above and the results obtained. It is a part of a larger activity with the final aim to set up non invasive diagnostic procedures for the analysis and

  18. Acousto-ultrasonic evaluation of ceramic matrix composite materials

    NASA Technical Reports Server (NTRS)

    Dosreis, Henrique L. M.

    1991-01-01

    Acousto-ultrasonic nondestructive evaluation of ceramic composite specimens with a lithium-alumino-silicate glass matrix reinforced with unidirectional silicon carbide (NICALON) fibers was conducted to evaluate their reserve of strength. Ceramic composite specimens with different amount of damage were prepared by four-point cyclic fatigue loading of the specimens at 500 C for a different number of cycles. The reserve of strength of the specimens was measured as the maximum bending stress recorded during four-pointed bending test with the load monotonically increased until failure occurs. It was observed that the reserve of strength did not correlate with the number of fatigue cycles. However, it was also observed that higher values of the stress wave factor measurements correspond to higher values of the reserve of strength test data. Therefore, these results show that the acousto-ultrasonic approach has the potential of being used to monitor damage and to estimate the reserve of strength of ceramic composites.

  19. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer. (a) Identification. A diagnostic ultrasonic transducer is a device made of a piezoelectric material...

  20. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro.

    PubMed

    Halford, Andrew; Ohl, Claus-Dieter; Azarpazhooh, Amir; Basrani, Bettina; Friedman, Shimon; Kishen, Anil

    2012-11-01

    Irrigation dynamics and antibacterial activity determine the efficacy of root canal disinfection. Sonic or ultrasonic agitation of irrigants is expected to improve irrigation dynamics. This study examined the effects of microbubble emulsion (ME) combined with sonic or ultrasonic agitation on irrigation dynamics and reduction of biofilm bacteria within root canal models. Two experiments were conducted. First, high-speed imaging was used to characterize the bubble dynamics generated in ME by sonic or ultrasonic agitation within canals of polymer tooth models. Second, 5.25% NaOCl irrigation or ME was sonically or ultrasonically agitated in canals of extracted teeth with 7-day-grown Enterococcus faecalis biofilms. Dentinal shavings from canal walls were sampled at 1 mm and 3 mm from the apical terminus, and colony-forming units (CFUs) were enumerated. Mean log CFU/mL values were analyzed with analysis of variance and post hoc tests. High-speed imaging demonstrated strongly oscillating and vaporizing bubbles generated within ME during ultrasonic but not sonic agitation. Compared with CFU counts in controls, NaOCl-sonic and NaOCl-ultrasonic yielded significantly lower counts (P < .05) at both measurement levels. ME-sonic yielded significantly lower counts (P = .002) at 3 mm, whereas ME-ultrasonic yielded highly significantly lower counts (P = .000) at both measurement levels. At 3 mm, ME-ultrasonic yielded significantly lower CFU counts (P = .000) than ME-sonic, NaOCl-sonic, and NaOCl-ultrasonic. Enhanced bubble dynamics and reduced E. faecalis biofilm bacteria beyond the level achieved by sonic or ultrasonic agitation of NaOCl suggested a synergistic effect of ME combined with ultrasonic agitation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Physical mechanism of ultrasonic machining

    NASA Astrophysics Data System (ADS)

    Isaev, A.; Grechishnikov, V.; Kozochkin, M.; Pivkin, P.; Petuhov, Y.; Romanov, V.

    2016-04-01

    In this paper, the main aspects of ultrasonic machining of constructional materials are considered. Influence of coolant on surface parameters is studied. Results of experiments on ultrasonic lathe cutting with application of tangential vibrations and with use of coolant are considered.

  2. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  4. Ultrasonic scanning system for imaging flaw growth in composites

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Meyn, E. H.

    1982-01-01

    A system for measuring and visually representing damage in composite specimens while they are being loaded was demonstrated. It uses a hobbiest grade microcomputer system to control data taking and image processing. The system scans operator selected regions of the specimen while it is under load in a tensile test machine and measures internal damage by the attenuation of a 2.5 MHz ultrasonic beam passed through the specimen. The microcomputer dynamically controls the position of ultrasonic transducers mounted on a two axis motor driven carriage. As many as 65,536 samples can be taken and filed on a floppy disk system in less than four minutes.

  5. Study of Contactless Power Supply for Spindle Ultrasonic Vibrator

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Lee, Y. L.; Liu, H. T.; Chen, S. M.; Chang, H. Z.

    2017-11-01

    In this study, a contactless power supply for the ultrasonic motor on the spindle is proposed. The proposed power supply is composed of a series-parallel resonant circuit and a cylindrical contactless transformer. Based on the study and rotation experiments, it can be seen that the proposed power supply can both provide a stable ac power with 25 kHz / 70 V to the ultrasonic motor. When the output power is 250 W, the efficiency of the proposed supply is 89.8 % in respectively rotation tests. When the output power is more than 150 W, the efficiency of the proposed supply is higher than 80 % within the rated output power range.

  6. Patients' perception of pain during ultrasonic debridement: a comparison between piezoelectric and magnetostrictive scalers.

    PubMed

    Muhney, Kelly A; Dechow, Paul C

    2010-01-01

    To compare patients' perception of discomfort, vibration and noise levels between piezoelectric and the magnetostrictive ultrasonic units during periodontal debridement. Periodontal debridement was performed on 75 subjects using a split-mouth design. Two quadrants on the same side were instrumented with a piezoelectric ultrasonic device (EMS Swiss Mini Master® Piezon) and the remaining 2 quadrants were instrumented with a magnetostrictive ultrasonic device (Dentsply Cavitron® SPS™). Subjects marked between 0 and 100 along a visual analog scale (VAS) for each of the 3 variables immediately after treatment of each half of the dentition. Scores of the VAS were compared using a nonparametric test for paired data, the Wilcoxon Signed-Rank test. The level of significance was set at p<0.05. Descriptive statistics included the median and the first and third quartiles as a measure of variation. Mean scores for patient discomfort and vibration were greater for the magnetostrictive device at p=0.007 and p=0.032, respectively. The scores for noise level between the 2 ultrasonic types were almost equal. The results show that, on average, patients in this study prefer instrumentation with the piezoelectric as it relates to awareness of associated discomfort and vibration. The results of this study may assist the clinician in the decision over which ultrasonic device may prove more beneficial in decreasing patient discomfort and increasing patient compliance.

  7. Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid.

    PubMed

    Mahbubul, I M; Elcioglu, Elif Begum; Saidur, R; Amalina, M A

    2017-07-01

    Nanofluids are promising in many fields, including engineering and medicine. Stability deterioration may be a critical constraint for potential applications of nanofluids. Proper ultrasonication can improve the stability, and possibility of the safe use of nanofluids in different applications. In this study, stability properties of TiO 2 -H 2 O nanofluid for varying ultrasonication durations were tested. The nanofluids were prepared through two-step method; and electron microscopies, with particle size distribution and zeta potential analyses were conducted for the evaluation of their stability. Results showed the positive impact of ultrasonication on nanofluid dispersion properties up to some extent. Ultrasonication longer than 150min resulted in re-agglomeration of nanoparticles. Therefore, ultrasonication for 150min was the optimum period yielding highest stability. A regression analysis was also done in order to relate the average cluster size and ultrasonication time to zeta potential. It can be concluded that performing analytical imaging and colloidal property evaluation during and after the sample preparation leads to reliable insights. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Method and apparatus to characterize ultrasonically reflective contrast agents

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  9. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  10. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  11. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  12. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  13. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    PubMed

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Transducer Modules for Dry-Coupled Ultrasonic Inspection of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-02-01

    Several types of transducer modules have been developed at Northwestern University to overcome the problems that are associated with the application of liquid or gel couplants. The modules deploy polymer films to transmit the ultrasound through a dry interface. These films are very flexible, so even with a low pressure they can be adapted to the irregular inspection surfaces. The dry-coupled transducer modules may be used for transmission and reception of both longitudinal and transverse ultrasonic waves in the MHz frequency range. The prototype modules have been integrated with the portable ultrasonic inspection units and tested on a number of aircraft structures.

  15. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  16. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films.

