Sample records for ultrasonic ut inspection

  1. Baseline UT Measurements for Armor Inspection

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.; Richter, Nate; Barnard, Dan; Hsu, David; Gray, Tim; Brasche, Lisa; Bruce Thompson, R.

    2010-02-01

    Some prototype armor panels are fabricated from several layers of dissimilar material bonded together. These may include ceramics, graphite composites, fiberglass composites and rubber. The ultrasonic properties of these layers influence inspections for armor defects. In this paper we describe measurements of ultrasonic velocity, attenuation, sound beam distortion and signal fluctuations for the individual layers comprising one armor prototype. We then discuss how knowledge of these properties can be used when choosing an optimum frequency for an ultrasonic pitch/catch immersion inspection. In our case an effective inspection frequency near 1.5 MHz affords: (1) adequate strength of through-transmitted signals in unflawed armor; (2) adequate lateral resolution for detecting small disbonds at interfaces; and (3) low levels of UT signal fluctuations due to the natural inhomogeneity of certain armor layers. The utility of this approach is demonstrated using armor panels containing artificial disbonds at selected interfaces.

  2. Ultrasonic technique for inspection of GPHS capsule girth weld integrity

    NASA Astrophysics Data System (ADS)

    Placr, Arnost

    1993-05-01

    An innovative nondestructive examination (NDE) technique for the inspection of integrity of General Purpose Heat Source (GPHS) capsule girth welds was developed employing a Lamb wave as the mode of the sound propagation. Reliability of the Lamb wave technique was tested on GPHS capsules using plutonium pallet simulators. All ten capsules, which were previously rejected, passed ultrasonic (UT) inspection using the Lamb wave technique.

  3. Further testing and development of simulation models for UT inspections of armor

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.; Richter, Nathaniel; Thompson, R. Bruce

    2012-05-01

    In previous work we introduced an approach for simulating ultrasonic pulse/echo immersion inspections of multi-layer armor panels. Model inputs include the thickness, density, velocity and attenuation of each armor layer, the focal properties of the transducer, and a measured calibration signal. The basic model output is a response-versus-time waveform (ultrasonic A-scan) which includes echoes from all interfaces including those arising from reverberations within layers. Such A-scans can be predicted both for unflawed panels and panels containing a large disbond at any given interface. In this paper we continue our testing of the simulation software, applying it now to an armor panel consisting of SiC ceramic tiles fully embedded in a titanium-alloy matrix. An interesting specimen of such armor became available in which some tile/metal interfaces appear to be well bonded, while others have disbonded areas of various sizes. We compare measured and predicted A-scans for UT inspections, and also demonstrate an extension of the model to predict ultrasonic C-scans over regions containing a small, isolated disbond.

  4. LASERUT® Technology Development Programs for the Ultrasonic Inspection of Composites in the Aerospace Industry

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Drake, Thomas; Osterkamp, Mark; Yawn, Ken; Kaiser, David; Do, Tho; Maestas, Jeff; Thomas, Michael

    2008-02-01

    A laser-ultrasonic technique developed at Lockheed Martin Aeronautics called LaserUT® is used for the ultrasonic inspection of composite parts in the aeronautic industry and has demonstrated significant reduction in inspection labor and capital expenditure over approximately 20,000 parts so far. Development of new technologies will further increase LaserUT savings: structured-light mapping, improved CO2 laser, mid-infrared generation laser, and new robotic approach. Those different technologies are described and their status relatively to their introduction to production is discussed.

  5. Disposition of feedwater nozzle UT indications in a BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshnoff, S.D.; Orski, M.A.

    A technical logic is developed, which justifies the disposition of feedwater nozzle ultrasonic testing (UT) indications in order to return to operation without visual inspection of the vessel inside surface. Present regulatory guidance is to inspect the inside surface from the inside if a reportable indication is found. A highly sensitive, tomographic UT technique, developed by Kraftwerk Union, is used to detect and size machined notches in the blend radius and bore regions of a full-sized feedwater nozzle mock-up.

  6. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  7. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  8. Immersion probe arrays for rapid pipeline weld inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebsack, S.; Heckhauser, H.

    In 1992, F.H. Gottfeld, Herne, Germany, a member of the SGA Group (Societe Generale de Surveillance) and Krautkramer Branson, Koin, undertook production of a rapid automated ultrasonic testing (UT) system to inspect manually and machine welded pipeline girth welds. The result of the project is a system called MIPA, or multiple immersion probe array. The advantages of using UT to detect certain weld defects have been realized for many years, however for some applications the time required for UT has been a limiting factor. Where time has not been a factor, automated ultrasonic technology has advanced a reliable solution tomore » many inspection problems across a broad industrial base. The recent past has seen the entrance of automated ultrasonic technology into the harsh and demanding environment of pipelay operations, However, the use of these systems has been focused on automated welding processes. Their effectiveness for manual pipeline welding inspection is contested. This is due to the infinite variability of the joint alignment and shape that is unavoidable even when highly skilled welders are used.« less

  9. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  10. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  11. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  12. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  13. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less

  14. An evaluation of human factors research for ultrasonic inservice inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pond, D.J.; Donohoo, D.T.; Harris, R.V. Jr.

    1998-03-01

    This work was undertaken to determine if human factors research has yielded information applicable to upgrading requirements in ASME Boiler and Pressure Vessel Code Section XI, improving methods and techniques in Section V, and/or suggesting relevant research. A preference was established for information and recommendations which have become accepted and standard practice. Manual Ultrasonic Testing/Inservice Inspection (UT/ISI) is a complex task subject to influence by dozens of variables. This review frequently revealed equivocal findings regarding effects of environmental variables as well as repeated indications that inspection performance may be more, and more reliably, influenced by the workers` social environment, includingmore » managerial practices, than by other situational variables. Also of significance are each inspector`s relevant knowledge, skills, and abilities, and determination of these is seen as a necessary first step in upgrading requirements, methods, and techniques as well as in focusing research in support of such programs, While understanding the effects and mediating mechanisms of the variables impacting inspection performance is a worthwhile pursuit for researchers, initial improvements in industrial UTASI performance may be achieved by implementing practices already known to mitigate the effects of potentially adverse conditions. 52 refs., 2 tabs.« less

  15. Thin Wall Pipe Ultrasonic Inspection through Paint Coating

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cătălin

    Classical ultrasonic inspection of welds is currently done for plates thicker than 8 mm. The inspection of but welds in thin walled pipes has considerable implementation difficulties, due to guided waves dominating ultrasonic pulses propagation. Generation of purely symmetric modes, either torsional or longitudinal, requires a circumferential uniform distribution of transducers and dedicated inspection equipment, which are increasing the inspection costs. Moreover, if the surface is paint coated, the received signals are close to the detection level. The present work implies a single transducer, coupled to the painted surface. The proper choice of the guided mode and frequency range, allows the detection of a standard, small diameter through thickness hole. In this way, the inspection of pipe welds can use the same equipment as for thick materials, with only wedge adaptation.

  16. Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser

    NASA Astrophysics Data System (ADS)

    Mihara, T.; Hamajima, T.; Tashiro, H.; Sato, A.

    2013-01-01

    For the ultrasonic inspection for the packing of solid fuel in a rocket booster, an industrial inspection is difficult. Because the signal to noise ratio in ultrasonic inspection of rocket fuel become worse due to the large attenuation even using lower frequency ultrasound. For the improvement of this problem, we tried to applied the two techniques in ultrasonic inspection, one was the step function pulser system with the super wideband frequency properties and the other was the laminated element transducer. By combining these two techniques, we developed the new ultrasonic measurement system and demonstrated the advantages in ultrasonic inspection of rocket fuel model specimen.

  17. Method for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.; Larsen, Eric D.; Miller, Karen S.; Smartt, Herschel B.; McJunkin, Timothy R.

    2002-01-01

    A method for the concurrent ultrasonic inspection of partially completed welds is disclosed and which includes providing a pair of transducers which are individually positioned on the opposite sides of a partially completed weld to be inspected; moving the transducers along the length of and laterally inwardly and outwardly relative to the partially completed weld; pulsing the respective transducers to produce an ultrasonic signal which passes through or is reflected from the partially completed weld; receiving from the respective transducers ultrasonic signals which pass through or are reflected from the partially completed welds; and analyzing the ultrasonic signal which has passed through or is reflected from the partially completed weld to determine the presence of any weld defects.

  18. Ultrasonic inspection and deployment apparatus

    DOEpatents

    Michaels, Jennifer E.; Michaels, Thomas E.; Mech, Jr., Stephen J.

    1984-01-01

    An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.

  19. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  20. Evolution of the Ultrasonic Inspection Requirements of Heavy Rotor Forgings Over the Past Decades

    NASA Astrophysics Data System (ADS)

    Vrana, J.; Zimmer, A.; Bailey, K.; Angal, R.; Zombo, P.; Büchner, U.; Buschmann, A.; Shannon, R. E.; Lohmann, H.-P.; Heinrich, W.

    2010-02-01

    Heavy rotor forgings for land-based power generation turbines and generators are inspected ultrasonically. Several decades ago the first inspections were conducted using manual, straight beam, contact transducers with simple, non-descript reporting requirements. The development of ultrasonic inspection capabilities, the change in design engineer requirements, improvements of fracture mechanics calculations, experience with turbine operation, experience with the inspection technology, and probability of detection drove the changes that have resulted in the current day inspection requirements: sizing technologies were implemented, detection limits were lowered, angle and pitch/catch (dual crystal) scans were introduced, and most recently automated equipment for the inspection was required. Due to all these changes, model based sizing techniques, like DGS, and modern ultrasonic techniques, like phased array, are being introduced globally. This paper describes the evolution of the ultrasonic inspection requirements over the last decades and presents an outlook for tomorrow.

  1. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph; Roach, Dennis P; Rackow, Kirk A; Nelson, Ciji L; Dasch, Cameron J; Moore, David G

    2013-02-12

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  2. Ultrasonic probe deployment device for increased wave transmission and rapid area scan inspections

    DOEpatents

    DiMambro, Joseph [Placitas, NM; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Nelson, Ciji L [Albuquerque, NM; Dasch, Cameron J [Boomfield Hills, MI; Moore, David G [Albuquerque, NM

    2012-01-03

    An ultrasonic probe deployment device in which an ultrasound-transmitting liquid forms the portion of the ultrasonic wave path in contact with the surface being inspected (i.e., the inspection surface). A seal constrains flow of the liquid, for example preventing the liquid from surging out and flooding the inspection surface. The seal is not rigid and conforms to variations in the shape and unevenness of the inspection surface, thus forming a seal (although possibly a leaky seal) around the liquid. The probe preferably is held in place to produce optimum ultrasonic focus on the area of interest. Use of encoders can facilitate the production of C-scan area maps of the material being inspected.

  3. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  4. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  5. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  6. Finite element analysis simulations for ultrasonic array NDE inspections

    NASA Astrophysics Data System (ADS)

    Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony

    2016-02-01

    Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.

  7. Ultrasonic probe for inspecting double-wall tube

    DOEpatents

    Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  8. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  9. Development of ECT/UT inspection system for bottom mounted instrumentation nozzle of PWR reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Fukui, S.; Iwahashi, Y.

    1994-12-31

    The development of inspection technique and tool for Bottom Mounted Instrument (BMI) nozzle of PWR plant was performed for countermeasure of leakage accident at incore instrument nozzle of Hamaoka-1 (BWR). MHI achieved the following development, of which object was PWR Plant R/V: (1) development of ECT/UT Multi-sensored Probe; (2) development of Inspection System (3) development of Data Processing System. The Inspection System had been functionally tested using full scale mock-up. As the result of the functional test, this system was confirmed to be very effective, and assumed to be hopeful for the actual application on site.

  10. Ultrasonic angle beam standard reflector. [ultrasonic nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr. (Inventor)

    1985-01-01

    A method that provides an impression profile in a reference standard material utilized in inspecting critically stressed components with pulsed ultrasound is described. A die stamp having an I letter is used to impress the surface of a reference material. The die stamp is placed against the surface and struck with an inertia imparting member to impress the I in the reference standard material. Upset may appear on the surface as a result of the impression and is removed to form a smooth surface. The stamping and upset removal is repeated until the entire surface area of a depth control platform on the die stamp uniformly contacts the material surface. The I impression profile in the reference standard material is utilized for reflecting pulsed ultrasonic beams for inspection purposes.

  11. Investigate Fundamentals and Performance Improvements of Current In-Line Inspection Technologies for Mechanical Damage Detection

    DOT National Transportation Integrated Search

    2008-05-01

    This Phase I report provides a comprehensive and in-depth review of the current status of in-line inspection technologies, including, but not limited to, Magnetic (Axial MFL, Circumferential MFL), Ultrasonic (UT), and Geometrical (Caliper) methods, i...

  12. Compensating for Attenuation Differences in Ultrasonic Inspections of Titanium-Alloy Billets

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Thompson, R. B.; Keller, Michael; Hassan, Waled

    2004-02-01

    Cylindrical billets of Titanium alloy are ultrasonically inspected prior to use in fabricating rotating jet-engine components. Although each billet has a cylindrical geometry, its ultrasonic properties are not cylindrically symmetric due to asymmetries in the process used to produce the billet from the original cast ingot. In the inspection process, a calibration standard of the same diameter containing flat-bottomed hole (FBH) reflectors is used to set the initial inspection gain (i.e., the signal amplification level). If the ultrasonic attenuation of the billet to be inspected differs significantly from that of the calibration standard, the inspection gain must be adjusted to maintain the desired defect detection sensitivity. In this paper we investigate several schemes for attenuation compensation. The gain adjustments fall into two broad categories: "global" adjustments (in dB/inch units), which are applied uniformly throughout the billet under inspection; and "local adjustments", which vary with axial and circumferential position. The schemes make use of the patterns of reflected back-wall amplitude and backscattered grain noise seen in the calibration standard and test billet. The various compensation schemes are tested using specimens of 6″-diameter Ti-6A1-4V billet into which many FBH targets were drilled. Results are summarized and tentative recommendations for improving billet inspection practices are offered.

  13. Sensitivity images for multi-view ultrasonic array inspection

    NASA Astrophysics Data System (ADS)

    Budyn, Nicolas; Bevan, Rhodri; Croxford, Anthony J.; Zhang, Jie; Wilcox, Paul D.; Kashubin, Artem; Cawley, Peter

    2018-04-01

    The multi-view total focusing method (TFM) is an imaging technique for ultrasonic full matrix array data that typically exploits ray paths with zero, one or two internal reflections in the inspected object and for all combinations of longitudinal and transverse modes. The fusion of this vast quantity of views is expected to increase the reliability of ultrasonic inspection; however, it is not trivial to determine which views and which areas are the most suited for the detection of a given type and orientation of defect. This work introduces sensitivity images that give the expected response of a defect in any part of the inspected object and for any view. These images are based on a ray-based analytical forward model. They can be used to determine which views and which areas lead to the highest probability of detection of the defect. They can also be used for quantitatively analyzing the effects of the parameters of the inspection (probe angle and position, for example) on the overall probability of detection. Finally, they can be used to rescale TFM images so that the different views have comparable amplitudes. This methodology is applied to experimental data and discussed.

  14. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  15. Comparison of Pre and Post Road Test Ultrasonic Inspection Results on 134 Passenger Tires

    DOT National Transportation Integrated Search

    1979-11-01

    A study was conducted to compare ultrasonic inspection data from 134 tires prior and subsequent to road tests in order to determine whether excessive tread wear could be related to characteristics detected by the ultrasonic inspection. Analysis of da...

  16. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  17. Ultrasonic inspection of carbon fiber reinforced plastic by means of sample-recognition methods

    NASA Technical Reports Server (NTRS)

    Bilgram, R.

    1985-01-01

    In the case of carbon fiber reinforced plastic (CFRP), it has not yet been possible to detect nonlocal defects and material degradation related to aging with the aid of nondestructive inspection method. An approach for overcoming difficulties regarding such an inspection involves an extension of the ultrasonic inspection procedure on the basis of a use of signal processing and sample recognition methods. The basic concept involved in this approach is related to the realization that the ultrasonic signal contains information regarding the medium which is not utilized in conventional ultrasonic inspection. However, the analytical study of the phyiscal processes involved is very complex. For this reason, an empirical approach is employed to make use of the information which has not been utilized before. This approach uses reference signals which can be obtained with material specimens of different quality. The implementation of these concepts for the supersonic inspection of CFRP laminates is discussed.

  18. Transducer Modules for Dry-Coupled Ultrasonic Inspection of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-02-01

    Several types of transducer modules have been developed at Northwestern University to overcome the problems that are associated with the application of liquid or gel couplants. The modules deploy polymer films to transmit the ultrasound through a dry interface. These films are very flexible, so even with a low pressure they can be adapted to the irregular inspection surfaces. The dry-coupled transducer modules may be used for transmission and reception of both longitudinal and transverse ultrasonic waves in the MHz frequency range. The prototype modules have been integrated with the portable ultrasonic inspection units and tested on a number of aircraft structures.

  19. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  20. Ultrasonic probe system for the bore-side inspection of tubes and welds therein

    DOEpatents

    Cook, K. Von; Koerner, Dan W.; Cunningham, Jr., Robert A.; Murrin, Jr., Horace T.

    1977-07-26

    A probe system is provided for the bore-side inspection of tube-to-header welds and the like for small diameter tubes. The probe head of the system includes an ultrasonic transmitter-receiver transducer, a separate ultrasonic receiver, a reflector associated with the transducer to properly orient the ultrasonic signal with respect to a tube wall, a baffle to isolate the receiver from the transducer, and means for maintaining the probe head against the tube wall under investigation. Since the probe head must rotate to inspect along a helical path, special ultrasonic signal connections are employed. Through the use of the probe, flaws at either the inner or outer surfaces may be detected.

  1. Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-07-01

    Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.

  2. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  3. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Zhao, Xiaoliang; Qian, Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-03-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained.

  4. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled datamore » acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.« less

  5. Ultrasonic Phased Array Inspection for an Isogrid Structural Element with Cracks

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.

    2010-01-01

    In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.

  6. Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.

    2009-01-01

    Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increased role in the future for nondestructive evaluation in order to better understand the physics of the inspection process and help explain the experimental results. It will also help to prove or disprove the feasibility for an inspection method or inspection scenario, help optimize inspections, and allow to a first approximation limits of detectability. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles.

  7. Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toullelan, Gwénaël; Raillon, Raphaële; Chatillon, Sylvain

    The 2013 Ultrasonic Testing (UT) modeling benchmark concerns direct echoes from side drilled holes (SDH), flat bottom holes (FBH) and corner echoes from backwall breaking artificial notches inspected with a matrix phased array probe. This communication presents the results obtained with the models implemented in the CIVA software: the pencilmodel is used to compute the field radiated by the probe, the Kirchhoff approximation is applied to predict the response of FBH and notches and the SOV (Separation Of Variables) model is used for the SDH responses. The comparison between simulated and experimental results are presented and discussed.

  8. Insights Gained from Ultrasonic Testing of Piping Welds Subjected to the Mechanical Stress Improvement Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.

    2010-12-01

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in leak-before-break piping systems. Part of this involves determining whether inspections alone, or inspections plus mitigation, are needed. This work addresses the reliability of ultrasonic testing (UT) of cracks that have been mitigated by the mechanical stress improvement process (MSIP). The MSIP has been approved by the NRC (NUREG-0313) since 1986 and modifies residual stresses remaining after welding with compressive, or neutral, stresses near the inner diameter surface of the pipe. Thismore » compressive stress is thought to arrest existing cracks and inhibit new crack formation. To evaluate the effectiveness of the MSIP and the reliability of ultrasonic inspections, flaws were evaluated both before and after MSIP application. An initial investigation was based on data acquired from cracked areas in 325-mm-diameter piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. In a follow-on exercise, PNNL acquired and evaluated similar UT data from a dissimilar metal weld (DMW) specimen containing implanted thermal fatigue cracks. The DMW specimen is a carbon steel nozzle-to-safe end-to-stainless steel pipe section that simulates a pressurizer surge nozzle. The flaws were implanted in the nozzle-to-safe end Alloy 82/182 butter region. Results are presented on the effects of MSIP on specimen surfaces, and on UT flaw responses.« less

  9. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.« less

  10. Evolution of the Ultrasonic Inspection of Heavy Rotor Forgings Over the Last Decades

    NASA Astrophysics Data System (ADS)

    Zimmer, A.; Vrana, J.; Meiser, J.; Maximini, W.; Blaes, N.

    2010-02-01

    All types of heavy forgings that are used in energy machine industry, rotor shafts as well as discs, retaining rings or tie bolts are subject to extensive nondestructive inspections before they are delivered to the customer. Due to the availability of the parts in simple shapes, these forgings are very well suited for full volmetric inspections using ultrasound. In the beginning, these inspections were carried out manually, using straight beam probes and analogue equipment. Higher requirements in reliability, efficiency, safety and power output in the machines have lead to higher requirements for the ultrasonic inspection in the form of more scanning directions, higher sensitivity demands and improved documentation means. This and the increasing use of high alloy materials for ever growing parts, increase the need for more and more sophisticated methods for testing the forgings. Angle scans and sizing technologies like DGS have been implemented, and for more than 15 years now, mechanized and automated inspections have gained importance since they allow better documentation as well as easier evaluation of the recorded data using different views (B- C- or D-Scans), projections or tomography views. The latest major development has been the availability of phased array probes to increase the flexibility of the inspection systems. Many results of the ongoing research in ultrasonic's have not been implemented yet. Today's availability of fast computers, large and fast data storages allows saving RF inspection data and applying sophisticated signal processing methods. For example linear diffraction tomography methods like SAFT offer tools for 3D reconstruction of inspection data, simplifying sizing and locating of defects as well as for improving signal to noise ratios. While such methods are already applied in medical ultrasonic's, they are still to be implemented in the steel industry. This paper describes the development of the ultrasonic inspection of heavy forgings

  11. Ultrasonic probe for inspecting double-wall tube. [Patent application

    DOEpatents

    Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.

    1981-05-29

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  12. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lévesque, D.; Rousseau, G.; Monchalin, J.-P.

    2014-02-18

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated thatmore » the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.« less

  13. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Rousseau, G.; Wanjara, P.; Cao, X.; Monchalin, J.-P.

    2014-02-01

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  14. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    NASA Astrophysics Data System (ADS)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  15. Ultrasonic simulation—Imagine3D and SimScan: Tools to solve the inverse problem for complex turbine components

    NASA Astrophysics Data System (ADS)

    Mair, H. D.; Ciorau, P.; Owen, D.; Hazelton, T.; Dunning, G.

    2000-05-01

    Two ultrasonic simulation packages: Imagine 3D and SIMSCAN have specifically been developed to solve the inverse problem for blade root and rotor steeple of low-pressure turbine. The software was integrated with the 3D drawing of the inspected parts, and with the dimensions of linear phased-array probes. SIMSCAN simulates the inspection scenario in both optional conditions: defect location and probe movement/refracted angle range. The results are displayed into Imagine 3-D, with a variety of options: rendering, display 1:1, grid, generated UT beam. The results are very useful for procedure developer, training and to optimize the phased-array probe inspection sequence. A spreadsheet is generated to correlate the defect coordinates with UT data (probe position, skew and refracted angle, UT path, and probe movement). The simulation models were validated during experimental work with phased-array systems. The accuracy in probe position is ±1 mm, and the refracted/skew angle is within ±0.5°. Representative examples of phased array focal laws/probe movement for a specific defect location, are also included.

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  17. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  18. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Leonard J.; Bowler, John R.

    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-servicemore » inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO 3-xPbTiO 3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.« less

  19. Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators

    NASA Astrophysics Data System (ADS)

    Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.

    2010-02-01

    The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.

  20. A computerized self-compensating system for ultrasonic inspection of airplane structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komsky, I.N.; Achenbach, J.D.; Hagemaier, D.

    1993-12-31

    Application of a self-compensating technique for ultrasonic inspection of airplane structures makes it possible not only to detect cracks in the different layers of joints but also to obtain information on crack sizes. A prototype computerized ultrasonic system, which utilizes the self-compensating method, has been developed for non-destructive inspection of multilayered airplane structures with in-between sealants, such as bolted joints in tail connections. Industrial applications of the system would require deployment of commercially available portable modules for data acquisition and processing. A portable ultrasonic flaw detector EPOCH II manual scanners and HandiScan, and SQL and FCS software modules form themore » PC-based TestPro system have been selected for initial tests. A pair of contact angle-beam transducers were used to generate shear waves in the material. Both hardware and software components of the system have been modified for the application in conjunction with the self-compensating technique. The system has bene tested on two calibration specimens with artificial flaws of different sizes in internal layers of multilayered structures. Ultrasonic signals transmitted through and reflected from the artificial flaws have bene discriminated and characterized using multiple time domain amplitude gates. Then the ratios of the reflection and transmission coefficients, R/T, were calculated for several positions of the transducers. Inspection of measured R/T curves shows it is difficult to visually associate curve shapes with corresponding flaw sizes and orientation. Hence for online classification of these curve shapes, application of an adaptive signal classifier was considered. Several different types and configurations of the classifiers, including a neural network, have been tested. Test results showed that improved performance of the classifier can be achieved by combination of a back-propagation neural network with a signal pre-processing module.« less

  1. Ultrasonic Phased Array Inspection Experiments and Simulations for AN Isogrid Structural Element with Cracks

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.

    2010-02-01

    In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.

  2. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  3. Prototype instrument for noninvasive ultrasonic inspection and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  4. Ultrasonic inspection and analysis techniques in green and dried lumber

    Treesearch

    Mark E. Schafer; Robert J. Ross; Brian K. Brashaw; Roy D. Adams

    1999-01-01

    Ultrasonic inspection of lumber has been under investigation for over 20 years, with little commercial impact. Recently, the USDA Forest Products Laboratory (FPL) developed ultrasound-based scanning technology to examine both green and dried lumber. In green lumber, the bacterial infection called wetwood (a significant source of degradation in oak at the kiln-drying...

  5. Simultsonic: A Simulation Tool for Ultrasonic Inspection

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Adarsh; Karthikeyan, Soumya; Krishnamurthy, C. V.; Balasubramaniam, Krishnan

    2006-03-01

    A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment initially followed by a displacement or pressure field-based assessment for user-specified probe positions and user-selected component. Immersion and contact modes of inspection are available in SIMULTSONIC. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, the application of SIMULTSONIC to the inspection of very thin-walled pipes (with 450 um wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes. The scope of SIMULTSONIC to deal with parametrically represented surfaces will also be discussed.

