Sample records for ultrasonic wire bonding

  1. Ultrasonic friction power during Al wire wedge-wedge bonding

    NASA Astrophysics Data System (ADS)

    Shah, A.; Gaul, H.; Schneider-Ramelow, M.; Reichl, H.; Mayer, M.; Zhou, Y.

    2009-07-01

    Al wire bonding, also called ultrasonic wedge-wedge bonding, is a microwelding process used extensively in the microelectronics industry for interconnections to integrated circuits. The bonding wire used is a 25μm diameter AlSi1 wire. A friction power model is used to derive the ultrasonic friction power during Al wire bonding. Auxiliary measurements include the current delivered to the ultrasonic transducer, the vibration amplitude of the bonding tool tip in free air, and the ultrasonic force acting on the bonding pad during the bond process. The ultrasonic force measurement is like a signature of the bond as it allows for a detailed insight into mechanisms during various phases of the process. It is measured using piezoresistive force microsensors integrated close to the Al bonding pad (Al-Al process) on a custom made test chip. A clear break-off in the force signal is observed, which is followed by a relatively constant force for a short duration. A large second harmonic content is observed, describing a nonsymmetric deviation of the signal wave form from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. For bonds made with typical process parameters, several characteristic values used in the friction power model are determined. The ultrasonic compliance of the bonding system is 2.66μm/N. A typical maximum value of the relative interfacial amplitude of ultrasonic friction is at least 222nm. The maximum interfacial friction power is at least 11.5mW, which is only about 4.8% of the total electrical power delivered to the ultrasonic generator.

  2. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  3. Semiconductor measurement technology: Microelectronic ultrasonic bonding

    NASA Technical Reports Server (NTRS)

    Harman, G. G. (Editor)

    1974-01-01

    Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.

  4. Reliability improvement of wire bonds subjected to fatigue stresses.

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  5. Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.

    PubMed

    Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John

    2010-01-01

    Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.

  6. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    NASA Astrophysics Data System (ADS)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  7. Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator

    NASA Astrophysics Data System (ADS)

    Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong

    2011-04-01

    In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.

  8. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  9. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  10. Reliability improvement of 1 mil aluminum wire bonds for semiconductors, technical performance summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The reliability of semiconductor devices as influenced by the reliability of wire bonds used in the assembly of the devices is investigated. The specific type of failure dealt with involves fracture of wire bonds as a result of repeated flexure of the wire at the heel of the bond when the devices are operated in an on-off mode. The mechanism of failure is one of induced fracture of the wire. To improve the reliability of a chosen transistor, one-mil diameter wires of aluminum with various alloy additions were studied using an accelerated fatigue testing machine. In addition, the electroprobe was used to study the metallurgy of the wires as to microstructure and kinetics of the growth of insoluble phases. Thermocompression and ultrasonic bonding techniques were also investigated.

  11. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  12. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  13. Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2001-01-01

    Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.

  14. 1 mil gold bond wire study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, themore » gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.« less

  15. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  16. Laser-bulge based ultrasonic bonding method for fabricating multilayer thermoplastic microfluidic devices

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Liu, Chong; Liu, Ziyang; Meng, Fanjian; Li, Jingmin

    2017-11-01

    Ultrasonic bonding is a commonly-used method for fabrication of thermoplastic microfluidic devices. However, due to the existence of the energy director (a convex structure to concentrate the ultrasonic energy), it is difficult to control its molten polymer flow, which may result in a small gap between the bonding interface or microchannel clogging. In this paper, we present an approach to address these issues. Firstly, the microchannels were patterned onto the PMMA sheets using hot embossing with the wire electrical discharge machined molds. Then, a small bulge, which was formed at the edge of the laser-ablated groove (LG), was generated around the microchannel using a CO2 laser ablation system. By using the bulge to concentrate the ultrasonic energy, there was no need for fabricating the complicated and customized energy director. When the bulge was melted, it was able to flow into the LG which overcame the ‘gap’ and ‘clogging’ problems. Here, two types of two-layer microfluidic devices and a five-layer micromixer were fabricated to validate its performance. Our results showed that these thermoplastic microdevices can be successfully bonded by using this method. The liquid leakage was not observed in both the capillary-driven flowing test and the pressure-driven mixing experiments. It is a potential method for bonding the thermoplastic microfluidic devices.

  17. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  18. Reliability Criteria for Thick Bonding Wire.

    PubMed

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  19. Reliability Criteria for Thick Bonding Wire

    PubMed Central

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  20. Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.

  1. Experimental study on titanium wire drawing with ultrasonic vibration.

    PubMed

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  3. Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications

    PubMed Central

    Yan, Tian-Hong; Wang, Wei; Chen, Xue-Dong; Li, Qing; Xu, Chang

    2009-01-01

    A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM). Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV) and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder. PMID:22408564

  4. Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Perey, Daniel F.; Cramer, Elliott

    2006-01-01

    We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.

  5. Transurethral ultrasonic ureterolithotripsy using a solid-wire probe.

    PubMed

    Chaussy, C; Fuchs, G; Kahn, R; Hunter, P; Goodfriend, R

    1987-05-01

    A multicenter study evaluates a new technique for transurethral ultrasonic ureterolithotripsy utilizing a solid-wire probe. The transverse vibrations of the probe cause greater stone disintegration. A small ureteroscope is used and a basket is not required. There was a 96.6 per cent success rate in 118 cases. This technique has significantly improved ultrasonic lithotripsy. It has proved to be useful for upper ureteral stones not amenable to extracorporeal shock-wave lithotripsy and lower ureteral stones including "steinstrasse."

  6. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  7. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  8. Non-bonded piezoelectric ultrasonic transducer

    DOEpatents

    Eoff, James M.

    1985-01-01

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  9. 49 CFR 234.271 - Insulated rail joints, bond wires, and track connections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulated rail joints, bond wires, and track connections. 234.271 Section 234.271 Transportation Other Regulations Relating to Transportation (Continued... joints, bond wires, and track connections. Insulated rail joints, bond wires, and track connections shall...

  10. 49 CFR 234.271 - Insulated rail joints, bond wires, and track connections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulated rail joints, bond wires, and track connections. 234.271 Section 234.271 Transportation Other Regulations Relating to Transportation (Continued... joints, bond wires, and track connections. Insulated rail joints, bond wires, and track connections shall...

  11. Comparison of three different orthodontic wires for bonded lingual retainer fabrication

    PubMed Central

    Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan

    2012-01-01

    Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930

  12. Shear bond strength of different retainer wires and bonding adhesives in consideration of the pretreatment process.

    PubMed

    Reicheneder, Claudia; Hofrichter, Bernd; Faltermeier, Andreas; Proff, Peter; Lippold, Carsten; Kirschneck, Christian

    2014-11-28

    We aimed to compare the shear bond strength (SBS) of three different retainer wires and three different bonding adhesives in consideration of the pretreatment process of enamel surface sandblasting. 400 extracted bovine incisors were divided into 10 groups of 20 paired specimens each. 10 specimens of each group were pretreated by enamel sandblasting. The retainer wires Bond-A-Braid™, GAC-Wildcat®-Twistflex and everStick®ORTHO were bonded to the teeth with the adhesives Transbond™-LR, Tetric-EvoFlow™ and Stick®FLOW and then debonded measuring the SBS. While sandblasting generally increased SBS for all tested combinations, the retainer wires bonded with Transbond™-LR showed the highest SBS both with and without prior sandblasting. Significantly lower SBS were found for Tetric-EvoFlow™ that were comparable to those for everStick®ORTHO. Pretreatment of enamel surfaces by sandblasting increased the SBS of all retainer-wires. Transbond™-LR showed the best results compared to Tetric-EvoFlow™ and everStick®ORTHO, while all combinations used provided sufficient bonding strengths for clinical use.

  13. Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2002-01-01

    Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.

  14. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive

  15. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  16. Reliability of copper wire bonds on a novel over-pad metallization

    NASA Astrophysics Data System (ADS)

    Kawashiro, Fumiyoshi; Itoh, Satoshi; Maeda, Takehiko; Hirose, Tetsuya; Yajima, Akira; Etoh, Takaki; Nishikawa, Hiroshi

    2015-05-01

    Wire bonding technology is used in most semiconductor products. Recently, high gold prices have forced semiconductor manufacturers to replace Au wires with Cu wires. Because Cu wire bonds are vulnerable to high temperature and humidity, they remain unpopular in automotive and industrial applications with narrow-bond-pad pitches and small deformed ball diameters. To avoid forming the corrosive Cu-rich intermetallic compound Cu9Al4, the use of a Ni/Pd(/Au) over-pad metallization (OPM) structure produced by electroless plating on the Al metallization has been proposed. However, certain technical issues must be overcome, such as variations in the purity and thickness of the plating. To tackle these issues, a novel OPM structure produced by physical vapor deposition is proposed and evaluated in this study.

  17. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  18. Rapid bonding enhancement by auxiliary ultrasonic actuation for the fabrication of cyclic olefin copolymer (COC) microfluidic devices

    NASA Astrophysics Data System (ADS)

    Yu, H.; Tor, S. B.; Loh, N. H.

    2014-11-01

    Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its Tg could be comparable to the strength for pure thermal compression at 5 °C higher than its Tg. It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under Tg; therefore the deformation is minor under ultrasonic

  19. Fine pitch thermosonic wire bonding: analysis of state-of-the-art manufacturing capability

    NASA Astrophysics Data System (ADS)

    Cavasin, Daniel

    1995-09-01

    A comprehensive process characterization was performed at the Motorola plastic package assembly site in Selangor, Malaysia, to document the current fine pitch wire bond process capability, using state-of-the-art equipment, in an actual manufacturing environment. Two machines, representing the latest technology from two separate manufacturers, were operated one shift per day for five days, bonding a 132 lead Plastic Quad Flat Pack. Using a test device specifically designed for fine pitch wire bonding, the bonding programs were alternated between 107 micrometers and 92 micrometers pad pitch, running each pitch for a total of 1600 units per machine. Wire, capillary type, and related materials were standardized and commercially available. A video metrology measurement system, with a demonstrated six sigma repeatability band width of 0.51 micrometers , was utilized to measure the bonded units for bond dimensions and placement. Standard Quality Assurance (QA) metrics were also performed. Results indicate that state-of-the-art thermosonic wire bonding can achieve acceptable assembly yields at these fine pad pitches.

  20. Design of advanced ultrasonic transducers for welding devices.

    PubMed

    Parrini, L

    2001-11-01

    A new high frequency ultrasonic transducer has been conceived, designed, prototyped, and tested. In the design phase, an advanced approach was used and established. The method is based on an initial design estimate obtained with finite element method (FEM) simulations. The simulated ultrasonic transducers and resonators are then built and characterized experimentally through laser interferometry and electrical resonance spectra. The comparison of simulation results with experimental data allows the parameters of FEM models to be adjusted and optimized. The achieved FEM simulations exhibit a remarkably high predictive potential and allow full control of the vibration behavior of the transducer. The new transducer is mounted on a wire bonder with a flange whose special geometry was calculated by means of FEM simulations. This flange allows the transducer to be attached on the wire bonder, not only in longitudinal nodes, but also in radial nodes of the ultrasonic field excited in the horn. This leads to a total decoupling of the transducer to the wire bonder, which has not been achieved so far. The new approach to mount ultrasonic transducers on a welding device is of major importance, not only for wire bonding, but also for all high power ultrasound applications and has been patented.

  1. Bonded ultrasonic transducer and method for making

    DOEpatents

    Dixon, Raymond D.; Roe, Lawrence H.; Migliori, Albert

    1995-01-01

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.

  2. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres

    PubMed Central

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J.; Kubba, Ammar I.; Kubba, Ali E.; Olatunbosun, Oluremi

    2016-01-01

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402

  3. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres.

    PubMed

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J; Kubba, Ammar I; Kubba, Ali E; Olatunbosun, Oluremi

    2016-06-21

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology.

  4. Ultrasonic assessment of bonding integrity in foam-based hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chen, M. Y.; Ko, R. T.; Hoppe, W. C.; Blackshire, J. L.

    2013-01-01

    Ultrasonic assessment of the bonding integrity between a composite layer and a foam substrate in foam-based hybrid composite materials was explored. The challenges of this task are: (1) the foam has air-like acoustic impedance and (2) contact surface wave generation on polymer matrix composites (PMC) is not conventional. To meet these challenges, a novel wedge made of a low velocity material was developed. The results showed that the bonding condition in these composites can be identified by monitoring the amplitude of the ultrasonic signals received.

  5. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco

    2005-10-01

    The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.

  6. Bonded ultrasonic transducer and method for making

    DOEpatents

    Dixon, R.D.; Roe, L.H.; Migliori, A.

    1995-11-14

    An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.

  7. Auto-Gopher: A Wire-Line Rotary-Hammer Ultrasonic Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bao, Xiaogi; Bar-Cohen, Yoseph; Chen, Beck

    2011-01-01

    Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper

  8. Ultrasonic Non Linearity Characterization of the Stainless Steel Wire Reinforced Aluminium Composite

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; Park, T. S.; Park, I. K.; Hyun, C. Y.

    2009-03-01

    The effectiveness of the ultrasonic nonlinearity measurement for nearly closed cracks was demonstrated for hot pressing and extrusion of stainless steel 304 short wire reinforced aluminum composite. Aluminum based composites show considerable potential in the aerospace industry and the automotive industry due to their high specific strength and low thermal expansion coefficient. The ultrasonic nonlinearity (β/β0) increased with the volume fraction of SSF and aging heat treatment because of the generation of microvoids resulted from localized SSF and matrix precipitation. This study demonstrates the potential for characterization of reinforced composite materials fabricated by the powder metallurgy technique.

  9. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  10. Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties

    DOT National Transportation Integrated Search

    2016-04-12

    Indented wires have been increasingly employed by : concrete crosstie manufacturers to improve the bond between : prestressing steel reinforcements and concrete, as bond can : affect several critical performance measures, including transfer : length,...

  11. Numerical and Experimental Characterization of a Composite Secondary Bonded Adhesive Lap Joint Using the Ultrasonics method

    NASA Astrophysics Data System (ADS)

    Kumar, M. R.; Ghosh, A.; Karuppannan, D.

    2018-05-01

    The construction of aircraft using advanced composites have become very popular during the past two decades, in which many innovative manufacturing processes, such as cocuring, cobonding, and secondary bonding processes, have been adopted. The secondary bonding process has become less popular than the other two ones because of nonavailability of process database and certification issues. In this article, an attempt is made to classify the quality of bonding using nondestructive ultrasonic inspection methods. Specimens were prepared and tested using the nondestructive ultrasonic Through Transmission (TT), Pulse Echo (PE), and air coupled guided wave techniques. It is concluded that the ultrasonic pulse echo technique is the best one for inspecting composite secondary bonded adhesive joints.

  12. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode.

    PubMed

    Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng

    2011-11-21

    Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package. © 2011 Optical Society of America

  13. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    PubMed

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  14. Nondestructive evaluation/characterization of composite materials and structures using the acousto-ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Dos Reis, H. L. M.; Vary, A.

    1988-01-01

    This paper introduces the nature and the underlying rational of the acousto-ultrasonic stress wave factor technique and some of its applications to composite materials and structures. Furthermore, two examples of successful application of the acousto-ultrasonic technique are presented in detail. In the first example, the acousto-ultrasonic technique is used to evaluate the adhesive bond strength between rubber layers and steel plates, and in the seocnd example the tehcnique is used to monitor progressive damage in wire rope.

  15. Investigation of Adhesive Bond Cure Conditions using Nonlinear Ultrasonic Methods

    NASA Technical Reports Server (NTRS)

    Berndt, Tobias P.; Green, Robert E., Jr.

    1999-01-01

    The objective of this presentation is to investigate various cure conditions of adhesive bonds using nonlinear ultrasonic methods with water coupling. Several samples were used to obtain normal incidence, oblique incidence, and wave mixing.

  16. Evaluation of Die-Attach Bonding Using High-Frequency Ultrasonic Energy for High-Temperature Application

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Bum; Aw, Jie-Li; Rhee, Min-Woo

    2014-09-01

    Room-temperature die-attach bonding using ultrasonic energy was evaluated on Cu/In and Cu/Sn-3Ag metal stacks. The In and Sn-3Ag layers have much lower melting temperatures than the base material (Cu) and can be melted through the heat generated during ultrasonic bonding, forming intermetallic compounds (IMCs). Samples were bonded using different ultrasonic powers, bonding times, and forces and subsequently aged at 300°C for 500 h. After aging, die shear testing was performed and the fracture surfaces were inspected by scanning electron microscopy. Results showed that the shear strength of Cu/In joints reached an upper plateau after 100 h of thermal aging and remained stable with aging time, whereas that of the Cu/Sn-3Ag joints decreased with increasing aging time. η-Cu7In4 and (Cu,Au)11In9 IMCs were observed at the Cu/In joint, while Cu3Sn and (Ag,Cu)3Sn IMCs were found at the Cu/Sn-3Ag joint after reliability testing. As Cu-based IMCs have high melting temperatures, they are highly suitable for use in high-temperature electronics, but can be formed at room temperature using an ultrasonic approach.

  17. Effect of ultrasonic tip and root-end filling material on bond strength.

    PubMed

    Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário

    2016-11-01

    The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.

  18. Influence of aluminum oxide film on thermocompression bonding of gold wire to evaporated aluminum film

    NASA Technical Reports Server (NTRS)

    Iwata, S.; Ishizaka, A.; Yamamoto, H.

    1984-01-01

    The influence of Al surface condition on the thermocompression bonding of Au wires to Al electrodes for integrated electric circuits was studied. Au wires were connected to Al electrodes by nail-head bonding after various Al surface treatments. Bonding was evaluated by measuring the wire pull strength and fraction of the number of failures at Au-Al bonds to the total number of failures. Dependence of the fraction on applied load was derived theoretically with a parameter named critical load to take into consideration the differences in Al surface condition. The relation also held explicately for various surface treatments. Characterization of the Al surface was carried out by electron microscopy for chemical analysis.

  19. Inspection of additive manufactured parts using laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.

    2016-02-01

    Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.

  20. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  1. Effect of ultrasonic agitation on push-out bond strength and adaptation of root-end filling materials

    PubMed Central

    2018-01-01

    Objectives This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Materials and Methods Sixty maxillary canines were divided into 6 groups (n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Results Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA (p < 0.05). US improved the push-out bond strength for all the cements (p < 0.05). Conclusions The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested. PMID:29765903

  2. Effect of ultrasonic agitation on push-out bond strength and adaptation of root-end filling materials.

    PubMed

    Alcalde, Murilo Priori; Vivan, Rodrigo Ricci; Marciano, Marina Angélica; Duque, Jussaro Alves; Fernandes, Samuel Lucas; Rosseto, Mariana Bailo; Duarte, Marco Antonio Hungaro

    2018-05-01

    This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Sixty maxillary canines were divided into 6 groups ( n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA ( p < 0.05). US improved the push-out bond strength for all the cements ( p < 0.05). The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested.

  3. Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates

    NASA Astrophysics Data System (ADS)

    Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.

    2012-05-01

    This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.

  4. Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire.

    PubMed

    Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C

    2012-05-21

    We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.

  5. The Influence of Pd-Doped Au Wire Bonding on HAZ Microstructure and Looping Profile in Micro-Electromechanical Systems (MEMS) Packaging

    NASA Astrophysics Data System (ADS)

    Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop

    2015-07-01

    Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.

  6. Finite element bond models for seven-wire prestressing strands in concrete crossties.

    DOT National Transportation Integrated Search

    2015-03-23

    Seven-wire strands are commonly used in pretensioned : concrete ties, but its bonding mechanism with concrete needs : further examination to provide a better understanding of some : concrete tie failure modes. As a key component in the finite : eleme...

  7. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers.

    PubMed

    Yonathan Sunarsa, Timotius; Aryan, Pouria; Jeon, Ikgeun; Park, Byeongjin; Liu, Peipei; Sohn, Hoon

    2017-12-08

    Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries ® and IKTS Fraunhofer ® . Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method.