    PubMed

    Liu, Pengfei; Wang, Rui; Kang, Xuemin; Cui, Bo; Yu, Bin

    2018-06-01

    To investigate the effect of ultrasonic treatment on the properties of sweet potato starch and sweet potato starch-based films, the complexing index, thermograms and diffractograms of the sweet potato starch-lauric acid composite were tested, and light transmission, microstructure, and mechanical and moisture barrier properties of the films were measured. The results indicated that the low power density ultrasound was beneficial to the formation of an inclusion complex. In thermograms, the gelatinization enthalpies of the ultrasonically treated starches were lower than those of the untreated sample. With the ultrasonic amplitude increased from 40% to 70%, the melting enthalpy (ΔH) of the inclusion complex gradually decreased. X-ray diffraction revealed that the diffraction intensity of the untreated samples was weaker than that of the ultrasonically treated samples. When the ultrasonic amplitude was above 40%, the diffraction intensity and relative crystallinity of inclusion complex gradually decreased. The scanning electronic microscope showed that the surface of the composite films became smooth after being treated by ultrasonication. Ultrasonication led to a reduction in film surface roughness under atomic force microscopy analysis. The films with ultrasonic treatment exhibited higher light transmission, lower elongation at break, higher tensile strength and better moisture barrier property than those without ultrasonic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718

    NASA Astrophysics Data System (ADS)

    Suárez, Alfredo; Veiga, Fernando; de Lacalle, Luis N. López; Polvorosa, Roberto; Lutze, Steffen; Wretland, Anders

    2016-11-01

    This work investigates the effects of ultrasonic vibration-assisted milling on important aspects such us material surface integrity, tool wear, cutting forces and fatigue resistance. As an alternative to natural application of ultrasonic milling in brittle materials, in this study, ultrasonics have been applied to a difficult-to-cut material, Alloy 718, very common in high-temperature applications. Results show alterations in the sub-superficial part of the material which could influence fatigue resistance of the material, as it has been observed in a fatigue test campaign of specimens obtained with the application of ultrasonic milling in comparison with another batch obtained applying conventional milling. Tool wear pattern was found to be very similar for both milling technologies, concluding the study with the analysis of cutting forces, exhibiting certain improvement in case of the application of ultrasonic milling with a more stable evolution.

  18. Nondestructive Testing Information Analysis Center, 1982.

    DTIC Science & Technology

    1983-03-01

    RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the

  19. Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.

    PubMed

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-29

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.

  20. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    PubMed Central

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  1. Ultrasonic cleaning of conveyor belt materials using Listeria monocytogenes as a model organism.

    PubMed

    Tolvanén, Riina; Lunden, Janne; Korkeala, Hannu; Wirtanen, Gun

    2007-03-01

    Persistent Listeria monocytogenes contamination of food industry equipment is a difficult problem to solve. Ultrasonic cleaning offers new possibilities for cleaning conveyors and other equipment that are not easy to clean. Ultrasonic cleaning was tested on three conveyor belt materials: polypropylene, acetal, and stainless steel (cold-rolled, AISI 304). Cleaning efficiency was tested at two temperatures (30 and 45 degrees C) and two cleaning times (30 and 60 s) with two cleaning detergents (KOH, and NaOH combined with KOH). Conveyor belt materials were soiled with milk-based soil and L. monocytogenes strains V1, V3, and B9, and then incubated for 72 h to attach bacteria to surfaces. Ultrasonic cleaning treatments reduced L. monocytogenes counts on stainless steel 4.61 to 5.90 log units; on acetal, 3.37 to 5.55 log units; and on polypropylene, 2.31 to 4.40 log units. The logarithmic reduction differences were statistically analyzed by analysis of variance using Statistical Package for the Social Sciences software. The logarithmic reduction was significantly greater in stainless steel than in plastic materials (P < 0.001 for polypropylene, P = 0.023 for acetal). Higher temperatures enhanced the cleaning efficiency in tested materials. No significant difference occurred between cleaning times. The logarithmic reduction was significantly higher (P = 0.013) in cleaning treatments with potassium hydroxide detergent. In this study, ultrasonic cleaning was efficient for cleaning conveyor belt materials.

  2. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  3. High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components.

    PubMed

    Liu, Hongwei; Zhang, Lei; Liu, Hong Fei; Chen, Shuting; Wang, Shihua; Wong, Zheng Zheng; Yao, Kui

    2018-05-16

    Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below ∼100 µm has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test

    NASA Astrophysics Data System (ADS)

    Takahashi, Kyouhei; Ogawa, Takeshi

    Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.

  5. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen

    2015-09-01

    We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.

  6. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  7. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  8. Ultrasonic humidification for telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, F.

    1994-03-01

    This article examines two installations which demonstrate that ultrasonic humidification is an excellent option for large-scale commercial installations. Many existing telephone switching centers constructed 20 to 30 years ago were equipped with electro-mechanical switching equipment that was not sensitive to humidity. Today's sophisticated solid-state telecommunications equipment requires specific levels of relative humidity to operate properly. Over the last several years, Einhorn Yaffee Prescott (formerly Rose Beaton + Rose) designed two of the largest ultrasonic humidification systems at telecommunications buildings located in Cheshire, Conn., and White Plains, N.Y. The Cheshire project was a retrofit to the existing system in a 1960smore » building; the White Plains project involved an upgrade to a totally new air handling system, including an ultrasonic humidification component, in a 1950s building.« less

  9. Semiconductor measurement technology: Microelectronic ultrasonic bonding

    NASA Technical Reports Server (NTRS)

    Harman, G. G. (Editor)

    1974-01-01

    Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.

  10. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  11. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  12. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  13. Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators

    NASA Astrophysics Data System (ADS)

    Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.

    2010-02-01

    The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.

  14. Damage detection in composites using nonlinear ultrasonically modulated thermography

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, G.-P.; Dionysopoulos, D.; Meo, M.; Ciampa, F.

    2018-03-01

    This paper proposes a novel nonlinear ultrasonically stimulated thermography technique for a quick and reliable assessment of material damage in carbon fibre reinforced plastic (CFRP) composite materials. The proposed nondestructive evaluation (NDE) method requires narrow sweep ultrasonic excitation using contact piezoelectric transducers in order to identify dual excitation frequencies associated with the damage resonance. High-amplitude signals and higher harmonic generation are necessary conditions for an accurate identification of these two input frequencies. Dual periodic excitation using high- and low-frequency input signals was then performed in order to generate frictional heating at the crack location that was measured by an infrared (IR) camera. To validate this concept, an impact damaged CFRP composite panel was tested and the experimental results were compared with traditional flash thermography. A laser vibrometer was used to investigate the response of the material with dual frequency excitation. The proposed nonlinear ultrasonically modulated thermography successfully detected barely visible impact damage in CFRP composites. Hence, it can be considered as an alternative to traditional flash thermography and thermosonics by allowing repeatable detection of damage in composites.

  15. Prediction of ultrasonic properties from grain angle

    Treesearch

    M.F. Kabir

    2001-01-01

    The ultrasonic properties of rubber wood were evaluated in three main symmetry axes – longitudinal (L), radial (R) and tangential direction and also at an angle rotating from the symmetry axes at different moisture content. The ultrasonic velocity were determined with a commercial ultrasonic tester of 45 kHz pulsed longitudinal waves. The experimental results were...

  16. Characterization of mechanical properties of leather with airborne ultrasonics

    USDA-ARS?s Scientific Manuscript database

    A nondestructive method to accurately evaluate the quality of hides and leather is urgently needed by leather and hide industries. We previously reported the research results for airborne ultrasonic (AU) testing using non-contact transducers to evaluate the quality of hides and leather. The abilit...

  17. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  18. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  19. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  20. A Device for Human Ultrasonic Echolocation.

    PubMed

    Sohl-Dickstein, Jascha; Teng, Santani; Gaub, Benjamin M; Rodgers, Chris C; Li, Crystal; DeWeese, Michael R; Harper, Nicol S

    2015-06-01

    We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system, and 2) richer in object and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. The echoes of ultrasonic pulses were recorded and time stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments, in which the locations of echo-reflective surfaces were judged using these time-stretched echoes. Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However, trained subjects demonstrated an ability to judge elevation as well. This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment.

  1. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant woman...

  2. Ultrasonic assisted hot metal powder compaction.

    PubMed

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  4. Lumber defect detection by ultrasonics

    Treesearch

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  5. Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics

    NASA Astrophysics Data System (ADS)

    Brines, C.; Mulet, A.; García-Pérez, J. V.; Riera, E.; Cárcel, J. A.

    The atmospheric freeze drying (AFD) constitutes an interesting alternative to vacuum freeze drying providing products with similar quality at lowest cost. However, the long process time needed represent an important drawback. In this sense, the application of high intensity ultrasound can enhance heat and mass transfer and intensify the operation. In hot air drying operation, the ultrasonic effects are dependent on the process variables such as air velocity, internal sample structure or ultrasonic power applied. However, in AFD processes, the internal structure of material or the air velocity has not significant influence on the magnitude of ultrasonic effects. The aim of this work was to determine the influence on drying kinetics of the ultrasonic power applied during the AFD of apple. For that purpose, AFD experiments (-10 °C, 2 m/s and 15% relative humidity) of apple slabs (cv. Granny Smith, 30 x 30 x 10 mm) were carried out with ultrasound application (21 kHz) at different power levels (0, 10.3, 20.5 and 30.8 kW/m3). The drying kinetics was obtained from the initial moisture content and the weight evolution of samples during drying. Experimental results showed a significant (p<0.05) influence of the ultrasound application on drying. Thus, drying time was shorter as higher the ultrasonic power applied. From modeling, it was observed that the effective diffusion coefficient identified was 4.8 times higher when ultrasound was applied at the lowest power tested (10.3 kW/m3) that illustrated the high intensification potential of ultrasound application in the AFD.