  6. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  7. Ultrasonic method for inspection of the propellant grain in the space shuttle solid rocket booster

    NASA Astrophysics Data System (ADS)

    Doyle, T. E.; Degtyar, A. D.; Sorensen, K. P.; Kelso, M. J.; Berger, T. A.

    2000-05-01

    Defects in solid rocket propellant may affect the safe operation of a space launch vehicle. The Space Shuttle reusable solid rocket motor (RSRM) is therefore routinely inspected with radiography for voids, cracks, and inclusions. Ultrasonic methods can be used to supplement radiography when an indication is difficult to interpret due to the projection geometry or low contrast. Such a method was developed to inspect a local region of propellant in an RSRM forward segment for a suspect inclusion. The method used a through-transmission approach, with a stationary transmitter on the propellant grain inside the segment and a receiving transducer scanned over the case surface. Low frequency (⩽250 kHz) pulses were propagated through 10-12 inches of propellant, 0.5 inches of NBR insulation, and 0.5 inches of steel case. Through-transmission images were constructed using time-of-flight analysis of the waveforms. The ultrasonic inspections supported results from extended radiographic studies, showing that the indication was not an inclusion but an artifact resulting from liner thickness variations and a low X-ray projection angle in the segment's dome region. This work demonstrated the feasibility of using ultrasonics for inspection of propellant grain in steel-cased rocket motors.

  8. Development of an ultrasonic inspection robot using an electromagnetic acoustic transducer for a Lamb wave and an SH-plate wave.

    PubMed

    Murayama, Riichi; Makiyama, Shunnichi; Kodama, Mitutoshi; Taniguchi, Yasutoshi

    2004-04-01

    For inspection of a storage tank and pipeline in service, the application of an automatic inspection system (nondestructive inspection robot) is desirable, because manual inspection is difficult to perfectly and exactly perform due to the enormous amount of inspection needed. However, an ultrasonic nondestructive inspection robot with a piezoelectric oscillator needs to touch only the material surface to be directly inspected using a coupling medium. That is, the material surface and the sensor must always be held by constant pressure in the vertical direction on the material side. Actually, it is difficult to overcome these problems; thus an ultrasonic inspection robot could not be widely applied. We then tried to develop an ultrasonic inspection robot with an electromagnetic acoustic transducer (EMAT) which did not require a coupling medium to inspect the circumferential pipe parts. We developed a special EMAT that could transmit and receive alternately a Lamb wave with high sensitivity and a SH-plate wave without influence by the welded part. The method by which the inspection robot turned around the direction of the steel pipe surroundings was executed by observing the tape pasted in the direction of the steel pipe surroundings with an installed CCD camera. In this report, the basic mechanism of this inspection robot and an examination of results are described.

  9. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  10. Nondestructive inspection of aerospace composites by a fiber-coupled laser ultrasonics system

    NASA Astrophysics Data System (ADS)

    Vandenrijt, J.-F.; Languy, F.; Thizy, C.; Georges, M. P.

    2017-06-01

    Laser ultrasonics is a technique currently studied for nondestructive inspection of aerospace composite structures based on carbon fibers. It combines a pulsed laser impacting the surface generates an ultrasound inside the material, through the nondestructive thermoelastic effect. Second a detection interferometer probes the impacted point in order to measure the displacement of the surface resulting from the emitted ultrasound wave and the echo coming back from the different interfaces of the structure. Laser ultrasonics is of interest for inspecting complex shaped composites. We have studied the possibility of using frequency doubled YAG laser for the generation and which is fiber-coupled, together with a fibercoupled interferometric probe using a YAG laser in the NIR. Our final system is a lightweight probe attached to a robot arm and which is able to scan complex shapes. The performances of the system are compared for different wavelengths of generations. Also we have studied some experimental parameters of interest such as tolerance to angle and focus distance, and different geometries of generation beams. We show some examples of inspection of reference parts with known defects. In particular C-scans of curved composites structures are presented.

  11. Ultrasonic multi-skip tomography for pipe inspection

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Vos, Rik; Hunter, Alan; Lorenz, Maarten

    2012-05-01

    The inspection of wall loss corrosion is difficult at pipe support locations due to limited accessibility. However, the recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, but it is difficult to quantify both the extent and depth of the loss. If the extent is unknown, then only a conservative estimate of the depth can be made due to the cumulative nature of the travel time variations. Multi-Skip tomography is an extension of Multi-Skip screening and has shown promise as a complimentary follow-up inspection technique. In recent work, we have developed the technique and demonstrated its use for reconstructing high-resolution estimates of pipe wall thickness profiles. The method operates via a model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). This paper presents our recent developments in Multi-Skip tomographic inversion, focusing on the initial localization of corrosion regions for efficient parameterization of the surface profile model and utilization of the signal phase information for improving resolution.

  12. In-situ ultrasonic inspection of submarine shaft seal housing for corrosion damage

    NASA Astrophysics Data System (ADS)

    Batra, Narendra K.; Chaskelis, Henry H.; Mignogna, Richard B.

    1995-06-01

    The interior of the housings of primary and backup shaft seals of 637 class submarines are exposed to sea water during service and become corroded during service. Corrosion damage evaluation requires disassembly of the housing and visual inspection. In this paper, we present quantitative results of in situ nondestructive ultrasonic technique developed for the inspection of the seal housings. Due to vast variations in velocity in the seal material, the velocity was determined at suitable sites not subjected to corrosion and of known thickness from the blueprints. Using this normalized velocity and measured time-of-flight, we determined the thickness of the seal housing at various locations on the circumference. Subsequent mechanical thickness measurements, made when the housings were removed from service, agreed within the predicted uncertainty of 1.5% of ultrasonic measurements. This technique for the assessment of corrosion damage saves time and money, by preventing premature disassembly and downtime for the submarine.

  13. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  14. Experimental validation of ultrasonic NDE simulation software

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Larche, Michael; Diaz, Aaron A.; Crawford, Susan L.; Prowant, Matthew S.; Anderson, Michael T.

    2016-02-01

    Computer modeling and simulation is becoming an essential tool for transducer design and insight into ultrasonic nondestructive evaluation (UT-NDE). As the popularity of simulation tools for UT-NDE increases, it becomes important to assess their reliability to model acoustic responses from defects in operating components and provide information that is consistent with in-field inspection data. This includes information about the detectability of different defect types for a given UT probe. Recently, a cooperative program between the Electrical Power Research Institute and the U.S. Nuclear Regulatory Commission was established to validate numerical modeling software commonly used for simulating UT-NDE of nuclear power plant components. In the first phase of this cooperative, extensive experimental UT measurements were conducted on machined notches with varying depth, length, and orientation in stainless steel plates. Then, the notches were modeled in CIVA, a semi-analytical NDE simulation platform developed by the French Commissariat a l'Energie Atomique, and their responses compared with the experimental measurements. Discrepancies between experimental and simulation results are due to either improper inputs to the simulation model, or to incorrect approximations and assumptions in the numerical models. To address the former, a variation study was conducted on the different parameters that are required as inputs for the model, specifically the specimen and transducer properties. Then, the ability of simulations to give accurate predictions regarding the detectability of the different defects was demonstrated. This includes the results in terms of the variations in defect amplitude indications, and the ratios between tip diffracted and specular signal amplitudes.

  15. Guide for in-service ultrasonic inspection of boreless turbine rotors and other solid shafts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottingham, L.D.; Sabourin, P.F.

    1992-12-01

    This report discusses nondestructive examination which is generally considered less essential for solid (unbored) turbine rotors than for bored rotors because the stresses are normally lower without a bore. Occasionally, however, situations do arise in which examination may not only be advisable, but essential to maintain confidence in a rotor's capacity for continued safe operation. Even though a bore is undesirable from a stress standpoint, it is valuable as a surface from which to conduct periodic nondestructive examination of the rotor center material, the region in which the majority of forging and ingot solidification flaws are found and also wheremore » the highest bulk rotation stresses occur. Without a bore, ultrasonic examination of this material must be conducted from the outer periphery, a task that is made difficult by the periphery geometry and lack of a continuous, uniform surface from which to conduct the examination. The material beneath the blade attachment areas, in fact, is the most difficult to inspect because of limited access and the most likely for flaw growth due to the higher stresses developed by the wheel and blade loads. Ultrasonic inspection techniques for the examination of difficult-to-inspect areas of a solid rotor are presented, with recommended procedures and reference standards to verify inspection adequacy.« less

  16. Simulation of the UT inspection of planar defects using a generic GTD-Kirchhoff approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorval, Vincent, E-mail: vincent.dorval@cea.fr; Darmon, Michel, E-mail: vincent.dorval@cea.fr; Chatillon, Sylvain, E-mail: vincent.dorval@cea.fr

    2015-03-31

    The modeling of ultrasonic Non Destructive Evaluation often plays an important part in the assessment of detection capabilities or as a help to interpret experiments. The ultrasonic modeling tool of the CIVA platform uses semi-analytical approximations for fast computations. Kirchhoff and GTD are two classical approximations for the modeling of echoes from plane-like defects such as cracks, and they aim at taking into account two different types of physical phenomena. The Kirchhoff approximation is mainly suitable to predict specular reflections from the flaw surface, whereas GTD is dedicated to the modeling of edge diffraction. As a consequence, these two approximationsmore » have distinct and complementary validity domains. Choosing between them requires expertise and is problematic in some inspection configurations. The Physical Theory of Diffraction (PTD) was developed based on both Kirchhoff and GTD in order to combine their advantages and overcome their limitations. The theoretical basis for PTD and its integration in the CIVA modeling approach are discussed in this communication. Several results that validate this newly developed model and illustrate its advantages are presented.« less

  17. Inspection of additive manufactured parts using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  18. Ultrasonic multi-skip tomography for pipe inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno; Zon, Tim van

    The inspection of wall loss corrosion is difficult at pipe supports due to limited accessibility. The recently developed ultrasonic Multi-Skip screening technique is suitable for this problem. The method employs ultrasonic transducers in a pitch-catch geometry positioned on opposite sides of the pipe support. Shear waves are transmitted in the axial direction within the pipe wall, reflecting multiple times between the inner and outer surfaces before reaching the receivers. Along this path, the signals accumulate information on the integral wall thickness (e.g., via variations in travel time). The method is very sensitive in detecting the presence of wall loss, butmore » it is difficult to quantify both the extent and depth of the loss. Multi-skip tomography has been developed to reconstruct the wall thickness profile along the axial direction of the pipe. The method uses model-based full wave field inversion; this consists of a forward model for predicting the measured wave field and an iterative process that compares the predicted and measured wave fields and minimizes the differences with respect to the model parameters (i.e., the wall thickness profile). Experimental results are very encouraging. Various defects (slot and flat bottom hole) are reconstructed using the tomographic inversion. The general shape and width are well recovered. The current sizing accuracy is in the order of 1 mm.« less

  19. Acousto-ultrasonic system for the inspection of composite armored vehicles

    NASA Astrophysics Data System (ADS)

    Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.

    2001-04-01

    In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.

  20. Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).

  1. Guide for in-service ultrasonic inspection of boreless turbine rotors and other solid shafts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottingham, L.D.; Sabourin, P.F.

    1992-12-01

    This report discusses nondestructive examination which is generally considered less essential for solid (unbored) turbine rotors than for bored rotors because the stresses are normally lower without a bore. Occasionally, however, situations do arise in which examination may not only be advisable, but essential to maintain confidence in a rotor`s capacity for continued safe operation. Even though a bore is undesirable from a stress standpoint, it is valuable as a surface from which to conduct periodic nondestructive examination of the rotor center material, the region in which the majority of forging and ingot solidification flaws are found and also wheremore » the highest bulk rotation stresses occur. Without a bore, ultrasonic examination of this material must be conducted from the outer periphery, a task that is made difficult by the periphery geometry and lack of a continuous, uniform surface from which to conduct the examination. The material beneath the blade attachment areas, in fact, is the most difficult to inspect because of limited access and the most likely for flaw growth due to the higher stresses developed by the wheel and blade loads. Ultrasonic inspection techniques for the examination of difficult-to-inspect areas of a solid rotor are presented, with recommended procedures and reference standards to verify inspection adequacy.« less

  2. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  3. Model-based software for simulating ultrasonic pulse/echo inspections of metal components

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; Taylor, Jared L.; McKillip, Matthew; Engle, Brady J.; Roberts, Ronald A.; Barnard, Daniel J.

    2017-02-01

    Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at Iowa State University, an effort was initiated in 2015 to repackage existing research-grade software into user friendly tools for the rapid estimation of signal-to-noise ratio (S/N) for ultrasonic inspections of metals. The software combines: (1) a Python-based graphical user interface for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signals and backscattered grain noise characteristics. The later makes use the Thompson-Gray Model for the response from an internal defect and the Independent Scatterer Model for backscattered grain noise. This paper provides an overview of the ongoing modeling effort with emphasis on recent developments. These include: treatment of angle-beam inspections, implementation of distance-amplitude corrections, changes in the generation of "invented" calibration signals, efforts to simulate ultrasonic C-scans; and experimental testing of model predictions. The simulation software can now treat both normal and oblique-incidence immersion inspections of curved metal components having equiaxed microstructures in which the grain size varies with depth. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required and is used to deduce the measurement system efficiency function. This can be "invented" by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, root-mean-squared grain noise amplitudes, and S/N as functions of the depth of the defect within the metal component. At any particular

  4. Portable wireless ultrasonic systems for remote inspection

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2015-03-01

    The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.

  5. Study on the ultrasonic inspection method using the full matrix capture for the in service railway wheel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jianping; Wang, Li; Zhang, Yu

    The quality of wheel is especially important for the safety of high speed railway. In this paper, a new ultrasonic array inspection method, the Full Matrix Capture (FMC) has been studied and applied to the high speed railway wheel inspection, especially in the wheel web from the tread. Firstly, the principle of FMC and TFM algorithm is discussed, and then the new optimization is applied to the standard FMC; Secondly the fundamentals of optimization is described in detail and the performance is analyzed. Finally, the experiment has been built with a standard phased array block and railway wheel, and thenmore » the testing results are discussed and analyzed. It is demonstrated that this change for the ultrasonic data acquisition and image reconstruction has higher efficiency and lower cost comparing to the FMC's procedure.« less

  6. UCSD/FRA non-contact ultrasonic guided-wave system for rail inspection: an update

    NASA Astrophysics Data System (ADS)

    Coccia, Stefano; Phillips, Robert; Nucera, Claudio; Bartoli, Ivan; Salamone, Salvatore; Lanza di Scalea, Francesco; Fateh, Mahmood; Carr, Gary

    2011-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype has been designed and field tested with the support of Volpe National Transportation Systems Center and ENSCO, Inc. The goal of this project is to develop a rail defect detection system that provides (a) better defect detection reliability (including internal transverse head defects under shelling and vertical split head defects), and (b) higher inspection speed than achievable by current rail inspection systems. This effort is also in direct response to Safety Recommendations issued by the National Transportation Safety Board (NTSB) following the disastrous train derailments at Superior, WI in 1992 and Oneida, NY in 2007 among others. The UCSD prototype uses non-contact ultrasonic probing of the rail head (laser and air-coupled), ultrasonic guided waves, and a proprietary real-time statistical analysis algorithm that maximizes the sensitivity to defects while minimizing false positives. The current design allows potential inspection speeds up to 40 mph, although all field tests have been conducted up to 15 mph so far. This paper summarizes (a) the latest technology development test conducted at the rail defect farm of Herzog, Inc. in St Joseph, MO in June 2010, and (b) the completion of the new Rail Defect Farm facility at the UCSD Camp Elliott Field Station with partial in-kind donations from the Burlington Northern Santa Fe (BNSF) Railway.

  7. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  8. The Influence of Inspection Angle, Wave Type and Beam Shape on Signal-to-Noise Ratios in Ultrasonic Pitch-Catch Inspections

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Li, Anxiang; Thompson, R. B.

    2007-03-01

    Grain noise, which arises from the scattering of sound waves by microstructure, can limit the detection of small internal defects in metal components. Signal-to-noise (S/N) ratios for ultrasonic pitch/catch inspections are primarily determined by three factors: the scattering ability of the defect; the inherent noisiness of the microstructure (per unit volume); and finite-beam effects. An approximate single-scattering model has been formulated which contains terms representing each of these factors. In this paper the model is applied to a representative pitch/catch inspection problem, namely, the detection of a circular crack in a nickel cylinder. The object is to estimate S/N ratios for various choices of the inspection angle and sonic wave types, and to demonstrate how S/N is determined by the interplay of the defect, microstructure, and finite-beam factors. We also explore how S/N is influenced by the sizes, shapes, and orientations of the transmitter and receiver sound beams.

  9. Ultrasonic Inspection to Quantify Failure Pathologies of Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2014-01-01

    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.

  10. Ultrasonic inspection to quantify failure pathologies of crimped electrical connections

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2015-03-01

    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.

  11. Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Perey, Daniel F.; Cramer, Elliott

    2006-01-01

    We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.

  12. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  13. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  14. NonDestructive Evaluation for Industrial & Development Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, James F.

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  15. Ultrasonic Phased Array Assessment of the Interference Fit and Leak Path of the North Anna Unit 2 Control Rod Drive Mechanism Nozzle 63 with Destructive Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.

    2012-08-01

    The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replacedmore » in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.« less

  16. Aircraft components structural health monitoring using flexible ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.

    2011-04-01

    A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.

  17. Inspection of thick welded joints using laser-ultrasonic SAFT.

    PubMed

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Airborne ultrasonic inspection in carbon/carbon composite materials

    NASA Astrophysics Data System (ADS)

    Yang, In-Young; Kim, Young-Hun; Park, Je-Woong; Hsu, David K.; Song, Song-Jin; Cho, Hyun-Jun; Kim, Sun-Kyu; Im, Kwang-Hee

    2007-07-01

    In this work, a carbon/carbon (C/C) composite material was nondestructively characterized with non-contact ultrasonic methods using automated acquisition scanner as well as contact ultrasonic measurement because (C/C) composite materials have obvious high price over conventional materials. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake was measured and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the motorized system with using dry-coupling ultrasonics and through transmission method in immersion. Finally, results using a proposed peak-delay measurement method well corresponded to ultrasonic velocities of the pulse overlap method.

  19. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  20. Flexible integration of robotics, ultrasonics and metrology for the inspection of aerospace components

    NASA Astrophysics Data System (ADS)

    Mineo, Carmelo; MacLeod, Charles; Morozov, Maxim; Pierce, S. Gareth; Summan, Rahul; Rodden, Tony; Kahani, Danial; Powell, Jonathan; McCubbin, Paul; McCubbin, Coreen; Munro, Gavin; Paton, Scott; Watson, David

    2017-02-01

    Improvements in performance of modern robotic manipulators have in recent years allowed research aimed at development of fast automated non-destructive testing (NDT) of complex geometries. Contemporary robots are well adaptable to new tasks. Several robotic inspection prototype systems and a number of commercial products have been developed worldwide. This paper describes the latest progress in research focused at large composite aerospace components. A multi-robot flexible inspection cell is used to take the fundamental research and the feasibility studies to higher technology readiness levels, all set for the future industrial exploitation. The robot cell is equipped with high accuracy and high payload robots, mounted on 7 meter tracks, and an external rotary axis. A robotically delivered photogrammetry technique is first used to assess the position of the components placed within the robot working envelope and their deviation to CAD. Offline programming is used to generate a scan path for phased array ultrasonic testing (PAUT). PAUT is performed using a conformable wheel probe, with high data rate acquisition from PAUT controller. Real-time robot path-correction, based on force-torque control (FTC), is deployed to achieve the optimum ultrasonic coupling and repeatable data quality. New communication software is developed that enabled simultaneous control of the multiple robots performing different tasks and the acquisition of accurate positional data. All aspects of the system are controlled through a purposely developed graphic user interface that enables the flexible use of the unique set of hardware resources, the data acquisition, visualization and analysis.

  1. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  2. Progress on the development of automated data analysis algorithms and software for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Coughlin, Chris; Forsyth, David S.; Welter, John T.

    2014-02-01

    Progress is presented on the development and implementation of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. ADA processing results are presented for test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions.

  3. Constant Group Velocity Ultrasonic Guided Wave Inspection for Corrosion and Erosion Monitoring in Pipes

    NASA Astrophysics Data System (ADS)

    Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.

    2009-03-01

    This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.

  4. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objectivemore » of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.« less

  5. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    DTIC Science & Technology

    2016-02-01

    certification process. INTRODUCTION The ultrasonic inspection of aerospace composites has been demonstrated to be one of the most effective methods to...normal part conditions. Anomalous indications studied in this program include inserted materials, porosity, ply ‘laps and gaps’, and wrinkles . Inserted...partially scanned inserts at the radii. Wrinkles , laps and gaps have also been included in the truth table, but detection rates for these flaws are

  6. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  7. Inspection Correlation Study of Ultrasonic-Based In Situ Structural Health Monitoring Monthly Report for December 2014-January 2015

    DTIC Science & Technology

    2015-05-01

    fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF

  8. Apparatus for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.

    2000-01-01

    An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.

  9. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  10. Electronic Inspection of Beef

    NASA Technical Reports Server (NTRS)

    Anselmo, Victor J.; Gammell, Paul M.; Clark, Jerry

    1987-01-01

    Two proposed methods for grading beef quality based on inspection by electronic equipment: one method uses television camera to generate image of a cut of beef as customer sees it; other uses ultrasonics to inspect live animal or unsliced carcasses. Both methods show promise for automated meat inspection.

  11. Qualification of the RSRM field joint CF case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor field joint capture feature case-to-insulation bondline inspection was performed. Testing was performed at M-111, the Thiokol Corp. Inert Parts Preparation Building. The purpose of the inspection was to verify the integrity of the capture feature area case-to-insulation bondline. The capture feature scanner was calibrated over an intentional 1.0 to 1.0 in. case-to-insulation unbond. The capture feature scanner was then used to scan 60 deg of a capture feature field joint. Calibration of the capture feature scanner was then rechecked over the intentional unbond to ensure that the calibration settings did not change during the case scan. This procedure was successfully performed five times to qualify the unbond detection capability of the capture feature scanner. The capture feature scanner qualified in this test contains many points of mechanical instability that can affect the overall ultrasonic signal response. A new generation scanner, designated the sigma scanner, should be implemented to replace the current configuration scanner. The sigma scanner eliminates the unstable connection points of the current scanner and has additional inspection capabilities.

  12. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.

    PubMed

    Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J

    2009-02-01

    The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.

  13. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying.

    PubMed

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-01-01

    Barley grass is a plant resource for rehabilitation therapy. Its processing requires retaining nutrition well for rehabilitation cure of consumers. To meet the aim as well as low energy consumption and microbiological safety of products, ultrasonic treatments (UT) were applied to bathing materials at different power levels (10, 30, 45, 60W/L) for 10mins. After treatments, the bathed barley grass (100g) was freeze-dried under vacuum -0.09MPa with fixed power of 2W/g. Parameters of color, microbial colony, energy consumption, glass transition temperature, moisture content, water activity, taste substances, contents of flavonoid and chlorophyll were determined after drying. In contrast with no treatment case, UT (45W/L) decreased drying time by 14% and decreased energy consumption by 19%; UT (60W/L) decreased total microbial colonies by 33%. Also, UT (30W/L) yielded contents of flavonoid (9.2/kg) and chlorophyll (10.5g/kg) of dried sample; UT power (10W/L) yielded the highest L ∗ (51.5) and the lowest a ∗ (-9.3) value. Simultaneously, UT leads to a higher glass transition temperature (Tg), lower water activity and produces less sourness and bitterness of dried products. Ultra-sonication is an alternative to improve quality, flavor and energy consumption of barley grass in freeze drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultrasonic Phased Array Simulations of Welded Components at NASA

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.

    2009-01-01

    Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array

  15. Generic system components of the Thiokol ultrasonic RSRM case-to-insulation bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Ultrasonic Redesigned Solid Rocket Motor Bondline Inspection Systems (URBIS) was conducted at the Thiokol Nondestructive Evaluation Test Facility M337A and at the Rotation Process Storage Facility at Kennedy Space Center. The test was performed on portions of the URBIS that are generic to redesigned solid rocket motor case-to-insulation bondline inspections. Testing began on Feb. 13, 1989 and was completed on May 26, 1989. The main purpose of the test was to verify that each URBIS performed to the manufacturer's specifications in the same manner and to make any procedural changes necessary for specific redesigned solid rocket motor inspections. All five URBISs passed every stage of the qualification test. Each URBIS is now qualified for use on redesigned solid rocket motors. Verifying the fact that each URBIS obtains and analyzes data in a similar fashion has eliminated concerns about variations in data between the five systems. The following recommendations were made as a result of this test: (1) each URBIS should be located within a stable environment; (2) an electronic preventative maintenance program should be established for each URBIS; (3) when the URBIS is being utilized to perform transducer analysis, the URBIS equipment setting should match the equipment setting noted on the manufacturer-supplied transducer certification sheet; and (4) optimum scan velocities for each inspection technique (clevis, capture feature, pinhole and membrane) should be determined through further testing.

  16. Model benchmarking and reference signals for angled-beam shear wave ultrasonic nondestructive evaluation (NDE) inspections

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.

    2017-02-01

    For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.

  17. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  18. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  19. Wavelet analysis of poorly-focused ultrasonic signal of pressure tube inspection in nuclear industry

    NASA Astrophysics Data System (ADS)

    Zhao, Huan; Gachagan, Anthony; Dobie, Gordon; Lardner, Timothy

    2018-04-01

    Pressure tube fabrication and installment challenges combined with natural sagging over time can produce issues with probe alignment for pressure tube inspection of the primary circuit of CANDU reactors. The ability to extract accurate defect depth information from poorly focused ultrasonic signals would reduce additional inspection procedures, which leads to a significant time and cost saving. Currently, the defect depth measurement protocol is to simply calculate the time difference between the peaks of the echo signals from the tube surface and the defect from a single element probe focused at the back-wall depth. When alignment issues are present, incorrect focusing results in interference within the returning echo signal. This paper proposes a novel wavelet analysis method that employs the Haar wavelet to decompose the original poorly focused A-scan signal and reconstruct detailed information based on a selected high frequency component range within the bandwidth of the transducer. Compared to the original signal, the wavelet analysis method provides additional characteristic defect information and an improved estimate of defect depth with errors less than 5%.