  8. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers

    PubMed Central

    Yonathan Sunarsa, Timotius; Aryan, Pouria; Jeon, Ikgeun; Park, Byeongjin; Liu, Peipei

    2017-01-01

    Adhesive bonded structures have been widely used in aerospace, automobile, and marine industries. Due to the complex nature of the failure mechanisms of bonded structures, cost-effective and reliable damage detection is crucial for these industries. Most of the common damage detection methods are not adequately sensitive to the presence of weakened bonding. This paper presents an experimental and analytical method for the in-situ detection of damage in adhesive-bonded structures. The method is fully non-contact, using air-coupled ultrasonic transducers (ACT) for ultrasonic wave generation and sensing. The uniqueness of the proposed method relies on accurate detection and localization of weakened bonding in complex adhesive bonded structures. The specimens tested in this study are parts of real-world structures with critical and complex damage types, provided by Hyundai Heavy Industries® and IKTS Fraunhofer®. Various transmitter and receiver configurations, including through transmission, pitch-catch scanning, and probe holder angles, were attempted, and the obtained results were analyzed. The method examines the time-of-flight of the ultrasonic waves over a target inspection area, and the spatial variation of the time-of-flight information was examined to visualize and locate damage. The proposed method works without relying on reference data obtained from the pristine condition of the target specimen. Aluminum bonded plates and triplex adhesive layers with debonding and weakened bonding were used to examine the effectiveness of the method. PMID:29292752

  9. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    PubMed

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  10. Distributed temperature sensing using a SPIRAL configuration ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Balasubramaniam, Krishnan

    2017-02-01

    Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with different temperatures. The L(0,1) wave mode (pulse echo approach) was generated/received in a spiral waveguide at different temperatures for this work. The ultrasonic measurements were compared with commercially available thermocouples.

  11. Ultrasonic Fingerprint Sensor With Transmit Beamforming Based on a PMUT Array Bonded to CMOS Circuitry.

    PubMed

    Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A

    2017-09-01

    In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.

  12. Comparative evaluation of microleakage of lingual retainer wires bonded with three different lingual retainer composites: an in vitro study.

    PubMed

    Nimbalkar-Patil, Smita; Vaz, Anna; Patil, Pravinkumar G

    2014-11-01

    To evaluate microleakage when two types of retainer wires were bonded with two light cured and a self cured lingual retainer composites. Total 120 freshly extracted human mandibular incisor teeth were collected and separated into six subgroups of 20 teeth each. Two different wires, a 0.036 inch hard round stainless steel (HRSS) wire sandblasted at the ends and 0.0175 inch multistranded wire bonded onto the lingual surfaces of the incisors with three different types of composite resins of 3M company; Concise Orthodontic (self-cure), Transbond XT (light-cure) and Transbond LR (light-cure). Specimens were further sealed with a nail varnish, stained with 0.5% basic fuchsine for 24 hours, sectioned and examined under a stereomicroscope, and scored for microleakage for the enamel-composite and wire-composite interfaces. Statistical analysis was performed by Kruskal-Wallis and Mann-Whitney U-tests. For HRSS wire, at the enamel-composite interface, the microleakage was least with Transbond LR followed by Concise Orthodontic and greatest for Transbond XT (p<0.05). At the wire composite interface too, the microleakage was in order of Transbond LRwire, at the enamel-composite interface, the microleakage was least with Transbond LR followed by Concise Orthodontic and Transbond XT (p<0.05). At the wire composite interface too, it was seen that microleakage was the least with Transbond LR followed by Concise Orthodontic and Transbond XT. Transbond LR in combination with 0.0175 inch multistranded wire showed least microleakage amongst the groups studied.

  13. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1997-01-01

    Qualitative measurements of adhesion or binding forces can be accomplished, for example, by using the reflection coefficient of an ultrasound or by using thermal waves (Light and Kwun, 1989, Achenbach and Parikh, 1991, and Bostrom and wickham, 1991). However, a quantitative determination of binding forces is rather difficult. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasound passes through a nonlinear material. It seems that such non-linearity can be effectively used to characterize the bond strength. Several theories have been developed to model this nonlinear effect (Adler and Nagy, 1991; Achenbach and Parikh, 1991; Parikh and Achenbach, 1992; and Hirose and Kitahara, 1992; Anastasi and Roberts, 1992). Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented by Pangraz and Arnold (1994). Recently, Tang, Cheng and Achenbach (1997) made a comparison between the experimental and simulated results based on this theoretical model. A water immersion mode-converted shear wave through-transmission setup was used by Berndt and Green (1997) to analyze the nonlinear acoustic behavior of the adhesive bond. In this project, the nonlinear responses of an adhesive joint was investigated through transmission tests of ultrasonic wave and analyzed by the finite element simulations. The higher order harmonics were obtained in the tests. It is found that the amplitude of higher harmonics increases as the aging increases, especially the 3dorder harmonics. Results from the numerical simulation show that the material nonlinearity does indeed generate higher order harmonics. In particular, the elastic-perfect plastic behavior generates significant 3rd and 5th order harmonics.

  14. Process for Nondestructive Evaluation of the Quality of a Crimped Wire Connector

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cramer, Karl E. (Inventor); Perey, Daniel F. (Inventor); Williams, Keith A. (Inventor)

    2014-01-01

    A process and apparatus for collecting data for nondestructive evaluation of the quality of a crimped wire connector are provided. The process involves providing a crimping tool having an anvil and opposing jaw for crimping a terminal onto a stranded wire, moving the jaw relative to the anvil to close the distance between the jaw and the anvil and thereby compress the terminal against the wire, while transmitting ultrasonic waves that are propagated through the terminal-wire combination and received at a receiving ultrasonic transducer as the jaw is moved relative to the anvil, and detecting and recording the position of the jaw relative to the anvil as a function of time and detecting and recording the amplitude of the ultrasonic wave that is received at the receiving ultrasonic transducer as a function of time as the jaw is moved relative to the anvil.

  15. The Application of Ultrasonic Inspection to Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2010-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.

  16. Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds.

    PubMed

    Delrue, Steven; Tabatabaeipour, Morteza; Hettler, Jan; Van Den Abeele, Koen

    2016-05-01

    Friction stir welding (FSW) is a promising technology for the joining of aluminum alloys and other metallic admixtures that are hard to weld by conventional fusion welding. Although FSW generally provides better fatigue properties than traditional fusion welding methods, fatigue properties are still significantly lower than for the base material. Apart from voids, kissing bonds for instance, in the form of closed cracks propagating along the interface of the stirred and heat affected zone, are inherent features of the weld and can be considered as one of the main causes of a reduced fatigue life of FSW in comparison to the base material. The main problem with kissing bond defects in FSW, is that they currently are very difficult to detect using existing NDT methods. Besides, in most cases, the defects are not directly accessible from the exposed surface. Therefore, new techniques capable of detecting small kissing bond flaws need to be introduced. In the present paper, a novel and practical approach is introduced based on a nonlinear, single-sided, ultrasonic technique. The proposed inspection technique uses two single element transducers, with the first transducer transmitting an ultrasonic signal that focuses the ultrasonic waves at the bottom side of the sample where cracks are most likely to occur. The large amount of energy at the focus activates the kissing bond, resulting in the generation of nonlinear features in the wave propagation. These nonlinear features are then captured by the second transducer operating in pitch-catch mode, and are analyzed, using pulse inversion, to reveal the presence of a defect. The performance of the proposed nonlinear, pitch-catch technique, is first illustrated using a numerical study of an aluminum sample containing simple, vertically oriented, incipient cracks. Later, the proposed technique is also applied experimentally on a real-life friction stir welded butt joint containing a kissing bond flaw. Copyright © 2016

  17. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  18. Effect of confining pressure due to external jacket of steel plate or shape memory alloy wire on bond behavior between concrete and steel reinforcing bars.

    PubMed

    Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo

    2014-12-01

    For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.

  19. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  20. Cutting Head for Ultrasonic Lithotripsy

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D. (Inventor); Goodfriend, Roger (Inventor)

    1989-01-01

    A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup-shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduces breakage thereof.

  1. Microlens array for focusing airborne ultrasound using heated wire grid

    NASA Astrophysics Data System (ADS)

    Cai, Liang-Wu; Sánchez-Dehesa, José

    2007-10-01

    This letter reports on the focusing of airborne ultrasound by a simple grid of heated wires. The focusing is analogous to that of an array of optical microlenses. The focusing pattern is determined by the spacing between wires, and the focusing areas are tightly confined with a great "depth of field." Such acoustical microlens arrays have great potentials for shaping beams produced by ultrasonic transducers, in applications such as ultrasonic cleaning and nondestructive testing.

  2. Ultrasonically bonded value assembly

    NASA Technical Reports Server (NTRS)

    Salvinski, R. J. (Inventor)

    1975-01-01

    A valve apparatus capable of maintaining a fluid-tight seal over a relatively long period of time by releasably bonding a valve member to its seat is described. The valve member is bonded or welded to the seat and then released by the application of the same energy to the bond joint. The valve member is held in place during the bonding by a clamping device. An appropriate force device can activate the opening and closing of the valve member. Various combinations of material for the valve member and valve seat can be utilized to provide an adequate sealing bond. Aluminum oxide, stainless steel, inconel, tungsten carbide as hard materials and copper, aluminum, titanium, silver, and gold as soft materials are suggested.

  3. 3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds

    NASA Technical Reports Server (NTRS)

    Leckey, C.; Hinders, M.

    2011-01-01

    Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds.

  4. Cutting head for ultrasonic lithotripsy

    NASA Technical Reports Server (NTRS)

    Anguluo, E. D.; Goodfriend, R. (Inventor)

    1985-01-01

    A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument is described. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduce breakage thereof.

  5. Bond between smooth prestressing wires and concrete : finite element model and transfer length analysis for pretensioned concrete crossties.

    DOT National Transportation Integrated Search

    2014-04-03

    Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...

  6. Ultrasonic and micromechanical study of damage and elastic properties of SiC/RBSN ceramic composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.

    1992-01-01

    Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.

  7. Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.

    PubMed

    Rayathulhan, Ruzaina; Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2017-03-01

    ZnO nanorods were directly grown on four different wires (silver, nickel, copper, and tungsten) using sonochemical method. Zinc nitrate hexahydrate and hexamethylenetetramine (HMT) were used as precursors. Influence of growth parameters such as precursors' concentration and ultrasonic power on the grown nanorods were determined. The results demonstrated that the precursor concentration affected the growth structure and density of the nanorods. The morphology, distribution, and orientation of nanorods changed as the ultrasonic power changed. Nucleation of ZnO nanorods on the wire occurred at lower ultrasonic power and when the power increased, the formation and growth of ZnO nanorods on the wires were initiated. The best morphology, size, distribution, and orientation of the nanorods were observed on the Ag wire. The presence of single crystal nanorod with hexagonal shaped was obtained. This shape indicates that the ZnO nanorods corresponded to the hexagonal wurtzite structure with growth preferential towards the (002) direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of prior sandblasting of the wire on the shear bond strength of two different types of lingual retainers.

    PubMed

    Kilinç, Delal Dara; Sayar, Gülşilay

    2018-04-07

    The aim of this study was to evaluate the effect of total surface sandblasting on the shear bond strength of two different retainer wires. The null hypothesis was that there is no difference in the bond strength of the two types of lingual retainer wires when they are sandblasted. One hundred and sixty human premolar teeth were equally divided into four groups (n=40). A pair of teeth was embedded in self-curing acrylic resin and polished. Retainer wires were applied on the etched and rinsed surfaces of the teeth. Four retainers were used: group 1: braided retainer (0.010×0.028″, Ortho Technology); group 2: sandblasted braided retainer (0.010×0.028″, Ortho Technology); group 3: coaxial retainer (0.0215″ Coaxial, 3M) and group 4: sandblasted coaxial retainer (0.0215″ Coaxial, 3M). The specimens were tested using a universal test machine in shear mode with a crosshead speed of one mm/min. One-way analysis of variance (Anova) was used to determine the significant differences among the groups. There was no significant difference (P=0.117) among the groups according to this test. The null hypothesis was accepted. There was no statistically significant difference among the shear bond strength values of the four groups. Copyright © 2018 CEO. Published by Elsevier Masson SAS. All rights reserved.

  9. Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength

    NASA Technical Reports Server (NTRS)

    Roberts, Mark J. (Compiler)

    1999-01-01

    Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.

  10. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  11. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  12. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  13. Fabricating capacitive micromachined ultrasonic transducers with a novel silicon-nitride-based wafer bonding process.

    PubMed

    Logan, Andrew; Yeow, John T W

    2009-05-01

    We report the fabrication and experimental testing of 1-D 23-element capacitive micromachined ultrasonic transducer (CMUT) arrays that have been fabricated using a novel wafer-bonding process whereby the membrane and the insulation layer are both silicon nitride. The membrane and cell cavities are deposited and patterned on separate wafers and fusion-bonded in a vacuum environment to create CMUT cells. A user-grown silicon-nitride membrane layer avoids the need for expensive silicon-on-insulator (SOI) wafers, reduces parasitic capacitance, and reduces dielectric charging. It allows more freedom in selecting the membrane thickness while also providing the benefits of wafer-bonding fabrication such as excellent fill factor, ease of vacuum sealing, and a simplified fabrication process when compared with the more standard sacrificial release process. The devices fabricated have a cell diameter of 22 microm, a membrane thickness of 400 nm, a gap depth of 150 nm, and an insulation thickness of 250 nm. The resonant frequency of the CMUT in air is 17 MHz and has an attenuation compensated center frequency of approximately 9 MHz in immersion with a -6 dB fractional bandwidth of 123%. This paper presents the fabrication process and some characterization results.

  14. Porous coatings from wire mesh for bone implants

    DOEpatents

    Sump, Kenneth R.

    1986-01-01

    A method of coating areas of bone implant elements and the resulting implant having a porous coating are described. Preselected surface areas are covered by a preform made from continuous woven lengths of wire. The preform is compressed and heated to assure that diffusion bonding occurs between the wire surfaces and between the surface boundaries of the implant element and the wire surfaces in contact with it. Porosity is achieved by control of the resulting voids between the bonded wire portions.

  15. Evaluating Thermally Damaged Polyimide Insulated Wiring (MIL-W-81381) with Ultrasound

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2002-01-01

    A series of experiments to investigate the use of ultrasound for measuring wire insulation have been conducted. Initial laboratory tests were performed on MIL-W-81381/7,/12, and /21 aviation wire, a wire that has polyimide (Kapton Registered Trademark) layers for insulation. Samples of this wiring were exposed to 370C temperatures for different periods of time to induce a range of thermal damage. For each exposure, 12 samples of each gauge (12, 16, and 20 gauges) were processed. The velocity of the lowest order axisymmetric ultrasonic guided mode, a mode that is sensitive to the geometry and stiffness of the wire conductor and insulation, was measured. The phase velocity for the 20-gauge MIL-W-81381/7 wire had a baseline value of 3023 +/- 78 m/s. After exposure to the high temperatures, the wire's phase velocity rapidly increased, and reached an asymptotic value of 3598 +/- 20 m/s after 100 hours exposure. Similar behavior was measured for the 16 gauge MIL-W-81381/21 wire and 12 gauge MIL-W-81381/12 wire which had baseline values of 3225 +/- 22 m/s and 3403 +/- 33 m/s respectively, and reached asymptotic values of 3668 +/- 19 m/s, and 3679 +/- 42 m/s respectively. These measured velocity changes represent changes of 19, 14, and 8 percent respectively for the 20, 16, and 12 gauge wires. Finally, some results for a wire with an ethylene tetrafluoroethylene insulation are reported. Qualitatively similar behaviors are noted ultrasonically.

  16. Design and demonstration of automated data analysis algorithms for ultrasonic inspection of complex composite panels with bonds

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Forsyth, David S.; Welter, John T.

    2016-02-01

    To address the data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis (ADA) algorithms have been developed to make calls on indications that satisfy the detection criteria and minimize false calls. The original design followed standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. However, certain complex panels with varying shape, ply drops and the presence of bonds can complicate this interpretation process. In this paper, enhancements to the automated data analysis algorithms are introduced to address these challenges. To estimate the thickness of the part and presence of bonds without prior information, an algorithm tracks potential backwall or bond-line signals, and evaluates a combination of spatial, amplitude, and time-of-flight metrics to identify bonded sections. Once part boundaries, thickness transitions and bonded regions are identified, feature extraction algorithms are applied to multiple sets of through-thickness and backwall C-scan images, for evaluation of both first layer through thickness and layers under bonds. ADA processing results are presented for a variety of complex test specimens with inserted materials and other test discontinuities. Lastly, enhancements to the ADA software interface are presented, which improve the software usability for final data review by the inspectors and support the certification process.

  17. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  18. Anodic bonding using SOI wafer for fabrication of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Bellaredj, M.; Bourbon, G.; Walter, V.; Le Moal, P.; Berthillier, M.

    2014-02-01

    In medical ultrasound imaging, mostly piezoelectric crystals are used as ultrasonic transducers. Capacitive micromachined ultrasonic transducers (CMUTs) introduced around 1994 have been shown to be a good alternative to conventional piezoelectric transducers in various aspects, such as sensitivity, transduction efficiency or bandwidth. This paper focuses on a fabrication process for CMUTs using anodic bonding of a silicon on insulator wafer on a glass wafer. The processing steps are described leading to a good control of the mechanical response of the membrane. This technology makes possible the fabrication of large membranes and can extend the frequency range of CMUTs to lower frequencies of operation. Silicon membranes having radii of 50, 70, 100 and 150 µm and a 1.5 µm thickness are fabricated and electromechanically characterized using an auto-balanced bridge impedance analyzer. Resonant frequencies from 0.6 to 2.3 MHz and an electromechanical coupling coefficient around 55% are reported. The effects of residual stress in the membranes and uncontrolled clamping conditions are clearly responsible for the discrepancies between experimental and theoretical values of the first resonance frequency. The residual stress in the membranes is determined to be between 90 and 110 MPa. The actual boundary conditions are between the clamped condition and the simply supported condition and can be modeled with a torsional stiffness of 2.10-7 Nm rad-1 in the numerical model.

  19. Design of highly uniform spool and bar horns for ultrasonic bonding.

    PubMed

    Kim, Sun-Rak; Lee, Jae Hak; Yoo, Choong D; Song, Jun-Yeob; Lee, Seung S

    2011-10-01

    Although the groove and slot have been widely utilized for horn design to achieve high uniformity, their effects on uniformity have not been analyzed thoroughly. In this work, spool and bar horns for ultrasonic bonding are designed in a systematic way using the design of experiments (DOE) to achieve high amplitude uniformity of the horn. Three-dimensional modal analysis is conducted to predict the natural frequency, amplitude, and stress of the horns, and the DOE is employed to analyze the effects of the groove and slot on the amplitude uniformity. The design equations are formulated to determine the optimum dimensions of the groove and slot, and the uniformity is found to be influenced most significantly by the groove depth and slot width. Displacements of the spool and bar horns were measured using a laser Doppler vibrometer (LDV), and the predicted results are in good agreement with the experimental data.

  20. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  1. Portable wireless ultrasonic systems for remote inspection

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2015-03-01

    The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.

  2. A short review on thermosonic flip chip bonding

    NASA Astrophysics Data System (ADS)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Shahimin, Mukhzeer Mohamad; Retnasamy, Vithyacharan

    2017-09-01

    This review is to study the evolution and key findings, critical technical challenges, solutions and bonding equipment of thermosonic flip chip bonding. Based on the review done, it was found that ultrasonic power, bonding time and force are the three main critical parameters need to be optimized in order to achieve sound and reliable bonding between the die and substrate. A close monitoring of the ultrasonic power helped to prevent over bonding phenomena on flexible substrate. Gold stud bumping is commonly used in thermosonic bonding compared to solder due to its better reliability obtained in the LED and optoelectronic packages. The review comprised short details on the available thermosonic bonding equipment in the semiconductor industry as well.

  3. Embedded spacecraft thermal control using ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Clements, Jared W.

    Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.