  6. Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.

    PubMed

    Huang, Yongli; Zhuang, Xuefeng; Haeggstrom, Edward O; Ergun, A Sanli; Cheng, Ching-Hsiang; Khuri-Yakub, Butrus T

    2008-03-01

    In this paper, an improved design of a capacitive micromachined ultrasonic transducer (CMUT) is presented. The design improvement aims to address the reliability issues of a CMUT and to extend the device operation beyond the contact (collapse) voltage. The major design novelty is the isolation posts in the vacuum cavities of the CMUT cells instead of full-coverage insulation layers in conventional CMUTs. This eliminates the contact voltage drifting due to charging caused by the insulation layer, and enables repeatable CMUT operation in the post-contact regime. Ultrasonic tests of the CMUTs with isolation posts (PostCMUTs) in air (electrical input impedance and capacitance vs. bias voltage) and immersion (transmission and reception) indicate acoustic performance similar to that obtained from conventional CMUTs while no undesired side effects of this new design is observed.

  7. Ultrasonic sensors in urban traffic driving-aid systems.

    PubMed

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  8. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    PubMed Central

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P.; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. PMID:22346596

  9. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  10. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  11. Mn-Doped CaBi4Ti4O15/Pb(Zr,Ti)O3 Ultrasonic Transducers for Continuous Monitoring at Elevated Temperatures

    PubMed Central

    Kibe, Taiga; Nagata, Hajime

    2017-01-01

    Continuous ultrasonic in-situ monitoring for industrial applications is difficult owing to the high operating temperatures in industrial fields. It is expected that ultrasonic transducers consisting of a CaBi4Ti4O15(CBT)/Pb(Zr,Ti)O3(PZT) sol-gel composite could be one solution for ultrasonic nondestructive testing (NDT) above 500 °C because no couplant is required and CBT has a high Curie temperature. To verify the high temperature durability, CBT/PZT sol-gel composite films were fabricated on titanium substrates by spray coating, and the CBT/PZT samples were tested in a furnace at various temperatures. Reflected echoes with a high signal-to-noise ratio were observed up to 600 °C. A thermal cycle test was conducted from room temperature to 600 °C, and no significant deterioration was found after the second thermal cycle. To investigate the long-term high-temperature durability, a CBT/PZT ultrasonic transducer was tested in the furnace at 600 °C for 36 h. Ultrasonic responses were recorded every 3 h, and the sensitivity and signal-to-noise ratio were stable throughout the experiment. PMID:29186910

  12. Ultrasonic flow measurements for irrigation process monitoring

    NASA Astrophysics Data System (ADS)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  13. Design and numerical simulation of novel giant magnetostrictive ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Li, Pengyang; Liu, Qiang; Li, Shujuan; Wang, Quandai; Zhang, Dongya; Li, Yan

    This paper provides a design method of a novel giant magnetostrictive ultrasonic transducer utilized in incremental sheet metal forming. The frequency equations of the ultrasonic vibrator were deduced and the corresponding correctness verified by the modal and harmonic response characteristic through the finite element method (FEM) and ANSYS software. In addition, the magnetic field of the vibrator system was designed and verified by the ANSYS. Finally, the frequency tests based on the impedance response analysis and the amplitude measurements based on the laser displacement sensor were performed on the prototype. The results confirmed the appropriate design of this transducer, setting the foundation for a low mechanical quality factor and satisfying amplitude.

  14. Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization

    PubMed Central

    Barba, Anna Angela; d'Amore, Matteo

    2013-01-01

    Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested. PMID:24501580

  15. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    PubMed

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.

  16. Apparatus for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.

    2000-01-01

    An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.

  17. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  18. Catalytic effect on ultrasonic decomposition of cellulose

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Wakida, Kousuke; Mukasa, Shinobu; Toyota, Hiromichi

    2018-07-01

    Cellulase used as a catalyst is introduced into the ultrasonic welding method for cellulose decomposition in order to obtain glucose. By adding cellulase in the welding process, filter paper decomposes cellulose into glucose, 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharides. The amount of glucose from hydrolysis was increased by ultrasonic welding in filter paper immersed in water. Most glucose was obtained by 100 W ultrasonic irradiation; however, when was applied 200 W, the dehydration of the glucose itself occurred, and was converted into 5-HMF owing to the thermolysis of ultrasonics. Therefore, there is an optimum welding power for the production of glucose from cellulose decomposition.

  19. Recent progress in online ultrasonic process monitoring

    NASA Astrophysics Data System (ADS)

    Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres

    1998-03-01

    On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.

  20. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  1. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  2. Pulsed infrared thermography for assessment of ultrasonic welds

    NASA Astrophysics Data System (ADS)

    McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.

    2018-03-01

    Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.

  3. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  4. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  5. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  6. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-07-01

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.

    PubMed

    Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John

    2010-01-01

    Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.

  8. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  9. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  10. Evaluation of bending rigidity behaviour of ultrasonic seaming on woven fabrics

    NASA Astrophysics Data System (ADS)

    Şevkan Macit, Ayşe; Tiber, Bahar

    2017-10-01

    In recent years ultrasonic seaming that is shown as an alternative method to conventional seaming has been investigated by many researchers. In our study, bending behaviour of this alternative method is examined by changing various parameters such as fabric type, seam type, roller type and seaming velocity. For this purpose fifteen types of sewn fabrics were tested according to bending rigidity test standard before and after washing processes and results were evaluated through SPSS statistical analyze programme. Consequently, bending length values of the ultrasonically sewn fabrics are found to be higher than the bending length values of conventionally sewn fabrics and the effects of seam type on bending length are seen statistically significant. Also it is observed that bending length values are in relationship with the rest of the parameters excluding roller type.

  11. Comparison of suction device with saliva ejector for aerosol and spatter reduction during ultrasonic scaling.

    PubMed

    Holloman, Jessica L; Mauriello, Sally M; Pimenta, Luiz; Arnold, Roland R

    2015-01-01

    Aerosols and spatter are concerns in health care owing to their potential adverse health effects. The Isolite illuminated isolation system (Isolite Systems) and a saliva ejector were compared for aerosol and spatter reduction during and after ultrasonic scaling. Fifty participants were randomized to control (n = 25, saliva ejector) or test (n = 25, Isolite) groups and received a prophylaxis with an ultrasonic scaler. Aerosols were collected in a petri dish containing transport media, dispersed, and plated to anaerobic blood agar to determine colony-forming units (CFUs). The authors analyzed the data using a t test. No significant difference occurred between groups in aerosol and spatter reduction (P = .25). Mean (standard deviation) of log10 CFUs per milliliter collected during ultrasonic scaling in the control and test groups were 3.61 (0.95) and 3.30 (0.88), respectively. All samples contained α-hemolytic streptococci, and many samples contained strictly oral anaerobes. A significant amount of contamination occurred during ultrasonic scaling in both groups, as indicated by high numbers of CFUs and the identification of strictly oral anaerobes in all plates. Neither device reduced aerosols and spatter effectively, and there was no significant difference in reduction between the 2 devices. Additional measures should be taken with these devices to reduce the likelihood of disease transmission. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of Die-Attach Bonding Using High-Frequency Ultrasonic Energy for High-Temperature Application

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo

    2014-09-01

    Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.

  13. Experimental study on titanium wire drawing with ultrasonic vibration.

    PubMed

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  15. The Dynamic Performance of Flexural Ultrasonic Transducers.

    PubMed

    Feeney, Andrew; Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-18

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  16. The Dynamic Performance of Flexural Ultrasonic Transducers

    PubMed Central

    Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-01

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems. PMID:29346297

  17. An Improved Scheduling Algorithm for Data Transmission in Ultrasonic Phased Arrays with Multi-Group Ultrasonic Sensors

    PubMed Central

    Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji

    2017-01-01

    High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345

  18. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  19. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  20. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...

  1. Finite element analysis simulations for ultrasonic array NDE inspections

    NASA Astrophysics Data System (ADS)

    Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony

    2016-02-01

    Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.