  20. Polymer subtrates for dry-coupled ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2003-07-01

    Dry-coupled inspection techniques are very important for applications on components with non-uniform surfaces and for inspections of advanced materials or coatings that are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, a number of polymer films have been developed to transmit the ultrasound through a dry interface. These materials are very flexible so even low pressure loading is sufficient to adapt the films to the irregular inspection surfaces. Several polymer films have been evaluated to develop dry-coupled substrates for transducer modules. The modules will be utilized to detect and characterize fatigue cracks and corrosion spots in the aircraft structures. Ultrasonic properties of the polymer films were measured and compared with the properties of plastic or rubber-like materials commonly used for ultrasonic applications. Experiments have been carried out to analyze propagation of longitudinal and shear waves in the films. Two different types of the ultrasonic modules with the flexible polymer substrates are being developed. The influence of the surface condition on the module performance was evaluated for both types of the modules.

  1. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Wu, K.-T.; Kobayashi, M.; Jen, C.-K.; Mrad, N.

    2008-08-01

    Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol-gel spray technique for aircraft environments and for temperatures ranging from -80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented.

  2. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  3. Inspection apparatus for evaluating a partially completed weld

    DOEpatents

    Smartt, Herschel B.; Larsen, Eric D.; Johnson, Jonn A.

    2001-01-01

    An inspection apparatus for evaluating a partially completed weld is described and which is utilized in combination with an automated movable welder which moves across a supporting surface, and wherein the inspection apparatus includes a coupling member mounted on the welder; a frame member mounted on the coupling member; an ultrasonic sensor mounted on the frame member and disposed in ultrasonic sound transmitting relation relative to the partially completed weld; and a drive assembly for adjusting the position of the ultrasonic sensor relative to the partially completed weld.

  4. Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform

    NASA Astrophysics Data System (ADS)

    Jezzine, Karim; Imperiale, Alexandre; Demaldent, Edouard; Le Bourdais, Florian; Calmon, Pierre; Dominguez, Nicolas

    2018-04-01

    Models for the simulation of ultrasonic inspections of flat and curved plate-like composite structures, as well as stiffeners, are available in the CIVA-COMPOSITE module released in 2016. A first modelling approach using a ray-based model is able to predict the ultrasonic propagation in an anisotropic effective medium obtained after having homogenized the composite laminate. Fast 3D computations can be performed on configurations featuring delaminations, flat bottom holes or inclusions for example. In addition, computations on ply waviness using this model will be available in CIVA 2017. Another approach is proposed in the CIVA-COMPOSITE module. It is based on the coupling of CIVA ray-based model and a finite difference scheme in time domain (FDTD) developed by AIRBUS. The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Alternatively, a high order finite element approach is currently developed at CEA but not yet integrated in CIVA. The advantages of this approach will be discussed and first simulation results on Carbon Fiber Reinforced Polymers (CFRP) will be shown. Finally, the application of these modelling tools to the construction of metamodels is discussed.

  5. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.

    PubMed

    Cavuto, A; Martarelli, M; Pandarese, G; Revel, G M; Tomasini, E P

    2015-01-01

    The present paper demonstrates the applicability of a laser-ultrasonic procedure to improve the performances of train axle ultrasonic inspection. The method exploits an air-coupled ultrasonic probe that detects the ultrasonic waves generated by a high-power pulsed laser. As a result, the measurement chain is completely non-contact, from generation to detection, this making it possible to considerably speed up inspection time and make the set-up more flexible. The main advantage of the technique developed is that it works in thermo-elastic regime and it therefore can be considered as a non-destructive method. The laser-ultrasonic procedure investigated has been applied for the inspection of a real high speed train axle provided by the Italian railway company (Trenitalia), on which typical fatigue defects have been expressly created according to standard specifications. A dedicated test bench has been developed so as to rotate the axle with the angle control and to speed up the inspection of the axle surface. The laser-ultrasonic procedure proposed can be automated and is potentially suitable for regular inspection of train axles. The main achievements of the activity described in this paper are: – the study of the effective applicability of laser-ultrasonics for the diagnostic of train hollow axles with variable sections by means of a numerical FE model, – the carrying out of an automated experiment on a real train axle, – the analysis of the sensitivity to experimental parameters, like laser source – receiving probe distance and receiving probe angular position, – the demonstration that the technique is suitable for the detection of surface defects purposely created on the train axle. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Use of anaerobic hydrolysis pretreatment to enhance ultrasonic disintegration of excess sludge.

    PubMed

    Li, Xianjin; Zhu, Tong; Shen, Yang; Chai, Tianyu; Xie, Yuanhua; You, Meiyan; Wang, Youzhao

    2016-01-01

    To improve the excess sludge disintegration efficiency, reduce the sludge disintegration cost, and increase sludge biodegradability, a combined pretreatment of anaerobic hydrolysis (AH) and ultrasonic treatment (UT) was proposed for excess sludge. Results showed that AH had an advantage in dissolving flocs, modifying sludge characteristics, and reducing the difficulty of sludge disintegration, whereas UT was advantageous in damaging cell walls, releasing intracellular substances, and decomposing macromolecular material. The combined AH-UT process was an efficient method for excess sludge pretreatment. The optimized solution involved AH for 3 days, followed by UT for 10 min. After treatment, chemical oxygen demand, protein, and peptidoglycan concentrations reached 3,949.5 mg O2/L, 752.5 mg/L and 619.1 mg/L, respectively. This work has great significance for further engineering applications, namely, reducing energy consumption, increasing the sludge disintegration rate, and improving the biochemical properties of sludge.

  7. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  8. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  9. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  10. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, J.; Vandekamp, R.

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall andmore » accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall

  11. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  12. Progress on automated data analysis algorithms for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Forsyth, David S.; Welter, John T.

    2015-03-01

    Progress is presented on the development and demonstration of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. New algorithms have been implemented to reliably identify indications in time-of-flight images near the front and back walls of composite panels. Adaptive call criteria have also been applied to address sensitivity to variation in backwall signal level, panel thickness variation, and internal signal noise. ADA processing results are presented for a variety of test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions. Software tools have been developed to support both ADA algorithm design and certification, producing a statistical evaluation of indication results and false calls using a matching process with predefined truth tables. Parametric studies were performed to evaluate detection and false call results with respect to varying algorithm settings.

  13. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  14. The Potential of Sonic IR to Inspect Aircraft Components Traditionally Inspected with Fluorescent Penetrant and or Magnetic Particle Inspection

    NASA Astrophysics Data System (ADS)

    DiMambro, J.; Ashbaugh, D. M.; Han, X.; Favro, L. D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G. M.; Thomas, R. L.

    2006-03-01

    Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry.

  15. Rapid Ultrasonic Inspection of Artillery Projectiles

    DTIC Science & Technology

    1980-11-01

    field behavior as a function of gap separation d 26 Fig. 14 Electromagnet equivalent circuit model use for final design of yoke, pole pieces and...card 64 Fig. 37 Frequency response of receiver circuit 66 Fig. 38 a) Configuration of EMAT used to launch both longitudinal and circumferential... circuit for OD and ID location 88 Fig. 51 Photograph of fully assembled EMAT inspection system during projectile inspection 92 Fig. 52 Sequence

  16. Improvement in Magnetic Techniques for Rail Inspection

    DOT National Transportation Integrated Search

    1981-06-01

    Current inspection of rail for internal defects is carried out by ultrasonic and/or magnetic technique for inspecting rail for internal flaws. The major emphasis was placed on improving the speed and detectability of current techniques. Experimental ...

  17. Composite Characterization Using Ultrasonic Wavefield Techniques

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.

    2016-01-01

    The large-scale use of composite components in aerospace applications is expected to continue due to the benefits of composite materials, such as reduced weight, increased strength, and tailorability. NASA's Advanced Composites Project (ACP) has the goals of reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials. A key technical challenge area for accomplishing these goals is the need for nondestructive evaluation and materials characterization techniques that are optimized for rapid inspection and detailed defect/damage characterization in composite materials. This presentation will discuss ongoing research investigating the use of ultrasonic wavefield techniques for the characterization of defects such as fiber waviness and delamination damage. Ongoing work includes the development of realistic ultrasonic simulation tools for use in predicting the inspectability of composites and optimizing inspection methodologies. Recent studies on detecting/characterizing delamination damage and fiber waviness via wavefield methods will be described.

  18. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  19. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This papermore » will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.« less

  20. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed micro-damage in composites. Since AU is focused on assessing the distributed micro-damage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU

  1. High-Performance Acousto-Ultrasonic Scan System Being Developed

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Martin, Richard E.; Cosgriff, Laura M.; Gyekenyesi, Andrew L.; Kautz, Harold E.

    2003-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition and distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods, such as ultrasonic cscan, x-ray radiography, and thermographic inspection, which tend to be used primarily for discrete flaw detection. Throughout its history, AU has been used to inspect polymer matrix composites, metal matrix composites, ceramic matrix composites, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. This year, essential AU technology was reviewed. In addition, the basic hardware and software configuration for the scanner was developed, and preliminary results with the system were described. Mechanical and environmental loads applied to composite materials can cause distributed damage (as well as discrete defects) that plays a significant role in the degradation of physical properties. Such damage includes fiber/matrix debonding (interface failure), matrix microcracking, and fiber fracture and buckling. Investigations at the NASA Glenn Research Center have shown that traditional NDE scan inspection methods such as ultrasonic c-scan, x-ray imaging, and thermographic imaging tend to be more suited to discrete defect detection rather than the characterization of accumulated distributed microdamage in composites. Since AU is focused on assessing the distributed microdamage state of the material in between the sending and receiving transducers, it has proven to be quite suitable for assessing the relative composite material state. One major success story at Glenn with AU measurements has been the correlation between the ultrasonic decay rate obtained during AU

  2. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Magallon, D.; Rempe, J.; Wilkins, C.; Pierre, J.; Marquié, C.; Eymery, S.; Morice, R.

    2010-09-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 K to 3380 K. This sensor, which uses the temperature dependence of the acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) capability of measuring a temperature profile from multiple sensors on a single probe and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high-temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. With new developments of alternative materials, this instrument may be used in a wide range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this article summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages, and drawbacks are outlined and future prospects for long-term high-temperature irradiation experiments are discussed.

  3. MASTER: OT detection during Fermi trigger inspection

    NASA Astrophysics Data System (ADS)

    Popova, E.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Potter, S.; Gabovich, A.

    2016-11-01

    During inspection of Fermi trigger 501261070 ( (Ra,Dec)=47.190,-47.210; GRB_ERROR_radius=3.27deg, GRB_TIME=2016/11/19 15:11:06.40UT http://gcn.gsfc.nasa.gov/other/501261070.fermi ) MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 03h 22m 52.70s -48d 29m 10.9s on 2016-11-19 21:17:17.878UT with unfiltered m_OT=17.8 (mlim=19.7).

  4. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  5. Inspecting Composites with Airborne Ultrasound: Through Thick and Thin

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.

    2006-03-01

    The inspection of composite materials and structures with air-coupled ultrasound has the obvious advantage that it is non-contact, non-contaminating, and free from couplants. However, the transmission efficiency from air to solid is extremely low due to the enormous difference in acoustic impedance. The development of more efficient airborne ultrasonic transducers over the years has made it possible, and even practical, to inspect composites with airborne ultrasound. It is now possible to drive newer, more efficient transducers with a portable ultrasonic flaw detector to inspect 2-inch thick solid CFRP in air. In this paper we describe our experience in applying air-coupled ultrasound to the inspection of a variety of composite structures, from honeycomb with thin composite facesheet to very thick solid laminates. General considerations for making airborne ultrasonic measurement in composite are given, and mechanism of transmission through honeycomb core, and resonance effects in transmitting through thick laminates will be described. NDE results of defects and damage in various composite structures will be presented.

  6. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  7. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection

    PubMed Central

    Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong

    2016-01-01

    Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016

  8. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    NASA Astrophysics Data System (ADS)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  9. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  10. Airborne ultrasonic inspection of hides and leather

    USDA-ARS?s Scientific Manuscript database

    Currently, hides and leather are visually inspected and ranked for quality, sale price and usable area. Visual inspection is not reliable for detecting defects, which are usually hidden inside the material. This manual assessment is non-uniform among operators, and often leads to disputes over fai...

  11. MASTER: high amplitude OT and OT during Fermi inspection

    NASA Astrophysics Data System (ADS)

    Balanutsa, P.; Lipunov, V.; Rebolo, R.; Serra-Ricart, M.; Podesta, R.; Levato, H.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Shumkov, V.; Gress, O.; Pogrosheva, T.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gorbunov, I.; Krylov, A.; Lopez, C.; Podesta, F.; Saffe, C.; Gabovich, A.

    2017-06-01

    During trigger (short GRB)/ (GRB_TIME: 17/06/04 14:28:05.09 UT, GRB_RA,Dec(2000):22h 41m 46s,+40d 40' 12", GRB_ERROR: 4.10 [deg radius, statistical only] )inspection MASTER-Kislovodsk auto-detection system detected optical transient at (RA, Dec) = 23h 01m 48.65s +41d 19m 04.2s on 2017-06-04.97120 UT. The OT unfiltered magnitude is 19.2m (limit 19.3m).

  12. Advances in model-based software for simulating ultrasonic immersion inspections of metal components

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; Taylor, Jared L.; Engle, Brady J.; Roberts, Ronald A.

    2018-04-01

    Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was initiated in 2015 to repackage existing research-grade software into user-friendly tools for the rapid estimation of signal-to-noise ratio (SNR) for ultrasonic inspections of metals. The software combines: (1) a Python-based graphical user interface for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signals and backscattered grain noise characteristics. The later makes use the Thompson-Gray measurement model for the response from an internal defect, and the Thompson-Margetan independent scatterer model for backscattered grain noise. This paper, the third in the series [1-2], provides an overview of the ongoing modeling effort with emphasis on recent developments. These include the ability to: (1) treat microstructures where grain size, shape and tilt relative to the incident sound direction can all vary with depth; and (2) simulate C-scans of defect signals in the presence of backscattered grain noise. The simulation software can now treat both normal and oblique-incidence immersion inspections of curved metal components. Both longitudinal and shear-wave inspections are treated. The model transducer can either be planar, spherically-focused, or bi-cylindrically-focused. A calibration (or reference) signal is required and is used to deduce the measurement system efficiency function. This can be "invented" by the software using center frequency and bandwidth information specified by the user, or, alternatively, a measured calibration signal can be used. Defect types include flat-bottomed-hole reference reflectors, and spherical pores and inclusions. Simulation outputs include estimated defect signal amplitudes, root-mean-square values of grain noise amplitudes, and SNR as functions of the depth of the defect within the metal component. At any particular depth, the user can view

  13. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  14. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  15. The Application of Ultrasonic Inspection to Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2010-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.

  16. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculationsmore » for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.« less

  17. The UT-A Urea Transporter Promoter, UT-Aα, Targets Principal Cells of the Renal Inner Medullary Collecting Duct

    PubMed Central

    Fenton, Robert A.; Shodeinde, Adetola; Knepper, Mark A.

    2006-01-01

    The urea transporters, UT-A1 and UT-A3, two members of the UT-A gene family, are localized to the terminal portion of the inner medullary collecting duct (IMCD). In this manuscript, we demonstrate that 4.2-kb of the 5′-flanking region of the UT-A gene (UT-Aα promoter) is sufficient to drive the IMCD-specific expression of a heterologous reporter gene, β-galactosidase (β-Gal), in transgenic mice. RT-PCR, immunoblotting and immunohistochemistry demonstrate that within the kidney, transgene expression is confined to the terminal portion of the IMCD. Co-localization studies with aquaporin 2 show that expression is localized to the principal cells of the IMCD2 and IMCD3 regions. Utilizing β-Gal activity assays, we further show that within the kidney, the β-Gal transgene can be regulated by both water restriction and glucocorticoids, similar to the regulation of the endogenous UT-A gene. These results demonstrate that 4.2-kb of the UT-Aα promoter is sufficient to drive expression of a heterologous reporter gene in a tissue-specific and cell-specific fashion in transgenic mice PMID:16091580

  18. MASTER: bright OT discovered during Fermi trigger 512353690/GRB170328A inspection

    NASA Astrophysics Data System (ADS)

    Gorbovskoy, E.; Lipunov, V.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Gress, O.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Vladimirov, V.

    2017-03-01

    MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 18h 45m 46.55s -35d 28m 47.6s on 2017-03-28.06645 UT during Fermi trigger 512353690(GRB170328A) inspection https://gcn.gsfc.nasa.gov/other/512353690.fermi (trigger time is 17/03/28 00:28:05.53UT).

  19. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  20. Bruce Thompson: Adventures and advances in ultrasonic backscatter

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.

    2012-05-01

    Over the course of his professional career Dr. R. Bruce Thompson published several hundred articles on non-destructive evaluation, the majority dealing with topics in ultrasonics. One longtime research interest of Dr. Thompson, with applications both to microstructure characterization and defect detection, was backscattered grain noise in metals. Over a 20 year period he led a revolving team of staff members and graduate students investigating various aspects of ultrasonic backscatter. As a member of that team I had the privilege of working along side Dr. Thompson for many years, serving as a sort of Dr. Watson to Bruce's Sherlock Holmes. This article discusses Dr. Thompson's general approaches to modeling backscatter, the research topics he chose to explore to systematically elucidate a better understanding of the phenomena, and the many contributions to the field achieved under his leadership. The backscatter work began in earnest around 1990, motivated by a need to improve inspections of aircraft engine components. At that time Dr. Thompson launched two research efforts. The first led to the heuristic Independent Scatterer Model which could be used to estimate the average grain noise level that would be seen in any given ultrasonic inspection. There the contribution from the microstructure was contained in a measureable parameter known as the Figure-of-Merit or FOM. The second research effort, spearheaded by Dr. Jim Rose, led to a formal relationship between FOM and details of the metal microstructure. The combination of the Independent Scattering Model and Rose's formalism provided a powerful tool for investigating backscatter in metals. In this article model developments are briefly reviewed and several illustrative applications are discussed. These include: the determination of grain size and shape from ultrasonic backscatter; grain noise variability in engine-titanium billets and forgings; and the design of ultrasonic inspection systems to improve defect

  1. Development of a High Level Waste Tank Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.; Loibl, M.W.; Meese, D.C.

    1995-03-21

    The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonicmore » thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks

  2. Method and apparatus for inspecting conduits

    DOEpatents

    Spisak, Michael J.; Nance, Roy A.

    1997-01-01

    An apparatus and method for ultrasonic inspection of a conduit are provided. The method involves directing a first ultrasonic pulse at a particular area of the conduit at a first angle, receiving the reflected sound from the first ultrasonic pulse, substantially simultaneously or subsequently in very close time proximity directing a second ultrasonic pulse at said area of the conduit from a substantially different angle than said first angle, receiving the reflected sound from the second ultrasonic pulse, and comparing the received sounds to determine if there is a defect in that area of the conduit. The apparatus of the invention is suitable for carrying out the above-described method. The method and apparatus of the present invention provide the ability to distinguish between sounds reflected by defects in a conduit and sounds reflected by harmless deposits associated with the conduit.

  3. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  4. Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2008-10-02

    radiography . Two large inspection bays would each accommodate one F-22 aircraft and robotic x-ray inspection equipment. Six smaller bays would accommodate...large aircraft components (two ultrasonic inspection bays, two laser shearography inspection bays, and two digital radiography inspection bays...Hill Air Force Base, Utah Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

  5. Phased Array Probe Optimization for the Inspection of Titanium Billets

    NASA Astrophysics Data System (ADS)

    Rasselkorde, E.; Cooper, I.; Wallace, P.; Lupien, V.

    2010-02-01

    The manufacturing process of titanium billets can produce multiple sub-surface defects that are particularly difficult to detect during the early stages of production. Failure to detect these defects can lead to subsequent in-service failure. A new and novel automated quality control system is being developed for the inspection of titanium billets destined for use in aerospace applications. The sensors will be deployed by an automated system to minimise the use of manual inspections, which should improve the quality and reliability of these critical inspections early on in the manufacturing process. This paper presents the first part of the work, which is the design and the simulation of the phased array ultrasonic inspection of the billets. A series of phased array transducers were designed to optimise the ultrasonic inspection of a ten inch diameter billet made from Titanium 6Al-4V. A comparison was performed between different probes including a 2D annular sectorial array.

  6. Pulsed infrared thermography for assessment of ultrasonic welds

    NASA Astrophysics Data System (ADS)

    McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.

    2018-03-01

    Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.

  7. Grain Refinement of Al-Si Hypoeutectic Alloys by Al3Ti1B Master Alloy and Ultrasonic Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Gui; Wang, Eric Qiang; Prasad, Arvind; Dargusch, Matthew; StJohn, David H.

    Al-Si alloys are widely used in automotive and aerospace industries due to their excellent castability, high strength to weight ratio and good corrosion resistance. However, Si poisoning severely limits the degree of grain refinement with the grain size becoming larger as the Si content increases. Generally the effect of Si poisoning is reduced by increasing the amount of master alloy added to the melt during casting. However, an alternative approach is physical grain refinement through the application of an external force (e.g. mechanical or electromagnetic stirring, intensive shearing and ultrasonic irradiation). This work compares the grain refining efficiency of three approaches to the grain refinement of a range of hypoeutectic Al-Si alloys by (i) the addition of A13Ti1B master alloy, (ii) the application of Ultrasonic Treatment (UT) and (iii) the combined addition of A13Ti1B master alloy and the application of UT.

  8. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    PubMed

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  9. Novel Real-Time Diagnosis of the Freezing Process Using an Ultrasonic Transducer

    PubMed Central

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-01-01

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from −100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy. PMID:25946629

  10. Device for inspecting vessel surfaces

    DOEpatents

    Appel, D. Keith

    1995-01-01

    A portable, remotely-controlled inspection crawler for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to a fixed, remote location, such as the crawler's deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition.

  11. Noninvasive ultrasonic examination technology in support of counter-terrorism and drug interdiction activities: the acoustic inspection device (AID)

    NASA Astrophysics Data System (ADS)

    Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Shepard, Chester L.; Samuel, Todd J.; Pappas, Richard A.

    2003-07-01

    The Pacific Northwest National Laboratory (PNNL) has developed a portable, battery-operated, handheld ultrasonic device that provides non-invasive container interrogation and material identification capabilities. The technique governing how the acoustic inspection device (AID) functions, involves measurements of ultrasonic pulses (0.1 to 5 MHz) that are launched into a container or material. The return echoes from these pulses are analyzed in terms of time-of-flight and frequency content to extract physical property measurements (the acoustic velocity and attenuation coefficient) of the material under test. The AID performs an automated analysis of the return echoes to identify the material, and detect contraband in the form of submerged packages and concealed compartments in liquid filled containers and solid-form commodities. An inspector can quickly interrogate outwardly innocuous commodity items such as shipping barrels, tanker trucks, and metal ingots. The AID can interrogate container sizes ranging from approximately 6 inches in diameter to over 96 inches in diameter and allows the inspector to sort liquid and material types into groups of like and unlike; a powerful method for discovering corrupted materials or miss-marked containers co-mingled in large shipments. This manuscript describes the functionality, capabilities and measurement methodology of the technology as it relates to homeland security applications.

  12. Renal Phenotype of UT-A Urea Transporter Knockout Mice

    PubMed Central

    Fenton, Robert A.; Flynn, Anneliese; Shodeinde, Adetola; Smith, Craig P.; Schnermann, Jurgen; Knepper, Mark A.

    2006-01-01

    The urea transporters UT-A1 and UT-A3 mediate rapid transepithelial urea transport across the inner medullary collecting duct (IMCD). In a previous study, using a new mouse model in which both UT-A1 and UT-A3 were genetically deleted from the IMCD (UT-A1/3−/− mice), we investigated the role of these transporters in the function of the renal inner medulla. Here we report a series of studies investigating more generally the renal phenotype of UT-A1/3−/− mice. Pathological screening revealed abnormalities in both the testis (increased size) and kidney (decreased size and vascular congestion) of UT-A1/3−/− mice. Total urinary nitrate and nitrite excretion rates in UT-A1/3−/− mice were more than double those in wildtype mice. Total renal blood flow was not different between UT-A1/3−/− and wildtype mice, but underwent a greater percentage decrease in response to NG-Nitro-L-arginine Methyl Ester Hydrochloride (L-NAME) infusion. Whole kidney glomerular filtration rate was not different in UT-A1/3−/− mice compared to controls and underwent a similar increase in response to a greater dietary protein intake. Fractional urea excretion was markedly elevated in UT-A1/3−/− mice on a 40% protein diet, reaching 102.4 ± 8.8% of the filtered load, suggesting that there may be active urea secretion along the renal tubule. Although there was a marked urinary concentrating defect in UT-A1/3−/− mice, there was no decrease in aquaporin-2 or -3 expression. Furthermore, although urea accumulation in the inner medulla was markedly attenuated, there was no decrease in NaCl concentration in tissue from outer medulla or 2 levels of the inner medulla. PMID:15829709

  13. Inspection of baked carbon anodes using a combination of multi-spectral acousto-ultrasonic techniques and principal component analysis.

    PubMed

    Boubaker, Moez Ben; Picard, Donald; Duchesne, Carl; Tessier, Jayson; Alamdari, Houshang; Fafard, Mario

    2018-05-17

    This paper reports on the application of an acousto-ultrasonic (AU) scheme for the inspection of industrial-size carbon anode blocks used in the production of primary aluminium by the Hall-Héroult process. A frequency-modulated wave is used to excite the anode blocks at multiple points. The collected attenuated AU signals are decomposed using the Discrete Wavelet Transform (DTW) after which vectors of features are calculated. Principal Component Analysis (PCA) is utilized to cluster the AU responses of the anodes. The approach allows locating cracks in the blocks and the AU features were found sensitive to crack severity. The results are validated using images collected after cutting some anodes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Semi-Automated Pulse-Echo Ultrasonic System for Inspecting Tires

    DOT National Transportation Integrated Search

    1977-07-01

    A nondestructive tire-testing system has been developed using the pulse-echo ultrasonic technique, which offers substantial advantages over all other physical nondestructive-testing methods and shows promise of reducing the cost of production-tire in...