  4. A High-Frequency Linear Ultrasonic Array Utilizing an Interdigitally Bonded 2-2 Piezo-Composite

    PubMed Central

    Cannata, Jonathan M.; Williams, Jay A.; Zhang, Lequan; Hu, Chang-Hong; Shung, K. Kirk

    2011-01-01

    This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2–2 IB composites outperformed 1–3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2–2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-μm-wide pillars separated by 6-μm-wide kerfs. The array had a 50 μm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and −6-dB band-width was 61%. The measured single-element transmit −6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The −6-dB lateral and axial resolutions were estimated to be 125 and 68 μm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 μm in diameter. PMID:21989884

  5. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  6. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative

  7. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  8. Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers.

    PubMed

    Liu, R; Harasiewicz, K A; Foster, F S

    2001-01-01

    Interdigital pair bonding is a novel methodology that enables the fabrication of high frequency piezoelectric composites with high volume fractions of the ceramic phase. This enhancement in ceramic volume fraction significantly reduces the dimensional scale of the epoxy phase and increases the related effective physical parameters of the composite, such as dielectric constant and the longitudinal sound velocity, which are major concerns in the development of high frequency piezoelectric composites. In this paper, a method called interdigital pair bonding (IPB) is used to prepare 1-3 piezoelectric composite with a pitch of 40 microns, a kerf of 4 microns, and a ceramic volume fraction of 81%. The composites prepared in this fashion exhibited a very pure thickness-mode resonance up to a frequency of 50 MHz. Unlike the 2-2 piezoelectric composites with the same ceramic and epoxy scales developed earlier, the anticipated lateral modes between 50 to 100 MHz were not observed in the current 1-3 composites. The mechanisms for the elimination of the lateral modes at high frequency are discussed. The effective electromechanical coupling coefficient of the composite was 0.72 at a frequency of 50 MHz. The composites showed a high longitudinal sound velocity of 4300 m/s and a high clamped dielectric constant of 1111 epsilon 0, which will benefit the development of high frequency ultrasonic transducers and especially high frequency transducer arrays for medical imaging.

  9. Ultrasonic Inspection to Quantify Failure Pathologies of Crimped Electrical Connections

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2014-01-01

    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.

  10. Ultrasonic inspection to quantify failure pathologies of crimped electrical connections

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2015-03-01

    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed.

  11. Development and Status of Cu Ball/Wedge Bonding in 2012

    NASA Astrophysics Data System (ADS)

    Schneider-Ramelow, Martin; Geißler, Ute; Schmitz, Stefan; Grübl, Wolfgang; Schuch, Bernhard

    2013-03-01

    Starting in the 1980s and continuing right into the last decade, a great deal of research has been published on Cu ball/wedge (Cu B/W) wire bonding. Despite this, the technology has not been established in industrial manufacturing to any meaningful extent. Only spikes in the price of Au, improvements in equipment and techniques, and better understanding of the Cu wire-bonding process have seen Cu B/W bonding become more widespread—initially primarily for consumer goods manufacturing. Cu wire bonding is now expected to soon be used for at least 20% of all ball/wedge-bonded components, and its utilization in more sophisticated applications is around the corner. In light of this progress, the present paper comprehensively reviews the existing literature on this topic and discusses wire-bonding materials, equipment, and tools in the ongoing development of Cu B/W bonding technology. Key bonding techniques, such as flame-off, how to prevent damage to the chip (cratering), and bond formation on various common chip and substrate finishes are also described. Furthermore, apart from discussing quality assessment of Cu wire bonds in the initial state, the paper also provides an overview of Cu bonding reliability, in particular regarding Cu balls on Al metalization at high temperatures and in humidity (including under the influence of halide ions).

  12. Lingual straight wire method.

    PubMed

    Takemoto, Kyoto; Scuzzo, Giuseppe; Lombardo, L U C A; Takemoto, Y U I

    2009-12-01

    The mushroom arch-wire is mainly used in lingual orthodontic treatment but the complicated wire bending it requires affects both the treatment results and the time spent at the chair. The author proposes a new lingual straight wire method (LSW) in order to facilitate arch coordination and simplify the mechanics. The attention paid to the set-up model and bracket positioning and bonding plus the use of the new LSW method will also improve patient comfort. Copyright 2009 Collège Européen d'Orthodontie. Published by Elsevier Masson SAS.. All rights reserved.

  13. Aircraft components structural health monitoring using flexible ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.

    2011-04-01

    A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.

  14. Carbon nanotube wires and cables: Near-term applications and future perspectives

    NASA Astrophysics Data System (ADS)

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.

  15. Carbon nanotube wires and cables: near-term applications and future perspectives.

    PubMed

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    require development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.

  16. Effect of Pd Surface Roughness on the Bonding Process and High Temperature Reliability of Au Ball Bonds

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Kim, H. J.; McCracken, M.; Viswanathan, G.; Pon, F.; Mayer, M.; Zhou, Y. N.

    2011-06-01

    A 0.3- μm-thick electrolytic Pd layer was plated on 1 μm of electroless Ni on 1 mm-thick polished and roughened Cu substrates with roughness values ( R a) of 0.08 μm and 0.5 μm, respectively. The rough substrates were produced with sand-blasting. Au wire bonding on the Ni/Pd surface was optimized, and the electrical reliability was investigated under a high temperature storage test (HTST) during 800 h at 250°C by measuring the ball bond contact resistance, R c. The average value of R c of optimized ball bonds on the rough substrate was 1.96 mΩ which was about 40.0% higher than that on the smooth substrate. The initial bondability increased for the rougher surface, so that only half of the original ultrasonic level was required, but the reliability was not affected by surface roughness. For both substrate types, HTST caused bond healing, reducing the average R c by about 21% and 27%, respectively. Au diffusion into the Pd layer was observed in scanning transmission electron microscopy/ energy dispersive spectroscopy (STEM-EDS) line-scan analysis after HTST. It is considered that diffusion of Au or interdiffusion between Au and Pd can provide chemically strong bonding during HTST. This is supported by the R c decrease measured as the aging time increased. Cu migration was indicated in the STEM-EDS analysis, but its effect on reliability can be ignored. Au and Pd tend to form a complete solid solution at the interface and can provide reliable interconnection for high temperature (250°C) applications.

  17. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets.

    PubMed

    Scribante, Andrea; Sfondrini, Maria Francesca; Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola

    2017-01-01

    Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores.

  18. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets

    PubMed Central

    Collesano, Vittorio; Tovt, Gaia; Bernardinelli, Luisa; Gandini, Paola

    2017-01-01

    Dental hygienists are often faced with patients wearing lingual orthodontic therapy, as ultrasonic instrumentation (UI) is crucial for oral health. As the application of external forces can lead to premature bonding failure, the aim of this study was to evaluate the effect of UI on shear bond strength (SBS) and on adhesive remnant index (ARI) of different lingual orthodontic brackets. 200 bovine incisors were divided into 10 groups. Four different lingual (STB, Ormco; TTR, Rocky Mountain Orthodontics; Idea, Leone; 2D, Forestadent) and vestibular control (Victory, 3M) brackets were bonded. UI was performed in half of specimens, whereas the other half did not receive any treatment. All groups were tested with a universal testing machine. SBS and ARI values were recorded. Statistical analysis was performed (significance: P = 0.05). TTR, Idea, and 2D lingual brackets significantly lowered SBS after UI, whereas for other braces no effect was recorded. Appliances with lower mesh area significantly reduced their adhesion capacity after UI. Moreover groups subjected to UI showed higher ARI scores than controls. UI lowered SBS of lingual appliances of small dimensions so particular care should be posed avoiding prolonged instrumentation around bracket base during plaque removal. Moreover, UI influenced also ARI scores. PMID:28904955

  19. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  20. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  1. Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng

    2016-01-01

    Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.

  2. Tensile test and interface retention forces between wires and composites in lingual fixed retainers.

    PubMed

    Paolone, Maria Giacinta; Kaitsas, Roberto; Obach, Patricia; Kaitsas, Vasilios; Benedicenti, Stefano; Sorrenti, Eugenio; Barberi, Fabrizio

    2015-06-01

    In daily orthodontic clinical practice retention is very important, and lingual retainers are part of this challenge. The failure of lingual retainers may be due to many factors. The aim of this study was to assess the retention forces and mechanical behavior of different types of wires matched with different kinds of composites in lingual retainers. A tensile test was performed on cylindrical composite test specimens bonded to orthodontic wires. The specimens were constructed using four different wires: a straight wire (Remanium .016×.022″ Dentaurum), two round twisted wires (Penta One .0215″ Masel, Gold Penta Twisted .0215″ Gold N'braces) and a rectangular braided wire (D-Rect .016×.022″ Ormco); and three composites: two micro-hybrids (Micro-Hybrid Enamel Plus HFO Micerium, and Micro-Hybrid SDR U Dentsply) and a micro-nano-filled composite (Micro-Nano-Filled Transbond LR 3M). The test was performed at a speed of 10mm/min on an Inström device. The wire was fixed with a clamp. The results showed that the bonding between wires and composites in lingual fixed retainers seemed to be lowest for rectangular smooth wires and increased in round twisted and rectangular twisted wires where the bonding was so strong that the maximum tension/bond strength was greater than the ultimate tensile strength of the wire. The highest values were in rectangular twisted wires. Concerning the composites, hybrid composites had the lowest interface bonding values and broke very quickly, while the nano- and micro-composites tolerated stronger forces and displayed higher bonding values. The best results were observed with the golden twisted wire and reached 21.46 MPa with the Transbond composite. With the rectangular braided wire the retention forces were so high that the Enamel Plus composite fractured when the load exceeded 154.6 N/MPa. When the same wire was combined with the Transbond LR either the wire or the composite broke when the force exceeded 240 N. The results of this

  3. Wiring design for the control of electromagnetic interference (EMI)

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  4. Performance of PZT8 Versus PZT4 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, Dominick A.; Schulze, Gary W.

    PZT8 and PZT4 are the common "hard" piezoceramic materials used in power ultrasonic transducers (e.g., welding, cutting, sonar, etc.). PZT8 is perceived as the better choice for resonant devices, primarily due to its higher mechanical quality factor Qm. PZT8 is also considered a "harder" material compared to PZT4, since it has better stability at higher preloads and drive levels. Many transducer designers never consider PZT4 for their applications, even though it has clear advantages such as higher output (i.e., higher d33). Even the perceived advantage of PZT8 regarding Qm may not be significant for most Langevin, bolted stack type transducers if the mechanical joint losses dominate. This research is a case study on the performance of identical ultrasonic transducers used for semiconductor wire bonding, assembled with either PZT8 or PZT4 materials. The main purpose of the study is to establish rule-of-thumb transducer design guidelines for the selection of PZT8 versus PZT4 materials. Several metrics are investigated such as impedance, frequency, capacitance, dielectric loss, Qm, heating, displacement gain, and electro-mechanical coupling factor. The experimental and theoretical research methods include Bode plots, thermal IR camera imaging, scanning laser vibrometry and coupled-field finite element analysis.

  5. Simulation of transducer-couplant effects on broadband ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  6. Explosive bonding of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1969-01-01

    Explosive bonding process produces sheet composites of aluminum alloy reinforced by high-strength stainless steel wires. The bonds are excellent metallurgically, no external heat is required, various metals can be bonded, and the process is inexpensive.

  7. Development of Active Catheter,Active Guide Wire and Micro Sensor Systems

    PubMed Central

    Haga, Y.; Mineta, T.; Totsu, K.; Makishi, W.; Esashi, M.

    2001-01-01

    Summary Active catheters and active guide wires which move like a snake have been developed for catheter-based minimally invasive diagnosis and therapy. Communication and control IC chips in the active catheter reduce the number of lead wires for control. The active catheter can be not only bent but also torsioned and extended. An ultra minature fiber-optic pressure sensor; a forward-looking ultrasonic probe and a magnetic position and orientation sensor have been developed for catheters and guide wires. These moving mechanisms and several sensors which are fitted near the tip of the catheter and the guide wire will provide detailed information near the tip and enable delicate and effective catheter intervention. PMID:20663389

  8. Comparative Reliability Studies and Analysis of Au, Pd-Coated Cu and Pd-Doped Cu Wire in Microelectronics Packaging

    PubMed Central

    Chong Leong, Gan; Uda, Hashim

    2013-01-01

    This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu wire. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The obtained weibull slope, β of three bonding wires are greater than 1.0 and belong to wearout reliability data point. Pd-doped Cu wire exhibits larger time-to-failure and cycles-to-failure in both wearout reliability tests in Highly Accelerated Temperature and Humidity (HAST) and Temperature Cycling (TC) tests. This proves Pd-doped Cu wire has a greater potential and higher reliability margin compared to Au and Pd-coated Cu wires. PMID:24244344

  9. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  10. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  11. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  12. Composite Bus Structure for the SMEX/WIRE Satellite

    NASA Technical Reports Server (NTRS)

    Rosanova, Giulio G.

    1998-01-01

    In an effort to reduce the weight and optimize the structural design of the Small Explorer (SMEX) Wide-Field Infrared Explorer (WIRE) spacecraft, it has become desirable to change the material and construction from mechanically fastened aluminum structure to a fully bonded fiber-reinforced composite (FRC) structure. GSFC has developed the WIRE spacecraft structural bus design concept, including the instrument and launch vehicle requirements. The WIRE Satellite is the fifth of a series of SMEX satellites to be launched once per year. GSFC has chosen Composite Optics Inc. (COI) as the prime contractor for the development and procurement of the WIRE composite structure. The detailed design of the fully bonded FRC structure is based on COI's Short Notice Accelerated Production SATellite ("SNAPSAT") approach. SNAPSAT is a state of the art design and manufacturing technology for advanced composite materials which utilizes flat-stock detail parts bonded together to produce a final structural assembly. The structural design approach adopted for the WIRE structure provides a very viable alternative to both traditional aluminum construction as well as high tech. molded type composite structures. This approach to composite structure design is much less costly than molded or honeycomb sandwich type composite construction, but may cost slightly more than conventional aluminum construction on the subsystem level. However on the overall program level the weight saving achieved is very cost effective, since the primary objective is to allocate more mass for science payloads.

  13. Welding Wires To Thin Thermocouple Films

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary

    1993-01-01

    Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.

  14. Comparison of Ultrasound with Tensile Testing of Thermally Damaged Polyimide Insulated Wiring (MIL-W-81381)

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2002-01-01

    Ultrasonic measurements were performed on MIL-W-81381/7, /12, and /21 wire, a polyimide (Kapton) insulated wire. The phase velocity for the 20-gauge MIL-W-81381/7 wire had a baseline value of 3023 plus or minus 78 m/s. After exposure to high temperatures, the wire's phase velocity rapidly increased, and reached an asymptotic value of 3598 plus or minus 20 m/s after 100 hours exposure. Similar responses were measured in other gauges. The baseline measurements of Young's moduli resulted in values of 5636 plus or minus 486, 7714 plus or minus 505, and 8767 plus or minus 292 KSI for the 20 ga, 16 ga, and 12 ga. wires respectively.

  15. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  16. Length-dependent structural stability of linear monatomic Cu wires

    NASA Astrophysics Data System (ADS)

    Singh, Gurvinder; Kumar, Krishan; Singh, Baljinder; Moudgil, R. K.

    2018-05-01

    We present first-principle calculations based on density functional theory for the finite-length monatomic Cu atom linear wires. The structure and its stability with increasing wire length in terms of number of atoms (N) is determined. Interestingly, the bond length is found to exhibit an oscillatory structure (the so-called magic length phenomenon), with a qualitative change in oscillatory behavior as one moves from even N wire to odd N wire. The even N wires follow simple even-odd oscillations whereas odd N wires show a phase change at the half length of the wires. The stability of the wire structure, determined in terms of the wire formation energy, also contains even-odd oscillation as a function of wire length. However, the oscillations in formation energy reverse its phase after the wire length is increased beyond N=12. Our findings are seen to be qualitatively consistent with recent simulations for a similar class finite-length metal atom wires.

  17. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  18. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    NASA Astrophysics Data System (ADS)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  19. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  20. Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength

    NASA Astrophysics Data System (ADS)

    Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.

    2018-02-01

    To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.

  1. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  2. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  3. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  4. Flowable composites for bonding orthodontic retainers.

    PubMed

    Tabrizi, Sama; Salemis, Elio; Usumez, Serdar

    2010-01-01

    To test the null hypothesis that there are no statistically significant differences between flowables and an orthodontic adhesive tested in terms of shear bond strength (SBS) and pullout resistance. To test the SBS of Light Bond, FlowTain, Filtek Supreme, and Tetric Flow were applied to the enamel surfaces of 15 teeth. Using matrices for application, each composite material was cured for 40 seconds and subjected to SBS testing. To test pullout resistance, 15 samples were prepared for each composite in which a wire was embedded; then the composite was cured for 40 seconds. Later, the ends of the wire were drawn up and tensile stress was applied until the resin failed. Findings were analyzed using an ANOVA and a Tukey HSD test. The SBS values for Light Bond, FlowTain, Filtek Supreme, and Tetric Flow were 19.0 +/- 10.9, 14.7 +/- 9.3, 22.4 +/- 16.3, and 16.8 +/- 11.8 MPa, respectively, and mean pullout values were 42.2 +/- 13.0, 24.0 +/- 6.9, 26.3 +/- 9.4, and 33.8 +/- 18.0 N, respectively. No statistically significant differences were found among the groups in terms of SBS (P > .05). On the other hand, Light Bond yielded significantly higher pullout values compared with the flowables Filtek Supreme and Flow-Tain (P < .01). However, there were no significant differences among the pullout values of flowables, nor between Light Bond and Tetric Flow (P > .05). The hypothesis is rejected. Light Bond yielded significantly higher pullout values compared with the flowables Filtek Supreme and FlowTain. However, flowable composites provided satisfactory SBS and wire pullout values, comparable to a standard orthodontic resin, and therefore can be used as an alternative for direct bonding of lingual retainers.

  5. Rapid adhesive bonding of advanced composites and titanium

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.

    1985-01-01

    Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.

  6. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walczyk, Daniel F.

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurementmore » techniques for use by industry.« less

  7. Ultrasonic thermometry using pulse techniques.

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Carnevale, E. H.

    1972-01-01

    Ultrasonic pulse techniques have been developed which, when applied to inert gases, provide temperature measurements up to 8000 K. The response time can be less than 1 msec. This is a significant feature in studying shock-heated or combusting gases. Using a momentary contact coupling technique, temperature has been measured inside steel from 300 to 1500 K. Thin-wire sensors have been used above 2000 K in nuclear and industrial applications where conditions preclude the use of thermocouples, resistance devices, or optical pyrometers. At 2500 K, temperature sensitivity of 0.1% is obtained in Re wire sensors 5 cm long by timing five round trips with an electronic instrument that resolves the time interval between selected echoes to 0.1 microsec. Sensors have been operated at rotational speeds over 2000 rpm and in noisy environments. Temperature profiling of up to ten regions using only a single guided path or beam has also been accomplished.

  8. Measurement and Modeling of Dispersive Pulse Propagation in Drawn Wire Waveguides

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Kohl, Thomas W.; Rogers, Wayne P.

    1995-01-01

    An analytical model of dispersive pulse propagation in semi-infinite cylinders due to transient axially symmetric end conditions has been experimentally investigated. Specifically, the dispersive propagation of the first axially symmetric longitudinal mode in thin wire waveguides, which have ends in butt contact with longitudinal piezoelectric ultrasonic transducers, is examined. The method allows for prediction of a propagated waveform given a measured source waveform, together with the material properties of the cylinder. Alternatively, the source waveform can be extracted from measurement of the propagated waveform. The material properties required for implementation of the pulse propagation model are determined using guided wave phase velocity measurements. Hard tempered aluminum 1100 and 304 stainless steel wires, with 127, 305, and 406 micron diam., were examined. In general, the drawn wires were found to behave as transversely isotropic media.

  9. Measurement and modeling of dispersive pulse propagation in draw wire waveguides

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Kohl, Thomas W.; Rogers, Wayne P.

    1995-01-01

    An analytical model of dispersive pulse propagation in semi-infinite cylinders due to transient axially symmetric end conditions has been experimentally investigated. Specifically, the dispersive propagation of the first axially symmetric longitudinal mode in thin wire waveguides, which have ends in butt contact with longitudinal piezoelectric ultrasonic transducers, is examined. The method allows for prediction of a propagated waveform given a measured source waveform, together with the material properties of the cylinder. Alternatively, the source waveform can be extracted from measurement of the propagated waveform. The material properties required for implementation of the pulse propagation model are determined using guided wave phase velocity measurements. Hard tempered aluminum 1100 and 304 stainless steel wires, with 127, 305, and 406 micron diam., were examined. In general, the drawn wires were found to behave as transversely isotropic media.