  2. Precision Cleaning Verification of Nonvolatile Residues by Using Water, Ultrasonics, and Turbidity Analyses

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1991-01-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  3. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  5. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  6. Improvement of Landfill Leachate Biodegradability with Ultrasonic Process

    PubMed Central

    Mahvi, Amir Hossein; Roodbari, Ali Akbar; Nabizadeh Nodehi, Ramin; Nasseri, Simin; Dehghani, Mohammad Hadil; Alimohammadi, Mahmood

    2012-01-01

    Landfills leachates are known to contain recalcitrant and/or non-biodegradable organic substances and biological processes are not efficient in these cases. A promising alternative to complete oxidation of biorecalcitrant leachate is the use of ultrasonic process as pre-treatment to convert initially biorecalcitrant compounds to more readily biodegradable intermediates. The objectives of this study are to investigate the effect of ultrasonic process on biodegradability improvement. After the optimization by factorial design, the ultrasonic were applied in the treatment of raw leachates using a batch wise mode. For this, different scenarios were tested with regard to power intensities of 70 and 110 W, frequencies of 30, 45 and 60 KHz, reaction times of 30, 60, 90 and 120 minutes and pH of 3, 7 and 10. For determining the effects of catalysts on sonication efficiencies, 5 mg/l of TiO2 and ZnO have been also used. Results showed that when applied as relatively brief pre-treatment systems, the sonocatalysis processes induce several modifications of the matrix, which results in significant enhancement of its biodegradability. For this reason, the integrated chemical–biological systems proposed here represent a suitable solution for the treatment of landfill leachate samples. PMID:22829863

  7. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  8. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not

  9. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    PubMed Central

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288

  10. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    PubMed

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  11. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  12. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  13. A device for human ultrasonic echolocation

    PubMed Central

    Gaub, Benjamin M.; Rodgers, Chris C.; Li, Crystal; DeWeese, Michael R.; Harper, Nicol S.

    2015-01-01

    Objective We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system and 2) richer in object, and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. Methods The echoes of ultrasonic pulses were recorded and time-stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments in which the locations of echo-reflective surfaces were judged using these time stretched echoes. Results Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However trained subjects demonstrated an ability to judge elevation as well. Conclusion This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Significance Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment. PMID:25608301

  14. Model Prediction Results for 2007 Ultrasonic Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Joon; Song, Sung-Jin

    2008-02-01

    The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.

  15. Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications

    PubMed Central

    Yan, Tian-Hong; Wang, Wei; Chen, Xue-Dong; Li, Qing; Xu, Chang

    2009-01-01

    A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM). Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV) and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder. PMID:22408564

  16. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  17. Helium Bottle Pressure Measurement by Portable Ultrasonic Technique

    DTIC Science & Technology

    1989-02-07

    revision extends the study to include EMI testing, and -develorynent of g Rrotgtype tester . The Contractor shall: 1. Perform EMI test of ultrasonic eq...amp/1 watt power ap- plied to the bridgerires. The tester pulse of 250 volts for 100 ns at 1500 pps has an average value of 250v x 100ns x 1500pps...34 connector. Mount transducer in fixture and connect transducer to cable microdot connector. 5. Pulse-Echo transit time measurement: Assure that the

  18. Overview of the ultrasonic instrumentation research in the MYRRHA project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dierckx, M.; Leysen, W.; Van Dyck, D.

    The Belgian Nuclear Research Centre SCK.CEN is in the process of developing MYRRHA, a new generation IV fast flux research reactor to replace the aging BR2. MYRRHA is conceptualized as an accelerator driven system cooled with lead bismuth eutectic mixture (LBE). As LBE is opaque to visual light, ultrasonic measurement techniques are employed as the main technology to provide feedback where needed. This paper we will give an overview of the R and D at SCK.CEN with respect to ultrasonic instrumentation in heavy liquid metals. High temperature ultrasonic transducers are deployed into the reactor to generate and receive the requiredmore » ultrasonic signals. The ultrasonic waves are generated and sensed by means of a piezo-electric disc at the heart of the transducer. The acoustic properties of commonly used piezo-electric materials match rather well with the acoustic properties of heavy liquid metals, simplifying the design and construction of high bandwidth ultrasonic transducers for use in heavy liquid metals. The ultrasonic transducers will operate in a liquid metal environment, where radiation and high temperature limit the choice of materials for construction. Moreover, the high surface tension of the liquid metal hinders proper wetting of the transducer, required for optimal transmission and reception of the ultrasonic waves. In a first part of the paper, we will discuss the effect of these parameters on the performance of the overall ultrasonic system. In the second part of the paper, past, present and future ultrasonic experiments in LBE will be reviewed. We will show the results of an experiment where a transducer is scanned near the free surface of an LBE pool to render ultrasonic images of objects submerged in the heavy liquid metal. Additionally, the preliminary results of an ongoing experiment that measures the evolution of LBE wetting on different types of metals and various surface conditions will be reported. The evolution of wetting is an important

  19. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  20. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  1. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  2. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  3. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5300 Ultrasonic...

  4. Air-jet power ultrasonic field applied to electrical discharge

    NASA Astrophysics Data System (ADS)

    Balek, Rudolf; Pekarek, Stanislav

    2010-01-01

    We describe a new setup of the Hartmann air-jet ultrasonic generator combined with electrical discharge in the nozzle-resonator gap. Using the schlieren visualization of air jet and ultrasonic field we investigated the shape and structure of the discharge and we determined relationship among the acoustic field in the nozzle-resonator gap, generator ultrasonic emission and discharge behavior. Apart of the fact that the discharge in the nozzle-resonator gap is stabilized and becomes more uniform, it increases its volume when the generator works in the regime of ultrasonic emission. At the same time the discharge light emission distribution is more over uniform in the gap. In the regime without the ultrasonic emission the discharge light emission is fragmented. We also found that the impedance of the discharge is decreased in case when the generator works in the regime of ultrasonic emission.

  5. Study of comparison between Ultra-high Frequency (UHF) method and ultrasonic method on PD detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Li, Li; Zhang, Jiwei; Li, Guang; Liu, Hongxia

    2017-11-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. However, few studies have been conducted on comparison of this two methods. From the view point of safety, it is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. This paper presents study aimed at clarifying the effect of UHF method and ultrasonic method for partial discharge caused by free metal particles in GIS. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for UHF method and ultrasonic method. A new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of detection localization.

  6. An Ultrasonic Wheel-Array Probe

    NASA Astrophysics Data System (ADS)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  7. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  8. Relation between ultrasonic properties, rheology and baking quality for bread doughs of widely differing formulation.

    PubMed

    Peressini, Donatella; Braunstein, Dobrila; Page, John H; Strybulevych, Anatoliy; Lagazio, Corrado; Scanlon, Martin G

    2017-06-01

    The objective was to evaluate whether an ultrasonic reflectance technique has predictive capacity for breadmaking performance of doughs made under a wide range of formulation conditions. Two flours of contrasting dough strength augmented with different levels of ingredients (inulin, oil, emulsifier or salt) were used to produce different bread doughs with a wide range of properties. Breadmaking performance was evaluated by conventional large-strain rheological tests on the dough and by assessment of loaf quality. The ultrasound tests were performed with a broadband reflectance technique in the frequency range of 0.3-6 MHz. Principal component analysis showed that ultrasonic attenuation and phase velocity at frequencies between 0.3 and 3 MHz are good predictors for rheological and bread scoring characteristics. Ultrasonic parameters had predictive capacity for breadmaking performance for a wide range of dough formulations. Lower frequency attenuation coefficients correlated well with conventional quality indices of both the dough and the bread. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  10. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  11. Digital ultrasonic signal processing: Primary ultrasonics task and transducer characterization use and detailed description

    NASA Technical Reports Server (NTRS)

    Hammond, P. L.

    1979-01-01

    This manual describes the use of the primary ultrasonics task (PUT) and the transducer characterization system (XC) for the collection, processing, and recording of data received from a pulse-echo ultrasonic system. Both PUT and XC include five primary functions common to many real-time data acquisition systems. Some of these functions are implemented using the same code in both systems. The solicitation and acceptance of operator control input is emphasized. Those operations not under user control are explained.

  12. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  13. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  14. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic...

  15. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Subsurface imaging of grain microstructure using picosecond ultrasonics

    DOE PAGES

    Khafizov, M.; Pakarinen, J.; He, L.; ...

    2016-04-21

    We report on imaging subsurface grain microstructure using picosecond ultrasonics. This approach relies on elastic anisotropy of crystalline materials where ultrasonic velocity depends on propagation direction relative to the crystal axes. Picosecond duration ultrasonic pulses are generated and detected using ultrashort light pulses. In materials that are transparent or semitransparent to the probe wavelength, the probe monitors GHz Brillouin oscillations. The frequency of these oscillations is related to the ultrasonic velocity and the optical index of refraction. Ultrasonic waves propagating across a grain boundary experience a change in velocity due to a change in crystallographic orientation relative to the ultrasonicmore » propagation direction. This change in velocity is manifested as a change in the Brillouin oscillation frequency. Using the ultrasonic propagation velocity, the depth of the interface can be determined from the location in time of the transition in oscillation frequency. An image of the grain boundary is obtained by scanning the beam along the surface. We demonstrate this volumetric imaging capability using a polycrystalline UO 2 sample. As a result, cross section liftout analysis of the grain boundaries using electron microscopy were used to verify our imaging results.« less

  17. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    NASA Astrophysics Data System (ADS)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  18. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  19. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  20. Digital Signal Processing Methods for Ultrasonic Echoes.