  15. Computer Automated Ultrasonic Inspection System

    DTIC Science & Technology

    1985-02-06

    Reports 74 3.1.4 Statistical Analysis Capability 74 3.2 Nondestructive Evaluation Terminal Hardware 76 3.3 Nondestructive Evaluation Terminal Vendor...3.4.2.6 Create a Hold Tape 103 vi TABLE OF CONTENTS SECTION PAGE 3.4.3 System Status 104 3.4.4 Statistical Analysis 105 3.4.4.1 Statistical Analysis...Data Extraction 105 3.4.4.2 Statistical Analysis Report and Display Generation 106 3.4.5 Quality Assurance Reports 106 3.4.6 Nondestructive Inspection

  16. In-service Inspection of Radioactive Waste Tanks at the Savannah River Site – 15410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Bruce; Maryak, Matthew; Baxter, Lindsay

    2015-01-12

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. The high level wastes are processed in several of the tanks and then transferred by piping to other site facilities for further processing before they are stabilized in a vitrified or grout waste form. Based on waste removal and processing schedules, many of the tanks will be required to be in service for times exceeding the initial intended life. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement functionmore » by providing a barrier to the environment and by maintaining acceptable structural stability during design basis events, which include loadings from both normal service and abnormal (e.g., earthquake) conditions. A structural integrity program is in place to maintain the structural and leak integrity functions of these waste tanks throughout their intended service life. In-service inspection (ISI) is an essential element of a comprehensive structural integrity program for the waste tanks at the Savannah River Site (SRS). The ISI program was developed to determine the degree of degradation the waste tanks have experienced due to service conditions. As a result of the inspections, an assessment can be made of the effectiveness of corrosion controls for the waste chemistry, which precludes accelerated localized and general corrosion of the waste tanks. Ultrasonic inspections (UT) are performed to detect and quantify the degree of general wall thinning, pitting and cracking as a measure of tank degradation. The results from these inspections through 2013, for the 27 Type III/IIIA tanks, indicate no reportable in-service corrosion degradation in the primary tank (i.e., general, pitting, or cracking). The average wall thickness for all tanks remains above the manufactured nominal thickness minus 0.25 millimeter and the largest pit identified is

  17. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.« less

  18. Development of Inspection for Friction Stir Welds for Rocket Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.

    2012-01-01

    During development of the Ares I weld processes nondestructive and destructive testing were used to identify and characterize defects that occurred. These defects were named and character noted. This catalogue of defects and characteristics was then used to develop inspection methods for Self Reacting Friction Stir Welds (SR ]FSW) and Conventional Friction Stir Welds (C ]FSW). Dye penetrant, eddy current, x ]radiography, single element ultrasonic, and phased array ultrasonic (PAUT) inspection procedures were developed to target the expected defects. Once the method procedure was developed a comparison was performed to allow for selection of the best inspection method. Tests of the effectiveness of the inspection were performed on purposely fabricated flawed specimens and electrodischarge machined notches. The initial test results prompted a revisit of the PAUT procedure and a redesign of the inspection. Subsequent testing showed that a multi ]angle PAUT inspection resulted in better detection capability. A discussion of the most effective orientations of the PAUT transducer will be presented. Also, the implementation of the inspection on production hardware will be presented. In some cases the weld tool is used as the transducer manipulator and in some cases a portable scanner is used

  19. Real-time ultrasonic weld evaluation system

    NASA Astrophysics Data System (ADS)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  20. Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength

    NASA Astrophysics Data System (ADS)

    Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.

    2018-02-01

    To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.

  1. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    PubMed Central

    Capriotti, Margherita; Kim, Hyungsuk E.; Lanza di Scalea, Francesco; Kim, Hyonny

    2017-01-01

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers. PMID:28772976

  2. Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Jie; Yan, Hong

    2018-06-01

    A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.

  3. Fabrication of Carbon Nanofibers/A356 Nanocomposites by High-Intensity Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Jie; Yan, Hong

    2018-03-01

    A356 alloy reinforced with carbon nanofibers (CNFs) was fabricated by high-intensity ultrasonic vibration processing. The microstructure and mechanical properties were investigated. The distribution of CNFs became more and more uniform with the increase of ultrasonic power, and the mechanical properties of nanocomposites were significantly enhanced accordingly. The yield strength (YS), ultimate tensile strength (UTS), and microhardness of the nanocomposite increased by 38.3, 21.9, and 43.2 pct, respectively, at a CNF content of 0.9 wt pct compared with the matrix without CNF addition. The improvement in mechanical properties was the effect of CNFs on the thermal expansion mismatch strengthening of the nanocomposite, the grain refinement of the nanocomposite, and the load transfer from the matrix to the nanofibers.

  4. Survey of Non-Destructive Tire Inspection Techniques

    DOT National Transportation Integrated Search

    1971-07-01

    The status of several promising methods for non-destructive tire inspection is surveyed with the conclusion that radiographic, infrared, holographic and ultrasonic techniques warrant further evaluation. A program plan is outlined to correlate non-des...

  5. Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review

    Treesearch

    Adam C. Senalik; Greg Schueneman; Robert J. Ross

    2014-01-01

    The authors conducted a review of ultrasonic testing and evaluation of wood and wood products, starting with a description of basic ultrasonic inspection setups and commonly used equations. The literature review primarily covered wood research presented between 1965 and 2013 in the Proceedings of the Nondestructive Testing of Wood Symposiums. A table that lists the...

  6. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  7. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  8. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats

    PubMed Central

    Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O.; Ertunc, Mert; Verkman, A. S.

    2015-01-01

    Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics (‘urearetics’) with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10–20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2–3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 hours, and a urine concentration of 20–40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of Syndrome of Inappropriate Antidiuretic Hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition. PMID:25993324

  9. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats.

    PubMed

    Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O; Ertunc, Mert; Verkman, Alan S

    2015-08-01

    Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics ('urearetics') with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10-20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2-3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 h, and a urine concentration of 20-40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of syndrome of inappropriate antidiuretic hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition.

  10. Rapid Inspection of Aerospace Structures - Is It Autonomous Yet?

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Backes, Paul; Joffe, Benjamin

    1996-01-01

    The trend to increase the usage of aging aircraft added a great deal of urgency to the ongoing need for low-cost, rapid, simple-to-operate, reliable and efficient NDE methods for detection and characterization of flaws in aircraft structures. In many cases, the problem of inspection is complex due to the limitation of current technology and the need to disassemble aircraft structures and testing them in lab conditions. To overcome these limitations, reliable field inspection tools are being developed for rapid NDE of large and complex-shape structures, that can operate at harsh, hostal and remote conditions with minimum human interface. In recent years, to address the need for rapid inspection in field conditions, numerous portable scanners were developed using NDE methods, including ultrasonics, shearography, thermography. This paper is written with emphasis on ultrasonic NDE scanners, their evolution and the expected direction of growth.

  11. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters

    PubMed Central

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M.

    2014-01-01

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na+, K+, or Cl− levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. PMID:25298523

  12. National Program for Inspection of Non-Federal Dams. Berry Brook Dam, (NH 00313), State Number 83.06, Piscataqua River Basin, Farmington, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1979-12-01

    at embedded steel items 7 Spalling Minor spalling of surface ’+ deep exposi gcoarse aggregate of weir and dcwnstream f ce. Any Visible Reinforcing...1937, the above dam was inspected by me on _L LEO acomprie _ NOTES ON PHYSICAL CONDITI IT Ab ut mcnt s

  13. Defect Characterization in a Thin Walled Composite RP-1 Tank: A Case Study

    NASA Technical Reports Server (NTRS)

    Langsing, Matthew D.; Walker, James L., II; Russell, Samual S.

    2000-01-01

    A full scale thin walled composite tank, designed and fabricated for the storage of pressurized RP- I rocket fuel, was fully inspected with digital infrared thermography (IR) during assembly and prior to proof testing. The tank featured a "pill capsule" design with the equatorial bondline being overwrapped on both the inner and outer surfaces. A composite skirt was bonded to the aft dome of the tank to serve as a structural support when the tank was stood on end in service. Numerous anomalies were detected and mapped prior to proof testing, some along bondlines and some scattered throughout the acreage. After the tank was intentionally burst, coupons were cut from the regions including thermographic anomalies. These coupons were again inspected thermographically to document the growth of any indications due to proof testing. Ultrasonic inspections (UT) were also performed on the coupons for comparison to thermography. Several coupons were dissected and micrographed. Relationships between IR and UT indications and the physical nature of the dissected material are presented.

  14. Deep sub-wavelength ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Amireddy, Kiran Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2018-04-01

    There is much interest in improving the resolution of ultrasonic inspection, which suffers from large wavelengths typically in the range of millimeters, due to low value of speed of sound in solid media. The authors are interested in achieving this through holey structured metamaterial lenses, and have recently demonstrated an experimental subwavelength resolution of λ/25. However the previous work was in through-transmission mode with reception using Laser Doppler Vibrometer (LDV), which may not be suitable for practical applications. This paper discusses the use of optimized holey structured metalens to achieve a deep sub-wavelength imaging up to λ/18 in through-transmission mode, but using commercially available piezoelectric ultrasonic transducers for both generation and reception of ultrasound.

  15. Device for inspecting vessel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, D.K.

    1995-12-12

    A portable, remotely-controlled inspection crawler is described for use along the walls of tanks, vessels, piping and the like. The crawler can be configured to use a vacuum chamber for supporting itself on the inspected surface by suction or a plurality of magnetic wheels for moving the crawler along the inspected surface. The crawler is adapted to be equipped with an ultrasonic probe for mapping the structural integrity or other characteristics of the surface being inspected. Navigation of the crawler is achieved by triangulation techniques between a signal transmitter on the crawler and a pair of microphones attached to amore » fixed, remote location, such as the crawler`s deployment unit. The necessary communications are established between the crawler and computers external to the inspection environment for position control and storage and/or monitoring of data acquisition. 5 figs.« less

  16. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters.

    PubMed

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M; Yang, Baoxue

    2014-12-15

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics. Copyright © 2014 the American Physiological Society.

  17. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    NASA Astrophysics Data System (ADS)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  18. New customizable phased array UT instrument opens door for furthering research and better industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Gavin; Ginzel, Robert

    2014-02-18

    Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control variousmore » aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.« less

  19. Rupture utérine sur utérus bicorne à 12 semaines d'aménorrhée: à propos d'un cas

    PubMed Central

    Itchimouh, Sanaa; Khabtou, Karima; Mahdaoui, Sakher; Boufettal, Houssine; Samouh, Naima

    2016-01-01

    La fréquence des malformations utérines ayant un impact sur la reproduction est difficile à apprécier. Leur mise en évidence nécessite un bilan spécifique (hystérosalpingographie, hystéroscopie, cœlioscopie). La fertilité spontanée peut être altérée en fonction du type d'anomalie utérine. Toutes ces anomalies peuvent avoir des répercussions sur l’évolution de la conception à type de fausses couches précoces et tardives, de grossesse extra utérine, de menace d'accouchement prématuré, d'accouchement prématuré, de pathologies vasculaires gravidiques et de retard de croissance intra-utérin. L'utérus bicorne est la plus connue des malformations et représente environ la moitié des anomalies de l'utérus. La survenue d'une telle grossesse constitue une situation à risque pouvant entraîner une mort maternelle, mais le diagnostic précoce et un bon suivi peut mener des grossesses à terme sur des utérus malformé. Le dépistage échographique devrait permettre la détection systématique de ce genre de cas afin de prendre préventivement les mesures qui s'imposent. Nous rapportons un cas de rupture utérine sur utérus bicorne unicervical sur grossesse à 12 semaines d'aménorrhée. PMID:27642490

  20. Applications of UT results to confirm defects findings by utilization of relevant metallurgical investigations techniques on gas/condensate pipeline working in wet sour gas environment

    NASA Astrophysics Data System (ADS)

    El-Azhari, O. A.; Gajam, S. Y.

    2015-03-01

    The gas/condensate pipe line under investigation is a 12 inch diameter, 48 km ASTM, A106 steel pipeline, carrying hydrocarbons containing wet CO2 and H2S.The pipe line had exploded in a region 100m distance from its terminal; after 24 years of service. Hydrogen induced cracking (HIC) and sour gas corrosion were expected due to the presence of wet H2S in the gas analysis. In other areas of pipe line ultrasonic testing was performed to determine whether the pipeline can be re-operated. The results have shown presence of internal planner defects, this was attributed to the existence of either laminations, type II inclusions or some service defects such as HIC and step wise cracking (SWC).Metallurgical investigations were conducted on fractured samples as per NACE standard (TM-0284-84). The obtained results had shown macroscopic cracks in the form of SWC, microstructure of steel had MnS inclusions. Crack sensitivity analyses were calculated and the microhardness testing was conducted. These results had confirmed that the line material was suffering from sour gas deteriorations. This paper correlates the field UT inspection findings with those methods investigated in the laboratory. Based on the results obtained a new HIC resistance material pipeline needs to be selected.

  1. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  2. Study of ultrasonic sensor that is effective for all direction using an electromagnetic force

    NASA Astrophysics Data System (ADS)

    Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro

    2015-03-01

    Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.

  3. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  4. Robotic Welding and Inspection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. B. Smartt; D. P. Pace; E. D. Larsen

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  5. Science alliance: A vital ORNL-UT partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, C.R.; Riedinger, L.; Garritano, T.

    1991-01-01

    Partnerships between Department of Energy national laboratories and universities have long been keys to advancing scientific research and education in the United States. Perhaps the most enduring and closely knit of these relationships is the one between Oak Ridge National Laboratory and the University of Tennessee at Knoxville. Since its birth in the 1940's, ORNL has had a very special relationship with UT, and today the two institutions have closer ties than virtually any other university and national laboratory. Seven years ago, ORNL and UT began a new era of cooperation by creating the Science Alliance, a Center of Excellencemore » at UT sponsored by the Tennessee Higher Education Commission. As the oldest and largest of these centers, the Science Alliance is the primary vehicle through which Tennessee promotes research and educational collaboration between UT and ORNL. By letting the two institutions pool their intellectual and financial resources, the alliance creates a more fertile scientific environment than either could achieve on its own. Part of the UT College of Liberal Arts, the Science Alliance is composed of four divisions (Biological Sciences, Chemical Sciences, Physical Sciences, and Mathematics and Computer Science) that team 100 of the university's top faculty with their outstanding colleagues from ORNL.« less

  6. Development of a High Performance Acousto-ultrasonic Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  7. Non-contact ultrasonic defect imaging in composites

    NASA Astrophysics Data System (ADS)

    Tenoudji, F. Cohen; Citerne, J. M.; Dutilleul, H.; Busquet, D.

    2016-02-01

    In the situations where conventional NDT ultrasonic techniques using immersion of the part under inspection or its contact with the transducers cannot be used, in-air investigation presents an alternative. The huge impedance mismatch between the part material and air (transmission loss in the order of 80 dB for a thin metallic plate) induces having to deal very small signals and unfavorable signal to noise ratios. The approach adopted here is the use of the crack of a spark generated by an induction coil as a sound source and an electrostatic polyethylene membrane microphone as a receiver [1]. The advantage of this source is that the spark power is high (several kilowatts) and its power is directly coupled to air during the energy release. In some difficult situations, an elliptical mirror is used to concentrate the sound beam power on the surface of the part [2,3]. Stability and reproducibility of the sound generated by the spark, which are a necessity in order to perform quantitative evaluations, are achieved in our experiment. This permits also an increase of the signal to noise ratio by signal accumulation. The sound pulse duration of few microseconds allows operating in pulse echo in some circumstances. The bandwidth of the source is large, of several hundred of kilohertz, and that of the microphone above 100 kHz allow the flexibility to address different kinds of materials. The technique allows an easy, in-air, non contact, inspection of structural composite parts, with pulse waves, with an excellent signal to noise ratio. An X-Y ultrasonic scanning ultrasonic system for material inspection using this technique has been realized. Results obtained in transmission and reflection are presented. Defects in carbon composite plates and in honeycomb are imaged in transmission Echographic measurements show that defect detection can be performed in thin plates using Lamb waves propagation when only one sided inspection of the part is possible.

  8. On Limitations of the Ultrasonic Characterization of Pieces Manufactured with Highly Attenuating Materials

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.

    Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.

  9. Deletion of the UT receptor gene results in the selective loss of urotensin-II contractile activity in aortae isolated from UT receptor knockout mice

    PubMed Central

    Behm, David J; Harrison, Stephen M; Ao, Zhaohui; Maniscalco, Kristeen; Pickering, Susan J; Grau, Evelyn V; Woods, Tina N; Coatney, Robert W; Doe, Christopher P A; Willette, Robert N; Johns, Douglas G; Douglas, Stephen A

    2003-01-01

    Urotensin-II (U-II) is among the most potent mammalian vasoconstrictors identified and may play a role in the aetiology of essential hypertension. Currently, only one mouse U-II receptor (UT) gene has been cloned. It is postulated that this protein is solely responsible for mediating U-II-induced vasoconstriction. This hypothesis has been investigated in the present study, which assessed basal haemodynamics and vascular reactivity to hU-II in wild-type (UT(+/+)) and UT receptor knockout (UT(−/−)) mice. Basal left ventricular end-diastolic and end-systolic volumes/pressures, stroke volumes, mean arterial blood pressures, heart rates, cardiac outputs and ejection fractions in UT(+/+) mice and in UT(−/−) mice were similar. Relative to UT(+/+) mouse isolated thoracic aorta, where hU-II was a potent spasmogen (pEC50=8.26±0.08) that evoked relatively little vasoconstriction (17±2% 60 mM KCl), vessels isolated from UT(−/−) mice did not respond to hU-II. However, in contrast, the superior mesenteric artery isolated from both the genotypes did not contract in the presence of hU-II. Reactivity to unrelated vasoconstrictors (phenylephrine, endothelin-1, KCl) and endothelium-dependent/independent vasodilator agents (carbachol, sodium nitroprusside) was similar in the aorta and superior mesenteric arteries isolated from both the genotypes. The present study is the first to directly link hU-II-induced vasoconstriction with the UT receptor. Deletion of the UT receptor gene results in loss of hU-II contractile action with no ‘nonspecific' alterations in vascular reactivity. However, as might be predicted based on the limited contractile efficacy recorded in vitro, the contribution that hU-II and its receptor make to basal systemic haemodynamics appears to be negligible in this species. PMID:12770952

  10. Inspection of aircraft fastener holes using a conically shaped multi-element phased array probe

    NASA Astrophysics Data System (ADS)

    Selman, J. J.; Miller, J. T.; Moles, M. D. C.; Dupuis, O.; Herzog, P. G.

    2002-05-01

    A novel inspection technique is described using phased ultrasonic arrays to detect faying surface cracks in the first layer around the base of a fastener hole with fasteners installed. A unique phased array probe incorporates a matrix of ultrasonic elements arranged in a conical configuration encircling the fastener head. This arrangement permits deflection of the ultrasonic beam in three dimensions, and adapts to different hole diameters and skin thickness. Full circumferential scans are performed using a pre-programmed sequence of phased array focal laws. The inspection method uses pulse-echo at a variety of angles incident on the crack to thoroughly cover the fastener hole and surrounding area, and is designed to detect cracks as small as 0.030″ in length.

  11. Simulation of ultrasonic arrays for industrial and civil engineering applications including validation

    NASA Astrophysics Data System (ADS)

    Spies, M.; Rieder, H.; Orth, Th.; Maack, S.

    2012-05-01

    In this contribution we address the beam field simulation of 2D ultrasonic arrays using the Generalized Point Source Synthesis technique. Aiming at the inspection of cylindrical components (e.g. pipes) the influence of concave and convex surface curvatures, respectively, has been evaluated for a commercial probe. We have compared these results with those obtained using a commercial simulation tool. In civil engineering, the ultrasonic inspection of highly attenuating concrete structures has been advanced by the development of dry contact point transducers, mainly applied in array arrangements. Our respective simulations for a widely used commercial probe are validated using experimental results acquired on concrete half-spheres with diameters from 200 mm up to 650 mm.

  12. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  13. Quantitative ultrasonic coda wave (diffuse field) NDE of carbon-fiber reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Livings, Richard A.

    The increasing presence and applications of composite materials in aerospace structures precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from simple damage detection to damage diagnosis and structural prognosis. Structural Health Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess damage with some success, but currently the method is not fully mature or ready to be applied for SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied to fibrous composite materials have not been widely addressed in literature. The central objective of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials. Coda waves are defined as the superposition of late arriving wave modes that have been scattered or reflected multiple times. This results in long, complex signals where individual wave modes cannot be discriminated. One method of interpreting the changes in such signals caused by the introduction or growth of damage is to isolate and quantify the difference between baseline and damage signals. Several differential signal features are used in this work to quantify changes in the coda waves which can then be correlated to damage size and growth. Experimental results show that coda wave differential features are effective in detecting drilled through-holes as small as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and increasing number of holes. The differential features are also shown to have an underlying basis function that is dependent on the hole volume and can be scaled by a material dependent coefficient to estimate the feature amplitude and size holes. The

  14. Nondestructive inspection of a composite missile launcher

    NASA Astrophysics Data System (ADS)

    Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.

    2012-05-01

    Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].

  15. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  16. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  17. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  18. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  19. Robotic NDE inspection of advanced solid rocket motor casings

    NASA Technical Reports Server (NTRS)

    Mcneelege, Glenn E.; Sarantos, Chris

    1994-01-01

    The Advanced Solid Rocket Motor program determined the need to inspect ASRM forgings and segments for potentially catastrophic defects. To minimize costs, an automated eddy current inspection system was designed and manufactured for inspection of ASRM forgings in the initial phases of production. This system utilizes custom manipulators and motion control algorithms and integrated six channel eddy current data acquisition and analysis hardware and software. Total system integration is through a personal computer based workcell controller. Segment inspection demands the use of a gantry robot for the EMAT/ET inspection system. The EMAT/ET system utilized similar mechanical compliancy and software logic to accommodate complex part geometries. EMAT provides volumetric inspection capability while eddy current is limited to surface and near surface inspection. Each aspect of the systems are applicable to other industries, such as, inspection of pressure vessels, weld inspection, and traditional ultrasonic inspection applications.

  20. ORCHID - a computer simulation of the reliability of an NDE inspection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moles, M.D.C.

    1987-03-01

    CANDU pressurized heavy water reactors contain several hundred horizontally-mounted zirconium alloy pressure tubes. Following a pressure tube failure, a pressure tube inspection system called CIGARette was rapidly designed, manufactured and put in operation. Defects called hydride blisters were found to be the cause of the failure, and were detected using a combination of eddy current and ultrasonic scans. A number of improvements were made to CIGARette during the inspection period. The ORCHID computer program models the operation of the delivery system, eddy current and ultrasonic systems by imitating the on-reactor decision-making procedure. ORCHID predicts that during the early stage ofmore » development, less than one blistered tube in three would be detected, while less than one in two would be detected in the middle development stage. However, ORCHID predicts that during the late development stage, probability of detection will be over 90%, primarily due to the inclusion of axial ultrasonic scans (a procedural modification). Rotational and axial slip could severely reduce probability of detection. Comparison of CIGARette's inspection data with ORCHID's predictions indicate that the latter are compatible with the actual inspection results, through the numbers are small and data uncertain. It should be emphasized that the CIGARette system has been essentially replaced with the much more reliable CIGAR system.« less

  1. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments

    PubMed Central

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S.; Lissenden, Cliff J.

    2018-01-01

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT’s components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT’s performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT’s capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches. PMID:29324721

  2. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments.

    PubMed

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S; Lissenden, Cliff J

    2018-01-11

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT's components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT's performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT's capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches.

  3. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.

    PubMed

    Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W

    2016-03-01

    A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

  4. Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.

    PubMed

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-29

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.

  5. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    PubMed Central

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  6. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  7. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  8. 76 FR 2800 - Establishment of Class E Airspace; Lucin, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...-2010-1208; Airspace Docket No. 10-ANM-16] Establishment of Class E Airspace; Lucin, UT AGENCY: Federal... E en route domestic airspace for the Lucin VORTAC, Lucin, UT. DATES: Effective 0901 UTC, February 17..., UT, incorrectly referenced the existing Class E en route domestic airspace exclusion above 8,500 feet...

  9. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    NASA Astrophysics Data System (ADS)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the

  10. View of the cinder block milking barn (UT126D) and attached ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the cinder block milking barn (UT-126-D) and attached livestock barn (UT-126-B) with large barn (UT-126-A) in the foreground, looking east-northeast - Thomas Powers Ranch, Milking Barn, 4137 North Highway 224, Snyderville, Summit County, UT

  11. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  12. Inspection design using 2D phased array, TFM and cueMAP software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim

    2014-02-18

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imagingmore » performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.« less

  13. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  14. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring

    PubMed Central

    Mueller, Inka; Fritzen, Claus-Peter

    2017-01-01

    The use of piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM) purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV). New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems. PMID:28772431

  15. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  16. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    NASA Technical Reports Server (NTRS)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  17. Static, Dynamic, and Fatigue Analysis of the Mechanical System of Ultrasonic Scanner for Inservice Inspection of Research Reactors

    NASA Astrophysics Data System (ADS)

    Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.

    2018-02-01

    This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.

  18. High temperature ultrasonic immersion measurements using a BS-PT based piezoelectric transducer without a delay line

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2018-04-01

    Ultrasonic imaging is a key enabling technology required for in-service inspection of advanced sodium fast reactors at the hot stand-by operating mode (˜250C). Current work presents development of a single element, 2.4MHz, planar, ultrasonic immersion transducer for a potential application in ranging, inspection and imaging of the reactor components. The prototype immersion transducer is first tested in water for three thermal cycles up to 92C. The transducer is further evaluated for four thermal cycles in silicone oil, with total seven thermal cycles that exceeded operation period of 21 hours. Moreover, the preliminary data acquired for speed of sound in silicone oil indicates 24% reduction from 22C to 142C. Sensitivity of the ultrasonic transducer is also measured as a function of temperature and demonstrates the effect of multiple thermal cycles on the transducer components.

  19. Ultrasonic scanning system for in-place inspection of brazed-tube joints

    NASA Technical Reports Server (NTRS)

    Haralson, H. S.; Haynes, J. L.; Wages, C. G.

    1971-01-01

    System detects defects of .051 cm in diameter and larger. System incorporates scanning head assembly including boot enclosed transducer, slip ring assembly, drive mechanism, and servotransmitter. Ultrasonic flaw detector, prototype recorder, and special recorder complete system.

  20. Determination of tire quality from nondestructive inspection : final report

    DOT National Transportation Integrated Search

    1979-11-01

    The principal objective of the study was to assess the capability of an ultrasonic nondestructive inspection system to identify tire groups with a high propensity to failure among the groups selected for the Compliance Test under MVSS 109. A secondar...

  1. Near real-time monitoring of UT1 with geodetic VLBI

    NASA Astrophysics Data System (ADS)

    Haas, R.; Hobiger, T.; Sekido, M.; Koyama, Y.; Kondo, T.; Takiguchi, H.; Kurihara, S.; Kokado, K.; Tanimoto, D.; Nozawa, K.; Wagner, J.; Ritakari, J.; Mujunen, A.; Uunila, M.