  10. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    PubMed

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  11. Reliability Assessment and Activation Energy Study of Au and Pd-Coated Cu Wires Post High Temperature Aging in Nanoscale Semiconductor Packaging.

    PubMed

    Gan, C L; Hashim, U

    2013-06-01

    Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t 50 ) have been discussed in this paper.

  12. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  14. Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics

    NASA Astrophysics Data System (ADS)

    Olson, Meghan

    Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.

  15. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    NASA Technical Reports Server (NTRS)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  16. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-06-01

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  17. Permanent wire splicing by an explosive joining process

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Kushnick, Anne C. (Inventor)

    1991-01-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebent, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires, and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding results in electron sharing linkups.

  18. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  19. Sandwich Panels Evaluated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2004-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment systems for next-generation engines. The bond strength between the core and face sheets is critical in maintaining the structural integrity of the sandwich structure. To improve the inspection and production of these systems, researchers at the NASA Glenn Research Center are using nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, to evaluate the brazing quality between the face plates and the metallic foam core. The capabilities and limitations of a swept-frequency approach to ultrasonic spectroscopy were evaluated with respect to these sandwich structures. This report discusses results from three regions of a sandwich panel representing different levels of brazing quality between the outer face plates and a metallic foam core. Each region was investigated with ultrasonic spectroscopy. Then, on the basis of the NDE results, three shear specimens sectioned from the sandwich panel to contain each of these regions were mechanically tested.

  20. High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier.

    PubMed

    Pan, Huapu; Assefa, Solomon; Green, William M J; Kuchta, Daniel M; Schow, Clint L; Rylyakov, Alexander V; Lee, Benjamin G; Baks, Christian W; Shank, Steven M; Vlasov, Yurii A

    2012-07-30

    The performance of a receiver based on a CMOS amplifier circuit designed with 90nm ground rules wire-bonded to a waveguide germanium photodetector is characterized at data rates up to 40Gbps. Both chips were fabricated through the IBM Silicon CMOS Integrated Nanophotonics process on specialty photonics-enabled SOI wafers. At the data rate of 28Gbps which is relevant to the new generation of optical interconnects, a sensitivity of -7.3dBm average optical power is demonstrated with 3.4pJ/bit power-efficiency and 0.6UI horizontal eye opening at a bit-error-rate of 10(-12). The receiver operates error-free (bit-error-rate < 10(-12)) up to 40Gbps with optimized power supply settings demonstrating an energy efficiency of 1.4pJ/bit and 4pJ/bit at data rates of 32Gbps and 40Gbps, respectively, with an average optical power of -0.8dBm.

  1. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  2. Nondestructive Evaluation of Adhesive Bond Quality: State of the Art Review

    DTIC Science & Technology

    1989-06-01

    conducted using a and Harnik (6) developed a quantitative medium-focused, 1/4-inch diameter, 10-MHz method of testing adhesive bonded joints transducer...Couchman." Spectral Analysis Tech- E. Harnik . "The Testing of Adhesive- nique of Ultrasonic NDT of Advanced Bonded Joints by a Very High Resolu

  3. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    PubMed Central

    Marrero, Raúl; Li, Xiaochun; Choi, Hongseok

    2018-01-01

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding. PMID:29534441

  4. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  5. Optical fiber interferometer for the study of ultrasonic waves in composite materials

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Zewekh, P. S.; Turner, T. M.; Wade, J. C.; Rogers, R. T.; Garg, A. O.

    1981-01-01

    The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined.

  6. [Individual indirect bonding technique (IIBT) using set-up model].

    PubMed

    Kyung, H M

    1989-01-01

    There has been much progress in Edgewise Appliance since E.H. Angle. One of the most important procedures in edgewise appliance is correct bracket position. Not only conventional edgewise appliance but also straight wire appliance & lingual appliance cannot be used more effectively unless the bracket position is accurate. Improper bracket positioning may reveal much problems during treatment, especially in finishing state. It may require either rebonding after the removal of the malpositioned bracket or the greater number of arch wire and the more complex wire bending, causing much difficulty in performing effective treatments. This made me invent Individual Indirect Bonding Technique with the use of multi-purpose set-up model in order to determine a correct and objective bracket position according to individual patients. This technique is more accurate than former indirect bonding techniques in bracket positioning, because it decides the bracket position on a set-up model which has produced to have the occlusal relationship the clinician desired. This technique is especially effective in straight wire appliance and lingual appliance in which the correct bracket positioning is indispensible.

  7. Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.

    2016-08-01

    Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.

  8. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Fung, S.; Wang, Q.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analyticalmore » calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.« less

  9. A study of the stress wave factor technique for evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.

    1989-01-01

    The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.

  10. A traveling wave ultrasonic motor of high torque.

    PubMed

    Chen, Y; Liu, Q L; Zhou, T Y

    2006-12-22

    A traveling wave ultrasonic motor of high torque with a new configuration is proposed in this paper. In the new design, a part of the motor serves as the stator. The rotor is the vibrator consisting of a toothed metal ring with piezoelectric ceramic bonded, which generates ultrasonic vibration. The rotor is in contact with the shell of motor and is driven by the friction between the rotor and the stator. This configuration not only removes the rotor in a conventional type of traveling wave ultrasonic motor but also changes the interaction between the rotor and the stator of the motor so that it improves the output performance of the motor. Although an electric brush is added to the ultrasonic motor, it is easy to be fabricated because of the low speed of motor. The finite element method was used to compute the vibration modes of an ultrasonic motor with a diameter of 100mm to optimize the design of the motor. A 9th mode was chosen as the operation mode with a resonance frequency about 25 kHz. According to the design, a prototype was fabricated. Its performance was measured. The rotation speed-torque curves for various frequencies were obtained. The result shows that its stall torque is greater than 4 Nm within a range of 400 Hz. This ultrasonic motor was used to drive the window glass of a mobile car and the result was satisfactory. In the further the research on the friction material between the stator and the rotor is under way to improve the efficiency of the ultrasonic motor.

  11. Acoustic Monitoring of Adhesive Bond Curing in Wood Laminates.

    NASA Astrophysics Data System (ADS)

    Biernacki, Jacek Marek

    Challenges in manufacturing of wood products, such as glulam, include difficulty in controlling bonding variables and assessing bond quality. This dissertation investigates an ultrasonic method as a means of monitoring of curing and assessing bond quality in wood laminates. The effect of curing on ultrasonic transmission was studied using specimens of clear Douglas-fir, 100 x 200 x 600 mm, with the adhesive bond in the center of the specimen. Monitoring was performed simultaneously at normal and angular (5 ^circ nominal) incidence to the bond plane. Acoustic measurements were supplemented with destructive cure monitoring, standard bond strength measurement, monitoring of bulk viscosity curing, gel time measurement, and microscopic (SEM) examination. Angular incidence gave greater sensitivity to bond quality and curing status than did normal incidence. Analysis of wave propagation showed that displacement for transmission at a small angle (on the order of 5^circ ) was nearly parallel to the bond, which seems to explain greater sensitivity of angular incidence. Experimental results showed that this method was effective in detection of curing phases, such as spread, penetration, and hardening, defective bonds, and the effect of clamping pressure. An "unloading effect", measured as a relative transmission reduction after the clamping load was released, was sensitive to defective bonds, including uncured (kissing), underspread, and uneven spread bonds. Thick bonds (0.5 and 1.0 mm) caused the greatest increase in transmission, since waves at start of curing were highly attenuated. In angular transmission, thick-bond curing curves showed a characteristic inflection, which may be used to identify thick bonds and measure the curing rate. The results of this dissertation could be utilized to develop commercial systems in glulam manufacturing, which could evaluate: (a) phase of and completion of curing (b) bond quality (c) optimum clamping pressure. Similar systems could also

  12. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    PubMed Central

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  14. Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Hung-Liang Roger; Zhang, Binwei; Alvin, Mary Anne; Lin, Yun

    2012-12-01

    This article describes ultrasonic nondestructive evaluation (NDE) to detect the changes of material properties and provide early warning of delamination in thermal barrier coating (TBC) systems. NDE tests were performed on single-crystal René N5 superalloy coupons that were coated with a commercially available MCrAlY bond coat and an air plasma sprayed 7% yttria-stabilized zirconia (YSZ) top coat deposited by Air Plasma Spray method, as well as Haynes 230 superalloy coupons coated with MCrA1Y bond coat, and an electron beam physical vapor deposit of 7% YSZ top coat. The TBC coupons were subjected to either cyclic or isothermal exposure for various lengths of time at temperatures ranging from 900 to 1100 °C. The ultrasonic measurements performed on the coupons had provided an early warning of delamination along the top coat/TGO interface before exposure time, when delamination occurred. The material's property (Young's modulus) of the top coat was estimated using the measured wave speeds. Finite element analysis (FEA) of the ultrasonic wave propagation was conducted on a simplified TBC system to verify experimental observations. The technique developed was also demonstrated on an as-manufactured turbine blade to estimate normalized top coat thickness measurements.

  15. Structural Properties of Single-Strand Orthodontic Wires from a Proposed Alternative Standard Flexure Test.

    DTIC Science & Technology

    1984-01-01

    structural system the orthodontic appliance consists intraorally of bands or bonded pads and the attached brackets , the arch wires, the ligatures, and any...RD-Ali5B 994 STRUCTURAL PROPERTIES OF SINGLE-STRAND ORTHODONTIC i/i WIRES FROM A PROPOSED__(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON RFB OH M L... Orthodontic Wires From A Proposed Alternative - Standard Flexure Test 6. PERPOMING o1. REPORT NUMBER AUTNOR(e) I. CONTRACT O& GRANT NUMUER(a) Marion L

  16. Effect of cleaning methods after reduced-pressure air abrasion on bonding to zirconia ceramic.

    PubMed

    Attia, Ahmed; Kern, Matthias

    2011-12-01

    To evaluate in vitro the influence of different cleaning methods after low-pressure air abrasion on the bond strength of a phosphate monomer-containing luting resin to zirconia ceramic. A total of 112 zirconia ceramic disks were divided into 7 groups (n = 16). In the test groups, disks were air abraded at low pressure (L) 0.05 MPa using 50-μm alumina particles. Prior to bonding, the disks were ultrasonically (U) cleaned either in isopropanol alcohol (AC), hydrofluoric acid (HF), demineralized water (DW), or tap water (TW), or they were used without ultrasonic cleaning. Disks air abraded at a high (H) pressure of 0.25 MPa and cleaned ultrasonically in isopropanol served as positive control; original (O) milled disks used without air abrasion served as the negative control group. Plexiglas tubes filled with composite resin were bonded with the adhesive luting resin Panavia 21 to the ceramic disks. Prior to testing tensile bond strength (TBS), each main group was further subdivided into 2 subgroups (n=8) which were stored in distilled water either at 37°C for 3 days or for 30 days with 7500 thermal cycles. Statistical analyses were conducted with two- and one-way analyses of variance (ANOVA) and Tukey's HSD test. Initial tensile bond strength (TBS) ranged from 32.6 to 42.8 MPa. After 30 days storage in water with thermocycling, TBS ranged from 21.9 to 36.3 MPa. Storage in water and thermocycling significantly decreased the TBS of test groups which were not air abraded (p = 0.05) or which were air abraded but cleaned in tap water (p = 0.002), but not the TBS of the other groups (p > 0.05). Also, the TBS of air-abraded groups were significantly higher than the TBS of the original milled (p < 0.01). Cleaning procedures did not significantly affect TBS either after 3 days or 30 days storage in water and thermocycling (p > 0.05). Air abrasion at 0.05 MPa and ultrasonic cleaning are important factors for improving bonding to zirconia ceramic.

  17. Ultrasonic characterization of the fiber-matrix interfacial bond in aerospace composites.

    PubMed

    Aggelis, D G; Kleitsa, D; Matikas, T E

    2013-01-01

    The properties of advanced composites rely on the quality of the fiber-matrix bonding. Service-induced damage results in deterioration of bonding quality, seriously compromising the load-bearing capacity of the structure. While traditional methods to assess bonding are destructive, herein a nondestructive methodology based on shear wave reflection is numerically investigated. Reflection relies on the bonding quality and results in discernable changes in the received waveform. The key element is the "interphase" model material with varying stiffness. The study is an example of how computational methods enhance the understanding of delicate features concerning the nondestructive evaluation of materials used in advanced structures.

  18. The role of oxide structure on copper wire to the rubber adhesion

    NASA Astrophysics Data System (ADS)

    Su, Yea-Yang; Shemenski, Robert M.

    2000-07-01

    Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.

  19. Thermoelectric performance of various benzo-difuran wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Péterfalvi, Csaba G.; Grace, Iain; Manrique, Dávid Zs.

    2014-05-07

    Using a first principles approach to electron transport, we calculate the electrical and thermoelectrical transport properties of a series of molecular wires containing benzo-difuran subunits. We demonstrate that the side groups introduce Fano resonances, the energy of which is changing with the electronegativity of selected atoms in it. We also study the relative effect of single, double, or triple bonds along the molecular backbone and find that single bonds yield the highest thermopower, approximately 22 μV/K at room temperature, which is comparable with the highest measured values for single-molecule thermopower reported to date.

  20. A tool for measuring the bending length in thin wires

    NASA Astrophysics Data System (ADS)

    Lorenzini, M.; Cagnoli, G.; Cesarini, E.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Viceré, A.

    2013-03-01

    Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (ϕfs ˜ 10-7 in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained.

  1. A tool for measuring the bending length in thin wires.

    PubMed

    Lorenzini, M; Cagnoli, G; Cesarini, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F; Viceré, A

    2013-03-01

    Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (φfs ∼ 10(-7) in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained.

  2. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  3. 46 CFR 35.35-5 - Electrical bonding-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Electrical bonding-TB/ALL. 35.35-5 Section 35.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Cargo Handling § 35.35-5 Electrical bonding—TB/ALL. The use of a vessel/shore bonding cable or wire is permissible only if...

  4. 46 CFR 35.35-5 - Electrical bonding-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Electrical bonding-TB/ALL. 35.35-5 Section 35.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Cargo Handling § 35.35-5 Electrical bonding—TB/ALL. The use of a vessel/shore bonding cable or wire is permissible only if...

  5. Thermal injury through intraradicular heat transfer using ultrasonic devices: precautions and practical preventive strategies.

    PubMed

    Gluskin, Alan H; Ruddle, Clifford J; Zinman, Edwin J

    2005-09-01

    The use of ultrasonic energy is a highly efficient method of removing obstructions and cements within the root canal space when re-treatment or rehabilitation of that ultrasonic energy dislodges and removes cemented objects from the bonded interface of the canal wall. When using this method, there is less potential for structural loss or root damage and significantly less operator stress than when using other methods. There is little evidence in published research of the considerable heat transfer that occurs during use of ultrasonic devices to remove posts, pastes and separated instruments in teeth. The authors present three cases of patients who experienced serious burn injuries during application of ultrasonic energy for restorative dentistry. The authors also offer techniques and strategies for safe and effective use of ultrasonic devices. On the basis of the best available evidence, the authors recommend strategies to provide safe and effective therapy while using ultrasonic devices in intraradicular obstruction removal. The intent of the suggested protocols is to provide advanced and sophisticated therapies in a safe and regulated manner with patient safety as an overriding priority.

  6. Stainless hooks to bond lower lingual retainer.

    PubMed

    Durgekar, Sujala G; Nagaraj, K

    2011-01-01

    We introduced a simple and economical technique for precise placement of lower lingual retainers. Two stainless steel hooks made of 0.6mm wire are placed interdentally in the embrasure area between canine and lateral incisor bilaterally to lock the retainer wire in the correct position. Etch, rinse and dry the enamel surfaces with the retainer passively in place, then bond the retainer with light-cured adhesive. Hooks are simple to fabricate and eliminate the need for a transfer tray.

  7. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage

    PubMed Central

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-01-01

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts. PMID:28773017

  8. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage.

    PubMed

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-06-16

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts.

  9. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Accomplishments include the determination of the reasons for differences in measurements of transistor delay time, identification of an energy level model for gold-doped silicon, and the finding of evidence that it does not appear to be necessary for an ultrasonic bonding tool to grip the wire and move it across the substrate metallization to make the bond. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; measurement of thermal properties of semiconductor devices, delay time, and related carrier transport properties in junction devices, and noise properties of microwave diodes; and characterization of silicon nuclear radiation detectors.

  10. IMPROVED BONDING METHOD

    DOEpatents

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  11. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  12. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.

    PubMed

    Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W

    2016-03-01

    A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

  13. Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets.

    PubMed

    Mittal, Nitika; Xia, Zeyang; Chen, Jie; Stewart, Kelton T; Liu, Sean Shih-Yao

    2013-05-01

    To quantify the three-dimensional moments and forces produced by pretorqued nickel-titanium (NiTi) rectangular archwires fully engaged in 0.018- and 0.022-inch slots of central incisor and molar edgewise and prescription brackets. Ten identical acrylic dental models with retroclined maxillary incisors were fabricated for bonding with various bracket-wire combinations. Edgewise, Roth, and MBT brackets with 0.018- and 0.022-inch slots were bonded in a simulated 2 × 4 clinical scenario. The left central incisor and molar were sectioned and attached to load cells. Correspondingly sized straight and pretorqued NiTi archwires were ligated to the brackets using 0.010-inch ligatures. Each load cell simultaneously measured three force (Fx, Fy, Fz) and three moment (Mx, My, Mz) components. The faciolingual, mesiodistal, and inciso-occluso/apical axes of the teeth corresponded to the x, y, and z axes of the load cells, respectively. Each wire was removed and retested seven times. Three-way analysis of variance (ANOVA) examined the effects of wire type, wire size, and bracket type on the measured orthodontic load systems. Interactions among the three effects were examined and pair-wise comparisons between significant combinations were performed. The force and moment components on each tooth were quantified according to their local coordinate axes. The three-way ANOVA interaction terms were significant for all force and moment measurements (P < .05), except for Fy (P > .05). The pretorqued wire generates a significantly larger incisor facial crown torquing moment in the MBT prescription compared to Roth, edgewise, and the straight NiTi wire.

  14. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  15. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  16. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  17. Improved formula for continuous-wave measurements of ultrasonic phase velocity

    NASA Technical Reports Server (NTRS)

    Chern, E. J.; Cantrell, J. H., Jr.; Heyman, J. S.

    1981-01-01

    An improved formula for continuous-wave ultrasonic phase velocity measurements using contact transducers is derived from the transmission line theory. The effect of transducer-sample coupling bonds is considered for measurements of solid samples even though it is often neglected because of the difficulty of accurately determining the bond thickness. Computer models show that the present formula is more accurate than previous expressions. Laboratory measurements using contacting transducers with the present formula are compared to measurements using noncontacting (hence effectively correction-free) capacitive transducers. The results of the experiments verify the validity and accuracy of the new formula.

  18. Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my

    2014-07-01

    The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less

  19. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  20. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens.

    PubMed

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-03-23

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  1. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    PubMed Central

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain. PMID:25572920

  2. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  3. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    PubMed

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  4. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  5. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  6. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    NASA Astrophysics Data System (ADS)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  7. Evaluation of shear bond strength of porcelain bonded to laser welded titanium surface and determination of mode of bond failure.