    PubMed

    Sinding, Kyle; Drapaca, Corina; Tittmann, Bernhard

    2016-04-28

    Digital signal processing has become an important component of data analysis needed in industrial applications. In particular, for ultrasonic thickness measurements the signal to noise ratio plays a major role in the accurate calculation of the arrival time. For this application a band pass filter is not sufficient since the noise level cannot be significantly decreased such that a reliable thickness measurement can be performed. This paper demonstrates the abilities of two regularization methods - total variation and Tikhonov - to filter acoustic and ultrasonic signals. Both of these methods are compared to a frequency based filtering for digitally produced signals as well as signals produced by ultrasonic transducers. This paper demonstrates the ability of the total variation and Tikhonov filters to accurately recover signals from noisy acoustic signals faster than a band pass filter. Furthermore, the total variation filter has been shown to reduce the noise of a signal significantly for signals with clear ultrasonic echoes. Signal to noise ratios have been increased over 400% by using a simple parameter optimization. While frequency based filtering is efficient for specific applications, this paper shows that the reduction of noise in ultrasonic systems can be much more efficient with regularization methods.

  1. Mapping cavitation activity around dental ultrasonic tips.

    PubMed

    Walmsley, A Damien; Lea, Simon C; Felver, Bernhard; King, David C; Price, Gareth J

    2013-05-01

    Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.

  2. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.

    PubMed

    Timm, Richard W; Asher, Ryan M; Tellio, Karalyn R; Welling, Alissa L; Clymer, Jeffrey W; Amaral, Joseph F

    2014-01-01

    Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5-7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1-7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5-7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Sealing 5-7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5-7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5-7 mm vessels are shown to be reliable and durable in in vivo preclinical studies.

  3. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P.; Posakony, Gerald J.; Bond, Leonard J.; Bruckner-Lea, Cynthia J.

    2006-04-04

    The present invention is an apparatus for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  4. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  5. Gain-Compensating Circuit For NDE and Ultrasonics

    NASA Technical Reports Server (NTRS)

    Kushnick, Peter W.

    1987-01-01

    High-frequency gain-compensating circuit designed for general use in nondestructive evaluation and ultrasonic measurements. Controls gain of ultrasonic receiver as function of time to aid in measuring attenuation of samples with high losses; for example, human skin and graphite/epoxy composites. Features high signal-to-noise ratio, large signal bandwidth and large dynamic range. Control bandwidth of 5 MHz ensures accuracy of control signal. Currently being used for retrieval of more information from ultrasonic signals sent through composite materials that have high losses, and to measure skin-burn depth in humans.

  6. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion.

    PubMed

    Jin, Yiying; Li, Huan; Mahar, Rasool Bux; Wang, Zhiyu; Nie, Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment > NaOH treatment followed by ultrasonic treatment > ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  7. Compensating for Attenuation Differences in Ultrasonic Inspections of Titanium-Alloy Billets

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Thompson, R. B.; Keller, Michael; Hassan, Waled

    2004-02-01

    Cylindrical billets of Titanium alloy are ultrasonically inspected prior to use in fabricating rotating jet-engine components. Although each billet has a cylindrical geometry, its ultrasonic properties are not cylindrically symmetric due to asymmetries in the process used to produce the billet from the original cast ingot. In the inspection process, a calibration standard of the same diameter containing flat-bottomed hole (FBH) reflectors is used to set the initial inspection gain (i.e., the signal amplification level). If the ultrasonic attenuation of the billet to be inspected differs significantly from that of the calibration standard, the inspection gain must be adjusted to maintain the desired defect detection sensitivity. In this paper we investigate several schemes for attenuation compensation. The gain adjustments fall into two broad categories: "global" adjustments (in dB/inch units), which are applied uniformly throughout the billet under inspection; and "local adjustments", which vary with axial and circumferential position. The schemes make use of the patterns of reflected back-wall amplitude and backscattered grain noise seen in the calibration standard and test billet. The various compensation schemes are tested using specimens of 6″-diameter Ti-6A1-4V billet into which many FBH targets were drilled. Results are summarized and tentative recommendations for improving billet inspection practices are offered.

  8. Study of New Method Combined Ultra-High Frequency (UHF) Method and Ultrasonic Method on PD Detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Zhang, Jiwei; Chen, Ning; Li, Xiaoqi; Gong, Xiaojing

    2017-09-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. It is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. However, very few studies have been conducted on the method combined this two methods. From the view point of safety, a new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of fault localization. This paper presents study aimed at clarifying the effect of the new method combined UHF method and ultrasonic method. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for this new method combined UHF method and ultrasonic method.

  9. On the Piezoelectric Detection of Guided Ultrasonic Waves

    PubMed Central

    2017-01-01

    In order to quantify the wave motion of guided ultrasonic waves, the characteristics of piezoelectric detectors, or ultrasonic transducers and acoustic emission sensors, have been evaluated systematically. Such guided waves are widely used in structural health monitoring and nondestructive evaluation, but methods of calibrating piezoelectric detectors have been inadequate. This study relied on laser interferometry for the base displacement measurement of bar waves, from which eight different guided wave test set-ups are developed with known wave motion using piezoelectric transmitters. Both plates and bars of 12.7 and 6.4 mm thickness were used as wave propagation media. The upper frequency limit was 2 MHz. Output of guided wave detectors were obtained on the test set-ups and their receiving sensitivities were characterized and averaged. While each sensitivity spectrum was noisy for a detector, the averaged spectrum showed a good convergence to a unique receiving sensitivity. Twelve detectors were evaluated and their sensitivity spectra determined in absolute units. Generally, these showed rapidly dropping sensitivity with increasing frequency due to waveform cancellation on their sensing areas. This effect contributed to vastly different sensitivities to guided wave and to normally incident wave for each one of the 12 detectors tested. Various other effects are discussed and recommendations on methods of implementing the approach developed are provided. PMID:29156579

  10. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    PubMed Central

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  11. a 2d Model of Ultrasonic Testing for Cracks Near a Nonplanar Surface

    NASA Astrophysics Data System (ADS)

    Westlund, Jonathan; Boström, Anders

    2010-02-01

    2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The wave scattering problem is solved in the frequency domain using a combination of the boundary element method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.

  12. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  13. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts

  14. Ultrasonic Apparatus and Method to Assess Compartment Syndrome

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)

    2009-01-01

    A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.

  15. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    NASA Astrophysics Data System (ADS)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  16. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  17. On Limitations of the Ultrasonic Characterization of Pieces Manufactured with Highly Attenuating Materials

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.

    Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.

  18. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  19. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  20. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  1. Setting behaviour of luting cements monitored by an ultrasonic method.

    PubMed

    Tsubota, Keishi; Mori, Kentarou; Yasuda, Genta; Kawamoto, Ryo; Yoshida, Takeshi; Yamaguchi, Kanako; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2008-06-01

    The purpose of this study was to monitor the setting behaviour and elastic modulus of luting cements using an ultrasonic device. The ultrasonic equipment comprised a pulser-receiver, transducers and an oscilloscope. The transit time through the cement disk was multiplied by the thickness of the specimen, and the sonic velocity within the material was then calculated. The sonic velocities of the longitudinal and shear waves were used to determine the elastic modulus. Analysis of variance and the Tukey HSD test were used to compare the elastic moduli of the set cements. In the earliest stages of the setting process, most of the ultrasound energy was absorbed by the cements and the sound waves were relatively weak. As the cements hardened, the sound velocities increased and this tendency differed among the luting cements used. The mean elastic moduli of the specimens ranged from 2.9 to 9.9 GPa after 15 min, from 14.4 to 20.3 GPa after 24 h and from 12.1 to 15.9 GPa after 1 month. The setting processes of the luting cements were thus clearly defined by using the present ultrasonic method.

  2. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves.

    PubMed

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing

    2018-04-01

    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ultrasonic technique for detection of liquids in copper tubing process lines

    NASA Astrophysics Data System (ADS)

    Dudley, W. A.

    1980-10-01

    An ultrasonic pulse-echo method developed for semiquantitative measurement of liquid levels in copper tubing is described. This ultrasonic approach is of particular value when used as a pre-maintenance diagnostic tool in repairing process lines containing hazardous liquids. Performance tests show that water and similar liquids can be directly detected to fill levels as low as 1/16 in. For water fills below 1/16 in., direct level detection is impractical because of signal resolution limitations. However, this fill condition is indirectly measurable and is detected by the effect of observed degradation of the adjacent wall echo pattern. Fill conditions for liquids associated with high sound attenuation such as oil can be indirectly determined.