    2011-07-01

    Geodetic VLBI is unique among the geodetic space techniques since it provides a direct connection between the international terrestrial reference frame and the international celestial reference frame. The Earth rotation angle, usually expressed as UT1, can be determined directly from geodetic VLBI observations. Accurate information about the Earth rotation angle is necessary and important for navigation purposes, in particular for satellite missions and space navigation. A near real-time knowledge of UT1 with high accuracy is therefore highly desirable. During the last few years the advances in data transfer over high-speed optical fibre lines have made it possible to electronically send the observational data from a VLBI radio telescope on one side of the globe in real-time to a VLBI correlator on the other side of the globe. Thus, data of two telescopes on opposite sides of the Earth, forming a long east-west oriented baseline, can be correlated in near real-time. Furthermore, advances in automated processing of the correlation results have made it possible to derive the Earth rotation angle UT1 in near real-time. Since 2007, the VLBI research groups in Sweden, Finland and Japan collaborate to derive UT1 in near real-time. Several dedicated so-called ultra-rapid UT1-sessions with 1-2 hours duration were performed. It was shown that final UT1-results can be derived within a few minutes after the end of an observing session (Sekido et al., 2008; Matsuzaka et al., 2008). The quality of the UT1-results is on the same level as the so-called IERS rapid solutions, but with a much lower latency (Haas et al., 2010). Recently, the ultra-rapid approach has been applied to standard 24 hour long VLBI observing sessions that are organized by the International VLBI Service for Geodesy and Astrometry (IVS). The long east-west baseline between Onsala (Sweden) and Tsukuba (Japan) is used to derive UT1 with a sliding window approach already during the ongoing IVS-session. The data

  2. Ultrasonic scanning system for in-place inspection of brazed tube joints

    NASA Technical Reports Server (NTRS)

    Haynes, J. L.; Wages, C. G.; Haralson, H. S. (Inventor)

    1973-01-01

    A miniaturized ultrasonic scanning system for nondestructive in-place, non-immersion testing of brazed joints in stainless-steel tubing is described. The system is capable of scanning brazed tube joints, with limited clearance access, in 1/4 through 5/8 inch union, tee, elbow and cross configurations. The system has the capability to detect defective conditions now associated with material density changes in addition to those which are depended upon density variations. The system includes a miniaturized scanning head assembly that fits around a tube joint and rotates the transducer around and down the joint in a continuous spiral motion. The C-scan recorder is similar in principle to conventional models except that it was specially designed to track the continuous spiral scan of the tube joint. The scanner and recorder can be operated with most commercially available ultrasonic flaw detectors.

  3. High energy, low frequency, ultrasonic transducer

    DOEpatents

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  4. Sandwich Panels Evaluated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2004-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment systems for next-generation engines. The bond strength between the core and face sheets is critical in maintaining the structural integrity of the sandwich structure. To improve the inspection and production of these systems, researchers at the NASA Glenn Research Center are using nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, to evaluate the brazing quality between the face plates and the metallic foam core. The capabilities and limitations of a swept-frequency approach to ultrasonic spectroscopy were evaluated with respect to these sandwich structures. This report discusses results from three regions of a sandwich panel representing different levels of brazing quality between the outer face plates and a metallic foam core. Each region was investigated with ultrasonic spectroscopy. Then, on the basis of the NDE results, three shear specimens sectioned from the sandwich panel to contain each of these regions were mechanically tested.

  5. High-speed scanning of critical structures in aviation using coordinate measurement machine and the laser ultrasonic.

    PubMed

    Swornowski, Pawel J

    2012-01-01

    Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.

  6. Feasibility on Ultrasonic Velocity using Contact and Non-Contact Nondestructive Techniques for Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Im, K. H.; Chang, M.; Hsu, D. K.; Song, S. J.; Cho, H.; Park, J. W.; Kweon, Y. S.; Sim, J. K.; Yang, I. Y.

    2007-03-01

    Advanced materials are to be required to have specific functions associated with extremely environments. One of them is carbon/carbon(C/C) composite material, which has obvious advantages over conventional materials. The C/Cs have become to be utilized as parts of aerospace applications and its low density, high thermal conductivity and excellent mechanical properties at elevated temperatures make it an ideal material for aircraft brake disks. Because of permeation of coupling medium such as water, it is desirable to perform contact-less nondestructive evaluation to assess material properties and part homogeneity. In this work, a C/C composite material was characterized with non-contact and contact ultrasonic methods using a scanner with automatic-data acquisition function. Also through transmission mode was performed because of the main limitation for air-coupled transducers, which is the acoustic impedance mismatch between most materials and air. Especially ultrasonic images and velocities for C/C composite disk brake were compared and found to be consistent to some degree with the non-contact and contact ultrasonic measurement methods. Low frequency through-transmission scans based on both amplitude of the ultrasonic pulse was used for mapping out the material property inhomogeneity. Measured results were compared with those obtained by the dry-coupling ultrasonic UT system and through transmission method in immersion. Finally, feasibility has been found to measure and compare ultrasonic velocities of C/C composites with using the contact/noncontact peak-delay measurement method based on the pulse overlap method.

  7. An automated miniature robotic vehicle inspection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3Dmore » model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.« less

  8. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    PubMed

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ultrasonic guided wave interpretation for structural health inspections

    NASA Astrophysics Data System (ADS)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further

  10. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation

    PubMed Central

    Qian, Xiaoqian; Sands, Jeff M.; Song, Xiang; Chen, Guangping

    2016-01-01

    Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 kDa and 65 kDa. Using sugar specific-binding lectins, the UT-A3 glycosylation profile was examined. The 45 kDa form was pulled down by lectin Con A and GNL, indicating an immature glycan with a high amount of mannose (Man); whereas the 65 kDa form is a mature glycan composed of acetylglucosamine (GlcNAc), poly-N-acetyllactosame (poly-LacNAc) that was pulled down by WGA and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2, 6-sialylation. Activation of PKC by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important in kidney urea reabsorption and the urinary concentrating mechanism. PMID:26972907

  11. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation.

    PubMed

    Qian, Xiaoqian; Sands, Jeff M; Song, Xiang; Chen, Guangping

    2016-07-01

    Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.

  12. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B.T.; Chungkao Hsieh.

    1993-11-02

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

  13. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B. T.; Hsieh, Chung-Kao

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  14. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  15. Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE

    NASA Technical Reports Server (NTRS)

    Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.

    1993-01-01

    Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.

  16. Application of linearized inverse scattering methods for the inspection in steel plates embedded in concrete structures

    NASA Astrophysics Data System (ADS)

    Tsunoda, Takaya; Suzuki, Keigo; Saitoh, Takahiro

    2018-04-01

    This study develops a method to visualize the state of steel-concrete interface with ultrasonic testing. Scattered waves are obtained by the UT pitch-catch mode from the surface of the concrete. Discrete wavelet transform is applied in order to extract echoes scattered from the steel-concrete interface. Then Linearized Inverse Scattering Methods are used for imaging the interface. The results show that LISM with Born and Kirchhoff approximation provide clear images for the target.

  17. Effects of Porosity on Ultrasonic Characteristic Parameters and Mechanical Properties of Glass Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Liu, Fushun

    Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.

  18. Emerging nondestructive inspection methods for aging aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, A; Dahlke, L; Gieske, J

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with amore » discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.« less

  19. Ultrasonic Wall Thickness Monitoring at High Temperatures (>500 °C)

    NASA Astrophysics Data System (ADS)

    Cegla, F. B.; Allin, J.; Davies, J. O.; Collins, P.; Cawley, P.

    2011-06-01

    Corrosion and erosion shorten the life of components that are used in the petrochemical industry. In order to mitigate the safety and financial risks posed by the degradation mechanisms, plant operators monitor wall thicknesses at regular inspection intervals. In high temperature locations inspections have to be carried out at plant shut downs because conventional ultrasonic sensors cannot withstand the high operating temperatures. The authors have developed a waveguide based high temperature thickness gauge for monitoring of wall thicknesses in high temperature areas. The waveguide allows the use of conventional transduction systems (max temp. 60 °C) at one end and guides ultrasonic waves into the high temperature region where the inspection is to be carried out. Slender stainless steel waveguides allow a temperature drop of ˜500-600 °C per 200 mm length to be sustained simply by natural convection cooling. This paper describes the technical challenges that had to be overcome (dispersion and source/receiver characteristics) in order to implement this "acoustic cable". A range of experimental results of thickness measurements on components of different thickness, and furnace tests at different temperatures are presented. An accelerated corrosion test that demonstrates the effectiveness of the monitoring for corrosion is also presented.

  20. Recent modelling advances for ultrasonic TOFD inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darmon, Michel; Ferrand, Adrien; Dorval, Vincent

    The ultrasonic TOFD (Time of Flight Diffraction) Technique is commonly used to detect and characterize disoriented cracks using their edge diffraction echoes. An overview of the models integrated in the CIVA software platform and devoted to TOFD simulation is presented. CIVA allows to predict diffraction echoes from complex 3D flaws using a PTD (Physical Theory of Diffraction) based model. Other dedicated developments have been added to simulate lateral waves in 3D on planar entry surfaces and in 2D on irregular surfaces by a ray approach. Calibration echoes from Side Drilled Holes (SDHs), specimen echoes and shadowing effects from flaws canmore » also been modelled. Some examples of theoretical validation of the models are presented. In addition, experimental validations have been performed both on planar blocks containing calibration holes and various notches and also on a specimen with an irregular entry surface and allow to draw conclusions on the validity of all the developed models.« less

  1. 30 CFR 285.824 - How must I conduct self-inspections?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 285.824 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... months; (2) The type of inspection employed, (i.e., visual, magnetic particle, ultrasonic testing); and...

  2. Accouchements sur utérus cicatriciel en République Démocratique du Congo: épreuve utérine et facteurs déterminants de l’issue

    PubMed Central

    Momat, Félix Kitenge wa; Zalagile, Pierre Akilimali; Mukalenge, Faustin Chenge; Luboya, Oscar Numbi; Kalala, Cléophas Tshibangu; Mashinda, Désiré; Grangé, Gilles; Mukuku, Olivier; Kaj, Fanny Malonga; Lubamba, Chamy Cham; Bwama, Joseph Bagambe; Mukoko, Célestin Kayembe; Kakoma, Jean Baptiste; Kalungwe, Justin Kizonde

    2017-01-01

    Introduction L'objectif était d'identifier les principaux facteurs de risque associés à un échec d'épreuve utérine et définir un score prédictif d'accouchement sur utérus cicatriciel en République Démocratique du Congo. Méthodes Étude multicentrique, transversale et analytique des patientes porteuses d'un utérus cicatriciel sur la période du 1er janvier au 31 décembre 2013 dans quatre maternités de la République Démocratique du Congo (RDC). Un modèle de régression logistique a été construit pour identifier les facteurs associés à l'échec de l'épreuve utérine. De ce modèle, un score prédictif a été construit pour prédire l'échec de l'épreuve utérine dans les maternités de la RDC. La courbe ROC a été utilisée pour évaluer la capacité du score construit à identifier les patientes à risque de connaitre un échec de l'épreuve utérine. Le cut off point du score prédictif a été déterminé en fonction de la sensibilité et spécificité optimale via l'index de Youden. Tous les tests ont été réalisés au seuil de signification α=0,05. Résultats Deux types de facteurs explicatifs de l'échec de l'épreuve utérine ont été retenus. Il s'agit d'un facteur sociodémographique (âge maternel) et de trois facteurs obstétricaux (hauteur utérine, présentation du fœtus et rupture prématurée des membranes). Le score de prédiction a été défini pour prédire l'échec de l'épreuve utérine. La construction de ce score s'est basée sur quatre éléments : l'âge maternel, l'état de la poche des eaux à l'admission, la hauteur utérine et la présentation fœtale. Le score minimal est de 4 et le score maximal est de 16. Le seuil est de 7. Un Score total supérieur ou égal à 7 traduit un risque d'échec de l'épreuve utérine. Conclusion L'utilisation de ce score prédictif chez les patientes pourra améliorer la qualité dans les indications de la voie haute, l'augmentation des taux de césariennes prophylactiques

  3. Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells

    PubMed Central

    Su, Hua; Carter, Conner B.; Laur, Oskar; Sands, Jeff M.

    2012-01-01

    The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation. PMID:22914781

  4. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  5. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  6. CPO Prediction: Accuracy Assessment and Impact on UT1 Intensive Results

    NASA Technical Reports Server (NTRS)

    Malkin, Zinovy

    2010-01-01

    The UT1 Intensive results heavily depend on the celestial pole offset (CPO) model used during data processing. Since accurate CPO values are available with a delay of two to four weeks, CPO predictions are necessarily applied to the UT1 Intensive data analysis, and errors in the predictions can influence the operational UT1 accuracy. In this paper we assess the real accuracy of CPO prediction using the actual IERS and PUL predictions made in 2007-2009. Also, results of operational processing were analyzed to investigate the actual impact of EOP prediction errors on the rapid UT1 results. It was found that the impact of CPO prediction errors is at a level of several microseconds, whereas the impact of the inaccuracy in the polar motion prediction may be about one order of magnitude larger for ultra-rapid UT1 results. The situation can be amended if the IERS Rapid solution will be updated more frequently.

  7. 78 FR 45473 - Proposed Amendment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ...-0600; Airspace Docket No. 13-ANM-18 Proposed Amendment of Class E Airspace; St. George, UT AGENCY... action proposes to amend Class E airspace at St. George Municipal Airport, St. George, UT, by removing... aircraft operations at St. George Municipal Airport, St. George, UT. DATES: Comments must be received on or...

  8. 30 CFR 585.824 - How must I conduct self-inspections?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 585.824 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and... inspection employed, (i.e., visual, magnetic particle, ultrasonic testing); and (3) A summary of the...

  9. 30 CFR 585.824 - How must I conduct self-inspections?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 585.824 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and... inspection employed, (i.e., visual, magnetic particle, ultrasonic testing); and (3) A summary of the...

  10. 30 CFR 585.824 - How must I conduct self-inspections?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 585.824 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and... inspection employed, (i.e., visual, magnetic particle, ultrasonic testing); and (3) A summary of the...

  11. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.

    PubMed

    Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.

  12. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    NASA Astrophysics Data System (ADS)

    Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.

    2015-03-01

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.

  13. Textural and biochemical properties of cobia (Rachycentron canadum) sashimi tenderised with the ultrasonic water bath.

    PubMed

    Chang, Hung-Chia; Wong, Ren-Xian

    2012-06-01

    The present study investigated the tenderisation effects ultrasound processing (UT) on farmed cobia sashimi. Age-treated cobia trunk muscles (AT) were used as the control. The pH, total volatile base nitrogen, trimethylamine nitrogen, thiobarbituric acid reactive substances, ATP catabolism components, K 1 value, and texture were evaluated. The texture of AT sashimi reached the optimal firmness range with 8.53N at day 7. However, AT samples could not be served raw after day 7 because of their poor freshness indexes, including a TVBN value of 18.53g/100g, a TMAN value of 3.25mg/100g, and a TBARS value 0.983MDAmg/100g. Moreover, the K 1 value of AT sashimi was 20.21% at day 5. UT was employed to efficiently tenderise cobia sashimi with an initial firmness of 9.70-7.82N after 90min of treatment. The results of this study indicate that UT accelerates the biochemical reaction rate, as evidenced by the increases in the TVBN, TMAN, and TBARS contents; however, these values were very low. The results of this study could provide basic information for the development of a novel ultrasonic tenderisation technique in raw seafood designed for restaurants and consumers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    PubMed Central

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r 2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced. PMID:24511286

  15. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    PubMed

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  16. Prediction of building limestone physical and mechanical properties by means of ultrasonic P-wave velocity.

    PubMed

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r(2) between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.

  17. Eddy current system for inspection of train hollow axles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  18. Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas; Vaidya, Rajendra U.; Abeyta, Adrian Anthony

    Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl 3 Pitting; Waveforms for Anhydrous FeCl 3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.

  19. Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium

    PubMed Central

    Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711

  20. Correlation Between Ultrasonic Nondestructive Inspection and Wheel Test of 34 Retreaded Tires

    DOT National Transportation Integrated Search

    1979-11-01

    The report covers a test in which 34 retread tires were inspected using reflection ultrasound nondestructive inspection, wheel tested and then subjected to failure analysis by sectioning. The results demonstrate for the first time the ability of ultr...

  1. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of intent. SUMMARY... be prepared for a proposed transportation improvement project in Salt Lake County, Utah. FOR FURTHER... 9A, Salt Lake City, UT 84118, Telephone: (801) 963-0182, E-mail: [email protected] . The Utah...

  2. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    NASA Astrophysics Data System (ADS)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR

  3. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), USDOT. ACTION: Notice of Intent. SUMMARY... be prepared for a proposed transportation improvement project in Salt Lake County, Utah. FOR FURTHER... 4700 South, Suite 9A, Salt Lake City, UT 84118, telephone (801) 963-0182, e-mail [email protected

  4. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides anmore » assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.« less

  5. 78 FR 49116 - Modification of Class E Airspace; Brigham City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ...; telephone (425) 203-4537. SUPPLEMENTARY INFORMATION: History On June 5, 2013, the FAA published in the... extending upward from 700 feet or more above the surface of the earth. * * * * * ANM UT E5 Brigham City, UT...

  6. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  7. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  8. Modelling NDE pulse-echo inspection of misorientated planar rough defects using an elastic finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.

    2015-03-31

    Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less

  9. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  10. Phased array inspection of large size forged steel parts

    NASA Astrophysics Data System (ADS)

    Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre

    2018-04-01

    High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.

  11. Apparatus for the concurrent inspection of partially completed welds

    DOEpatents

    Smartt, Herschel B.; Johnson, John A.; Larsen, Eric D.; Bitsoi, Rodney J.; Perrenoud, Ben C.; Miller, Karen S.; Pace, David P.

    2002-01-01

    An apparatus for the concurrent inspection of partially completed welds is described in which is utilized in combination with a moveable welder for forming a partially completed weld, and an ultrasonic generator mounted on a moveable welder in which is reciprocally moveable along a path of travel which is laterally disposed relative to the partially completed weld.

  12. A fast ultrasonic simulation tool based on massively parallel implementations

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain

    2014-02-01

    This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.

  13. Exploration of COTS Ultrasonic NDE Methods for ISS MMOD Impact Analysis

    NASA Technical Reports Server (NTRS)

    Violette, Daniel P.; Koshti, Ajay; Stanley, David

    2012-01-01

    The high orbital speed of the International Space Station (ISS) has created a concern about Micro-Meteorite and Orbital Debris (MMOD). The possibility exists that such an impact could cause significant damage to the ISS pressure wall, and possibly lead to a pressure leak. This paper explores the potential of using commercial off-the-shelf (COTS) Ultrasonic Non-Destructive Evaluation (NDE) techniques in order to inspect and analyze MMOD impact damage if such an event would happen to occur. Different types of intra vehicular activity (IVA) Ultrasonic NDE equipment were evaluated, including the Olympus Omniscan MX and the General Electric Phasor XS. The equipment was tested by inspecting various aluminum standards and impact damage test plates in order to determine technological limitations of the equipment as well as the ease of use and availability of features. This study allowed for the design of scanning procedures in order to evaluate the extent of damage caused by an MMOD impact. Lastly, comparisons were drawn between the different pieces of COTS software and a recommendation is made based on each device s capability.

  14. On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Spies, M.; Rieder, H.; Dillhöfer, A.

    2011-06-01

    This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.

  15. Design and demonstration of automated data analysis algorithms for ultrasonic inspection of complex composite panels with bonds

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Forsyth, David S.; Welter, John T.

    2016-02-01

    To address the data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis (ADA) algorithms have been developed to make calls on indications that satisfy the detection criteria and minimize false calls. The original design followed standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. However, certain complex panels with varying shape, ply drops and the presence of bonds can complicate this interpretation process. In this paper, enhancements to the automated data analysis algorithms are introduced to address these challenges. To estimate the thickness of the part and presence of bonds without prior information, an algorithm tracks potential backwall or bond-line signals, and evaluates a combination of spatial, amplitude, and time-of-flight metrics to identify bonded sections. Once part boundaries, thickness transitions and bonded regions are identified, feature extraction algorithms are applied to multiple sets of through-thickness and backwall C-scan images, for evaluation of both first layer through thickness and layers under bonds. ADA processing results are presented for a variety of complex test specimens with inserted materials and other test discontinuities. Lastly, enhancements to the ADA software interface are presented, which improve the software usability for final data review by the inspectors and support the certification process.

  16. Positioning challenges in reconfigurable semi-autonomous robotic NDE inspection

    NASA Astrophysics Data System (ADS)

    Pierce, S. Gareth; Dobie, Gordon; Summan, Rahul; Mackenzie, Liam; Hensman, James; Worden, Keith; Hayward, Gordon

    2010-03-01

    This paper describes work conducted into mobile, wireless, semi-autonomous NDE inspection robots developed at The University of Strathclyde as part of the UK Research Centre for Non Destructive Evaluation (RCNDE). The inspection vehicles can incorporate a number of different NDE payloads including ultrasonic, eddy current, visual and magnetic based payloads, and have been developed to try and improve NDE inspection techniques in challenging inspection areas (for example oil, gas, and nuclear structures). A significant research challenge remains in the accurate positioning and guidance of such vehicles for real inspection tasks. Employing both relative and absolute position measurements, we discuss a number of approaches to position estimation including Kalman and particle filtering. Using probabilistic approaches enables a common mathematical framework to be employed for both positioning and data fusion from different NDE sensors. In this fashion the uncertainties in both position and defect identification and classification can be dealt with using a consistent approach. A number of practical constraints and considerations to different precision positioning techniques are discussed, along with NDE applications and the potential for improved inspection capabilities by utilising the inherent reconfigurable capabilities of the inspection vehicles.

  17. Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging

    NASA Astrophysics Data System (ADS)

    Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.

    2017-12-01

    Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.

  18. Corrosion/erosion detection of boiler tubes utilizing pulsed infrared imaging

    NASA Astrophysics Data System (ADS)

    Bales, Maurice J.; Bishop, Chip C.

    1995-05-01

    This paper discusses a new technique for locating and detecting wall thickness reduction in boiler tubes caused by erosion/corrosion. Traditional means for this type of defect detection utilizes ultrasonics (UT) to perform a point by point measurement at given intervals of the tube length, which requires extensive and costly shutdown or `outage' time to complete the inspection, and has led to thin areas going undetected simply because they were located in between the sampling points. Pulsed infrared imaging (PII) can provide nearly 100% inspection of the tubes in a fraction of the time needed for UT. The IR system and heat source used in this study do not require any special access or fixed scaffolding, and can be remotely operated from a distance of up to 100 feet. This technique has been tried experimentally in a laboratory environment and verified in an actual field application. Since PII is a non-contact technique, considerable time and cost savings should be realized as well as the ability to predict failures rather than repairing them once they have occurred.

  19. Ultrasonic Evaluation and Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.

    2015-10-01

    Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection ofmore » spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.« less

  20. Techniques and software tools for estimating ultrasonic signal-to-noise ratios

    NASA Astrophysics Data System (ADS)

    Chiou, Chien-Ping; Margetan, Frank J.; McKillip, Matthew; Engle, Brady J.; Roberts, Ronald A.

    2016-02-01

    At Iowa State University's Center for Nondestructive Evaluation (ISU CNDE), the use of models to simulate ultrasonic inspections has played a key role in R&D efforts for over 30 years. To this end a series of wave propagation models, flaw response models, and microstructural backscatter models have been developed to address inspection problems of interest. One use of the combined models is the estimation of signal-to-noise ratios (S/N) in circumstances where backscatter from the microstructure (grain noise) acts to mask sonic echoes from internal defects. Such S/N models have been used in the past to address questions of inspection optimization and reliability. Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was recently initiated to improve existing research-grade software by adding graphical user interface (GUI) to become user friendly tools for the rapid estimation of S/N for ultrasonic inspections of metals. The software combines: (1) a Python-based GUI for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signal and backscattered grain noise characteristics. The latter makes use of several models including: the Multi-Gaussian Beam Model for computing sonic fields radiated by commercial transducers; the Thompson-Gray Model for the response from an internal defect; the Independent Scatterer Model for backscattered grain noise; and the Stanke-Kino Unified Model for attenuation. The initial emphasis was on reformulating the research-grade code into a suitable modular form, adding the graphical user interface and performing computations rapidly and robustly. Thus the initial inspection problem being addressed is relatively simple. A normal-incidence pulse/echo immersion inspection is simulated for a curved metal component having a non-uniform microstructure, specifically an equiaxed, untextured microstructure in which the average

  1. Ultra-Rapid dUT1 Measurements on Japan-Fennoscandian Baselines - Application to 24-hour Sessions

    NASA Technical Reports Server (NTRS)

    Matsuzaka, Shigeru; Kurihara, Shinobu; Sekido, Mamoru; Hobiger, Thomas; Haas, Rudiger; Ritakari, Jouko; Wagner, Jan

    2010-01-01

    GSI, NICT, OSO, and MRO have been engaged in Ultra-rapid dUT1 experiments since 2007 aiming at the technological possibility of real-time dUT1 results using the e-VLBI technique. We have already successfully determined dUT1 in less than four minutes after the end of an experimental Intensive session in 2008, and at present we routinely get the results within 30 minutes for regular Intensives. In 2009 we applied the technique to 24-hour sessions and continuously obtained dUT1 values by processing and analyzing Tsukuba Onsala data in near real-time. It showed a detailed behavior of UT1 variations, which could be very valuable for scientific study as well as for precise prediction of UT1-UTC.

  2. Modeling of flux, binding and substitution of urea molecules in the urea transporter dvUT.

    PubMed

    Zhang, Hai-Tian; Wang, Zhe; Yu, Tao; Sang, Jian-Ping; Zou, Xian-Wu; Zou, Xiaoqin

    2017-09-01

    Urea transporters (UTs) are transmembrane proteins that transport urea molecules across cell membranes and play a crucial role in urea excretion and water balance. Modeling the functional characteristics of UTs helps us understand how their structures accomplish the functions at the atomic level, and facilitates future therapeutic design targeting the UTs. This study was based on the crystal structure of Desulfovibrio vulgaris urea transporter (dvUT). To model the binding behavior of urea molecules in dvUT, we constructed a cooperative binding model. To model the substitution of urea by the urea analogue N,N'-dimethylurea (DMU) in dvUT, we calculated the occupation probability of DMU along the urea pore and the ratio of the occupation probabilities of DMU at the external (S ext ) and internal (S int ) binding sites, and we established the mutual substitution rule for binding and substitution of urea and DMU. Based on these calculations and modelings, together with the use of the Monte Carlo (MC) method, we further modeled the urea flux in dvUT, equilibrium urea binding to dvUT, and the substitution of urea by DMU in the dvUT. Our modeling results are in good agreement with the existing experimental functional data. Furthermore, the modelings have discovered the microscopic process and mechanisms of those functional characteristics. The methods and the results would help our future understanding of the underlying mechanisms of the diseases associated with impaired UT functions and rational drug design for the treatment of these diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Modelling welded material for ultrasonic testing using MINA: Theory and applications

    NASA Astrophysics Data System (ADS)

    Moysan, J.; Corneloup, G.; Chassignole, B.; Gueudré, C.; Ploix, M. A.