    PubMed

    Patil, Narendra P; Dandekar, Minal; Nadiger, Ramesh K; Guttal, Satyabodh S

    2010-09-01

    The aim of this study was to evaluate the shear bond strength of porcelain to laser welded titanium surface and to determine the mode of bond failure through scanning electron microscopy (SEM) and energy dispersive spectrophotometry (EDS). Forty five cast rectangular titanium specimens with the dimension of 10 mm x 8 mm x 1 mm were tested. Thirty specimens had a perforation of 2 mm diameter in the centre. These were randomly divided into Group A and B. The perforations in the Group B specimens were repaired by laser welding using Cp Grade II titanium wire. The remaining 15 specimens were taken as control group. All the test specimens were layered with low fusing porcelain and tested for shear bond strength. The debonded specimens were subjected to SEM and EDS. Data were analysed with 1-way analysis of variance and Student's t-test for comparison among the different groups. One-way analysis of variance (ANOVA) showed no statistically significant difference in shear bond strength values at a 5% level of confidence. The mean shear bond strength values for control group, Group A and B was 8.4 +/- 0.5 Mpa, 8.1 +/- 0.4 Mpa and 8.3 +/- 0.3 Mpa respectively. SEM/EDS analysis of the specimens showed mixed and cohesive type of bond failure. Within the limitations of the study laser welding did not have any effect on the shear bond strength of porcelain bonded to titanium.

  8. Ultrasonic-assisted soldering of fine-grained 7034 aluminum alloy using Sn-Zn solders below 300°C.

    PubMed

    Guo, Weibing; Luan, Tianmin; He, Jingshan; Yan, Jiuchun

    2018-01-01

    The fine-grained Al alloys prefer to be soldered at as low as temperature to keep their mechanical properties. Solders of Sn-4Zn, Sn-9Zn, and Sn-20Zn alloys were used to solder fine-grained 7034 Al alloy pieces by ultrasonic-assisted soldering below 300°C in air. The joint using Sn-4Zn solder had the highest tensile strength of 201MPa and the fractures occurred in both β-Sn and Sn-Zn eutectic phases. Such joint was much stronger than the 1060 Al joint using Sn-4Zn solder, and its strength had approached the strength of 7034 Al joint using Zn-5Al solder. The strength of the joints using Sn-9Zn and Sn-20Zn solders dropped to∼160MPa due to the appearance of weak interfaces between η-Zn and eutectic phases in the bond layers. All the joints using Sn-Zn solders had very strong interfacial bonding, and alumina interlayers were identified at all the interfaces. Al dissolved in the bond layer reacted with the O rapidly to form alumina interlayers at the interfaces under the ultrasonic action. Zn segregated at the interface and formed strong bonds with both the Al terminated surface of alumina and the bond layer, resulting in strong interfacial bonding between Sn-Zn solders and Al alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  10. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    PubMed

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.

  11. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  12. Development of Multiple-Frequency Ultrasonic Imaging System Using Multiple Resonance Piezoelectric Transducer

    NASA Astrophysics Data System (ADS)

    Akiyama, Iwaki; Yoshizumi, Natsuki; Saito, Shigemi; Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-07-01

    The authors have developed a multiple frequency imaging system using a multiple resonance transducer (MRT) consisting of 1-3 composite materials with a low mechanical quality factor Q bonded together. The MRT has a structure consisting of thin and thick piezoelectric plates, two matching layers, and a backing layer. This makes it possible to obtain B-mode images of satisfactory resolution using ultrasonic pulses owing to their short duration. In this paper, the vibration property of the MRT derived through equivalent-circuit analysis is first shown. By utilizing the result, an MRT capable of transmitting ultrasonic pulses for generation of the images of biological tissues with satisfactory resolution is designed and prototyped. Setting the prototype transducer in the mechanical sector probe of commercial ultrasonic diagnosis equipment, the speckle reduction effect is demonstrated using images of various phantoms to mimic biological tissues and a human thyroid.

  13. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen

    2015-09-01

    We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.

  14. Decontamination of blood soaked electronic devices using ultrasonic technology.

    PubMed

    Dudeck, Kimberly C; Brennan, Tamara C; Embury, Daniel J

    2012-01-10

    With advancements in technology allowing for the miniaturization of consumer electronics, criminal investigations of all types frequently involve the forensic examination of electronic devices, such as cellular telephones, smartphones, and portable flash memory; in some extreme, violent cases, these devices are found covered in blood. Due to the complexity of such devices, standard operating procedures for the complete removal of blood had not previously been established by the Royal Canadian Mounted Police prior to this study. The electronics industry has adopted the use of the ultrasonic cleaner for sanitizing printed circuit boards (PCBs) by removing residues and contaminants. High frequency sound waves created by the machine penetrate and remove dirt and residues; however, early research during the 1950s recorded these sound waves breaking the internal bonds of integrated circuit chips. Experimentation with modern ultrasonic technology was used to determine if internal components were damaged, as well as if ultrasonic cleaning was the most suitable method for the removal of dried and liquid blood from a PCB. Several disinfectant solutions were compared against the 0.5% Triton(®) X-100 detergent solution in the ultrasonic cleaner, including: 10% sodium hypochlorite bleach, 85% isopropyl alcohol, and Conflikt(®) disinfectant spray. The results not only demonstrated that the ultrasonic cleaner did not damage the vital memory chip on the PCB, but also, with the assistance of Conflikt(®), was able to remove all traces of blood as indicated by Hemastix(®) reagent strips. Of five methods experimented with, two cycles of ultrasonic cleaning followed by sanitization with Conflikt(®) proved to be the only procedure capable of removing all traces of blood, as confirmed with both Hemastix(®) reagent strips and the hemochromogen test. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Dynamic breaking of a single gold bond

    NASA Astrophysics Data System (ADS)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji; Jensen, Anders; Mészáros, Gábor; Jacobsen, Karsten W.; Strange, Mikkel; Wandlowski, Thomas; Solomon, Gemma C.

    2017-07-01

    While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain. Conversely, if the force is loaded rapidly it is more likely that the maximum breaking force is measured. Paradoxically, no clear differences in breaking force were observed in experiments on gold nanowires, despite being conducted under very different conditions. Here we explore the breaking behaviour of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces.

  16. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment.

    PubMed

    Zhang, Yuanyuan; Xiao, Zhiyong; Chen, Fang; Ge, Yiqiang; Wu, Jihong; Hu, Xiaosong

    2010-01-01

    Apple juice (13 degrees Brix) spiked with malathion and chlorpyrifos (2-3 mg l(-1) of each compound) was treated under different ultrasonic irradiations. Results showed that ultrasonic treatment was effective for the degradation of malathion and chlorpyrifos in apple juice, and the output power and treatment time significantly influenced the degradation of both pesticides (p<0.05). The maximum degradations were achieved for malathion (41.7%) and chlorpyrifos (82.0%) after the ultrasonic treatment at 500 W for 120 min. The degradation kinetics of both pesticides were fitted to the first-order kinetics model well (R(2)>or=0.90). The kinetics parameters indicated that chlorpyrifos was much more labile to ultrasonic treatment than malathion. Furthermore, malaoxon and chlorpyrifos oxon were identified as the degradation products of malathion and chlorpyrifos by gas chromatography-mass spectrometry (GC-MS), respectively. The oxidation pathway through the hydroxyl radical attack on the P=S bond of pesticide molecules was proposed.

  17. The role of functional monomers in bonding to enamel: acid-base resistant zone and bonding performance.

    PubMed

    Li, Na; Nikaido, Toru; Takagaki, Tomohiro; Sadr, Alireza; Makishi, Patricia; Chen, Jihua; Tagami, Junji

    2010-09-01

    To investigate the effects of two functional monomers on caries-inhibition potential and bond strength of two-step self-etching adhesive systems to enamel. Clearfil SE Bond and similar experimental formulations different in the functional monomer were used. Four combinations of primer and bonding agents were evaluated: (1) Clearfil SE Bond which contains MDP in both primer and bonding (M-M); (2) Clearfil SE Bond primer and Phenyl-P in bonding (M-P); (3) Phenyl-P in primer and Clearfil SE Bond bonding (P-M); (4) Phenyl-P in primer and bonding (P-P). Ground buccal enamel surfaces of human sound premolars were treated with one of the systems and the bonded interface was exposed to an artificial demineralising solution (pH 4.5) for 4.5 h, and then 5% NaOCl with ultrasonication for 30 min. After argon-ion etching, the interfacial ultrastructure was observed using SEM. Micro-shear bond strength to enamel was measured for all groups and results were analysed using one-way ANOVA and Turkey's HSD, while failure modes were analysed by chi-square test. An acid-base resistant zone (ABRZ) was found with all adhesive systems containing MDP either in primer or bond; however, ultramorphology and crystallite arrangement in the ABRZ were different among groups. P-P was the only group devoid of this protective zone. Micro-shear bond strength in M-M was significantly higher than those in M-P, P-M and P-P, while the latter three were not different from each other. Failure modes were significantly different (p<0.05). Functional monomers in two-step self-etching systems influence both the bonding performance and the formation of ABRZ on enamel. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  19. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    NASA Astrophysics Data System (ADS)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  20. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  1. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  2. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  3. Advanced signal processing methods applied to guided waves for wire rope defect detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Rostami, Javad

    2016-02-01

    Steel wire ropes, which are usually composed of a polymer core and enclosed by twisted wires, are used to hoist heavy loads. These loads are different structures that can be clamshells, draglines, elevators, etc. Since the loading of these structures is dynamic, the ropes are working under fluctuating forces in a corrosive environment. This consequently leads to progressive loss of the metallic cross-section due to abrasion and corrosion. These defects can be seen in the forms of roughened and pitted surface of the ropes, reduction in diameter, and broken wires. Therefore, their deterioration must be monitored so that any unexpected damage or corrosion can be detected before it causes fatal accident. This is of vital importance in the case of passenger transportation, particularly in elevators in which any failure may cause a catastrophic disaster. At present, the widely used methods for thorough inspection of wire ropes include visual inspection and magnetic flux leakage (MFL). Reliability of the first method is questionable since it only depends on the operators' eyes that fails to determine the integrity of internal wires. The later method has the drawback of being a point by point and time-consuming inspection method. Ultrasonic guided wave (UGW) based inspection, which has proved its capability in inspecting plate like structures such as tubes and pipes, can monitor the cross-section of wire ropes in their entire length from a single point. However, UGW have drawn less attention for defect detection in wire ropes. This paper reports the condition monitoring of a steel wire rope from a hoisting elevator with broken wires as a result of corrosive environment and fatigue. Experiments were conducted to investigate the efficiency of using magnetostrictive based UGW for rope defect detection. The obtained signals were analyzed by two time-frequency representation (TFR) methods, namely the Short Time Fourier Transform (STFT) and the Wavelet analysis. The location of

  4. Ultrasonic Determination of Combinations of Third-Order Elastic Constants of Small Cubic Single Crystals

    DTIC Science & Technology

    1981-05-01

    crystals Cesium cadmium fluoride Ultrasonic wave propagation Potassium zinc fluoride Nonlinear acoustics 20. A’?S1 RACT (Continue on reverse side If...is the stray capacitance of the detector, L is the inductance of the wire leading from the banana jack to the BNC connector (shown in Figure 111-2). Z...The samples on which measurements were made included [lO0] and [1111 copper samples, a sample of potassium zinc fluoride (KZnF 3 ) and a sample of

  5. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...

  6. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...

  7. Rationalization of anisotropic mechanical properties of Al-6061 fabricated using ultrasonic additive manufacturing

    DOE PAGES

    Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel; ...

    2016-09-01

    Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less

  8. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  9. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein.

    PubMed

    Wolf, Steffen; Freier, Erik; Cui, Qiang; Gerwert, Klaus

    2014-12-14

    Proton conduction along protein-bound "water wires" is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded ("dangling") O-H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.

  10. Ultrasonic guided wave bondline evaluation of thick metallic structures with viscoelastic coatings and the demonstration of a novel mode sweep technique

    NASA Astrophysics Data System (ADS)

    Bostron, Jason

    Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).

  11. Preparation of well-adhered γ-Al 2O 3 washcoat on metallic wire mesh monoliths by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhao, Yazhi

    2007-01-01

    Washcoat deposited on metallic wire mesh monoliths was prepared using γ-alumina powders by electrophoretic deposition under a relatively low electric voltage. The microstructure, phase structure and adhesion of washcoat were investigated by SEM, XRD, ultrasonic vibration and thermal shock. The results showed that the loading and adhesion of washcoat were affected obviously by the properties of suspension, such as the zeta potential and the amount of adding binders. A small quantity of aluminum isopropoxide could promote the cohesive affinity of washcoat in thermal shock. The adhesion of washcoat in ultrasonic vibration could be reinforced by increasing calcined temperature and adding a certain aluminum particles. It was also found that the washcoat immersed metal nitrate has excellent vibration-resistant ability.

  12. Oxytocin and mutual communication in mother-infant bonding

    PubMed Central

    Nagasawa, Miho; Okabe, Shota; Mogi, Kazutaka; Kikusui, Takefumi

    2012-01-01

    Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations (USVs) from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a “non-genomic transmission of maternal environment,” even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships. PMID:22375116

  13. Evaluation of composite adhesive bonds using digital image correlation

    NASA Astrophysics Data System (ADS)

    Shrestha, Shashi Shekhar

    Advanced composite materials are widely used for many structural applications in the aerospace/aircraft industries today. Joining of composite structures using adhesive bonding offers several advantages over traditional fastening methods. However, this technique is not yet employed for fastening the primary structures of aircrafts or space vehicles. There are several reasons for this: There are not any reliable non-destructive evaluation (NDE) methods that can quantify the strength of the bonds, and there are no certifications of quality assurance for inspecting the bond quality. Therefore, there is a significant need for an effective, reliable, easy to use NDE method for the analysis of composite adhesive joints. This research aimed to investigate an adhesively bonded composite-aluminum joints of variable bond strength using digital image correlation (DIC). There are many future possibilities in continuing this research work. As the application of composite materials and adhesive bond are increasing rapidly, the reliability of the composite structures using adhesive bond should quantified. Hence a lot of similar research using various adhesive bonds and materials can be conducted for characterizing the behavior of adhesive bond. The results obtained from this research will set the foundation for the development of ultrasonic DIC as a nondestructive approach for the evaluation of adhesive bond line.

  14. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  15. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  16. Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.

    PubMed

    Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan

    2012-05-01

    In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.

  17. Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.

    2016-10-01

    Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.

  18. Apparatus for ultrasonic nebulization

    DOEpatents

    Olson, Kenneth W.; Haas, Jr., William J.; Fassel, Velmer A.

    1978-08-29

    An improved apparatus for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet.

  19. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...

  20. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...

  1. Field deployable processing methods for stay-in-place ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Malarich, Nathan; Lissenden, Cliff J.; Tittmann, Bernhard R.

    2018-04-01

    Condition monitoring provides key data for managing the operation and maintenance of mechanical equipment in the power generation, chemical processing, and manufacturing industries. Ultrasonic transducers provide active monitoring capabilities by wall thickness measurements, elastic property determination, crack detection, and other means. In many cases the components operate in harsh environments that may include high temperature, radiation, and hazardous chemicals. Thus, it is desirable to have permanently affixed ultrasonic transducers for condition monitoring in harsh environments. Spray-on transducers provide direct coupling between the active element and the substrate, and can be applied to curved surfaces. We describe a deposition methodology for ultrasonic transducers that can be applied in the field. First, piezoceramic powders mixed into a sol-gel are air-spray deposited onto the substrate. Powder constituents are selected based on the service environment in which the condition monitoring will be performed. Then the deposited coating is pyrolyzed and partially densified using an induction heating system with a custom work coil designed to match the substrate geometry. The next step, applying the electrodes, is more challenging than might be expected because of the porosity of the piezoelectric coating and the potential reactivity of elements in the adjacent layers. After connecting lead wires to the electrodes the transducer is poled and a protective coating can be applied prior to use. Processing of a PZT-bismuth titanate transducer on a large steel substrate is described along with alternate methods.

  2. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    PubMed

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  3. Evaluation of multiple-channel OFDM based airborne ultrasonic communications.

    PubMed

    Jiang, Wentao; Wright, William M D

    2016-09-01

    Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    NASA Astrophysics Data System (ADS)

    Esben Poulsen, Carl; Kistrup, Kasper; Korsgaard Andersen, Nis; Taboryski, Rafael; Fougt Hansen, Mikkel; Wolff, Anders

    2016-06-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser beam. The technology is demonstrated on an injection moulded microfluidic device featuring high-aspect ratio (h  ×  w  =  2000 μm  ×  550 μm) and free-standing channel walls, where bonding is achieved with no detectable channel deformation. The bonding strength is similar to conventional EDs and the fabricated system can withstand pressures of over 9.5 bar.

  5. Evaluation of bond strength of various epoxy resin based sealers in oval shaped root canals.

    PubMed

    Cakici, Fatih; Cakici, Elif Bahar; Ceyhanli, Kadir Tolga; Celik, Ersan; Kucukekenci, Funda Fundaoglu; Gunseren, Arif Onur

    2016-09-30

    The aim of this study was to evaluate the bond strength of AH plus, Acroseal, and Adseal to the root canal dentin. A total of 36 single-rooted, mandibular premolar teeth were used. Root canal shaping procedures were performed with ProTaper rotary instruments (Dentsply Maillefer) up to size F4. The prepared samples were then randomly assembled into 3 groups (n = 12). For each group, an ultrasonic tip (size 15, 0.02 taper) which was also coated with an epoxy resin based sealer and placed 2 mm shorter than the working length. The sealer was then activated for 10 s. A push-out test was used to measure the bond strength between the root canal dentine and the sealer. Kruskal-Wallis test to evaluate the push-out bond strength of epoxy based sealer (P = 0.05). The failure mode data were statistically analyzed using Pearson's chi square test (P = 0.05). Kruskal-Wallis test indicated that there were no statistically significant difference among the push out bond strength values of 3 mm (p = 0.123) and 6 mm (P = 0.057) for groups, there was statistically significant difference push out bond strength value of 9 mm (P = 0.032). Pearson's chi square test showed statistically significant differences for the failure types among the groups. Various epoxy resin based sealers activated ultrasonically showed similar bond strength in oval shaped root canals. Apical sections for all groups have higher push out bond strength values than middle and coronal sections.

  6. Ultrasonic sensing of powder densification

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1992-01-01

    An independent scattering theory has been applied to the interpretation of ultrasonic velocity measurements made on porous metal samples produced either by a cold or a high-temperature compaction process. The results suggest that the pores in both processes are not spherical, an aspect ration of 1:3 fitting best with the data for low (less than 4 percent) pore volume fractions. For the hot compacted powders, the pores are smooth due to active diffusional processes during processing. For these types of voids, the results can be extended to a pore fraction of 10 percent, at which point voids form an interconnected network that violates the model assumptions. The cold pressed samples are not as well predicted by the theory because of poor particle bonding.

  7. Ultrasonic Motors

    DTIC Science & Technology

    2003-06-01

    micromotor have been investigated. The piezoelectric motor makes use of two orthogonal bending modes of a hollow cylinder. The vibrating element...A.Iino, K.Suzuki, M.Kasuga, M.Suzuki and T.Yamanaka, "Development of a Self- Oscillating Ultrasonic Micromotor and Its Application to a Watch...pp. 823-828, 1997. [12] M. K. Kurosawa, T. Morita, and T. Higuchi, "A Cylindrical Ultrasonic Micromotor Based on PZT Thin Film," IEEE Ultrasonics

  8. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  9. Note: Piezoelectric polymers as transducers for the ultrasonic-reflection method and the application in mechanical property-screening of coatings

    NASA Astrophysics Data System (ADS)

    Wegener, Michael; Oehler, Harald; Lellinger, Dirk; Alig, Ingo

    2012-01-01

    In the last years, non-destructive ultrasonic testing methods are more and more frequently employed in order to investigate the drying and curing processes of different coatings. Among them an ultrasonic reflection method was developed allowing the simultaneous measurement with longitudinal and transversal waves. In order to generate the ultrasonic pulse, piezoelectric ceramics or oxides are usually used as transducer materials which are connected to a delay line. Here, we demonstrate a similar approach for the ultrasonic reflection method installing piezoelectric polymers as ultrasonic transducer materials. In detail, poly(vinylidene fluoride and trifluoroethylene) [P(VDF-TrFE)] copolymers were prepared as piezoelectric transducer layers directly onto the metallization of glass delay lines avoiding additional bonding processes. The film preparation was carried out by solvent casting the polymer onto an area with a diameter of 12 mm and is optimized so that relatively homogeneous polymer layers with thicknesses between 14 and 35 μm are adjusted by the deposited amount of the polymer. Electrical poling renders the polymer piezoelectric. The ultrasonic properties of the P(VDF-TrFE) transducer and their usability for the ultrasonic reflection method are described also in comparison to previous measurements using LiNbO3 transducer.