  4. The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using ultrasonic vibration assisted welding process

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Jiansheng

    2017-12-01

    The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using an ultrasonic vibration assisted welding process is investigated. The results show that, with ultrasonic vibration treatment, a reliable AZ80 joint without defects is obtained. The coarsening α-Mg grains are refined to about 83.5  ±  3.3 µm and the continuous β-Mg17Al12 phases are broken to granular morphology, owing to the acoustic streaming effect and the cavitation effect evoked by ultrasonic vibration. Both immersion and electrochemical test results indicate that the corrosion resistance of the AZ80 joint welded with ultrasonic vibration is improved, attributed to microstructure evolution. With ultrasonic power of 900 W, the maximum tensile strength of an AZ80 specimen is 261  ±  7.5 MPa and fracture occurs near the heat affected zone of the joint.

  5. High frequency copolymer ultrasonic transducer array of size-effective elements

    NASA Astrophysics Data System (ADS)

    Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank

    2018-02-01

    A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.

  6. Ultrasonic Instrumentation Instruction in Dental Hygiene Programs in the United States.

    PubMed

    Hinchman, Sharon Stemple; Funk, Amy; DeBiase, Christina; Frere, Cathryn

    2016-04-01

    The purpose of this study was to determine the extent of ultrasonic scaling instrumentation instruction in dental hygiene programs in the U.S. Currently, there is no publication available defining a consensus of instruction for ultrasonic instrumentation. Exempt status was received from the West Virginia University Institutional Review Board. A survey was developed with dental hygiene administrators and faculty, based on assumptions and a list of questions to be answered. The survey was tested for validity and revised after feedback from additional faculty. The instrument was 64 questions divided into demographics, curriculum and equipment. Most questions included a text box for additional comments. An email survey was sent to all directors of accredited dental hygiene programs in the U.S. (n=323). The final possible number of respondents was n=301. Results were collected in aggregate through the Secure Online Environment (SOLE). Results were transferred to an Excel spreadsheet for statistical analysis. After 3 emails, the response rate was 45% (n=136). No significant differences in methods of instruction were found between associate and baccalaureate degree granting programs. Eighty-nine percent of programs introduce hand scaling prior to ultrasonic scaling instruction. Students in 96% of the programs were required to administer pre-procedural mouth rinse intended to reduce the amount of bacteria. The magnetostrictive ultrasonic scaler is widely used in dental hygiene instruction. A variety of inserts/ tips were available although a universal or straight insert/tip was most common. Calculus, not inflammation, was the primary criterion for ultrasonic scaler use. The results of this study demonstrate that ultrasonic instrumentation is an integral component of the clinical curriculum and the majority of the dental hygiene programs prescribe to similar teaching methods. Programs could benefit from incorporating current scientific research findings of using site

  7. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  8. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    NASA Astrophysics Data System (ADS)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  9. Apparatus and method for ultrasonic treatment of a liquid

    DOEpatents

    Chandler, Darrell P [Richland, WA; Posakony, Gerald J [Richland, WA; Bond, Leonard J [Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA

    2003-01-14

    The present invention is an apparatus and method for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  10. The efficiency of ultrasonic oscillations transfer into the load

    NASA Astrophysics Data System (ADS)

    Abramov, O. V.; Abramov, V. O.; Mullakaev, M. S.; Artem'ev, V. V.

    2009-11-01

    The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.

  11. Ultrasonic Scattering Measurements of a Live Single Cell at 86 MHz

    PubMed Central

    Lee, Changyang; Jung, Hayong; Lam, Kwok Ho; Yoon, Changhan; Shung, K. Kirk

    2016-01-01

    Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate press-focused single-element acoustic transducer was used in a high-frequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mVpp and 56.97 ± 7.53 mVpp, respectively. The IB coefficient was −89.39 ± 2.44 dB for K562 cells and −89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and −56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and −98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were −31.02 ± 3.04 dB and −33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student’s t-test. Their values, except for the IB value, showed statistically significant difference (p < 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MHz. These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in

  12. Concept for a Micro Autonomous Ultrasonic Instrument (MAUI)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2002-01-01

    We investigate a concept for the construction a mobile Micro Optical ElectroMechanical Systems (MOEMS) based laser ultrasonic instrument to serve as a Micro Autonomous Ultrasonic Instrument (MAUI). The system will consist of a laser ultrasonic instrument fabricated using Micro Electro-Mechanical Systems (MEMS) technology, and a MEMS based walking platform like those developed by Pister et al. at Berkeley. This small system will allow for automated remote Non-Destructive Evaluation (NDE) of aerospace vehicles.

  13. Ultrasonic-assisted dyeing of Nylon-6 nanofibers.

    PubMed

    Jatoi, Abdul Wahab; Ahmed, Farooq; Khatri, Muzamil; Tanwari, Anwaruddin; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-11-01

    We first time report ultrasonic dyeing of the Nylon 6 nanofibers with two disperse dyes CI Disperse blue 56 and CI Disperse Red 167:1 by utilising ultrasonic energy during dyeing process. The Nylon 6 nanofibers were fabricated via electrospinning and dyed via batchwise method with and without sonication. Results revealed that ultrasonic dyeing produce higher color yield (K/S values) and substantially reduces dyeing time from 60min for conventional dyeing to 30min can be attributed to breakage of dye aggregate, transient cavitation near nanofiber surface and mass transfer within/between nanofibers. Color fastness results exhibited good to very good dye fixation. SEM images exhibit insignificant effect of sonication on morphology of the nanofibers. Our research results demonstrate ultrasonic dyeing as a better dyeing technique for Nylon 6 nanofibers with higher color yield and substantially reduced dyeing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  15. Sparse signal representation and its applications in ultrasonic NDE.

    PubMed

    Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M

    2012-03-01

    Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  17. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.

    PubMed

    Ahn, D G; Amanov, A; Cho, I S; Shin, K S; Pyoun, Y S; Lee, C S; Park, I G

    2012-07-01

    Nanocrystalline surface layer up to 84 microm in thick is produced on a specimen made of Al6061-T6 alloy by means of surface treatment called ultrasonic nanocrystalline surface modification (UNSM) technique. The refined grain size is produced in the top-layer and it is increased with increasing depth from the top surface. Vickers microhardness measurement for each nanocrystalline surface layer is performed and measurement results showed that the microhardness is increased from 116 HV up to 150 HV, respectively. In this study, fatigue behavior of Al6061-T6 alloy was studied up to 10(7)-10(9) cycles by using a newly developed ultrasonic fatigue testing (UFT) rig. The fatigue results of the UNSM-treated Al6061-T6 alloy specimens were compared with those of the untreated specimens. The microstructure of the untreated and UNSM-treated specimens was characterized by means of scanning electron microscopey (SEM) and transmission electron microscopey (TEM).

  18. Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test

    PubMed Central

    Asaba, Akari; Kato, Masahiro; Koshida, Nobuyoshi; Kikusui, Takefumi

    2015-01-01

    Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference. First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts. PMID:26381885

  19. Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Jenot, Frédéric; Fourez, Sabrina; Ouaftouh, Mohammadi; Duquennoy, Marc

    2018-04-01

    Thin films are widely used in many fields such as electronics, optics or materials science. For example, they find applications in thermal or mechanical sensors design. They are also very useful as protective or reinforcement layers for many structures. However, some coating defects such as thickness variations, microfissuring or poor adhesion are common problems. Therefore, nondestructive testing of these structures using acoustic waves generated and detected by lasers represents a major interest. Indeed, in comparison with conventional methods based on the use of piezoelectric transducers, laser ultrasonics leads to non-contact investigations with a large bandwidth. Usually, bulk acoustic waves are used and a pulse-echo technique is considered that needs high frequencies and implies local measurements. In order to avoid this limitation, we propose to use surface acoustic waves in a frequency range up to 45 MHz. The samples consist of a micrometric gold layer deposited on silicon substrates. In a first part, using dispersion analysis, theoretical and experimental results clearly reveal that the first Rayleigh mode allows the detection of film thickness variations and open cracks. In a second part, a localized adhesion defect is introduced in a similar sample. The effects of such a flaw on the Rayleigh modes dispersion curves are theoretically described. Finally, we experimentally show that the first Rayleigh mode allows the defect detection only under specific conditions.