    2012-05-01

    Austenitic steel multi-pass welds exhibit a heterogeneous and anisotropic structure that causes difficulties in the ultrasonic testing. Increasing the material knowledge is a long term research field for LCND laboratory and EDF Les Renardières in France. A specific model has been developed: the MINA model (Modelling an Isotropy from Notebook of Arc welding). Welded material is described in 2D for flat position arc welding with shielded electrode (SMAW) at a functional scale for UT modeling. The grain growth is the result of three physical phenomena: epitaxial growth, influence of temperature gradient, and competition between the grains. The model uses phenomenological rules to combine these three phenomena. A limited number of parameters is used to make the modelling possible from the information written down in a notebook of arc welding. We present all these principles with 10 years' hindsight. To illustrate the model's use, we present conclusions obtained with two recent applications. In conclusion we give also insights on other research topics around this model : inverse problem using a F.E.M. code simulating the ultrasonic propagation, in position welding, 3D prospects, GTAW.

  4. Ultrasonic sensor based defect detection and characterisation of ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh; Zhang, Tonzhua; Crouch, Ian

    2014-01-01

    Ceramic tiles, used in body armour systems, are currently inspected visually offline using an X-ray technique that is both time consuming and very expensive. The aim of this research is to develop a methodology to detect, locate and classify various manufacturing defects in Reaction Sintered Silicon Carbide (RSSC) ceramic tiles, using an ultrasonic sensing technique. Defects such as free silicon, un-sintered silicon carbide material and conventional porosity are often difficult to detect using conventional X-radiography. An alternative inspection system was developed to detect defects in ceramic components using an Artificial Neural Network (ANN) based signal processing technique. The inspection methodology proposed focuses on pre-processing of signals, de-noising, wavelet decomposition, feature extraction and post-processing of the signals for classification purposes. This research contributes to developing an on-line inspection system that would be far more cost effective than present methods and, moreover, assist manufacturers in checking the location of high density areas, defects and enable real time quality control, including the implementation of accept/reject criteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  6. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    PubMed

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (P< 0.05). In the ROT group, brushing promoted a significantly greater wear of white spot lesion compared with sound enamel, and this group differed significantly from the ST1 group (P< 0.05). None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  7. 78 FR 63380 - Amendment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...-0600; Airspace Docket No. 13-ANM-18] Amendment of Class E Airspace; St. George, UT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action amends Class E airspace at St. George Municipal Airport, St. George, UT, by removing the operating hours established by a Notice to...

  8. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  9. The Detection of Burn-Through Weld Defects Using Noncontact Ultrasonics

    PubMed Central

    Abbasi, Zeynab; Yuhas, Donald; Zhang, Lu; Basantes, Alexandra-Del-Carmen; Tehrani, Niloofar Nabili; Ozevin, Didem; Indacochea, Ernesto

    2018-01-01

    Nearly all manufactured products in the metal industry involve welding. The detection and correction of defects during welding improve the product reliability and quality, and prevent unexpected failures. Nonintrusive process control is critical for avoiding these defects. This paper investigates the detection of burn-through damage using noncontact, air-coupled ultrasonics, which can be adapted to the immediate and in-situ inspection of welded samples. The burn-through leads to a larger volume of degraded weld zone, providing a resistance path for the wave to travel which results in lower velocity, energy ratio, and amplitude. Wave energy dispersion occurs due to the increase of weld burn-through resulting in higher wave attenuation. Weld sample micrographs are used to validate the ultrasonic results. PMID:29342875

  10. Improved UT1 Predictions through Low-Latency VLBI Observations

    DTIC Science & Technology

    2010-03-14

    J Geod (2010) 84:399–402 DOI 10.1007/s00190-010-0372-8 SHORT NOTE Improved UT1 predictions through low-latency VLBI observations Brian Luzum · Axel...polar motion and nutation on UT1 determinations from VLBI Intensive obser- vations. J Geod 82(12):863. doi:10.1007/s00190-008-0212-2 Ray JR, Carter WE...Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):479. doi

  11. Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.

    1975-01-01

    Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.

  12. Commercial Implementation of Ultrasonic Velocity Imaging Methods via Cooperative Agreement Between NASA Lewis Research Center and Sonix, Inc.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hendricks, J. Lynne; Whalen, Mike F.; Bodis, James R.; Martin, Katherine

    1996-01-01

    This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available.

  13. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  14. Rapid non-contact inspection of composite ailerons using air-coupled ultrasound

    NASA Astrophysics Data System (ADS)

    Panda, Rabi Sankar; Karpenko, Oleksii; Udpa, Lalita; Haq, Mahmoodul; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2016-02-01

    This paper demonstrates an approach for rapid non-contact air-coupled ultrasonic inspection of composite ailerons with complex cross-sectional profile including thickness changes, curvature and the presence of a number of stiffeners. Low-frequency plate guided ultrasonic modes are used in B-scan mode for the measurements in pitch-catch mode. Appropriate probe holder angles suitable for generating and receiving lower order guided wave modes are discussed. Different embodiments of the pitch-catch tandem positions along and across stiffener and curved regions of the test sample enable a rapid test campaign capturing the feature-rich sample profile. Techniques to distinguish special features in the stiffener are presented.

  15. [Development of a system for ultrasonic three-dimensional reconstruction of fetus].

    PubMed

    Baba, K

    1989-04-01

    We have developed a system for ultrasonic three-dimensional (3-D) fetus reconstruction using computers. Either a real-time linear array probe or a convex array probe of an ultrasonic scanner was mounted on a position sensor arm of a manual compound scanner in order to detect the position of the probe. A microcomputer was used to convert the position information to what could be recorded on a video tape as an image. This image was superimposed on the ultrasonic tomographic image simultaneously with a superimposer and recorded on a video tape. Fetuses in utero were scanned in seven cases. More than forty ultrasonic section image on the video tape were fed into a minicomputer. The shape of the fetus was displayed three-dimensionally by means of computer graphics. The computer-generated display produced a 3-D image of the fetus and showed the usefulness and accuracy of this system. Since it took only a few seconds for data collection by ultrasonic inspection, fetal movement did not adversely affect the results. Data input took about ten minutes for 40 slices, and 3-D reconstruction and display took about two minutes. The system made it possible to observe and record the 3-D image of the fetus in utero non-invasively and therefore is expected to make it much easier to obtain a 3-D picture of the fetus in utero.

  16. Measurement and Modeling of Ultrasonic Pitch/catch Grain Noise

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Gray, T. A.; Thompson, R. B.

    2008-02-01

    Ultrasonic grain noise arises from the scattering of sound waves by microstructural boundaries, and can limit the detection of weakly-reflecting internal defects in metals. In some cases of practical interest, such as focused-transducer inspections of aircraft engine components, so-called "single scattering" or "independent scatterer" models have proven to be reasonably accurate in predicting grain noise characteristics. In pulse/echo inspections it is difficult to experimentally assess the relative contributions of single scattering and multiple scattering, because both can generally contribute to the backscattered noise seen at any given observation time. For pitch/catch inspections, however, it is relatively easy to construct inspection geometries for which single-scattered noise should be insignificant, and hence any observed noise is presumably due to multiple scattering. This concept is demonstrated using pitch/catch shear-wave measurements performed on a well-characterized stainless-steel specimen. The inspection geometry allows us to control the overlap volume of the intersecting radiation fields of the two transducers. As we proceed from maximally overlapping fields to zero overlap, the single-scattering contribution to the observed grain noise is expected to decrease. Measurements are compared to the predictions of a single-scatterer model, and the relative contributions of single and multiple scattering to the observed grain noise are estimated.

  17. Production of UT Reference Blocks Containing Artificially Introduced Defects

    NASA Astrophysics Data System (ADS)

    Kaya, A. A.; Ucuncuoglu, S.; Kurkcu, N.; Kandemir, A.; Arslan, H.

    2007-03-01

    Metallic blocks of Inconel 718 and Ti-6A1-4V alloys that contain artificially introduced defects of known type, size, shape and location were prepared to serve as calibration standards in ultrasonic inspection. The synthetic defects employed to serve as reflectors were all pertinent to the specific alloy systems used, i.e. compositional defects termed as `dirty white' `white spot' and `freckle' for Inconel 718; `hard-alpha' for titanium alloy. Furthermore, as a defect type common to all three materials, spherical voids of various sizes were also incorporated into these calibration blocks. The aim of this study is to introduce defects of known type and size into metallic blocks made of superalloy Inconel 718 and titanium Ti-6A1-4V alloy. The scope of the study entailed determination of the correct parameters for manufacturing processes involved. Based on the results of the preceding phases of this study, it was decided that the method of Vacuum Hot Pressing (VHP) was to be used in this project to manufacture the metallic block containing artificial defects.

  18. Ultrasonic guided wave bondline evaluation of thick metallic structures with viscoelastic coatings and the demonstration of a novel mode sweep technique

    NASA Astrophysics Data System (ADS)

    Bostron, Jason

    Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).

  19. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searfass, Clifford T.; Malinowski, Owen M.; Van Velsor, Jason K.

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and targetmore » vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.« less

  20. NDT applications in a successful fracture critical bridge inspection program and anchor bolt inspection program

    NASA Astrophysics Data System (ADS)

    Fish, Philip E.

    1995-05-01

    In 1978, Wisconsin Department of Transportation discovered major cracking on a two-girder, fracture critical structure, just four years after it was constructed. In 1981, on the same structure, now seven years old, major cracking was discovered in the tie girder flange of the tied arch span. This is one example of the type of failures that transportation departments discovered on welded structures in the 1970's and '80's. The failures from welded details and pinned connections lead to much stricter standards for present day designs. All areas were affected: design with identification of fatigue-prone details and classification of fatigue categories; material requirements with emphasis on toughness and weldability; increased welding and fabrication standards with licensure of fabrication shops to minimum quality standards including personnel; and an increased effort on inspection of existing bridges, where critical details were overlooked or missed in the past. FHWA inspection requirements for existing structures increased through this same time period, in reaction to the failures that had occurred. Obviously, many structures in Wisconsin were not built to the standards now required, thus the importance for quality inspection techniques. The new FHWA inspection requirements now being implemented throughout the nation require an in-depth, hands-on type inspection at a specified frequency, on all fracture critical structures. Wisconsin Department of Transportation started an in-depth inspection program in 1985 and made it a full time program in 1987. This program included extensive nondestructive testing. Ultrasonic inspection has played a major role in this type of inspection. All fracture critical structures, pin and hanger systems, and pinned connections are inspected on a five-year cycle now. The program requires an experienced inspection team and a practical inspection approach. Extensive preparation is required with review of all design, construction, and

  1. Status and Prospects for Combined GPS LOD and VLBI UT1 Measurements

    NASA Astrophysics Data System (ADS)

    Senior, K.; Kouba, J.; Ray, J.

    2010-01-01

    A Kalman filter was developed to combine VLBI estimates of UT1-TAI with biased length of day (LOD) estimates from GPS. The VLBI results are the analyses of the NASA Goddard Space Flight Center group from 24-hr multi-station observing sessions several times per week and the nearly daily 1-hr single-baseline sessions. Daily GPS LOD estimates from the International GNSS Service (IGS) are combined with the VLBI UT1-TAI by modeling the natural excitation of LOD as the integral of a white noise process (i.e., as a random walk) and the UT1 variations as the integration of LOD, similar to the method described by Morabito et al. (1988). To account for GPS technique errors, which express themselves mostly as temporally correlated biases in the LOD measurements, a Gauss-Markov model has been added to assimilate the IGS data, together with a fortnightly sinusoidal term to capture errors in the IGS treatments of tidal effects. Evaluated against independent atmospheric and oceanic axial angular momentum (AAM + OAM) excitations and compared to other UT1/LOD combinations, ours performs best overall in terms of lowest RMS residual and highest correlation with (AAM + OAM) over sliding intervals down to 3 d. The IERS 05C04 and Bulletin A combinations show strong high-frequency smoothing and other problems. Until modified, the JPL SPACE series suffered in the high frequencies from not including any GPS-based LODs. We find, surprisingly, that further improvements are possible in the Kalman filter combination by selective rejection of some VLBI data. The best combined results are obtained by excluding all the 1-hr single-baseline UT1 data as well as those 24-hr UT1 measurements with formal errors greater than 5 μs (about 18% of the multi-baseline sessions). A rescaling of the VLBI formal errors, rather than rejection, was not an effective strategy. These results suggest that the UT1 errors of the 1-hr and weaker 24-hr VLBI sessions are non-Gaussian and more heterogeneous than expected

  2. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  3. Ultrasonic inspection of a glued laminated timber fabricated with defects

    Treesearch

    Robert Emerson; David Pollock; David McLean; Kenneth Fridley; Robert Ross; Roy Pellerin

    2001-01-01

    The Federal Highway Administration (FHWA) set up a validation test to compare the effectiveness of various nondestructive inspection techniques for detecting artificial defects in glulam members. The validation test consisted of a glulam beam fabricated with artificial defects known to FHWA personnel but not originally known to the scientists performing the validation...

  4. Scanning of the internal structure part with laser ultrasonic in aviation industry.

    PubMed

    Swornowski, Pawel J

    2011-01-01

    The detection of internal defects is a major production and safety issue for the newest generations of aircraft. New materials and manufacturing processes in the aircraft industry demand efficient quality assurance in manufacturing and inspection in maintenance. Advanced metallic material processes (titanium) are used or developed for the production of heavily loaded flying components (in fan blade construction). The inspection of these parts mainly made out of titanium (or CFRP) requires the determination of the percentage of bonded grain sizes around 10-30 µm. This is primarily due to the advantages of a high signal-to-noise ratio and good detection sensitivity. In this article, a diagnosing method of the blade interior by means of the laser ultrasonic is presented. Identification of small fatigue cracks presents a challenging problem during nondestructive testing of fatigue-damaged structures. Laser ultrasonic is a technique that uses two laser beams; one with a short pulse for the generation of ultrasound and another with a long pulse or continuous coupled to an optical interferometer for detection. The results of research of the internal blade structure are presented. Copyright © 2011 Wiley Periodicals, Inc.

  5. Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard

    NASA Astrophysics Data System (ADS)

    Endramawan, T.; Sifa, A.

    2018-02-01

    The purpose of this research is to know the type of discontinuity of SMAW welding result and to determine acceptance criteria based on American Society of Mechanical Engineer (ASME) standard. Material used is mild steel 98,71% Fe and 0,212% C with hardness 230 VHN with specimen diameter 20 cm and thickness 1.2 cm which is welded use SMAW butt joint with electrode for rooting LB 52U diameter 2.6 mm, current 70 Ampere and voltage 380 volt, filler used LB 5218 electrode diameter 3.2 mm with current 80 Ampere and 380 volt. The method used to analyze the welded with non destructive test dye penetrant (PT) method to see indication on the surface of the object and Ultrasonic (UT) to see indication on the sub and inner the surface of the object, the result is discontinuity recorded and analyzed and then the discontinuity is determine acceptance criteria based on the American Society of Mechanical Engineer (ASME) standards. The result show the discontinuity of porosity on the surface of the welded and inclusion on sub material used ultrasonic test, all indication on dye penetrant or ultrasonic test if there were rejected of result of welded that there must be gouging on part which rejected and then re-welding.

  6. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  7. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  8. Silicon wafer temperature monitoring using all-fiber laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Alcoz, Jorge J.; Duffer, Charles E.

    1998-03-01

    Laser-ultrasonics is a very attractive technique for in-line process control in the semiconductor industry as it is compatible with the clean room environment and offers the capability to inspect parts at high-temperature. We describe measurements of the velocity of laser-generated Lamb waves in silicon wafers as a function of temperature using fiber- optic laser delivery and all-fiber interferometric sensing. Fundamental anti-symmetric Lamb-wave modes were generated in 5 inches < 111 > silicon wafers using a Nd:YAG laser coupled to a large-core multimode fiber. Generation was also performed using an array of sources created with a diffraction grating. For detection a compact fiber-optic sensor was used which is well suited for industrial environments as it is compact, rugged, stable, and low-cost. The wafers were heated up to 1000 degrees C and the temperature correlated with ultrasonic velocity measurements.

  9. Data fusion for automated non-destructive inspection

    PubMed Central

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-01-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. PMID:25002828

  10. 77 FR 61652 - Utah Disaster # UT-00015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13326 and 13327] Utah Disaster UT-00015 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of UTAH dated 10/01/2012. Incident: Flooding. Incident Period: 09/11...

  11. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  12. Canyonlands National Park, UT, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-014 (22 June 1973) --- Desert and mountain scenery along the Utah/Colorado border are displayed in this scene of the Canyonlands National Park, UT (39.0N, 110.0W). The park occupies the near center of the image, displaying spectacular incised meanders and the bulls-eye structure of Upheaval Dome (a salt dome). The Green River and the Colorado River flow southward to join (off scene) before flowing through the Grand Canyon National Park. Photo credit: NASA

  13. SAFER vehicle inspection: a multimodal robotic sensing platform

    NASA Astrophysics Data System (ADS)

    Page, David L.; Fougerolle, Yohan; Koschan, Andreas F.; Gribok, Andrei; Abidi, Mongi A.; Gorsich, David J.; Gerhart, Grant R.

    2004-09-01

    The current threats to U.S. security both military and civilian have led to an increased interest in the development of technologies to safeguard national facilities such as military bases, federal buildings, nuclear power plants, and national laboratories. As a result, the Imaging, Robotics, and Intelligent Systems (IRIS) Laboratory at The University of Tennessee (UT) has established a research consortium, known as SAFER (Security Automation and Future Electromotive Robotics), to develop, test, and deploy sensing and imaging systems for unmanned ground vehicles (UGV). The targeted missions for these UGV systems include -- but are not limited to --under vehicle threat assessment, stand-off check-point inspections, scout surveillance, intruder detection, obstacle-breach situations, and render-safe scenarios. This paper presents a general overview of the SAFER project. Beyond this general overview, we further focus on a specific problem where we collect 3D range scans of under vehicle carriages. These scans require appropriate segmentation and representation algorithms to facilitate the vehicle inspection process. We discuss the theory for these algorithms and present results from applying them to actual vehicle scans.

  14. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  15. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  16. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  17. An Ultrasonic Wheel-Array Probe

    NASA Astrophysics Data System (ADS)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  18. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    NASA Astrophysics Data System (ADS)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  19. Diuresis and reduced urinary osmolality in rats produced by small-molecule UT-A-selective urea transport inhibitors.

    PubMed

    Esteva-Font, Cristina; Cil, Onur; Phuan, Puay-Wah; Su, Tao; Lee, Sujin; Anderson, Marc O; Verkman, A S

    2014-09-01

    Urea transport (UT) proteins of the UT-A class are expressed in epithelial cells in kidney tubules, where they are required for the formation of a concentrated urine by countercurrent multiplication. Here, using a recently developed high-throughput assay to identify UT-A inhibitors, a screen of 50,000 synthetic small molecules identified UT-A inhibitors of aryl-thiazole, γ-sultambenzosulfonamide, aminocarbonitrile butene, and 4-isoxazolamide chemical classes. Structure-activity analysis identified compounds that inhibited UT-A selectively by a noncompetitive mechanism with IC50 down to ∼1 μM. Molecular modeling identified putative inhibitor binding sites on rat UT-A. To test compound efficacy in rats, formulations and administration procedures were established to give therapeutic inhibitor concentrations in blood and urine. We found that intravenous administration of an indole thiazole or a γ-sultambenzosulfonamide at 20 mg/kg increased urine output by 3-5-fold and reduced urine osmolality by ∼2-fold compared to vehicle control rats, even under conditions of maximum antidiuresis produced by 1-deamino-8-D-arginine vasopressin (DDAVP). The diuresis was reversible and showed urea > salt excretion. The results provide proof of concept for the diuretic action of UT-A-selective inhibitors. UT-A inhibitors are first in their class salt-sparing diuretics with potential clinical indications in volume-overload edemas and high-vasopressin-associated hyponatremias. © FASEB.

  20. RadNet Air Data From St. George, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for St. George, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. Early focus development effort, ultrasonic inspection of fixed housing metal-to-adhesive bondline

    NASA Technical Reports Server (NTRS)

    Hartmann, John K.; Hoskins, Brad R.; Karner, Paul

    1991-01-01

    An ultrasonic technique was developed for the fixed housing metal-to-adhesive bondline that will support the Flight 15 time frame and subsequent motors. The technique has the capability to detect a 1.0 inch diameter unbond with a 90 percent probability of detection (POD) at a 95 percent confidence level. The technique and support equipment will perform within the working envelope dictated by a stacked motor configuration.

  2. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  3. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    DTIC Science & Technology

    2005-04-01

    the radiography gauging. In addition to the Statistical Energy Analysis (SEA) measurement a small exciter table (BK4810) and impedance head (BK 8000... Statistical Energy Analysis ; 7th Conf. on Vehicle System Dynamics, Identification and Anomalies (VSDIA2000), 6-8 Nov. 2000 Budapest, Proc. pp. 491-493... Energy Analysis (SEA) and Ultrasound Test. (UT) were concurrently applied. These methods collect accessory information on the objects under inspection

  4. Improving the reliability of automated non-destructive inspection

    NASA Astrophysics Data System (ADS)

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-02-01

    In automated NDE a region of an inspected component is often interrogated several times, be it within a single data channel, across multiple channels or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to provide a means to improve the reliability of the inspection, for example by enabling noise suppression. Specifically, such data fusion makes it possible to declare regions of the component defect-free to a very high probability whilst readily identifying indications. Registration, aligning input datasets to a common coordinate system, is a critical pre-computation before meaningful data fusion takes place. A novel scheme based on a multiobjective optimization is described. The developed data fusion framework, that is able to identify and rate possible indications in the dataset probabilistically, based on local data statistics, is outlined. The process is demonstrated on large data sets from the industrial ultrasonic testing of aerospace turbine disks, with major improvements in the probability of detection and probability of false call being obtained.

  5. 75 FR 62461 - Revocation and Establishment of Class E Airspace; St. George, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...-0660; Airspace Docket No. 10-ANM-4] Revocation and Establishment of Class E Airspace; St. George, UT... Class E airspace at St. George, UT, as the airport will be closing, eliminating the need for controlled airspace. This action will establish Class E airspace for the new St. George Municipal Airport located to...

  6. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    PubMed

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  7. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    PubMed

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  8. National Program for Inspection of Non-Federal Dams. Patch Reservoir Dam (MA 00122), Blackstone River Basin, Worcester, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1978-08-01

    ow epC, Oj f0L o 64w 6* +*’r4- {(lo.d, J*t*. M .C , f. * Stpm ". I47.,, 08%~~~ (3u~t 1 CY4 p.,4 5sf- Stc. ’ few&4. I tVC 100 ’ eX4 F:’/POCJ FIDV&4, 4Z...IESIT CiHAR1( * NATIONAL BUREAU OF S ANOAS- 1 % 3 *A N 7 o .. .. Vc " w .. BLACKSTONE RIVER BASIN LU WORCESTER, MASSACHUSETTS 3,4., 4• . PATCH...report. 19I. KEY WORDS (Coninue on reverse aide # 1 01*0064IOWuEIel 1 ~0F 6? l0eAk M111I..o) DAMS, INSPECTION, DAM SAFETY, Blackstone River Basin

  9. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  10. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  11. Scaling up the Single Transducer Thickness-Independent Ultrasonic Imaging Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.

    1998-01-01

    Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.

  12. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  13. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  14. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  15. Issue des accouchements sur utérus cicatriciel dans un hôpital universitaire au Burkina

    PubMed Central

    Dembélé, Adama; Tarnagda, Zekiba; Ouédraogo, Jean Louis; Thiombiano, Oumarou; Bambara, Moussa

    2012-01-01

    Certains auteurs ont tendance à privilégier la césarienne comme méthode de prise en charge d'une parturiente porteuse d'un utérus cicatriciel. D'autres auteurs préconisent un accouchement par voie basse quand des paramètres cliniques précis sont observés. Le but de cette étude est d'analyser la prise en charge et l'issue des accouchements sur utérus cicatriciel au Centre Hospitalier Universitaire Souro Sanou de Bobo-Dioulasso et de la comparer aux différentes approches recommandées. Nous avons menés une étude transversale dans le Département de Gynécologie d'Obstétrique et de Médecine de la Reproduction du Centre Hospitalier Universitaire Sanou Souro de Bobo Dioulasso du 1er août 2006 au 1er août 2007 et a concerné 252 parturientes ayant un utérus cicatriciel parmi 4256 accouchements déroulés pendant la même période. Les accouchements sur utérus cicatriciels ont représenté 5,92 % de l'ensemble des accouchements dans notre département. La moyenne d'âge des patientes était de 26,2 ans et la parité moyenne de 4,3. Une césarienne d'emblée a été pratiquée chez 44% des parturientes ayant un utérus cicatriciel et 56 % parmi elles ont fait l'objet d'une épreuve utérine. Sur l'ensemble des épreuves utérines, 61% des parturientes ont accouché par voie basse. La mortalité maternelle était nulle et La mortalité périnatale était relativement importante. Les conditions d'acceptabilité de la voie basse ont été les mêmes chez toutes les patientes et un check liste a été proposé pour une meilleure prise en charge. L'épreuve utérine en salle d'accouchement doit être la règle à chaque fois que cela est possible chez une parturiente porteuse d'utérus cicatriciel. L’établissement d'un check liste pour accouchement par voie basse sur utérus cicatriciel facilite les prises de décision. PMID:23133695

  16. The UT 19-channel DC SQUID based neuromagnetometer.

    PubMed

    ter Brake, H J; Flokstra, J; Jaszczuk, W; Stammis, R; van Ancum, G K; Martinez, A; Rogalla, H

    1991-01-01

    A 19-channel DC SQUID based neuromagnetometer is under construction at the University of Twente (UT). Except for the cryostat all elements of the system are developed at the UT. It comprises 19 wire-wound first-order gradiometers in a hexagonal configuration. The gradiometers are connected to planar DC SQUIDs fabricated with a Nb/Al, AlO kappa/Nb technology. For this connection we developed a method to bond a Nb wire to a Nb thin-film. The SQUIDs are placed in compartmentalised Nb modules. Further, external feedback is incorporated in order to eliminate cross talk between the gradiometers. The electronics basically consist of a phase-locked loop operating with a modulation frequency of 100 kHz. Between SQUID and preamplifier a small transformer is used to limit the noise contribution of the preamplifier. In the paper the overall system is described, and special attention is paid to the SQUID module (bonding, compartments, external-feedback setup, output transformer).