  10. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    PubMed Central

    de Albuquerque, Victor Hugo C.; Barbosa, Cleisson V.; Silva, Cleiton C.; Moura, Elineudo P.; Rebouças Filho, Pedro P.; Papa, João P.; Tavares, João Manuel R. S.

    2015-01-01

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ” and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed. PMID:26024416

  11. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    PubMed

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  12. Wire stripper

    NASA Technical Reports Server (NTRS)

    Economu, M. A. (Inventor)

    1978-01-01

    An insulation stripper is described which is especially useful for shielded wire, the stripper including a first pair of jaws with blades extending substantially perpendicular to the axis of the wire, and a second pair of jaws with blades extending substantially parallel to the axis of the wire. The first pair of jaws is pressed against the wire so the blades cut into the insulation, and the device is turned to form circumferential cuts in the insulation. Then the second pair of jaws is pressed against the wire so the blades cut into the insulation, and the wire is moved through the device to form longitudinal cuts that permit easy removal of the insulation. Each of the blades is located within the concave face of a V-block, to center the blades on the wire and to limit the depth of blade penetration.

  13. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  14. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  15. Ultrasonic level sensors for liquids under high pressure

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  16. Maxillary molar derotation and distalization by using a nickel-titanium wire fabricated on a setup model

    PubMed Central

    Jung, Jong Moon; Wi, Young Joo; Koo, Hyun Mo; Kim, Min Ji

    2017-01-01

    The purpose of this article is to introduce a simple appliance that uses a setup model and a nickel-titanium (Ni-Ti) wire for correcting the mesial rotation and drift of the permanent maxillary first molar. The technique involves bonding a Ni-Ti wire to the proper position of the target tooth on a setup model, followed by the fabrication of the transfer cap for indirect bonding and its transfer to the patient's teeth. This appliance causes less discomfort and provides better oral hygiene for the patients than do conventional appliances such as the bracket, pendulum, and distal jet. The treatment time is also shorter with the new appliance than with full-fixed appliances. Moreover, the applicability of the new appliance can be expanded to many cases by using screws or splinting with adjacent teeth to improve anchorage. PMID:28670568

  17. Maxillary molar derotation and distalization by using a nickel-titanium wire fabricated on a setup model.

    PubMed

    Jung, Jong Moon; Wi, Young Joo; Koo, Hyun Mo; Kim, Min Ji; Chun, Youn Sic

    2017-07-01

    The purpose of this article is to introduce a simple appliance that uses a setup model and a nickel-titanium (Ni-Ti) wire for correcting the mesial rotation and drift of the permanent maxillary first molar. The technique involves bonding a Ni-Ti wire to the proper position of the target tooth on a setup model, followed by the fabrication of the transfer cap for indirect bonding and its transfer to the patient's teeth. This appliance causes less discomfort and provides better oral hygiene for the patients than do conventional appliances such as the bracket, pendulum, and distal jet. The treatment time is also shorter with the new appliance than with full-fixed appliances. Moreover, the applicability of the new appliance can be expanded to many cases by using screws or splinting with adjacent teeth to improve anchorage.

  18. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems

    PubMed Central

    Lim, Jaemyung; Tekes, Coskun; Degertekin, F. Levent; Ghovanloo, Maysam

    2016-01-01

    Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 mm2 in a 0.35-μm standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed. PMID:27662686

  19. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems.

    PubMed

    Lim, Jaemyung; Tekes, Coskun; Degertekin, F Levent; Ghovanloo, Maysam

    2017-04-01

    Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 [Formula: see text] in a 0.35- [Formula: see text] standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed.

  20. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  1. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.

    PubMed

    Le Crom, Bénédicte; Castaings, Michel

    2010-04-01

    This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.

  2. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  3. Simultaneous treatment of washing, disinfection and sterilization using ultrasonic levitation, silver electrolysis and ozone oxidation.

    PubMed

    Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori

    2009-03-01

    A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis.

  4. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  5. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  6. Improvements in the Formation of Boron-Doped Diamond Coatings on Platinum Wires Using the Novel Nucleation Process (NNP)

    PubMed Central

    Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.

    2010-01-01

    In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759

  7. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  8. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  9. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  10. Development of Integrated and Flexible Ultrasonic Transducers for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Ting

    2011-12-01

    High temperature (HT) integrated (IUTs) and flexible ultrasonic transducers (FUTs) for potential aerospace applications in the area of nondestructive testing (NDT) and structural health monitoring (SHM) are developed. The main merits are that IUTs can be fabricated on-site and FUTs are feasible and attractive for on-site installation. The piezoelectric composite films of these HT ultrasonic transducers (HTUTs) are made by sol-gel spray fabrication. Lead-zirconate titanate composite (PZT-c), bismuth titanate composite (BIT-c), or lithium niobate composite (LiNbO3-c) films were coated onto metallic substrates with planar and curved surfaces and investigated as IUTs. Their maximum operating temperatures were demonstrated at up to 150°C, 400°C, and 800°C, respectively. PZT-c or BIT-c films were coated onto 75 mum or 38 mum thick metallic membranes and were investigated as FUTs. They can be bonded onto flat or curved surfaces for NDT and SHM. An FUT made of BIT-c film coated onto a stainless steel membrane glued onto a steel plate was performed at up to 300°C. Besides being coated onto metallic materials, sol-gel sprayed composite films were also coated onto graphite/epoxy (Gr/Ep) plates as IUTs and 50 mum thick polyimide films as FUTs for the thickness and delamination evaluation. Using acoustic mode conversion techniques, HTUTs for shear (S) wave, surface acoustic wave (SAW), and plate acoustic wave (PAW), have been developed. HT ultrasonic probes simultaneously producing one longitudinal (L) and two orthogonally polarized S waves were demonstrated in metallic and Plexiglas probes. The potential applications of these probes were discussed. Also applying mode conversion approaches, HT symmetrical, anti-symmetrical, and shear horizontal (SH) PAWs UTs for NDT and SHM were developed. The results showed that the SH PAWs may be the best candidate for NDT and SHM purposes for plate structures. Generation and detection of guided acoustic waves for NDT were demonstrated by

  11. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  12. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  13. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  14. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    PubMed

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  16. The effect of different final irrigant activation techniques on the bond strength of an epoxy resin-based endodontic sealer: a preliminary study.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Tuncay, Öznur; Demirbuga, Sezer; Dinçer, Asiye Nur; Arslan, Hakan

    2014-06-01

    The aim of this study was to evaluate whether or not different final irrigation activation techniques affect the bond strength of an epoxy resin-based endodontic sealer (AH Plus; Dentsply DeTrey, Konstanz, Germany) to the root canal walls of different root thirds. Eighty single-rooted human mandibular premolars were prepared by using the ProTaper system (Dentsply Maillefer, Ballaigues, Switzerland) to size F4, and a final irrigation regimen using 3% sodium hypochlorite and 17% EDTA was performed. The specimens were randomly divided into 4 groups (n = 20) according to the final irrigation activation technique used as follows: no activation (control), manual dynamic activation (MDA), CanalBrush (Coltene Whaledent, Altststten, Switzerland) activation, and ultrasonic activation. Five specimens from each group were prepared for scanning electron microscopic observation to assess the smear layer removal after the final irrigation procedures. All remaining roots were then obturated with gutta-percha and AH Plus sealer. A push-out test was used to measure the bond strength between the root canal dentin and AH Plus sealer. The data obtained from the push-out test were analyzed using 2-way analysis of variance and Tukey post hoc tests. The bond strength values mostly decreased in the coronoapical direction (P < .001). In the coronal and middle thirds, ultrasonic activiation showed a higher bond strength than other groups (P < .05). In the apical third, MDA displayed the highest bond strength to root dentin (P < .05). The majority of specimens exhibited cohesive failures. The bond strength of AH Plus sealer to root canal dentin may improve with ultrasonic activation in the coronal and middle thirds and MDA in the apical third. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  18. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.

    PubMed

    Wang, Zhenjun; Xu, Yuanming

    2017-07-01

    With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers

  19. Advance High Temperature Inspection Capabilities for Small Modular Reactors: Part 1 - Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Leonard J.; Bowler, John R.

    The project objective was to investigate the development non-destructive evaluation techniques for advanced small modular reactors (aSMR), where the research sought to provide key enabling inspection technologies needed to support the design and maintenance of reactor component performance. The project tasks for the development of inspection techniques to be applied to small modular reactor are being addressed through two related activities. The first is focused on high temperature ultrasonic transducers development (this report Part 1) and the second is focused on an advanced eddy current inspection capability (Part 2). For both inspection techniques the primary aim is to develop in-servicemore » inspection techniques that can be carried out under standby condition in a fast reactor at a temperature of approximately 250°C in the presence of liquid sodium. The piezoelectric material and the bonding between layers have been recognized as key factors fundamental for development of robust ultrasonic transducers. Dielectric constant characterization of bismuth scantanate-lead titanate ((1-x)BiScO 3-xPbTiO 3) (BS-PT) has shown a high Curie temperature in excess of 450°C , suitable for hot stand-by inspection in liquid metal reactors. High temperature pulse-echo contact measurements have been performed with BS-PT bonded to 12.5 mm thick 1018-low carbon steel plate from 20C up to 260 C. High temperature air-backed immersion transducers have been developed with BS-PT, high temperature epoxy and quarter wavlength nickel plate, needed for wetting ability in liquid sodium. Ultrasonic immersion measurements have been performed in water up to 92C and in silicone oil up to 140C. Physics based models have been validated with room temperature experimental data with benchmark artifical defects.« less

  20. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  1. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  2. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  3. Synthesis of phosphonic acid silver-graphene oxide nanomaterials with photocatalytic activity through ultrasonic-assisted method.

    PubMed

    Li, Yongshen; Song, Yunna; Ma, Zheng; Niu, Shuai; Li, Jihui; Li, Ning

    2018-06-01

    In this article, phosphonic acid silver-graphene oxide nanomaterials (Nano-PAS-GO) was synthesized from silver nitrate (AgNO 3 ) solution and phosphoric graphene oxide (PGO) via the convenient ultrasonic-assisted method, and the structure and morphology were characterized, and the photocatalytic activity and recyclability were evaluated through photocatalyzing degradation of Rhodamin B (RhB) aqueous solution, and the possible photocatalytic mechanism was also discussed. Based on those, it was confirmed that Nano-PAS-GO has been synthesized from AgNO 3 solution and PGO colloidal suspension under ultrasonic-assisted condition, and Nano-PAS-GO has consisted of phosphoric acid silver nanoparticles and GO with 2D lattice (2D GO lattice) connected in the form of C-P bonds, and the photodegradation rate of Nano-PAS-GO for RhB aqueous solution has reached 93.99%, and Nano-PAS-GO has possessed the nicer recyclability when the photocatalytic time was 50 min. From those results, the strong and stable interface . between PAS nanoparticles and 2D GO lattice connected in the form of the covalent bonds has effectively inhibited the occurrence of the photocorrosion phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  5. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  6. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  7. Fabrication and Characterization of Diffusion Bonds for Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Halbig, Michael; Singh, Mrityunjay; Martin, Richard E.; Cosgriff, Laura M.

    2007-01-01

    Diffusion bonds of silicon carbide (SiC) were fabricated using several different types of titanium (Ti) based interlayers between the SiC substrates. The interlayers were an alloyed Ti foil, a pure Ti foil, and a physically vapor deposited (PVD) Ti coating. Microscopy was conducted to evaluate the cross-sections of the resulting bonds. Microprobe analysis identified reaction formed phases in the diffusion bonded region. Uniform and well adhered bonds were formed between the SiC substrates. In the case where the alloyed Ti foil or a thick Ti coating (i.e. 20 micron) was used as the interlayer, microcracks and several phases were present in the diffusion bonds. When a thinner interlayer was used (i.e. 10 micron PVD Ti), no microcracks were observed and only two reaction formed phases were present. The two phases were preferred and fully reacted phases that did not introduce thermal stresses or microcracks during the cool-down stage after processing. Diffusion bonded samples were evaluated with the non-destructive evaluation (NDE) methods of pulsed thermography and immersion ultrasonic testing. Joined SiC substrates that were fully bonded and that had simulated bond flaws in the interlayer were also evaluated using immersion ultrasound. Pull testing was conducted on the bonds to determine the tensile strength. To demonstrate the joining approach for a complex multilayered component for a low NOx injector application, the diffusion bonding approach was used to join three 4" diameter SiC discs that contained complex fuel and air flow channels.

  8. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    NASA Astrophysics Data System (ADS)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  9. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  10. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  11. En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding

    PubMed Central

    Jee, Jeong-Hyun; Ahn, Hyo-Won; Seo, Kyung-Won; Kook, Yoon-Ah; Chung, Kyu-Rhim; Nelson, Gerald

    2014-01-01

    Objective To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Methods Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with pre-adjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Results Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Conclusions Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency. PMID:25309863

  12. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  13. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  14. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  15. Influence of metal bonding layer on strain transfer performance of FBG

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  16. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  17. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  18. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    PubMed

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  19. Universal behavior of surface-dangling bonds in hydrogen-terminated Si, Ge, and Si/Ge nanowires.

    NASA Astrophysics Data System (ADS)

    Nunes, Ricardo; Kagimura, Ricardo; Chacham, Hélio

    2007-03-01

    We report an ab initio study of the electronic properties of surface dangling bond (SDB) states in hydrogen-terminated Si, Ge, and Si/Ge nanowires with diameters between 1 and 2 nm. We find that the charge transition levels ɛ(+/-) of SDB states are deep in the bandgap for Si wires, and shallow (near the valence band edge) for Ge wires. In both Si and Ge wires, the SDB states are localized. We also find that the SDB ɛ(+/-) levels behave as a ``universal" energy reference level among Si, Ge, and Si/Ge wires within a precision of 0.1 eV. By computing the average bewteen the electron affinity and ionization energy in the atomi limit of several atoms from the III, IV and V columns, we conjecture that the universality is a periodic-table atomic property.

  20. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  1. Hot wire anemometer measurements in the unheated air flow tests of the SRB nozzle-to-case joint

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    1988-01-01

    Hot-Wire Anemometer measurements made in the Solid Rocket Booster (SRB) nozzle-to-case joint are discussed. The study was undertaken to glean additional information on the circumferential flow induced in the SRB nozzle joint and the effect of this flow on the insulation bonding flaws. The tests were conducted on a full-scale, 2-D representation of a 65-in long segment of the SRB nozzle joint, with unheated air as the working fluid. Both the flight Mach number and Reynolds number were matched simultaneously and different pressure gradients imposed along the joint face were investigated. Hot-wire anemometers were used to obtain velocity data for different joint gaps and debond configurations. The procedure adopted for hot-wire calibration and use is outlined and the results from the tests summarized.

  2. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  3. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  4. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  5. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  6. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  7. Two-Wire to Four-Wire Audio Converter

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr; Seale, B. L.

    1983-01-01

    Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.

  8. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  9. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  10. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  11. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  12. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  13. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  14. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  15. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  16. Ultrasonic Signal Processing for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.

    2004-02-01

    Permanently mounted ultrasonic sensors are a key component of systems under development for structural health monitoring. Signal processing plays a critical role in the viability of such systems due to the difficulty in interpreting signals received from structures of complex geometry. This paper describes a differential feature-based approach to classifying signal changes as either "environmental" or "structural". Data are presented from piezoelectric discs bonded to an aluminum specimen subjected to both environmental changes and introduction of artificial defects. The classifier developed as part of this study was able to correctly identify artificial defects that were not part of the initial training and evaluation data sets. Central to the success of the classifier was the use of the Short Time Cross Correlation to measure coherency between the signal and reference as a function of time.

  17. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  18. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  19. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  20. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  1. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  2. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  3. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  4. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  5. Characterization and Modeling of Fine-Pitch Copper Ball Bonding on a Cu/Low- k Chip

    NASA Astrophysics Data System (ADS)

    Che, F. X.; Wai, L. C.; Zhang, Xiaowu; Chai, T. C.

    2015-02-01

    Cu ball bonding faces more challenges than Au ball bonding, for example, excessive deformation of the bond pad and damage of Cu/low- k structures, because of the much greater hardness of Cu free air balls. In this study, dynamic finite-element analysis (FEA) modeling with displacement control was developed to simulate the ball-bonding process. The three-dimensional (3D) FEA simulation results were confirmed by use of stress-measurement data, obtained by use of stress sensors built into the test chip. Stress comparison between two-dimensional (2D) and 3D FEA models showed the 2D plain strain model to be a reasonable and effective model for simulation of the ball-bonding process without loss of accuracy; it also saves computing resources. The 2D FEA model developed was then used in studies of a Cu/low- k chip to find ways of reducing Al bond pad deformation and stresses of low- k structures. The variables studied included Al pad properties, capillary geometry, bond pad design (Al pad thickness, Al pad coated with Ni layer), and the effect of ultrasonic bonding power.

  6. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  7. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  8. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  9. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  10. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  11. Wire-guided sphincterotomy.

    PubMed

    Sherman, S; Uzer, M F; Lehman, G A

    1994-12-01

    Guidewire-assisted techniques have acquired an important role in endoscopic interventions in the pancreaticobiliary tree. The wire-guided sphincterotome allows the endoscopist to maintain direct access to the biliary tree before or after the sphincterotomy. It has the additional advantages of allowing for more expeditious placement of accessories and being useful in combined percutaneous-endoscopic procedures. There are two basic designs of wire-guided sphincterotomes. The single-channel model has a single lumen for both the cutting wire and guidewire and requires guidewire removal before the application of power. The double-channel model has two separate lumens for the guidewire and stainless steel cutting wire. In vitro data suggest that significant capacitive coupling currents (or short circuits) may occur on the standard Teflon-coated guidewire when used with a double lumen sphincterotome, resulting in electrosurgical burns. Thus, the manufacturers of the double-lumen models recommend removing the Teflon-coated wire before performing sphincterotomy. Although limited data in humans have been published, it appears that wire-guided sphincterotomy and standard sphincterotomy have similar complication rates. More safety information in humans is awaited.

  12. Ultrasonic Methods for Human Motion Detection

    DTIC Science & Technology

    2006-10-01

    contacts. The active method utilizes continuous wave ultrasonic Doppler sonar . Human motions have unique Doppler signatures and their combination...The present article reports results of human motion investigations with help of CW ultrasonic Doppler sonar . Low-cost, low-power ultrasonic motion...have been developed for operation in air [10]. Benefits of using ultrasonic CW Doppler sonar included the low-cost, low-electric noise, small size

  13. Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors

    NASA Astrophysics Data System (ADS)

    Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.

    2005-09-01

    The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.

  14. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection

    NASA Astrophysics Data System (ADS)

    Arun, K.; Dhayalan, R.; Balasubramaniam, Krishnan; Maxfield, Bruce; Peres, Patrick; Barnoncel, David

    2012-05-01

    The evaluation of adhesively bonded structures has been a challenge over the several decades that these structures have been used. Applications within the aerospace industry often call for particularly high performance adhesive bonds. Several techniques have been proposed for the detection of disbonds and cohesive weakness but a reliable NDE method for detecting interfacial weakness (also sometimes called a kissing bond) has been elusive. Different techniques, including ultrasonic, thermal imaging and shearographic methods, have been proposed; all have had some degree of success. In particular, ultrasonic methods, including those based upon shear and guided waves, have been explored for the assessment of interfacial bond quality. Since 3-D guided shear horizontal (SH) waves in plates have predominantly shear displacement at the plate surfaces, we conjectured that SH guided waves should be influenced by interfacial conditions when they propagate between adhesively bonded plates of comparable thickness. This paper describes a new technique based on SH guided waves that propagate within and through a lap joint. Through mechanisms we have yet to fully understand, the propagation of an SH wave through a lap joint gives rise to a reverberation signal that is due to one or more reflections of an SH guided wave mode within that lap joint. Based upon a combination of numerical simulations and measurements, this method shows promise for detecting and classifying interfacial bonds. It is also apparent from our measurements that the SH wave modes can discriminate between adhesive and cohesive bond weakness in both Aluminum-Epoxy-Aluminum and Composite-Epoxy-Composite lap joints. All measurements reported here used periodic permanent magnet (PPM) Electro-Magnetic Acoustic Transducers (EMATs) to generate either or both of the two lowest order SH modes in the plates that comprise the lap joint. This exact configuration has been simulated using finite element (FE) models to

  15. U.S. Navy Wire-Rope Handbook. Volume 2. Wire-Rope Analysis and Design Data

    DTIC Science & Technology

    1976-01-01

    beneficial from the standpoint of wire - bending stress. How- ever, there is a design trade-off here in that the smaller L/d becomes, the lower are the...wires of a rope, it is first necessary to determine the radii of curvature of the wires prior to and after bending the rope. The wire - bending stress can... wire bending stress. 4.3. CONTACT STRESSES Contact stresses in a wire rope are one of the most important determinants of its fatigue life and are, by far

  16. Ultrasonically assisted synthesis of lead oxide nanoflowers using ball milling

    NASA Astrophysics Data System (ADS)

    Bangi, Uzma K. H.; Park, Hyung-Ho; Han, Wooje; Prakshale, Vipul M.; Deshmukh, Lalasaheb P.