  20. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  1. Effects of Grain Size on Ultrasonic Attenuation in Type 316L Stainless Steel

    PubMed Central

    Wan, Tao; Wakui, Takashi; Futakawa, Masatoshi; Obayashi, Hironari

    2017-01-01

    A lead bismuth eutectic (LBE) spallation target will be installed in the Target Test Facility (TEF-T) in the Japan Proton Accelerator Research Complex (J-PARC). The spallation target vessel filled with LBE is made of type 316L stainless steel. However, various damages, such as erosion/corrosion damage and liquid metal embrittlement caused by contact with flowing LBE at high temperature, and irradiation hardening caused by protons and neutrons, may be inflicted on the target vessel, which will deteriorate the steel and might break the vessel. To monitor the target vessel for prevention of an accident, an ultrasonic technique has been proposed to establish off-line evaluation for estimating vessel material status during the target maintenance period. Basic R&D must be carried out to clarify the dependency of ultrasonic wave propagation behavior on material microstructures and obtain fundamental knowledge. As a first step, ultrasonic waves scattered by the grains of type 316L stainless steel are investigated using new experimental and numerical approaches in the present study. The results show that the grain size can be evaluated exactly and quantitatively by calculating the attenuation coefficient of the ultrasonic waves scattered by the grains. The results also show that the scattering regimes of ultrasonic waves depend heavily on the ratio of wavelength to average grain size, and are dominated by grains of extraordinarily large size along the wave propagation path. PMID:28773115

  2. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta

    2014-05-15

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occursmore » at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.« less

  3. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    NASA Astrophysics Data System (ADS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  4. Ultrasonic characterization of silicate glasses, polymer composites and hydrogels

    NASA Astrophysics Data System (ADS)

    Lee, Wan Jae

    In many applications of material designing and engineering, high-frequency linear viscoelastic properties of materials are essential. Traditionally, the high-frequency properties are estimated through the time-temperature superposition (WLF equation) of low-frequency data, which are questionable because the existence of multi-phase in elastomer compounds. Moreover, no reliable data at high frequencies over MHz have been available thus far. Ultrasound testing is cost-effective for measuring high-frequency properties. Although both ultrasonic longitudinal and shear properties are necessary in order to fully characterize high-frequency mechanical properties of materials, longitudinal properties will be extensively explored in this thesis. Ultrasonic pulse echo method measures longitudinal properties. A precision ultrasonic measurement system has been developed in our laboratory, which allows us to monitor the in-situ bulk and/or surface properties of silicate glasses, polymer composites and even hydrogels. The system consists of a pulse-echo unit and an impedance measurement unit. A pulse echo unit is explored mainly. First, a systematic procedure was developed to obtain precise water wavespeed value. A calibration curve of water wavespeed as a function of temperature has been established, and water wavespeed at 23°C serves as a yardstick to tell whether or not a setup is properly aligned. Second, a sound protocol in calculating attenuation coefficient and beam divergence effects was explored using three kinds of silicate glass of different thicknesses. Then the system was applied to four composite slabs, two slabs for each type of fiberglass reinforced plastics, phenolic and polyester manufactured under different processing conditions: one was made by the normal procedures and the other with deliberate flaws such as voids, tapes and/or prepared at improper operation temperature and pressure. The experiment was conducted under the double blind test protocol. After

  5. In vitro validation of a new respiratory ultrasonic plethysmograph.

    PubMed

    Schramel, Johannes; van den Hoven, René; Moens, Yves

    2012-07-01

    The in-vitro validation of a novel Respiratory Ultrasonic Plethysmography (RUP) system designed to detect circumference changes of rib cage and abdominal compartments in large and small animals. Experimental in vitro study. The experimental system includes two compliant fluid-filled rubber tubes functioning as ultrasonic waveguides. Each has an ultrasonic transmitter and a detector at the opposing ends. Sensor length can be individually adapted in the range of 0.15-2 m. Data are downloaded to a computer at a sampling rate of 10 or 100 Hz. Measurements have a resolution of 0.3 mm. Baseline stability, linearity and repeatability were investigated with dedicated experiments. The base line drift was tested measuring a fixed distance for 2 hours continuously and then 18 hours later. A hand-operated horse thorax dummy (elliptically shaped, circumference 1.73 m) was used to compare waveforms of RUP with a respiratory inductive plethysmograph (RIP). The electromagnetic interference was tested by approaching metallic objects. Baseline drift and repeatability (10 repeated steps of 1.6% and 6.6% elongations and contractions) were within ± 0.3 mm. The response of the system for tube stretching up to 11% of total length was linear with a coefficient of determination for linearity of 0.998. In contrast to RIP, electromagnetic interference could not be observed with RUP. The low baseline drift and the lack of electromagnetic interference favours the use of RUP compared to an RIP device when studying the breathing pattern and end expiratory lung volume changes in conscious and anaesthetized animals. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  6. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  7. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section 892.1570 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer...

  8. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  9. Note: Piezoelectric polymers as transducers for the ultrasonic-reflection method and the application in mechanical property-screening of coatings

    NASA Astrophysics Data System (ADS)

    Wegener, Michael; Oehler, Harald; Lellinger, Dirk; Alig, Ingo

    2012-01-01

    In the last years, non-destructive ultrasonic testing methods are more and more frequently employed in order to investigate the drying and curing processes of different coatings. Among them an ultrasonic reflection method was developed allowing the simultaneous measurement with longitudinal and transversal waves. In order to generate the ultrasonic pulse, piezoelectric ceramics or oxides are usually used as transducer materials which are connected to a delay line. Here, we demonstrate a similar approach for the ultrasonic reflection method installing piezoelectric polymers as ultrasonic transducer materials. In detail, poly(vinylidene fluoride and trifluoroethylene) [P(VDF-TrFE)] copolymers were prepared as piezoelectric transducer layers directly onto the metallization of glass delay lines avoiding additional bonding processes. The film preparation was carried out by solvent casting the polymer onto an area with a diameter of 12 mm and is optimized so that relatively homogeneous polymer layers with thicknesses between 14 and 35 μm are adjusted by the deposited amount of the polymer. Electrical poling renders the polymer piezoelectric. The ultrasonic properties of the P(VDF-TrFE) transducer and their usability for the ultrasonic reflection method are described also in comparison to previous measurements using LiNbO3 transducer.

  10. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  11. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  12. High-speed scanning of critical structures in aviation using coordinate measurement machine and the laser ultrasonic.

    PubMed

    Swornowski, Pawel J

    2012-01-01

    Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.

  13. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-04-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  14. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed

  15. Energy characterisation of ultrasonic systems for industrial processes.

    PubMed

    Al-Juboori, Raed A; Yusaf, Talal; Bowtell, Leslie; Aravinthan, Vasantha

    2015-03-01

    Obtaining accurate power characteristics of ultrasonic treatment systems is an important step towards their industrial scalability. Calorimetric measurements are most commonly used for quantifying the dissipated ultrasonic power. However, accuracy of these measurements is affected by various heat losses, especially when working at high power densities. In this work, electrical power measurements were conducted at all locations in the piezoelectric ultrasonic system equipped with ½″ and ¾″ probes. A set of heat transfer calculations were developed to estimate the convection heat losses from the reaction solution. Chemical dosimeters represented by the oxidation of potassium iodide, Fricke solution and 4-nitrophenol were used to chemically correlate the effect of various electrical amplitudes and treatment regimes. This allowed estimation of sonochemical-efficiency (SE) and energy conversion (XUS) of the ultrasonic system. Results of this study showed overall conversion efficiencies of 60-70%. This correlated well with the chemical dosimeter yield curves of both organic and inorganic aqueous solutions. All dosimeters showed bubble shielding and coalescence effects at higher ultrasonic power levels, less pronounced for the ½″ probe case. SE and XUS values in the range of 10(-10) mol/J and 10(-3) J/J respectively confirmed that conversion of ultrasonic power to chemical yield declined with amplitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  17. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  18. A traveling wave ultrasonic motor of high torque.

    PubMed

    Chen, Y; Liu, Q L; Zhou, T Y

    2006-12-22

    A traveling wave ultrasonic motor of high torque with a new configuration is proposed in this paper. In the new design, a part of the motor serves as the stator. The rotor is the vibrator consisting of a toothed metal ring with piezoelectric ceramic bonded, which generates ultrasonic vibration. The rotor is in contact with the shell of motor and is driven by the friction between the rotor and the stator. This configuration not only removes the rotor in a conventional type of traveling wave ultrasonic motor but also changes the interaction between the rotor and the stator of the motor so that it improves the output performance of the motor. Although an electric brush is added to the ultrasonic motor, it is easy to be fabricated because of the low speed of motor. The finite element method was used to compute the vibration modes of an ultrasonic motor with a diameter of 100mm to optimize the design of the motor. A 9th mode was chosen as the operation mode with a resonance frequency about 25 kHz. According to the design, a prototype was fabricated. Its performance was measured. The rotation speed-torque curves for various frequencies were obtained. The result shows that its stall torque is greater than 4 Nm within a range of 400 Hz. This ultrasonic motor was used to drive the window glass of a mobile car and the result was satisfactory. In the further the research on the friction material between the stator and the rotor is under way to improve the efficiency of the ultrasonic motor.