  17. Subsurface damage detection in non-ferrous systems using 3D synchronous magnetic inspection

    NASA Astrophysics Data System (ADS)

    Gray, David; Berry, David

    2018-04-01

    Prime Photonics is developing a non-destructive inspection (NDI) technology, 3-D synchronous magnetic imaging system (3-D SMIS), that uses synchronous detection of magnetic signatures resulting from ultrasonic excitation to measure both surface and subsurface flaws in conductive structures. 3-D SMIS is showing promise in a wide range of NDI/NDE uses including characterizing surface-breaking cracks in ferrous and non-ferrous materials, locating and characterizing subsurface cracks within nonferrous conductive materials (Ti 6-4 and carbon fiber composites), and characterization of subsurface residual stresses. The technology offers a non-contact, high resolution inspection technique that does not require austere environments, and can accommodate non-planar specimen geometries.

  18. Defect detection performance of the UCSD non-contact air-coupled ultrasonic guided wave inspection of rails prototype

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Sternini, Simone; Lanza di Scalea, Francesco; Fateh, Mahmood; Wilson, Robert

    2016-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. The prototype based on this technology was tested in October 2014 at the Transportation Technology Center (TTC) in Pueblo, Colorado, and again in November 2015 after incorporating changes based on lessons learned. Results from the 2015 field test are discussed in this paper.

  19. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The

  20. Evaluation of Die-Attach Bonding Using High-Frequency Ultrasonic Energy for High-Temperature Application

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo

    2014-09-01

    Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.

  1. Nondestructive inspection of bonded composite doublers for aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, D.; Moore, D.; Walkington, P.

    1996-12-31

    One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No singlemore » NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.« less

  2. Middle and long-term prediction of UT1-UTC based on combination of Gray Model and Autoregressive Integrated Moving Average

    NASA Astrophysics Data System (ADS)

    Jia, Song; Xu, Tian-he; Sun, Zhang-zhen; Li, Jia-jing

    2017-02-01

    UT1-UTC is an important part of the Earth Orientation Parameters (EOP). The high-precision predictions of UT1-UTC play a key role in practical applications of deep space exploration, spacecraft tracking and satellite navigation and positioning. In this paper, a new prediction method with combination of Gray Model (GM(1, 1)) and Autoregressive Integrated Moving Average (ARIMA) is developed. The main idea is as following. Firstly, the UT1-UTC data are preprocessed by removing the leap second and Earth's zonal harmonic tidal to get UT1R-TAI data. Periodic terms are estimated and removed by the least square to get UT2R-TAI. Then the linear terms of UT2R-TAI data are modeled by the GM(1, 1), and the residual terms are modeled by the ARIMA. Finally, the UT2R-TAI prediction can be performed based on the combined model of GM(1, 1) and ARIMA, and the UT1-UTC predictions are obtained by adding the corresponding periodic terms, leap second correction and the Earth's zonal harmonic tidal correction. The results show that the proposed model can be used to predict UT1-UTC effectively with higher middle and long-term (from 32 to 360 days) accuracy than those of LS + AR, LS + MAR and WLS + MAR.

  3. RadNet Air Data From Salt Lake City, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. An optical fiber guided ultrasonic excitation and sensing system for online monitoring of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, H.; Sohn, H.

    2012-05-01

    This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.

  5. A fractional Fourier transform analysis of the scattering of ultrasonic waves.

    PubMed

    Tant, Katherine M M; Mulholland, Anthony J; Langer, Matthias; Gachagan, Anthony

    2015-03-08

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time-frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time-frequency domain framework to assist in flaw identification and classification.

  6. A fractional Fourier transform analysis of the scattering of ultrasonic waves

    PubMed Central

    Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony

    2015-01-01

    Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967

  7. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  8. Split-spectrum processing technique for SNR enhancement of ultrasonic guided wave.

    PubMed

    Pedram, Seyed Kamran; Fateri, Sina; Gan, Lu; Haig, Alex; Thornicroft, Keith

    2018-02-01

    Ultrasonic guided wave (UGW) systems are broadly used in several branches of industry where the structural integrity is of concern. In those systems, signal interpretation can often be challenging due to the multi-modal and dispersive propagation of UGWs. This results in degradation of the signals in terms of signal-to-noise ratio (SNR) and spatial resolution. This paper employs the split-spectrum processing (SSP) technique in order to enhance the SNR and spatial resolution of UGW signals using the optimized filter bank parameters in real time scenario for pipe inspection. SSP technique has already been developed for other applications such as conventional ultrasonic testing for SNR enhancement. In this work, an investigation is provided to clarify the sensitivity of SSP performance to the filter bank parameter values for UGWs such as processing bandwidth, filter bandwidth, filter separation and a number of filters. As a result, the optimum values are estimated to significantly improve the SNR and spatial resolution of UGWs. The proposed method is synthetically and experimentally compared with conventional approaches employing different SSP recombination algorithms. The Polarity Thresholding (PT) and PT with Minimization (PTM) algorithms were found to be the best recombination algorithms. They substantially improved the SNR up to 36.9dB and 38.9dB respectively. The outcome of the work presented in this paper paves the way to enhance the reliability of UGW inspections. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Inspection and repair of steam generator tubing with a robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehm, H.H.; Foerch, H.

    1985-11-01

    During inspection and repair of steam generator tubing, radiation exposure to personnel is an unrequested endowment. To combat this intrinsic handicap, a robot has been designed for deployment in all operations inside the steam generator water chamber. This measure drastically reduces entering time and also improves inspection capabilities with regard to the accuracy and reproduction of the desired tube address. The inherent flexibility of the robot allows for performing various inspection and repair techniques: eddy-current testing of tubing; ultrasonic testing of tubing; visual examination of tube ends; profilometry measurements; tube plugging; plug removal; tube extraction; sleeving of tubes; tube endmore » repair; chemical cleaning; and thermal treatment. Plant experience has highlighted the following features of the robot: 1) short installation and demounting periods; 2) installation independent of manhole location; 3) installation possible from outside the steam generator; 4) only one relocation required to address all the tube positions; 5) fast and highly accurate positioning; 6) operational surveillance not required; and 7) drastic reduction of radiation exposure to personnel during repair work.« less

  10. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  11. Ultrasonic Array for Obstacle Detection Based on CDMA with Kasami Codes

    PubMed Central

    Diego, Cristina; Hernández, Álvaro; Jiménez, Ana; Álvarez, Fernando J.; Sanz, Rebeca; Aparicio, Joaquín

    2011-01-01

    This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques. PMID:22247675

  12. Single-Transducer, Ultrasonic Imaging Method for High-Temperature Structural Materials Eliminates the Effect of Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1998-01-01

    NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are

  13. Sources of enhanced SO2 in the tropical Western Pacific UT/LS

    NASA Astrophysics Data System (ADS)

    Rollins, A. W.; Thornberry, T. D.; Liu, S.; Ray, E. A.; Atlas, E. L.; Navarro, M. A.; Schauffler, S.; Bui, T. V.; Gao, R. S.

    2017-12-01

    Sulfur dioxide is an important precursor to aerosols in the stratosphere. Typical mixing ratios of SO2 in the tropical upper troposphere and lower stratosphere (UT/LS) are on the order of a few pptv. Convective transport of SO2 from source regions near the surface can produce local enhancements in the UT/LS of more than one order of magnitude compared to typical values. These local enhancements if sufficient in number and/or magnitude might be important for the stratospheric aerosol budget. Here we analyze three such local enhancements observed during the NASA POSIDON mission. We use back-trajectories and tracer species to demonstrate that significant SO2 in the UT/LS on different occasions originated from 1) a volcano in Papua New Guinea, 2) convection over Asia, and 3) transport of air by a typhoon. These examples that were observed on three out of ten flights indicate that significant SO2 over the Western Pacific is not uncommon, and may be an important fraction of the stratospheric aerosol budget.

  14. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  15. Quantitative diagnostics of multilayered composite structures with ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Friedersdorf, Fritz; Na, Jeong K.

    2015-03-01

    The main objective of the current work is to develop a practical nondestructive inspection methodology for a highly sound absorbing composite structural system consisting of polymeric and metallic materials. Due to constraints in geometrical shapes and thicknesses of the composite system used in this work, ultrasonic guided wave approach has been chosen. Since the polymer coatings have high damping properties, less energy is dissipated into the adjacent media in the presence of interface delaminations. Experimental measurements performed on a targeted composite system, whether it has an aluminum, carbon-fiber-composite, or steel outer casing, show promising results.

  16. Advanced Ultrasonic Measurement Methodology for Non-Invasive Interrogation and Identification of Fluids in Sealed Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-16

    The Hazardous Materials Response Unit (HMRU) and the Counterterrorism and Forensic Science Research Unit (CTFSRU), Laboratory Division, Federal Bureau of Investigation (FBI) have been mandated to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a portable, hand-held, hazardous materials acoustic inspection device (HAZAID) that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as wellmore » as container sizes and materials, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The HAZAID prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the HAZAID prototype. High bandwidth ultrasonic transducers combined with the advanced pulse compression technique allowed researchers to 1) impart large amounts of energy, 2) obtain high signal-to-noise ratios, and 3) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of this feasibility study demonstrated that the HAZAID experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.« less

  17. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, Mark; Talarek, Ted R.; Zollinger, W. Thor; Heckendorn, II, Frank M.; Park, Larry R.

    1994-01-01

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360.degree. about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms.

  18. Improved NDI techniques for aircraft inspections

    NASA Astrophysics Data System (ADS)

    Hagemaier, Donald J.; Wilson, Dwight

    1996-11-01

    Through the use of an 'integrated product team' approach and new inspection techniques incorporating the latest in imaging capabilities and automation, the costs of some man- power intensive tasks can now be drastically reduced. Also, through the use of advanced eddy current techniques, the detectable size of cracks under flush-head fasteners can be reduced while maintaining a reliable inspection. Early in this decade, the FAA Technical Center and NASA LaRC formulated an aging aircraft research plan. The unique aspect about the research is that it is driven by the aircraft manufacturers and airlines in order to center only on those areas in which help is needed and to keep it focused. Once developed, the manufacturer works with the FAA Validation Center at Sandia National Labs., the airline, and the researcher to transfer technology to the field. This article describes the evaluation and results obtained using eddy current technology to determine the minimum detectable crack size under installed flush-head fasteners. Secondly, it describes the integrated efforts of engineers at McDonnell Douglas Aerospace and Northwest Airlines in the successful application of MAUS eddy current C-scanning of the DC-10 circumferential and axial crown splices. The eddy current C-scanning greatly reduced the man-hour effort required for the existing radiographic inspection. Thirdly, it describes the use of a novel ultrasonic technique coupled to a scanner and graphics for the detection and quantification of corrosion thinning and stress corrosion cracking of the DC-9 lower wing tee cap. This successful effort resulted from a rather large integrated task team. It also results in a vast man-hour savings over the existing internal visual inspection.

  19. Antigenic and functional properties of the human red blood cell urea transporter hUT-B1.

    PubMed

    Lucien, Nicole; Sidoux-Walter, Frédéric; Roudier, Nathalie; Ripoche, Pierre; Huet, Martine; Trinh-Trang-Tan, Marie-Marcelle; Cartron, Jean-Pierre; Bailly, Pascal

    2002-09-13

    The Kidd (JK) blood group locus encodes the urea transporter hUT-B1, which is expressed on human red blood cells and other tissues. The common JK*A/JK*B blood group polymorphism is caused by a single nucleotide transition G838A changing Asp-280 to Asn-280 on the polypeptide, and transfection of erythroleukemic K562 cells with hUT-B1 cDNAs carrying either the G838 or the A838 nucleotide substitutions resulted in the isolation of stable clones that expressed the Jk(a) or Jk(b) antigens, respectively, thus providing the first direct demonstration that the hUT-B1 gene encodes the Kidd blood group antigens. In addition, immunochemical analysis of red blood cells demonstrated that hUT-B1 also exhibits ABO determinants attached to the single N-linked sugar chain at Asn-211. Moreover, immunoadsorption studies, using inside-out and right-side-out red cell membrane vesicles as competing antigen, demonstrated that the C- and N-terminal ends of hUT-B1 are oriented intracellularly. Mutagenesis and functional studies by expression in Xenopus oocytes revealed that both cysteines Cys-25 and Cys-30 (but not alone) are essential for plasma membrane addressing. Conversely, the transport function was not affected by the JK*A/JK*B polymorphism, C-terminal deletion (residues 360-389), or mutation of the extracellular N-glycosylation consensus site and remains poorly para-chloromercuribenzene sulfonate (pCMBS)-sensitive. However, transport studies by stopped flow light scattering using Jk-K562 transfectants demonstrated that the hUT-B1-mediated urea transport is pCMBS-sensitive in an erythroid context, as reported previously for the transporter of human red blood cells. Mutagenesis analysis also indicated that Cys-151 and Cys-236, at least alone, are not involved in pCMBS inhibition. Altogether, these antigenic, topologic, and functional properties might have implications into the physiology of hUT-B1 and other members of the urea transporter family.

  20. 75 FR 62627 - Environmental Impact Statement; Davis County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... County, UT AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of Intent. SUMMARY: FWHA is... cooperation with the Utah Department of Transportation (UDOT), will prepare an EIS on a proposal to address... and need and are based on agency and public input. These alternatives include: (1) Taking no action...

  1. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this

  2. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Museum of Natural History, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice... of the Utah Museum of Natural History, Salt Lake City, UT. The human remains were removed from Snow... sole responsibility of the museum, institution, or Federal agency that has control of the Native...

  3. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  4. Simulation assisted pod of a phased array ultrasonic inspection in manufacturing

    NASA Astrophysics Data System (ADS)

    Dominguez, N.; Feuillard, V.; Jenson, F.; Willaume, P.

    2012-05-01

    The concept of Probability of Detection (POD) is generally used to quantitatively assess performances and reliability of NDT operations for in-service operations related to damage tolerant designs. Application of the POD approach as a metric for manufacturing NDT assessment would also be relevant but the very expensive cost of such campaigns generally prevents us from doing so. However the increase in NDT simulation capability and maturity opens the field for POD demonstrations for manufacturing NDT with the help of simulation. This paper presents the example of an automated phased array ultrasonic testing procedure of Electron Beam Welding on rotative parts, as part of the PICASSO European project. POD is calculated by using the uncertainty propagation approach in CIVA. The peculiarity of uncertainties in automated NDT compared to in-service manual operations is discussed and raises questions on appropriate statistics to be used for this kind of data. Alternative estimation techniques like Box-Cox transform or quantile regression are proposed and evaluated.

  5. Ultrasonic Nondestructive Evaluation of PRSEUS Pressure Cube Article in Support of Load Test to Failure

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    2013-01-01

    The PRSEUS Pressure Cube Test was a joint development effort between the Boeing Company and NASA Langley Research Center, sponsored in part by the Environmentally Responsible Aviation Project and Boeing internal R&D. This Technical Memorandum presents the results of ultrasonic inspections in support of the PRSEUS Pressure Cube Test, and is a companion document with the NASA test report and a report on the acoustic emission measurements made during the test.

  6. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  7. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  8. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  9. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  10. Development of Integrated and Flexible Ultrasonic Transducers for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Ting

    2011-12-01

    High temperature (HT) integrated (IUTs) and flexible ultrasonic transducers (FUTs) for potential aerospace applications in the area of nondestructive testing (NDT) and structural health monitoring (SHM) are developed. The main merits are that IUTs can be fabricated on-site and FUTs are feasible and attractive for on-site installation. The piezoelectric composite films of these HT ultrasonic transducers (HTUTs) are made by sol-gel spray fabrication. Lead-zirconate titanate composite (PZT-c), bismuth titanate composite (BIT-c), or lithium niobate composite (LiNbO3-c) films were coated onto metallic substrates with planar and curved surfaces and investigated as IUTs. Their maximum operating temperatures were demonstrated at up to 150°C, 400°C, and 800°C, respectively. PZT-c or BIT-c films were coated onto 75 mum or 38 mum thick metallic membranes and were investigated as FUTs. They can be bonded onto flat or curved surfaces for NDT and SHM. An FUT made of BIT-c film coated onto a stainless steel membrane glued onto a steel plate was performed at up to 300°C. Besides being coated onto metallic materials, sol-gel sprayed composite films were also coated onto graphite/epoxy (Gr/Ep) plates as IUTs and 50 mum thick polyimide films as FUTs for the thickness and delamination evaluation. Using acoustic mode conversion techniques, HTUTs for shear (S) wave, surface acoustic wave (SAW), and plate acoustic wave (PAW), have been developed. HT ultrasonic probes simultaneously producing one longitudinal (L) and two orthogonally polarized S waves were demonstrated in metallic and Plexiglas probes. The potential applications of these probes were discussed. Also applying mode conversion approaches, HT symmetrical, anti-symmetrical, and shear horizontal (SH) PAWs UTs for NDT and SHM were developed. The results showed that the SH PAWs may be the best candidate for NDT and SHM purposes for plate structures. Generation and detection of guided acoustic waves for NDT were demonstrated by

  11. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems.

    PubMed

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco

    2017-01-07

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

  12. Simulated microgravity induce apoptosis and down-regulation of erythropoietin receptor of UT-7/EPO cells

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2010-11-01

    Hematopoietic progenitor cell proliferation can be alternated on either spaceflight or under simulated microgravity experiments on the ground; however, the underlying mechanism remains largely unknown. In the present study, we have demonstrated that exposure of human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO cells to conditions of simulated microgravity with a rotary culture instrument significantly inhibited the cellular proliferation rate. Adding higher concentrations of EPO to the culture medium failed to improve the inhibitory status. Cell apoptosis was detected by fluorescence staining of cell nuclei and a flow cytometry assay using Annexin V/PI double staining. This microgravity-induced apoptosis in UT-7/EPO cells could be blocked by a pancaspase inhibitor Z-VAD-FMK. Immunoblotting demonstrated that rotary culture resulted in a reduction of the expression of Bcl-xL, an anti-apoptotic protein, and the cleavage of caspase-3. Furthermore, rotary culture reduced surface localization and protein content, as well as the mRNA expression of erythropoietin receptor (EPOR) of UT-7/EPO. Take together, the findings indicated that simulated microgravity may induce mitochondrial related apoptosis of UT-7/EPO cell through depressing the EPO-EPOR pathway.

  13. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  14. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  15. Real-time monitoring of barrel thickness and barrel/screw separation using ultrasound

    NASA Astrophysics Data System (ADS)

    Jen, Cheng-Kuei; Zun, Zhigang; Kobayashi, Makiko

    2005-03-01

    Ultrasonic sensors together with a fast data acquisition system have been used to monitor the barrel thickness and barrel/screw separation during low-density polyethylene as well as high-density polyethylene extrusion in 30 mm and 50 mm twin-screw extruders. The sensors include sol-gel sprayed high temperature (HT) piezoelectric thick ceramic film ultrasonic transducers (UTs), stand-alone HTUTs and air-cooled buffer rod type sensors consisting of a room temperature UT and a non-clad or clad buffer rod to which the room temperature UT is attached. The installation and use of these sensors are non-intrusive to the extruder and non-destructive to the polymers being processed. This study has demonstrated the capability of appropriately designed ultrasonic sensors in monitoring the barrel and screw integrity at the melting, mixing and pumping zones of the extruder via barrel or flange. The merits and limitations of these sensors are discussed. The measurement speed and analysis of the sensitivity for quantitative wear measurements are also presented.

  16. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Qualification of the RSRM case membrane case-to-insulation bondline inspection using the Thiokol Corporation ultrasonic RSRM bondline inspection system

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Qualification testing of Combustion Engineering's AMDATA Intraspect/98 Data Acquisition and Imaging System that applies to the redesigned solid rocket motor (RSRM) case membrane case-to-insulation bondline inspection was performed. Testing was performed at M-67, the Thiokol Corp. RSRM Assembly Facility. The purpose of the inspection was to verify the integrity of the case membrane case-to-insulation bondline. The case membrane scanner was calibrated on the redesigned solid rocket motor case segment calibration standard, which had an intentional 1.0 by 1.0 in. case-to-insulation unbond. The case membrane scanner was then used to scan a 20 by 20 in. membrane area of the case segment. Calibration of the scanner was then rechecked on the calibration standard to ensure that the calibration settings did not change during the case membrane scan. This procedure was successfully performed five times to qualify the unbond detection capability of the case membrane scanner.

  18. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    NASA Astrophysics Data System (ADS)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special

  19. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    PubMed

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P < .05). SEM clearly revealed enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Piping inspection instrument carriage with precise and repeatable position control and location determination

    DOEpatents

    Hapstack, M.; Talarek, T.R.; Zollinger, W.T.; Heckendorn, F.M. II; Park, L.R.

    1994-02-15

    An instrument carriage for inspection of piping comprises front and rear leg assemblies for engaging the interior of the piping and supporting and centering the carriage therein, and an instrumentation arm carried by a shaft system running from the front to rear leg assemblies. The shaft system has a screw shaft for moving the arm axially and a spline gear for moving the arm azimuthally. The arm has a pair of air cylinders that raise and lower a plate in the radial direction. On the plate are probes including an eddy current probe and an ultrasonic testing probe. The ultrasonic testing probe is capable of spinning 360[degree] about its axis. The instrument carriage uses servo motors and pressurized air cylinders for precise actuation of instrument components and precise, repeatable actuation of position control mechanisms. 8 figures.

  1. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming

    2017-07-01

    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  2. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  3. Prospects for UT1 Measurements from VLBI Intensive Sessions

    NASA Technical Reports Server (NTRS)

    Boehm, Johannes; Nilsson, Tobias; Schuh, Harald

    2010-01-01

    Very Long Baseline Interferometry (VLBI) Intensives are one-hour single baseline sessions to provide Universal Time (UT1) in near real-time up to a delay of three days if a site is not e-transferring the observational data. Due to the importance of UT1 estimates for the prediction of Earth orientation parameters, as well as any kind of navigation on Earth or in space, there is not only the need to improve the timeliness of the results but also their accuracy. We identify the asymmetry of the tropospheric delays as the major error source, and we provide two strategies to improve the results, in particular of those Intensives which include the station Tsukuba in Japan with its large tropospheric variation. We find an improvement when (1) using ray-traced delays from a numerical weather model, and (2) when estimating tropospheric gradients within the analysis of Intensive sessions. The improvement is shown in terms of reduction of rms of length-of-day estimates w.r.t. those derived from Global Positioning System observations

  4. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  5. Chemical Tracers as an Indicator of Transport in the UT/LS

    NASA Astrophysics Data System (ADS)

    Moore, F. L.; Hurst, D. F.; Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Hall, B. D.

    2009-12-01

    Previous airborne studies have proven the scientific value of chemical tracers in examining transport of the Upper Troposphere and Lower Stratosphere (UT/LS). ESRL scientists operated two airborne gas chromatographs on the NCAR G-V during the NSF sponsored Stratosphere-Troposphere Analyses of Regional Transport START-08 campaign over the midlatitudes of central North America. The Unmanned aircraft systems Chromatograph for Atmospheric Trace Species (UCATS) is comprised of a two-channel electron capture detection-gas chromatograph (ECD-GC), an ozone absorption photometer, and a water vapor tunable diode laser spectrometer. It measures N2O and SF6 every 70 seconds on one EC-GC channel, and H2, CO, and CH4 every 140 seconds on the second channel. PAN and Trace Hydrohalocarbon ExpeRiment (PANTHER) is a six-channel gas chromatograph with four ECD-GC channels and two mass selective detector-gas chromatograph (MSD-GC) channels that double the sampling rate to 180 seconds by using two traps and columns. The ECD-GC channels measure N2O, SF6, CFC-11, CFC-12, halon-1211, and PAN once every 70 seconds, H2, CH4, and CO once every 140 seconds. The two MSD-GC channels measure methyl halides (CH3I, CH3Cl, CH3I), HCFCs (22, 141b, 142b), HFC-134a, sulfur gases (COS and CS2) once every 180 seconds. These data represent a diversity of atmospheric lifetimes and are useful in examining transport in UT/LS. One example is the tracer-tracer correlation plot of N2O versus SF6, which shows three distinction regions of transport, LS, tropospause transition, and UT. Tropospheric gradients for both gases are apparent in the UT region. Other correlations will be shown in this presentation. A comparison of common species measured between UCATS and PANTHER shows a better than one percent agreement between the two instruments.

  6. Nonlinear Acoustic and Ultrasonic NDT of Aeronautical Components

    NASA Astrophysics Data System (ADS)

    Van Den Abeele, Koen; Katkowski, Tomasz; Mattei, Christophe

    2006-05-01

    In response to the demand for innovative microdamage inspection systems, with high sensitivity and undoubted accuracy, we are currently investigating the use and robustness of several acoustic and ultrasonic NDT techniques based on Nonlinear Elastic Wave Spectroscopy (NEWS) for the characterization of microdamage in aeronautical components. In this report, we illustrate the results of an amplitude dependent analysis of the resonance behaviour, both in time (signal reverberation) and in frequency (sweep) domain. The technique is applied to intact and damaged samples of Carbon Fiber Reinforced Plastics (CFRP) composites after thermal loading or mechanical fatigue. The method shows a considerable gain in sensitivity and an incontestable interpretation of the results for nonlinear signatures in comparison with the linear characteristics. For highly fatigued samples, slow dynamical effects are observed.

  7. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  8. Optimization of an angle-beam ultrasonic approach for characterization of impact damage in composites

    NASA Astrophysics Data System (ADS)

    Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David

    2018-04-01

    Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.

  9. 76 FR 45177 - Establishment of Class E Airspace; Nephi, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... at Nephi UT, to accommodate aircraft using new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at Nephi Municipal Airport. This improves the safety and management of Instrument Flight Rules (IFR) operations at the airport. DATES: Effective date, 0901 UTC, October...

  10. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  11. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  12. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  13. 75 FR 58433 - Notice of Inventory Completion: Brigham Young University, Museum of Peoples and Cultures, Provo, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... University, Museum of Peoples and Cultures, Provo, UT AGENCY: National Park Service, Interior. ACTION: Notice... objects in the possession of the Brigham Young University, Museum of Peoples and Cultures, Provo, UT. The..., 25 U.S.C. 3003(d)(3). The determinations in this notice are the sole responsibility of the museum...