    2017-05-01

    The experimental results on the ultrasonically assisted synthesis of lead oxide nanoflowers using ball milling have been reported in the present work. Lead oxide nanoflowers were prepared employing mixed ligands by subjecting the formed precipitate to ultrasonication and grinding/ball milling. The effect of ball milling as well as fine grinding in agate mortar on the microstructure and surface morphology of the lead oxide was studied. The characteristics of synthesized PbO were studied using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and field emission scanning electron microscopy techniques. XRD results demonstrated the tetragonal phase of PbO with crystallite size of around 25 nm and strain of 3.6 × 10-3 calculated from Williamson-Hall plot. FESEM images manifested the formation of nanodiscs and nanoflowers with a diameter of around 300 nm and thickness of 50 nm. XPS spectra revealed the formation of PbO with photoelectron peak of Pb 4f and O 1 s lied at 137.68 and 529.96 eV. Moreover, FTIR spectrum exhibited Pb-O bond peak in the range of 400-530 cm-1.

  17. Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer.

    PubMed

    Xiao, Yong; Wang, Qiwei; Wang, Ling; Zeng, Xian; Li, Mingyu; Wang, Ziqi; Zhang, Xingyi; Zhu, Xiaomeng

    2018-07-01

    In this study, Cu alloy joints were fabricated with a Ni-foam reinforced Sn-based composite solder with the assistance of ultrasonic vibration. Effects of ultrasonic soldering time on the microstructure and mechanical properties of Cu/Ni-Sn/Cu joints were investigated. Results showed that exceptional metallurgic bonding could be acquired with the assistance of ultrasonic vibration using a self-developed Ni-foam/Sn composite solder. For joint soldered for 5 s, a (Cu,Ni) 6 Sn 5 intermetallic compound (IMC) layer was formed on the Cu substrate surface, Ni skeletons distributed randomly in the soldering seam and a serrated (Ni,Cu) 3 Sn 4 IMC layer was formed on the Ni skeleton surface. Increasing the soldering time to 20 s, the (Ni,Cu) 3 Sn 4 IMC layer grew significantly and exhibited a loose porous structure on the Ni skeleton surface. Further increase the soldering time to 30 s, Ni skeletons were largely dissolved in the Sn base solder, and micro-sized (Ni,Cu) 3 Sn 4 particles were formed and dispersed homogeneously in the soldering seam. The formation of (Ni,Cu) 3 Sn 4 particles was mainly ascribed to acoustic cavitations induced erosion and grain refining effects. The joint soldered for 30 s exhibited the highest shear strength of 64.9 ± 3.3 MPa, and the shearing failure mainly occurred at the soldering seam/Cu substrate interface. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  19. PROCESSING OF HIGH-PERFORMANCE Nb{sub 3}Sn WIRES THROUGH A NEW DIFFUSION REACTION USING Sn BASED ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, K.; Sasaki, H.; Yamaguchi, M.

    Tightly consolidated Sn-Ta and Sn-B based alloys have been prepared by the reaction among constituent metal powders at 750-775 deg. C. Sn-Ta and Sn-B based alloys exhibit quite similar microstructures. A small amount of Ti addition seems to improve the bonding between Ta or B particles and Sn matrix. Nb{sub 3}Sn wires have been fabricated by the Jelly Roll (JR) and Multi-rod (MR) process using Sn based alloy sheet and rod, respectively. Thick Nb{sub 3}Sn layers with nearly stoichiometric A15 composition are synthesized through a new diffusion mechanism between Nb and Sn based alloy. B{sub c2}(4.2 K)'s of 26.9 Tmore » (mid) and 26.5 T (mid) have been obtained in the JR and MR processed wires, respectively, using Sn-Ta based alloy. These wires exhibit enough non-Cu J{sub c} to be used above 20 T and 4.2 K. T{sub c} of JR wires using Sn-B based sheet is 18.14 K (offset) which is slightly higher than that of wires using Sn-Ta based sheet.« less

  20. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  1. 'There were more wires than him': the potential for wireless patient monitoring in neonatal intensive care.

    PubMed

    Bonner, Oliver; Beardsall, Kathryn; Crilly, Nathan; Lasenby, Joan

    2017-02-01

    The neonatal intensive care unit (NICU) can be one of the most stressful hospital environments. Alongside providing intensive clinical care, it is important that parents have the opportunity for regular physical contact with their babies because the neonatal period is critical for parent-child bonding. At present, monitoring technology in the NICU requires multiple wired sensors to track each baby's vital signs. This study describes the experiences that parents and nurses have with the current monitoring methods, and reports on their responses to the concept of a wireless monitoring system. Semistructured interviews were conducted with six parents, each of whom had babies on the unit, and seven nurses who cared for those babies. The interviews initially focused on the participants' experiences of the current wired system and then on their responses to the concept of a wireless system. The transcripts were analysed using a general inductive approach to identify relevant themes. Participants reported on physical and psychological barriers to parental care, the ways in which the current system obstructed the efficient delivery of clinical care and the perceived benefits and risks of a wireless system. The parents and nurses identified that the wires impeded baby-parent bonding; physically and psychologically. While a wireless system was viewed as potentially enabling greater interaction, staff and parents highlighted potential concerns, including the size, weight and battery life of any new device. The many wires required to safely monitor babies within the NICU creates a negative environment for parents at a critical developmental period, in terms of physical and psychological interactions. Nurses also experience challenges with the existing system, which could negatively impact the clinical care delivery. Developing a wireless system could overcome these barriers, but there remain challenges in designing a device suitable for this unique environment.

  2. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  3. Kirschner wire bending.

    PubMed

    Firoozabadi, Reza; Kramer, Patricia A; Benirschke, Stephen K

    2013-11-01

    Although Kirschner wires are useful implants in many situations, migration of the wire and irritation of the surrounding soft tissues are common complications. Seven steps are described herein, which result in a Kirschner wire that is bent 180° angle, providing a smooth anchor into bone. Use of this technique produces implants that provide stable fixation with few soft tissue complications.

  4. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  5. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  6. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  7. Influence of power density on polymerization behavior and bond strengths of dual-cured resin direct core foundation systems.

    PubMed

    Oto, Tatsuki; Yasuda, Genta; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi; Platt, Jeffrey A

    2009-01-01

    This study examined the influence of power density on dentin bond strength and polymerization behavior of dual-cured direct core foundation resin systems. Two commercially available dual-cured direct core foundation resin systems, Clearfil DC Core Automix with Clearfil DC Bond and UniFil Core with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in autopolymerizing resin and the facial dentin surfaces were ground wet on 600-grit SiC paper. Dentin surfaces were treated according to manufacturer's recommendations. The resin pastes were condensed into the mold and cured with the power densities of 0 (no irradiation), 100, 200, 400 and 600 mW/cm2. Ten specimens per group were stored in 37 degrees C water for 24 hours, then shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. An ultrasonic measurement device was used to measure the ultrasonic velocities through the core foundation resins. The power densities selected were 0 (no irradiation), 200, and 600 mW/cm2, and ultrasonic velocity was calculated. ANOVA and Tukey HSD tests were performed at a level of 0.05. The highest bond strengths were obtained when the resin pastes were cured with the highest power density for both core foundation systems (16.8 +/- 1.9 MPa for Clearfil DC Core Automix, 15.6 +/- 2.9 MPa for UniFil Core). When polymerized with the power densities under 200 mW/cm2, significantly lower bond strengths were observed compared to those obtained with the power density of 600 mW/cm2. As the core foundation resins hardened, the sonic velocities increased and this tendency differed among the power density of the curing unit. When the sonic velocities at three minutes after the start of measurements were compared, there were no significant differences among different irradiation modes for UniFil Core, while a significant decrease in sonic velocity was obtained when the resin paste was chemically polymerized compared with dual-polymerization for Clearfil

  8. KommonBase - A precise direct bonding system for labial fixed appliances.

    PubMed

    Miyashita, Wataru; Komori, Akira; Takemoto, Kyoto

    2017-09-01

    "KommonBase" is a system designed to customize the bracket base by means of an extended resin base covering the tooth. This system enables precise bracket placement and accurate fit on teeth. Moreover, KommonBase can be easily fabricated in a laboratory and bonded on each tooth using simple clinical procedures. Straight-wire treatment without wire bending was achieved in the clinical cases presented in this article using the KommonBase system for a labial fixed appliance. The application of KommonBase to the vestibular side enables efficient orthodontic treatment using simple mechanics. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.

  9. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  11. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...

  12. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...

  13. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  14. An energy harvesting type ultrasonic motor.

    PubMed

    Wang, Guangqing; Xu, Wentan; Gao, Shuaishuai; Yang, Binqiang; Lu, Guoli

    2017-03-01

    An energy harvesting type ultrasonic motor is presented in this work. The novel motor not only can drive and/or position the motion mechanism, but also can harvest and convert the vibration-induced energy of the stator into electric energy to power small electronic devices. In the new motor, the stator is a sandwich structure of two PZT rings and an elastic metal body. The PZT ring bonded on the bottom surface is used to excite the stator metal body to generate a traveling wave with converse piezoelectric effect, and the other PZT ring bonded on top surface is used to harvest and convert the vibration-induced energy of the stator into electric energy with direct piezoelectric effect. Finite element method is adopted to analyze the vibration characteristics and the energetic characteristic. After the fabrication of a prototype, the mechanical output and electric energy output abilities are measured. The maximum no-load speed and maximum output torque of the prototype are 117rpm and 0.65Nm at an exciting voltage with amplitude of 134 V p-p and frequency of 40kHz, and the maximum harvesting output power of per sector area of the harvesting PZT is 327mW under an optimal equivalent load resistance of 6.9kΩ. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  16. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  17. Impact of different rectangular wires on torsional expression of different sizes of buccal tube.

    PubMed

    Ajami, Shabnam; Boroujeni, Afshar-Rasti

    2018-01-01

    Torsions in rectangular wires are the essential part of corrections in the finishing stage of treatment. Moreover the greatest amounts of torques are applied in the molar areas. a clinically effective moment is between 5 and 20 Nmm. In this study we have decided to evaluate the impact of different tube sizes and different dimensions of wires with different modulus of elasticities on the amount torsional bond strength of molar tubes. 60 human impacted molar teeth were collected. A buccal tube was bonded on the buccal surface of all the samples by using light cured adhesive resin. After that, the teeth were mounted in a hard acrylic block. According to the size of buccal tube and the rectangular wires to be tested 4 groups will be designed. Torsional force was applied by instron machine. The torque angle at 5Nmm and at 20Nmm point will be calculated: which means, how many degrees of torque is required to reach the maximum 20Nmm moment from the minimum 5Nmm.One-way ANOVA was used to compare torque angle in all of the groups. The least amount of clinically significant angle was 2.2 ᵒ in the 0.017×0.025 SS and the largest amount of it was 23.7 ᵒ in the 0.017×0.025 TMA in 0.018×0.025 slot molar tube. But, this angle was 19.9 ᵒand 13.6 ᵒ in 0.019×0.025 SS and 0.019×0.025 TMA archwire in 0.022×0.028 molar tube. The 0.017×0.025 SS archwire in 0.018×0.025 molar tube had the lowest clinically significant angle. The largest amount was seen in group 0.017×0.025 TMA in 0.018×0.025 slot molar tube. Key words: Torsional efficacy, rectangular wires, buccal tubes, torque angle.

  18. Impact of different rectangular wires on torsional expression of different sizes of buccal tube

    PubMed Central

    Boroujeni, Afshar-Rasti

    2018-01-01

    Background Torsions in rectangular wires are the essential part of corrections in the finishing stage of treatment. Moreover the greatest amounts of torques are applied in the molar areas. a clinically effective moment is between 5 and 20 Nmm. In this study we have decided to evaluate the impact of different tube sizes and different dimensions of wires with different modulus of elasticities on the amount torsional bond strength of molar tubes. Material and Methods 60 human impacted molar teeth were collected. A buccal tube was bonded on the buccal surface of all the samples by using light cured adhesive resin. After that, the teeth were mounted in a hard acrylic block. According to the size of buccal tube and the rectangular wires to be tested 4 groups will be designed. Torsional force was applied by instron machine. The torque angle at 5Nmm and at 20Nmm point will be calculated: which means, how many degrees of torque is required to reach the maximum 20Nmm moment from the minimum 5Nmm.One-way ANOVA was used to compare torque angle in all of the groups. Results The least amount of clinically significant angle was 2.2 ᵒ in the 0.017×0.025 SS and the largest amount of it was 23.7 ᵒ in the 0.017×0.025 TMA in 0.018×0.025 slot molar tube. But, this angle was 19.9 ᵒand 13.6 ᵒ in 0.019×0.025 SS and 0.019×0.025 TMA archwire in 0.022×0.028 molar tube. Conclusions The 0.017×0.025 SS archwire in 0.018×0.025 molar tube had the lowest clinically significant angle. The largest amount was seen in group 0.017×0.025 TMA in 0.018×0.025 slot molar tube. Key words: Torsional efficacy, rectangular wires, buccal tubes, torque angle. PMID:29670712

  19. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...

  20. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...

  1. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  2. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  3. Composite biaxially textured substrates using ultrasonic consolidation

    DOEpatents

    Blue, Craig A; Goyal, Amit

    2013-04-23

    A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.

  4. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  5. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  6. Impact tensile testing of wires

    NASA Technical Reports Server (NTRS)

    Dawson, T. H.

    1976-01-01

    The test consists of fixing one end of a wire specimen and allowing a threaded falling weight to strike the other. Assuming the dynamic stress in the wire to be a function only of its strain, energy considerations show for negligible wire inertia effects that the governing dynamic stress-strain law can be determined directly from impact energy vs. wire elongation data. Theoretical calculations are presented which show negligible wire inertia effects for ratios of wire mass to striking mass of the order of .01 or less. The test method is applied to soft copper wires and the dynamic stress-strain curve so determined is found to be about 30 percent higher than the corresponding static curve.

  7. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    DTIC Science & Technology

    2016-02-01

    certification process. INTRODUCTION The ultrasonic inspection of aerospace composites has been demonstrated to be one of the most effective methods to...normal part conditions. Anomalous indications studied in this program include inserted materials, porosity, ply ‘laps and gaps’, and wrinkles . Inserted...partially scanned inserts at the radii. Wrinkles , laps and gaps have also been included in the truth table, but detection rates for these flaws are

  9. Comparative range of orthodontic wires.

    PubMed

    Ingram, S B; Gipe, D P; Smith, R J

    1986-10-01

    ADA specification No. 32 for determining the range (elastic limit) of orthodontic wires uses the bending of a wire section treated as a cantilever beam. An alternative method for defining the range of orthodontic wires proposed by Waters (1981) is to wrap wire sections around mandrels of varying diameters and measure the deformation imparted after unwrapping. Four brass mandrels with a total of 46 test diameters ranging from 3.5 to 60.0 mm were used in this study. Wire sections 9 cm in length were rolled on the mandrel with a hand lathe. The mandrel cross section required to produce a predetermined amount of deformation (2 mm arc height for a 5 cm chord) was defined as the yield diameter for that particular wire. No individual wire was tested twice so as to avoid introduction of strain history. Test samples of 488 different orthodontic wires supplied by nine commercial distributors were evaluated (a total of 4,747 samples). Stainless steel wires of identical dimensions had a large variation in range, depending on the state of strain hardening and heat treatment. For example, 0.020 inch round wire had yield diameters ranging from 22.8 mm for Australian special plus orange (TP Laboratories) to 42.9 mm for Nubryte gold (G.A.C. International). Chromium cobalt wires had less range than stainless steel before heat treatment, but increased greatly in range after heat treatment. Nitinol (Unitek) had the greatest range of all wires tested (yield diameter of 8.7 mm for 0.016 inch Nitinol). Multistranded stainless steel wires had yield diameters between 9.0 and 14.0 mm.

  10. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  11. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  12. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  13. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  14. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic scaler is a device intended for use during dental cleaning and periodontal (gum) therapy to remove calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth. (b...

  15. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  16. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Herz, Jack L. (Inventor); Sherrit, Stewart (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  17. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  18. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  19. Characteristics of the First Longitudinal-Fourth Bending Mode Linear Ultrasonic Motors

    NASA Astrophysics Data System (ADS)

    Park, Taegone; Kim, Beomjin; Kim, Myong-Ho; Uchino, Kenji

    2002-11-01

    Linear ultrasonic motors using a combination of the first longitudinal mode and the fourth bending mode were designed and fabricated. The driving characteristics of the motors, which were composed of a straight metal bar bonded with piezoelectric ceramic vibrators as a driving element, were measured. Unimorph and bimorph ceramic vibrators were attached on three kinds of metal bars for constructing the stators of the linear motors. As results, motors made with the bimorph ceramic vibrators had higher velocity than motors of the unimorph vibrators. As a metal bar for stator, magnesium alloy, which has lower elastic coefficient than aluminum alloy, was better for the motors.

  20. Measurement of the degree of cure in epoxies with ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Winfree, W. P.; Parker, F. R.

    1986-01-01

    The use of ultrasonic longitudinal velocity values to measure the degree of cure (defined for an epoxide system as the concentration of epoxide/amine bonds divided by the initial epoxide concentration) in epoxy resins is investigated. The experimental setup used to measure the changes in longitudinal velocity with time is described, together with the technique used to calculate the degree of cure from the acoustic data, using the principle of additive module. Measurements were done with diglycidyl ether of bisphenol A epoxy resin cured with an amine adduct agent. Good qualitative agreement was shown between the time dependence of the acoustically measured degree of cure and the predicted rate of reaction.

  1. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  2. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  3. Complete modeling of rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph

    2000-06-01

    Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors are being adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and analytical tools for the design of efficient motors are being developed. A hybrid analytical model was developed to address a complete ultrasonic motor as a system. Included in this model is the influence of the rotor dynamics, which was determined experimentally to be important to the motor performance. The analysis employs a 3D finite element model to express the dynamic characteristics of the stator with piezoelectric elements and the rotor. The details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. are included to support practical USM designs. A brush model is used for the interface layer and Coulomb's law for the friction between the stator and the rotor. The theoretical predictions were corroborated experimentally for the motor. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  4. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...

  6. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...

  7. In vitro tensile bond strength of adhesive cements to new post materials.

    PubMed

    O'Keefe, K L; Miller, B H; Powers, J M

    2000-01-01

    The purpose of this study was to measure the in vitro tensile bond strength of 3 types of adhesive resin cements to stainless steel, titanium, carbon fiber-reinforced resin, and zirconium oxide post materials. Disks of post materials were polished to 600 grit, air abraded, and ultrasonically cleaned. Zirconium oxide bonding surfaces were pretreated with hydrofluoric acid and silanated. Bis-Core, C&B Metabond, and Panavia cements were bonded to the post specimens and placed in a humidor for 24 hours. Post specimens were debonded in tension. Means and standard deviations (n = 5) were analyzed by 2-way analysis of variance. Tukey-Kramer intervals at the 0.05 significance level were calculated. Failure modes were observed. Panavia 21 provided the highest bond strengths for all types of post materials, ranging from 22 MPa (zirconium oxide) to 37 MPa (titanium). C&B Metabond bonded significantly more strongly to stainless steel (27 MPa) and titanium (22 MPa) than to zirconium oxide (7 MPa). Bis-Core results were the lowest, ranging from 16 MPa (stainless steel) to 8 MPa (zirconium oxide). In most cases, bonds to carbon fiber post materials were weaker than to stainless steel and titanium, but stronger than to zirconium oxide. In general, higher bond strengths resulted in a higher percentage of cohesive failures within the cement. Panavia 21 provided the highest bond strengths to all post materials, followed by C&B Metabond. In most cases, adhesive resins had higher bond strengths to stainless steel, titanium, and carbon fiber than to zirconium oxide.