  19. Ultrasonic fingerprinting by phased array transducer

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.

    2016-06-01

    Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.

  20. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  1. Compact sensitive instrument for direct ultrasonic visualization of defects.

    PubMed

    Bar-Cohen, Y; Ben-Joseph, B; Harnik, E

    1978-12-01

    A simple ultrasonic imaging cell based on the confocal combination of a plano-concave lens and a concave spherical mirror is described. When used in conjunction with a stroboscopic schlieren visualization system, it has the main attributes of a practical nondestructive testing instrument: it is compact, relatively inexpensive, and simple to operate; its sensitivity is fair, resolution and fidelity are good; it has a fairly large field of view and a test piece can be readily scanned. The scope of its applicability is described and discussed.

  2. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications.

    PubMed

    Babitsky, V I; Astashev, V K; Kalashnikov, A N

    2004-04-01

    Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The

  3. Electroless deposition of nickel-boron coatings using low frequency ultrasonic agitation: Effect of ultrasonic frequency on the coatings.

    PubMed

    Bonin, L; Bains, N; Vitry, V; Cobley, A J

    2017-05-01

    The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  5. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  6. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  7. Ultrasonic pretreatment for enhanced saccharification and fermentation of ethanol production from corn

    NASA Astrophysics Data System (ADS)

    Montalbo-Lomboy, Melissa T.

    during pretreatment. Ultrasonication of sugary-2 corn was also investigated in the study. Results similar to those for commodity corn (dent corn) were found, in terms of glucose yield and starch conversion. SEM and polarized-light microscope pictures showed the partial gelatinization of corn slurry due to ultrasound. In the 96-h saccharification time, a model was formulated to fit the sugar release curve. The results have shown 17-21% increase in the extent of sugar production from sonicated samples relative to the control group. Additionally, the reaction rates of the sonicated samples were 2- to 10-fold higher than the reaction rates for the control group. In comparing sugary-2 corn with commodity corn, it was found that sonicated sugary-2 corn saccharified faster than sonicated commodity corn. It is important to note, without ultrasonic treatment, sugary-2 corn released more reducing sugar than commodity corn during saccharification. To further investigate the potential of ultrasonics for scale-up, a continuous flow system was studied. An ultrasonic continuous flow system was tested using Branson's flow-through "donut" horn. The donut horn, which vibrates radially, was placed inside a 5.5 L stainless steel reactor. The amplitude was maintained at 12 mumpp and the feed flow rate was varied from 8-27 L/min (2-7 gal/min) with reactor retention times varying from 12-40 seconds. Samples sonicated in continuous flow system showed lower reducing sugar yield than batch ultrasonication. However, considering the ultrasonic energy density of batch and continuous systems, the continuous systems proved to be more energy efficient in terms of glucose production compared with the batch system. It was also seen that particle size disintegration was proportional to energy density regardless of the type of ultrasonic system used. To compare ultrasonics with jet cooking, fermentation experiments were conducted. There were only marginal differences between jet cooked samples and the

  8. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  9. Ultrasonic enhancing amorphization during synthesis of calcium phosphate.

    PubMed

    He, Kun; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2014-03-01

    Amorphous calcium phosphate (ACP) has great application potential in biomaterials field due to its non-cytotoxicity, high bioactivity, good cytocompatibility, and so on. The results of this research demonstrated that ultrasonic obviously enhanced amorphization during synthesis of calcium phosphate. The ACP phase was relatively ideal when the solvent of Ca(NO3)2·4H2O was ethanol and the solvent of (NH4)2HPO4 was a mixture of water and ethanol, under ultrasonic. In-situ crystallization of ACP could be observed by HRTEM. The mechanism on the effects of ultrasonic on amorphization of the synthesized calcium phosphate was discussed. It was suggested that ultrasonic synthesis might be a facile method to prepare pure and safe ACP related biomaterials. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  11. [Evaluation of the cavity cleaning of ultrasonic instruments and slow-speed handpiece in posterior teeth root-end preparation].

    PubMed

    Zhang, Ping-juan; Chen, Wen-xia; Zeng, Qi-xin; Xie, Fang-fang

    2013-04-01

    To compare the cleanliness of root end preparations by using ultrasonic instrumentation and slow-speed handpiece. Thirty-two mesial roots of the first mandibular molars with two canals and mature root apices were assigned randomly to 2 groups, each group had 16 teeth. The root-end preparations were made respectively using ultrasonic diamond tip Berutti and NiTi tip RE2 and slow-speed handpiece with No.2 round bur. Root end cavities were examined under scanning electron microscope for further evaluation of the superficial debris and smear layer of the root end preparations. SPSS 13.0 software package was used for Kruskal Wallis test. Ultrasonic preparation had significantly less superficial debris and smear layer than slow-speed handpiece preparation (P<0.05). Ultrasonic instrument creates cleaner surfaces for root end cavities than slow-speed handpiece preparation in posterior teeth root end preparation.

  12. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  13. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  14. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ultrasonic monitoring of Iberian fat crystallization during cold storage

    NASA Astrophysics Data System (ADS)

    Corona, E.; García-Pérez, J. V.; Santacatalina, J. V.; Peña, R.; Benedito, J.

    2012-12-01

    The aim of this work was to evaluate the use of ultrasonic measurements to characterize the crystallization process and to assess the textural changes of Iberian fat and Iberian ham during cold storage. The ultrasonic velocity was measured in two types of Iberian fats (Montanera and Cebo) during cold storage (0, 2, 5, 7 and 10 °C) and in vacuum packaged Iberian ham stored at 6°C for 120 days. The fatty acid profile, thermal behaviour and textural properties of fat were determined. The ultrasonic velocity and textural measurements showed a two step increase during cold storage, which was related with the separate crystallization of two fractions of triglycerides. It was observed that the harder the fat, the higher the ultrasonic velocity. Likewise, Cebo fat resulted harder than Montanera due to a higher content of saturated triglycerides. The ultrasonic velocity in Iberian ham showed an average increase of 55 m/s after 120 days of cold storage due to fat crystallization. Thus, non-destructive ultrasonic technique could be a reliable method to follow the crystallization of fats and to monitor the changes in the textural properties of Iberian ham during cold storage.

  16. New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.

  17. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    PubMed

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  18. Effect of ultrasonic vibration on the retention of adhesively luted intra-radicular posts.

    PubMed

    Satterthwaite, Julian D; Stokes, Alastair N

    2004-09-01

    The aim of this study was to determine the effect of prolonged ultrasonic vibration on tensile force necessary to dislodge two different post types luted with an adhesive resin. Extracted human canine teeth were decoronated and root-filled. Either a ceramic or stainless steel intra-radicular post was luted into each root with resin-based cement. Half the samples in each group were randomly assigned to be subjected to ultrasonic vibration of the post (test group), the remaining samples did not receive vibration (control group). The tensile force required to dislodge each post was then determined in a universal testing machine. The mean force required to dislodge the stainless steel posts in the control group was 510.1N (SD 170.6) and in the 'treatment' group it was 539.5N (SD 163.3). For the ceramic posts in the control group the mean force was 447.8N (SD 165.5) and in the 'treatment' group it was 473.9N (SD 137.8). There was no statistical difference between the groups (p = 0.597). Within the limitations of this in-vitro study, the results cast doubt on the ability of application of ultrasonic vibration to displace/loosen intra-radicular posts luted with a resin-based cement.

  19. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding.

    PubMed

    Roopa Rani, M; Rudramoorthy, R

    2013-03-01

    Ultrasonic horns are tuned components designed to vibrate in a longitudinal mode at ultrasonic frequencies. Reliable performance of such horns is normally decided by the uniformity of vibration amplitude at the working surface and the stress developed during loading condition. The horn design engineer must pay particular attention to designing a tool that will produce the desired amplitude without fracturing. The present work discusses horn configurations which satisfy these criteria and investigates the design requirements of horns in ultrasonic system. Different horn profiles for ultrasonic welding of thermoplastics have been characterized in terms of displacement amplitude and von-Mises stresses using modal and harmonic analysis. To validate the simulated results, five different horns are fabricated from Aluminum, tested and tuned to the operating frequency. Standard ABS plastic parts are welded using these horns. Temperature developed during the welding of ABS test parts using different horns is recorded using sensors and National Instruments (NIs) data acquisition system. The recorded values are compared with the predicted values. Experimental results show that welding using a Bezier horn has a high interface temperature and the welded joints had higher strength as compared to the other horn profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Non-destructive ultrasonic measurements of case depth. [in steel

    NASA Technical Reports Server (NTRS)

    Flambard, C.; Lambert, A.

    1978-01-01

    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described.