  14. The Use of Daily Geodetic UT1 and LOD Data in the Optimal Estimation of UT1 and LOD With the JPL Kalman Earth Orientation Filter

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Steppe, J. A.

    1995-01-01

    The Jet Propulsion Laboratory Kalman Earth Orientation Filter (KEOF) uses several of the Earth rotation data sets available to generate optimally interpolated UT1 and LOD series to support spacecraft navigation. This paper compares use of various data sets within KEOF.

  15. Development of an ultrasonic weld inspection system based on image processing and neural networks

    NASA Astrophysics Data System (ADS)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  16. NONDESTRUCTIVE EXAMINATION OF FUEL PLATES FOR THE RERTR FUEL DEVELOPMENT EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.E. Woolstenhulme; S.C. Taylor; G.A. Moore

    2012-09-01

    Nuclear fuel is the core component of reactors that is used to produce the neutron flux required for irradiation research purposes as well as commercial power generation. The development of nuclear fuels with low enrichments of uranium is a major endeavor of the RERTR program. In the development of these fuels, the RERTR program uses nondestructive examination (NDE) techniques for the purpose of determining the properties of nuclear fuel plate experiments without imparting damage or altering the fuel specimens before they are irradiated in a reactor. The vast range of properties and information about the fuel plates that can bemore » characterized using NDE makes them highly useful for quality assurance and for analyses used in modeling the behavior of the fuel while undergoing irradiation. NDE is also particularly useful for creating a control group for post-irradiation examination comparison. The two major categories of NDE discussed in this paper are X-ray radiography and ultrasonic testing (UT) inspection/evaluation. The radiographic scans are used for the characterization of fuel meat density and homogeneity as well as the determination of fuel location within the cladding. The UT scans are able to characterize indications such as voids, delaminations, inclusions, and other abnormalities in the fuel plates which are generally referred to as debonds as well as to determine the thickness of the cladding using ultrasonic acoustic microscopy methods. Additionally, the UT techniques are now also being applied to in-canal interim examination of fuel experiments undergoing irradiation and the mapping of the fuel plate surface profile to determine fuel swelling. The methods used to carry out these NDE techniques, as well as how they operate and function, are described along with a description of which properties are characterized.« less

  17. High frequency copolymer ultrasonic transducer array of size-effective elements

    NASA Astrophysics Data System (ADS)

    Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank

    2018-02-01

    A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.

  18. Application of nonlinear ultrasonics to inspection of stainless steel for dry storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Timothy James II; Anderson, Brain E.; Remillieux, Marcel C.

    This report summarized technical work conducted by LANL staff an international collaborators in support of the UFD Storage Experimentation effort. The focus of the current technical work is on the detection and imaging of a failure mechanism known as stress corrosion cracking (SCC) in stainless steel using the nonlinear ultrasonic technique known as TREND. One of the difficulties faced in previous work is in finding samples that contain realistically sized SCC. This year such samples were obtained from EPRI. Reported here are measurements made on these samples. One of the key findings is the ability to detect subsurface changes tomore » the direction in which a crack is penetrating into the sample. This result follows from last year's report that demonstrated the ability of TREND techniques to image features below the sample surface. A new collaboration was established with AGH University of Science and Technology, Krakow, Poland.« less

  19. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less

  20. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  1. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  2. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  3. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  4. Application of Linear Array Imaging Techniques to the Real-Time Inspection of Airframe Structures and Substructures

    NASA Technical Reports Server (NTRS)

    Miller, James G. (Principal Investigator)

    1996-01-01

    Current concern for ensuring, the air-worthiness of the aging commercial air fleet has prompted the establishment of broad-agency programs to develop NDT technologies that address specific aging-aircraft issues. One of the crucial technological needs that has been identified is the development of rapid, quantitative systems for depot-level inspection of bonded aluminum lap joints on aircraft. Research results for characterization of disbond and corrosion based on normal-incidence pulse-echo measurement geometries are showing promise, but are limited by the single-site nature of the measurement which requires manual or mechanical scanning to inspect an area. One approach to developing efficient systems may be to transfer specific aspects of current medical imaging technology to the NDT arena. Ultrasonic medical imaging, systems offer many desirable attributes for large scale inspection. They are portable, provide real-time imaging, and have integrated video tape recorder and printer capabilities available for documentation and post-inspection review. Furthermore, these systems are available at a relatively low cost (approximately $50,000 to $200,000) and can be optimized for use with metals with straight-forward modifications.

  5. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  6. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  7. Detection and reconstruction of solidification cracks - Laser ultrasonic measurements during the continuous casting process of aluminum

    NASA Astrophysics Data System (ADS)

    Mitter, Thomas; Grün, Hubert; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Reitinger, Bernhard; Burgholzer, Peter

    2014-05-01

    In the continuous casting process the avoidance and rapid detection of occurring solidification cracks in the slab is a crucial issue, in particular for the maintenance of a high quality level in further production processes. Due to the elevated temperatures of the slab surface a remote sensing non-destructive tool for quality inspection is required, which is also applicable for the harsh industrial environment. In this work the application of laser ultrasound (LUS) technique during the continuous casting process in industrial environment is shown. The proof of principle of the detection of the centered solidification cracks is shown by pulse-echo measurements with laser ultrasonic equipment for inline quality inspection. Preliminary examinations in the lab of different casted samples have shown the distinguishability of slabs with and without any solidification cracks. Furthermore the damping of the bulk wave has been used for the prediction of the dimension of the crack. With an adapted "synthetic aperture focusing technique" (SAFT) algorithm the image reconstruction of multiple measurements at different positions around the circumference has provided enough information for the estimation of the localization and extension of the centered solidification cracks. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.

  8. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintakunta, Satish R.; Boone, Shane D.

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Boardmore » (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.« less

  9. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    NASA Astrophysics Data System (ADS)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  10. MASTER OT J015539.85+485955.6 was detected during Fermi alert inspection 3.5h after the trigger time

    NASA Astrophysics Data System (ADS)

    Rebolo, R.; Lipunov, V.; Gorbovskoy, E.; Serra, M.; Lodieu, N.; Israelian, G.; Suarez-Andres, L.; Shumkov, V.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Vlasenko, D.; Gorbunov, I.; Vladimirov, V.; Popova, E.; Buckley, D.; Potter, S.; Kniazev, A.; Kotze, M.; Tlatov, A.; Parhomenko, A. V.; Dormidontov, D.; Senik, V.; Gress, O.; Ivanov, K.; Budnev, N. M.; Yurkov, V.; Sergienko, Yu.; Gabovich, A.; Sinyakov, E.; Krushinski, V.; Zalozhnih, I.; Shurpakov, S.

    2015-11-01

    MASTER-IAC, MASTER-Kislovodsk and MASTER-SAAO was pointed to the FERMI GBM GRB151107B (Stanbro, Meegan, GCN #18570 ) at 2015-11-07 20:25:52(/59s/58s) UT (R.Rebolo et al., GCN #18576 ). There were the prompt pointing observations because duration of the GRB was ~140s . After 5 minutes of the alert observations of the error-box center, MASTER telescopes in IAC and Kislovodsk started the inspect survey inside large Fermi error box (ra=00 42 28 dec=+48 48 58 r=4.533300) obtained by GCN socket.

  11. 75 FR 39147 - Establishment of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... E airspace at Bryce Canyon, UT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Bryce Canyon Airport. This will improve the safety and management of Instrument Flight Rules (IFR) operations at the airport. DATES...

  12. Characterization of inhomogeneous and anisotropic steel welds by ultrasonic array measurements

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Lowe, M. J. S.

    2013-01-01

    Austenitic welds are difficult to inspect non-destructively by ultrasound due to the anisotropic and inhomogeneous material in the weld, which causes spatial deviation of ultrasonic beams. A common way to describe such material is to consider it as transversely isotropic, in which the plane perpendicular to the direction of the grain growth is considered to be isotropic. Therefore a weld performance map which indicates the orientation of the grain growth can be used to describe the material properties in the weld. In our work, we have chosen a weld map based on the parameters of the MINA model which uses the information of the welding procedure and rules for crystalline growth to predict the orientations, and thus has a good physical foundation. We have compared the measured grain orientations for a realistic weld with the predictions from the model. With this model, only a small number of parameters are used to describe the weld properties, therefore enabling the possibility of a well conditioned refining process to determine the weld map from ultrasonic measurements. We have demonstrated the feasibility of doing this, using a ray tracing model, and both simulated and experimental measurements.

  13. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe

    PubMed Central

    2014-01-01

    This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223

  15. 3D Ultrasonic Non-destructive Evaluation of Spot Welds Using an Enhanced Total Focusing Method

    NASA Astrophysics Data System (ADS)

    Jasiuniene, Elena; Samaitis, Vykintas; Mazeika, Liudas; Sanderson, Ruth

    2015-02-01

    Spot welds are used to join sheets of metals in the automotive industry. When spot weld quality is evaluated using conventional ultrasonic manual pulse-echo method, the reliability of the inspection is affected by selection of the probe diameter and the positioning of the probe in the weld center. The application of a 2D matrix array is a potential solution to the aforementioned problems. The objective of this work was to develop a signal processing algorithm to reconstruct the 3D spot weld volume showing the size of the nugget and the defects in it. In order to achieve this, the conventional total focusing method was enhanced by taking into account the directivities of the single elements of the array and the divergence of the ultrasonic beam due to the propagation distance. Enhancements enabled a reduction in the background noise and uniform sensitivity at different depths to be obtained. The proposed algorithm was verified using a finite element model of ultrasonic wave propagation simulating three common spot weld conditions: a good weld, an undersized weld, and a weld containing a pore. The investigations have demonstrated that proposed method enables the determination of the size of the nugget and detection of discontinuities.

  16. 78 FR 58158 - Establishment of Class E Airspace; Wasatch, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...., long. 111[deg]07'28'' W.; to Lat. 39[deg]03'55'' N., long. 110[deg]37'49'' W.; to Lat. 38[deg]28'51'' N... Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action establishes Class E airspace..., Wasatch, UT, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Salt Lake...

  17. Proceedings: ecology and management of pinyon-juniper communities within the Interior West; 1997 September 15-18; Provo, UT

    Treesearch

    Stephen B. Monsen; Richard Stevens

    1999-01-01

    A symposium held September 15-18,1997, in Provo, UT, and Sanpete County, UT, provided information on the ecology, management, resource values, and restoration of pinyon-juniper communities in the Interior Western United States. The conference was hosted by the USDA Forest Service, Rocky Mountain Research Station and the Utah Division of Wildlife Resources in...

  18. A comparison of LOD and UT1-UTC forecasts by different combined prediction techniques

    NASA Astrophysics Data System (ADS)

    Kosek, W.; Kalarus, M.; Johnson, T. J.; Wooden, W. H.; McCarthy, D. D.; Popiński, W.

    Stochastic prediction techniques including autocovariance, autoregressive, autoregressive moving average, and neural networks were applied to the UT1-UTC and Length of Day (LOD) International Earth Rotation and Reference Systems Servive (IERS) EOPC04 time series to evaluate the capabilities of each method. All known effects such as leap seconds and solid Earth zonal tides were first removed from the observed values of UT1-UTC and LOD. Two combination procedures were applied to predict the resulting LODR time series: 1) the combination of the least-squares (LS) extrapolation with a stochastic predition method, and 2) the combination of the discrete wavelet transform (DWT) filtering and a stochastic prediction method. The results of the combination of the LS extrapolation with different stochastic prediction techniques were compared with the results of the UT1-UTC prediction method currently used by the IERS Rapid Service/Prediction Centre (RS/PC). It was found that the prediction accuracy depends on the starting prediction epochs, and for the combined forecast methods, the mean prediction errors for 1 to about 70 days in the future are of the same order as those of the method used by the IERS RS/PC.

  19. Principles and Application of Magnetic Rubber Testing for Crack Detection in High-Strength Steel Components: I. Active-Field Inspection

    DTIC Science & Technology

    2014-12-01

    Historically, MRT found its most extensive application in the inspection of critical high-strength steel components of the F-111 aircraft to...Steve Burke is Group Leader Acoustic Material Systems within Maritime Division and Task Leader for AIR 07/101 Assessment and Control of Aircraft ...Maritime Division. He has previously led research programs in advanced electromagnetic and ultrasonic NDE for aircraft applications. Geoff has BSc and BE

  20. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  1. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  2. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  3. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  4. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  5. The Satellite View of Extra-Tropical Stratosphere-Troposphere Exchange and the UT/LS

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    This talk will review satellite studies which have helped define the UT/LS and stratosphere-troposphere exchange. Satellites have provided a global perspective but have had limited temporal and spatial measurements for stratosphere-troposphere exchange (STE) studies. Nonetheless, long lived tracer measurements from satellites can be used as proxies for age-of-air can thus provide estimates of mixing and transport processes in the UT/LS. These measurements can be compared to model estimates of the mean age-of-air and trace gas fluxes providing an important model diagnostic. With the launch of EOS Aura, the potential for satellite trace gas measurements of the lower-most stratosphere and STE is significantly improved, and Aura s mission will be briefly described.

  6. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  7. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.

    PubMed

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-04-18

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

  8. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection

    PubMed Central

    Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza

    2018-01-01

    Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode. PMID:29669992

  9. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  10. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  11. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  12. Inspection of Space Station Cold Plate Using Visual and Automated Holographic Techniques

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Melis, Matthew E.; Weiland, Kenneth E.

    1999-01-01

    Real-time holography has been used to confirm the presence of non-uniformity in the construction of an International Space Station cold plate. Ultrasonic C-scans have previously shown suspected areas of cooling fin disbonds. But both neural-net processed and visual holography did not evidence any progressive permanent changes resulting from 3000 pressurization and relaxation cycles of a Dash 8 cold plate. Neural-net and visual inspections were performed of characteristic patterns generated from electronic time-average holograms of the vibrating cold plate. Normal modes of vibration were excited at very low amplitudes for this purpose, The neural nets were trained to flag very small changes in the mode shapes as encoded in the characteristic patterns. Both the whole cold plate and a zoomed region were inspected. The inspections were conducted before, after, and during pressurization and relaxation cycles of the cold plate. A water-filled cold plate was pressurized to 120 psig (827 kPa) and relaxed for each cycle. Each cycle required 5 seconds. Both the artificial neural networks and the inspectors were unable to detect changes in the mode shapes of the relaxed cold plate. The cold plate was also inspected visually using real-time holography and double-exposure holography. Regions of non-uniformity correlating with the C-scans were apparent, but the interference patterns did not change after 3000 pressurization and relaxation cycles. These tests constituted the first practical application of a neural-net inspection technique developed originally with support from the Director's Discretionary Fund at the Glenn Research Center at Lewis Field.

  13. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  14. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  15. Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai

    2017-02-01

    Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.

  16. Ultrasonic characterization of engineering performanace of oriented strandboard

    NASA Astrophysics Data System (ADS)

    Vun, Ronnie Yunheu

    Direct-contact (DC) and non-contact (NC) ultrasonic transmission (UT) methods were developed to characterize the structural performance of oriented strandboard (OSB). The UT variable velocity was shown to be sensitive to the physical impediments caused by flake interfacial boundaries and embedded voids. Both attenuation and root mean square (RMS) voltage were good indicators of the "zero void" densification level for OSB, a point of the greatest transmissivity of the stress wave energy. For both DC and NC methods, the predicted densities of the model were validated for spatial distribution over each OSB type. Based on the control limits of +/-10% of the panel average density, density prediction improved with higher resin content (RC) and higher nominal density (ND) levels. From the out-of-limits plots, the predicted in-situ densities produced a reasonably spatial coherence to the measured values. All panels made with ND 0.60 g/cm3 or greater conformed well within the limits, with declining conformity towards lower RC panels. For each composite type made of different particle sizes, the equilibrium moisture content showed a decreasing trend toward smaller particle panels. The attenuation and RMS were good indicators for moisture change and densification level for each composite type. The velocity, sensitive to physical resistance of particle sizes, increased with increasing IB strength and sample density, manifesting the positive influence of layering, resin content, and the negative effect of bark as a constituent. The results of the creep rupture tests on commercial OSB using an acoustic emission (AE) technique indicated that the cumulative AE event count parameter was highly correlated with deflection parameter and appropriately represented the accumulation of incipient damage. Under high stress levels, specimens with high moisture content (MC) sustained the worse damages having the shortest creep rupture time followed by specimens with dynamically rising MC

  17. Navy ManTech 2010 Project Book

    DTIC Science & Technology

    2010-01-01

    31 S2253 Ultrasonic Testing as an Alternative to Radiography for the Inspection of Naval Piping, Pressure Vessel and Machinery Welds...for Inspection S2253 — Ultrasonic Testing as an Alternative to Radiography for the Inspection of Naval Piping, Pressure Vessel and Machinery Welds...Ultrasonic Testing as an Alternative to Radiography for the Inspection of Naval Piping, Pressure Vessel and Machinery Welds

  18. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  19. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  20. Principles and Applications of Ultrasonic-Based Nondestructive Methods for Self-Healing in Cementitious Materials

    PubMed Central

    Ahn, Eunjong; Kim, Hyunjun; Sim, Sung-Han; Shin, Sung Woo; Shin, Myoungsu

    2017-01-01

    Recently, self-healing technologies have emerged as a promising approach to extend the service life of social infrastructure in the field of concrete construction. However, current evaluations of the self-healing technologies developed for cementitious materials are mostly limited to lab-scale experiments to inspect changes in surface crack width (by optical microscopy) and permeability. Furthermore, there is a universal lack of unified test methods to assess the effectiveness of self-healing technologies. Particularly, with respect to the self-healing of concrete applied in actual construction, nondestructive test methods are required to avoid interrupting the use of the structures under evaluation. This paper presents a review of all existing research on the principles of ultrasonic test methods and case studies pertaining to self-healing concrete. The main objective of the study is to examine the applicability and limitation of various ultrasonic test methods in assessing the self-healing performance. Finally, future directions on the development of reliable assessment methods for self-healing cementitious materials are suggested. PMID:28772640

  1. POD evaluation using simulation: A phased array UT case on a complex geometry part

    NASA Astrophysics Data System (ADS)

    Dominguez, Nicolas; Reverdy, Frederic; Jenson, Frederic

    2014-02-01

    The use of Probability of Detection (POD) for NDT performances demonstration is a key link in products lifecycle management. The POD approach is to apply the given NDT procedure on a series of known flaws to estimate the probability to detect with respect to the flaw size. A POD is relevant if and only if NDT operations are carried out within the range of variability authorized by the procedure. Such experimental campaigns require collection of large enough datasets to cover the range of variability with sufficient occurrences to build a reliable POD statistics, leading to expensive costs to get POD curves. In the last decade research activities have been led in the USA with the MAPOD group and later in Europe with the SISTAE and PICASSO projects based on the idea to use models and simulation tools to feed POD estimations. This paper proposes an example of application of POD using simulation on the inspection procedure of a complex -full 3D- geometry part using phased arrays ultrasonic testing. It illustrates the methodology and the associated tools developed in the CIVA software. The paper finally provides elements of further progress in the domain.

  2. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  3. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  4. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  5. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  6. Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris

    2017-02-01

    Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.

  7. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  9. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  10. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  11. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  12. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  13. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  14. Design and development of high frequency matrix phased-array ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Spencer, Roger L.

    2012-05-01

    High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.

  15. Non-destructive inspection approach using ultrasound to identify the material state for amorphous and semi-crystalline materials

    NASA Astrophysics Data System (ADS)

    Jost, Elliott; Jack, David; Moore, David

    2018-04-01

    At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. This work presents a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between a material's speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. The investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.

  16. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  17. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  18. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  19. 78 FR 45848 - Amendment of Class E Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Salt Lake City, UT, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) and Instrument Landing System (ILS) or Localizer (LOC) standard instrument approach procedures at Salt..., and makes a minor change to the legal description of Class E airspace extending upward from 1,200 feet...

  20. Characterizing UT/LS O3 from Global Ozonesonde Profiles Using a Clustering Technique and Meteorological Reanalyses

    NASA Astrophysics Data System (ADS)

    Stauffer, R. M.; Thompson, A. M.

    2017-12-01

    Previous studies employing the self-organizing map (SOM) clustering technique to US ozonesonde data proved valuable for quantifying UT/LS O3 variability, and linking meteorological and chemical drivers to the shape of the ozone (O3) profile from the troposphere to the lower stratosphere. Focus has thus far been limited to specific geographical regions, but SOM has demonstrated the advantages of clustering over monthly climatological O3 averages, which mask day-to-day variability in the O3 profile and the correspondence between O3 and meteorology. We expand SOM to a global set of ozonesonde profiles, mostly from WOUDC, spanning 1980-present from 30 sites to evaluate global O3 climatologies and quantify links to geophysical processes for various meteorological regimes. Four clusters of O3 mixing ratio profiles are generated for each site, which show dominant profile shapes that correspond to site latitude. Offsets among O3 profile clusters and monthly O3 climatologies are 100s of ppbv in the UT/LS at higher latitude sites with active dynamics. Examination of meteorological reanalyses reveals a clear relationship among SOM clusters and covarying meteorological fields (geopotential height, potential vorticity, and tropopause height) for most sites. Tropical SOM clusters show marked dependence on velocity potential anomalies calculated from reanalysis winds, with low UT/LS O3 amounts corresponding to enhanced upper-level divergence, and vice versa. In addition to creating SOM cluster-based O3 climatologies, these results are meant to inform future approaches to validation of chemical transport models and satellite retrievals, which often struggle in the UT/LS region.

  1. Detection and evaluation of weld defects in stainless steel using alternating current field measurement

    NASA Astrophysics Data System (ADS)

    Wei-Li, Ma, Weiping; Pan-Qi, Wen-jiao, Dou; Yuan, Xin'an; Yin, Xiaokang

    2018-04-01

    Stainless steel is widely used in nuclear power plants, such as various high-radioactive pool, tools storage and fuel transportation channel, and serves as an important barrier to stop the leakage of high-radioactive material. NonDestructive Evaluation (NDE) methods, eddy current testing (ET), ultrasonic examination (UT), penetration testing (PT) and hybrid detection method, etc., have been introduced into the inspection of a nuclear plant. In this paper, the Alternating Current Field Measurement (ACFM) was fully applied to detect and evaluate the defects in the welds of the stainless steel. Simulations were carried out on different defect types, crack lengths, and orientation to reveal the relationship between the signals and dimensions to determine whether methods could be validated by the experiment. A 3-axis ACFM probe was developed and three plates including 16 defects, which served in nuclear plant before, were examined by automatic detection equipment. The result shows that the minimum detectable crack length on the surface is 2mm and ACFM shows excellent inspection results for a weld in stainless steel and gives an encouraging prospect of broader application.

  2. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  3. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Image and Video Library

    1992-04-02

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  4. In and ex-vivo Myocardial Tissue Temperature Monitoring by Combined Infrared and Ultrasonic Thermometries

    NASA Astrophysics Data System (ADS)

    Engrand, C.; Laux, D.; Ferrandis, J.-Y.; Sinquet, J.-C.; Demaria, R.; Le Clézio, E.

    The success of cardiac surgery essentially depends on tissue preservation during intervention. Consequently a hypothermic cardio-plegia is applied in order to avoid ischemia. However, myocardial temperature is not monitored during operation. The aim of this study is then to find a relevant and simple method for myocardial global temperature estimation in real time using both ultrasounds and infra-red thermography. In order to quantify the sensitivity of ultrasonic velocity to temperature, a 2.25 MHz ultrasonic probe was used for ex-vivo tests. Pig myocards (n=25) were placed in a thermostatically-controlled water bath and measurements of the ultrasound velocity were realized from 10 to 30 ˚C. The results of this study indicate that the specificity and sensitivity of the ultrasonic echo delay induced by the modification of temperature can be exploited for in-depth thermometry. In parallel, for TIR experiments, a bolometer was used to detect the myocardium surface thermal evolution during in-vivo pig heart experiments. Hypothermic cardioplegic solutions were injected and infra-red surface imaging was performed during one hour. In the near futur, the correlation of the ultrasound and the infrared measurements should allow the real time estimation of the global temperature of the heart. The final objective being to realize in vivo measurements on human hearts, this information may have a very high importance in terms of per-operation inspection as well as decision making process during medical interventions.

  5. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.

    PubMed

    Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-07-20

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

  6. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration

    PubMed Central

    Smithard, Joel; Rajic, Nik; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-01-01

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module+ (AUSAM+). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz–5 MHz. The AUSAM+ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application. PMID:28773193

  7. Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Kosek, Wiesław

    2008-02-01

    This article presents the application of a multivariate prediction technique for predicting universal time (UT1-UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1-UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1-UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1-UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1-UTC based on LS extrapolation or on LS + AR. In particular, the UT1-UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.

  8. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts

  9. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  10. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  11. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  12. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  13. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    NASA Astrophysics Data System (ADS)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  14. Damage Assessment of Creep Tested and Thermally Aged Metallic Alloys Using Acousto-Ultrasonics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Kautz, Harold E.; Baaklini, George Y.

    2001-01-01

    In recent years emphasis has been placed on the early detection of material changes experienced in turbine powerplant components. During the scheduled overhaul of a turbine, the current techniques of examination of various hot section components aim to find flaws such as cracks, wear, and erosion, as well as excessive deformations. Thus far, these localized damage modes have been detected with satisfactory results. However, the techniques used to find these flaws provide no information on life until the flaws are actually detected. Major improvements in damage assessment, safety, as well as more accurate life prediction could be achieved if nondestructive evaluation (NDE) techniques could be utilized to sense material changes that occur prior to the localized defects mentioned. Because of elevated temperatures and excessive stresses, turbine components may experience creep behavior. As a result, it is desirable to monitor and access the current condition of such components. Research at the NASA Glenn Research Center involves developing and utilizing an NDE technique that discloses distributed material changes that occur prior to the localized damage detected by the current methods of inspection. In a recent study, creep processes in a nickel-base alloy were the life-limiting condition of interest, and the NDE technique was acousto-ultrasonics (AU). AU is an NDE technique that utilizes two ultrasonic transducers to interrogate the condition of a test specimen. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen while a receiving transducer detects the signal after it has passed through the material. The goal of the method is to correlate certain parameters of the detected waveform to characteristics of the material between the two transducers. Here, the waveform parameter of interest is the attenuation due to internal damping for which information is being garnered from the frequency domain. The parameters utilized to

  15. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  16. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  17. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  18. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  19. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  20. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.