  8. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  9. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  10. Development of Integrated Preamplifier for High-Frequency Ultrasonic Transducers and Low-Power Handheld Receiver

    PubMed Central

    Choi, Hojong; Li, Xiang; Lau, Sien-Ting; Hu, ChangHong; Zhou, Qifa; Shung, K. Kirk

    2012-01-01

    This paper describes the design of a front-end circuit consisting of an integrated preamplifier with a Sallen-Key Butterworth filter for very-high-frequency ultrasonic transducers and a low-power handheld receiver. This preamplifier was fabricated using a 0.18-μm 7WL SiGe bi-polar complementary metal oxide semiconductor (BiCMOS) process. The Sallen-Key filter is used to increase the voltage gain of the front-end circuit for high-frequency transducers which are generally low in sensitivity. The measured peak voltage gain of the frontend circuits for the BiCMOS preamplifier with the Sallen-Key filter was 41.28 dB at 100 MHz with a −6-dB bandwidth of 91%, and the dc power consumption of the BiCMOS preamplifier was 49.53 mW. The peak voltage gain of the front-end circuits for the CMOS preamplifier with the Sallen-Key filter was 39.52 dB at 100 MHz with a −6-dB bandwidth of 108%, and the dc power consumption of the CMOS preamplifier was 43.57 mW. Pulse-echo responses and wire phantom images with a single-element ultrasonic transducer have been acquired to demonstrate the performance of the front-end circuit. PMID:23443700

  11. Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.

    PubMed

    Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun

    2003-08-01

    The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.

  12. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  13. Weld Wire Investigation Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  14. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  15. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  16. Superconducting wire manufactured

    NASA Astrophysics Data System (ADS)

    Fu, Yuexian; Sun, Yue; Xu, Shiming; Peng, Ying

    1985-10-01

    The MF Nb/Cu Extrusion Tube Method was used to manufacture 3 kg of stable practical MF Nb2Sn composite superconducting wire containing pure Cu(RRR approx. 200)/Ta. The draw state composite wire diameter was 0.56 mm, it contained 11,448 x 2.6 micron Nb core, and the twist distance was 1.5 cm. The composite wire cross-section was pure Cu/Ta/11,448 Nb core/Cu/ 91Sn-Cu; containing 22.8 v. % pure Cu, 13.3 v. % Ta; within the Ta layer to prevent Sn diffusion. The wire was sheathed in nonalkaline glass fiber as an insulating layer. A section of wire weighing 160 g was cut off and coiled it into a small solenoid. After reaction diffusion processing at 675 C/30 and curing by vacuum dipping in paraffin, it was measured in a Nb-Ti backfield of 7.2 T intensity, a current of 129 A was passed through the Nb3Sn solenoid and produced a strength of 2.5 T, the overall magnetic field intensity of the composite magnet reached 9.7 T. At this time, the wire full current density J sub c.w. = 5.2 x 10 to the 4th power A/sq cm; the effective current density J sub c (Nb + Sn - Cu) = 8.2 x 10 to the 4th power A/sq cm.

  17. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  18. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  19. Tunable smart digital structure (SDS) to modularly assemble soft actuators with layered adhesive bonding

    NASA Astrophysics Data System (ADS)

    Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie

    2018-01-01

    Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.

  20. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  1. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  2. Flextensional ultrasonic piezoelectric micro-motor.

    PubMed

    Leinvuo, Joni T; Wilson, Stephen A; Whatmore, Roger W; Cain, Markys G

    2006-12-01

    This paper presents the experimental design, construction, and operational characteristics of a new type of standing wave piezoelectric ultrasonic micro-motor. The motor uses a composite stator, consisting of a metallic flex-tensional mode converter, or "cymbal", bonded to a 2-mm-square piezoelectric plate. The cymbal converts contour-mode vibrations of the plate into oscillations in the cymbal, perpendicular to the stator plane. These are further converted into rotational movement in a rotor pressed against the cymbal by means of an elastic-fin friction drive to produce the required rotary actuation. The motor operates on a single-phase electrical supply, and direct control of the output speed and torque can be achieved by adjusting the amplitude and frequency of the supply voltage. Noncontact optical techniques were used to assess the performance of the developed micro-motor. The operational characteristics were developed from the acceleration and deceleration characteristics. No-load output speed (11 rev s(-1)) and stall torque (27 nNm) were derived using high-speed imaging and image analysis. Maximum efficiency was 0.6%.

  3. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.

    PubMed

    Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao

    2007-12-01

    This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P < 0.01). For the EL, a plateau region disappeared in the unloading curve. SL showed the smallest load. The ligation of the bracket wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.

  4. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  5. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  6. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    PubMed

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  7. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding

    PubMed Central

    Higginson, R. L.; Tyrer, J. R.

    2016-01-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure. PMID:28119550

  8. Hydrogen in Mono-Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu

    2004-03-01

    Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.

  9. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Treesearch

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  10. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  11. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  12. Length-Dependent Nanotransport and Charge Hopping Bottlenecks in Long Thiophene-Containing π-Conjugated Molecular Wires.

    PubMed

    Smith, Christopher E; Odoh, Samuel O; Ghosh, Soumen; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel

    2015-12-23

    Self-assembled conjugated molecular wires containing thiophene up to 6 nm in length were grown layer-by-layer using click chemistry. Reflection-absorption infrared spectroscopy, ellipsometry and X-ray photoelectron spectroscopy were used to follow the stepwise growth. The electronic structure of the conjugated wires was studied with cyclic voltammetry and UV-vis spectroscopy as well as computationally with density functional theory (DFT). The current-voltage curves (±1 V) of the conjugated molecular wires were measured with conducting probe atomic force microscopy (CP-AFM) in which the molecular wire film bound to a gold substrate was contacted with a conductive AFM probe. By systematically measuring the low bias junction resistance as a function of length for molecules 1-4 nm long, we extracted the structure dependent tunneling attenuation factor (β) of 3.4 nm(-1) and a contact resistance of 220 kΩ. The crossover from tunneling to hopping transport was observed at a molecular length of 4-5 nm with an activation energy of 0.35 eV extracted from Arrhenius plots of resistance versus temperature. DFT calculations revealed localizations of spin densities (polarons) on molecular wire radical cations. The calculations were employed to gauge transition state energies for hopping of polarons along wire segments. Individual estimated transition state energies were 0.2-0.4 eV, in good agreement with the experimental activation energy. The transition states correspond to flattening of dihedral angles about specific imine bonds. These results open up possibilities to further explore the influence of molecular architecture on hopping transport in molecular junctions, and highlight the utility of DFT to understand charge localization and associated hopping-based transport.

  13. Influence of bolt tightening torque, wire size, and component reuse on wire fixation in circular external fixation.

    PubMed

    Wosar, Marc A; Marcellin-Little, Denis J; Roe, Simon C

    2002-01-01

    To evaluate the effects of bolt torque, wire size, and component reuse on the ability to maintain wire tension in 3 external skeletal fixation systems. Biomechanical study. Yield strength in tension of 1.0-, 1.2-, 1.5-, and 1.6-mm-diameter wires, and yield strength in torque of Hofmann Small Bone Fixation (SBF) cannulated and slotted bolts and IMEX regular and miniature bolts were determined on a testing machine. The minimum bolt tightening torque needed to prevent wire slippage at clinically recommended wire tensions was determined. Components were tested 10 times, and loads at slippage were recorded. The IMEX system required a mean of 8 Nm of bolt tightening torque to maintain 900 N (1.6-mm wires). The SBF system required a mean of 3 Nm bolt torque to maintain 300 N (1.0-mm wires) and 5 Nm to maintain 600 N (1.2-mm wires). The SBF cannulated bolt required 9 Nm of torque to maintain 900 N (1.5-mm wires). The SBF slotted bolts could only maintain 800 N before yield. The IMEX miniature system required a mean bolt torque of 1.1 Nm to maintain 300 N. The cannulated and slotted bolts from both manufacturers failed to maintain 70% of initial wire tension after 7 and 4 uses, respectively. The IMEX systems and the SBF system using 1.0- and 1.2-mm wires could maintain clinically recommended wire tension safely. Only the IMEX system could maintain clinically recommended wire tension safely using 1.5- or 1.6-mm wires. The SBF system using 1.0- and 1.2-mm wires and the IMEX system using all wire sizes can maintain clinically relevant wire tension. The SBF system using 1.5-mm wires could not. Cannulated and slotted bolts should not be used more than 6 and 3 times, respectively. Nuts should not be reused. Copyright 2002 by The American College of Veterinary Surgeons

  14. Ultrasonic velocity testing of steel pipeline welded joints

    NASA Astrophysics Data System (ADS)

    Carreón, Hector

    2017-04-01

    In general the ultrasonic techniques have been used to determine the mechanical properties of materials on based of their relationship with metallurgical characteristics. In this research work, the relationship between ultrasonic velocity and phased array and the microstructure of steel pipeline welded joints is investigated. Measurements of ultrasonic wave velocity were made as a function of the location across the weld. Hardness measurements were performated in an attempt to correlate with ultrasonic response. In addition, the coarse and dendritic grain structure of the weld material is extreme and unpredictably anisotropic. Thus, due to the acoustic anisotropy of the crystal itself weld material of studied joints is anisotropic, too. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of conventional ultrasonic phased array techniques becomes desirable.

  15. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  16. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  17. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  18. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  19. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  20. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  1. A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco; Marzani, Alessandro; Coccia, Stefano; Oliver, Joseph; Kosmatka, John; Rizzo, Piervincenzo; Restivo, Gaetano

    2005-05-01

    Unmanned Aerial Vehicles (UAVs) are being increasingly used in military as well as civil applications. A critical part of the structure is the adhesive bond between the wing skin and the supporting spar. If not detected early, bond defects originating during manufacturing or in service flight can lead to inefficient flight performance and eventual global failure. This paper will present results from a bond inspection system based on attached piezoelectric disks probing the skin-to-spar bondline with ultrasonic guided waves in the hundreds of kilohertz range. The test components were CFRP composite panels of two different fiber layups bonded to a CFRP composite tube using epoxy adhesive. Three types of bond conditions were simulated, namely regions of poor cohesive strength, regions with localized disbonds and well bonded regions. The root mean square and variance of the received time-domain signals and their discrete wavelet decompositions were computed for the dominant modes propagating through the various bond regions in two different inspection configurations. Semi-analytical finite element analysis of the bonded multilayer joint was also carried out to identify and predict the sensitivity of the predominant carrier modes to the different bond defects. Emphasis of this research is based upon designing a built-in system for monitoring the structural integrity of bonded joints in UAVs and other aerospace structures.

  2. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  3. Hydrated Excess Protons Can Create Their Own Water Wires.

    PubMed

    Peng, Yuxing; Swanson, Jessica M J; Kang, Seung-gu; Zhou, Ruhong; Voth, Gregory A

    2015-07-23

    Grotthuss shuttling of an excess proton charge defect through hydrogen bonded water networks has long been the focus of theoretical and experimental studies. In this work we show that there is a related process in which water molecules move ("shuttle") through a hydrated excess proton charge defect in order to wet the path ahead for subsequent proton charge migration. This process is illustrated through reactive molecular dynamics simulations of proton transport through a hydrophobic nanotube, which penetrates through a hydrophobic region. Surprisingly, before the proton enters the nanotube, it starts "shooting" water molecules into the otherwise dry space via Grotthuss shuttling, effectively creating its own water wire where none existed before. As the proton enters the nanotube (by 2-3 Å), it completes the solvation process, transitioning the nanotube to the fully wet state. By contrast, other monatomic cations (e.g., K(+)) have just the opposite effect, by blocking the wetting process and making the nanotube even drier. As the dry nanotube gradually becomes wet when the proton charge defect enters it, the free energy barrier of proton permeation through the tube via Grotthuss shuttling drops significantly. This finding suggests that an important wetting mechanism may influence proton translocation in biological systems, i.e., one in which protons "create" their own water structures (water "wires") in hydrophobic spaces (e.g., protein pores) before migrating through them. An existing water wire, e.g., one seen in an X-ray crystal structure or MD simulations without an explicit excess proton, is therefore not a requirement for protons to transport through hydrophobic spaces.

  4. Developments in GHz-ultrasonic interferometry for elasticity studies in geophysics and materials science: application to diamond

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Jacobsen, S. D.; Holl, C. M.; Bina, C. R.

    2009-12-01

    Elastic properties of solids are fundamentally important in Earth and materials science because they govern seismic wave propagation at the geophysical scale, but are controlled at the atomic scale by the nature of interatomic bonding. GHz-ultrasonic interferometry utilizes thin-film piezoelectric transducers driven by pulse modulated, microwave-range carrier frequencies at 0.5-2.0 GHz to measure sound wave travel times in sub-millimeter sized samples (Spetzler et al. 1993). Travel times are determined from the spacing of interference fringes produced by measuring the amplitude of overlapping echoes scanned in frequency (wavelength) from opposite polished faces of single crystals. The ultrasonic signals are near-optical in wavelength at 5-20 km/s in high-modulus materials, allowing study of samples as small as a few tens of micrometers in thickness, including micro-crystals loaded in diamond-anvil cells at high pressures and temperatures. Following Jacobsen et al. (2004), both longitudinal and shear-wave measurements are possible. Although relative changes in travel time on compression or heating are measured with standard deviation of about 0.02 nanoseconds out of 20-200 ns (depending on sample thickness), the absolute accuracy of ultrasonic measurements at standard conditions, required to anchor high P-T measurements, has been limited by our ability to measure sample thickness mechanically at STP, with only 1-2 micrometer accuracy out of 20-200 μm for typical samples. Thus, we have recently installed a commercial heterodyne optical interferometer to determine ultrasonic sample lengths at STP conditions. Using a double-pass laser interferometer we achieve λ/4 fundamental optical resolution with λ/128 (about 5 nm) system resolution through software-based interpolation. By adding real-time corrections for air temperature, humidity, and pressure applied to the laser wavelength, we achieve high accuracy with standard deviations of about 0.02 micrometers in the

  5. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  6. Forming Refractory Insulation On Copper Wire

    NASA Technical Reports Server (NTRS)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  7. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  8. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  9. Ultrasonic flaw detection in a monorail box beam

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid

  10. Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  11. Structural parameter study on polymer-based ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro

    2017-11-01

    Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.

  12. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  13. Electrode carrying wire for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1990-01-01

    A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.

  14. Internal wire guide for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1989-01-01

    A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.

  15. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  16. Toward a reduced-wire readout system for ultrasound imaging.

    PubMed

    Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam

    2014-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.

  17. Toward a Reduced-Wire Readout System for Ultrasound Imaging

    PubMed Central

    Lim, Jaemyung; Arkan, Evren F.; Degertekin, F. Levent; Ghovanloo, Maysam

    2015-01-01

    We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply. PMID:25571135

  18. 21 CFR 892.1570 - Diagnostic ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic ultrasonic transducer. 892.1570 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1570 Diagnostic ultrasonic transducer. (a) Identification. A diagnostic ultrasonic transducer is a device made of a piezoelectric material...

  19. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  20. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  1. Physical mechanism of ultrasonic machining

    NASA Astrophysics Data System (ADS)

    Isaev, A.; Grechishnikov, V.; Kozochkin, M.; Pivkin, P.; Petuhov, Y.; Romanov, V.

    2016-04-01

    In this paper, the main aspects of ultrasonic machining of constructional materials are considered. Influence of coolant on surface parameters is studied. Results of experiments on ultrasonic lathe cutting with application of tangential vibrations and with use of coolant are considered.

  2. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12

  3. Scanning of the internal structure part with laser ultrasonic in aviation industry.

    PubMed

    Swornowski, Pawel J

    2011-01-01

    The detection of internal defects is a major production and safety issue for the newest generations of aircraft. New materials and manufacturing processes in the aircraft industry demand efficient quality assurance in manufacturing and inspection in maintenance. Advanced metallic material processes (titanium) are used or developed for the production of heavily loaded flying components (in fan blade construction). The inspection of these parts mainly made out of titanium (or CFRP) requires the determination of the percentage of bonded grain sizes around 10-30 µm. This is primarily due to the advantages of a high signal-to-noise ratio and good detection sensitivity. In this article, a diagnosing method of the blade interior by means of the laser ultrasonic is presented. Identification of small fatigue cracks presents a challenging problem during nondestructive testing of fatigue-damaged structures. Laser ultrasonic is a technique that uses two laser beams; one with a short pulse for the generation of ultrasound and another with a long pulse or continuous coupled to an optical interferometer for detection. The results of research of the internal blade structure are presented. Copyright © 2011 Wiley Periodicals, Inc.

  4. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  6. Cavitation during wire brushing

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zou, Jun; Ji, Chen

    2016-11-01

    In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.

  7. Method and apparatus to characterize ultrasonically reflective contrast agents

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor)

    1993-01-01

    A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.

  8. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  9. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  10. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  11. Effect of ultrasonic degradation of hyaluronic acid extracted from rooster comb on antioxidant and antiglycation activities.

    PubMed

    Hafsa, Jawhar; Chaouch, Mohamed Aymen; Charfeddine, Bassem; Rihouey, Christophe; Limem, Khalifa; Le Cerf, Didier; Rouatbi, Sonia; Majdoub, Hatem

    2017-12-01

    Recently, low-molecular-weight hyaluronic acid (LMWHA) has been reported to have novel features, such as free radical scavenging activities, antioxidant activities and dietary supplements. In this study, hyaluronic acid (HA) was extracted from rooster comb and LMWHA was obtained by ultrasonic degradation in order to assess their antioxidant and antiglycation activities. Molecular weight (Mw) and the content of glucuronic acid (GlcA) were used as the index for comparison of the effect of ultrasonic treatment. The effects on the structure were determined by ultraviolet (UV) spectra and Fourier transform infrared spectra (FTIR). The antioxidant activity was determined by three analytical assays (DPPH, NO and TBARS), and the inhibitory effect against glycated-BSA was also assessed. The GlcA content of HA and LMWHA was estimated at about 48.6% and 47.3%, respectively. The results demonstrate that ultrasonic irradiation decreases the Mw (1090-181 kDa) and intrinsic viscosity (1550-473 mL/g), which indicate the cleavage of the glycosidic bonds. The FTIR and UV spectra did not significantly change before and after degradation. The IC 50 value of HA and LWMHA was 1.43, 0.76 and 0.36 mg/mL and 1.20, 0.89 and 0.17 mg/mL toward DPPH, NO and TBARS, respectively. Likewise LMWHA exhibited significant inhibitory effects on the AGEs formation than HA. The results demonstrated that the ultrasonic irradiation did not damage and change the chemical structure of HA after degradation; furthermore, decreasing Mw and viscosity of LMWHA after degradation may enhance the antioxidant and antiglycation activity.

  12. [Separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella].

    PubMed

    Zhang, J; Jiang, X Y; Huang, X W

    2016-06-18

    To investigate the clinical efficacy and outcomes of two separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella. From January 2013 to January 2015, 15 consecutive patients (mean age 54.5 years) with inferior pole fractures of the patella were retrospectively included in this study. All the patients underwent open reduction and internal fixation by separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire through longitudinal incision, 4.5 d (range: 3.1-5.9 d) after initial injury. A safety check for early knee range of motion was performed before wound closure. The complications including infection, nonunion, loss of fixation and any wire breakage or irritation from implant were recorded. Anteroposterior and lateral views of the knee joint obtained during the follow-up were used to assess bony union based on the time when the fracture line disappeared. At the time of the final outpatient follow up, functional evaluation of the knee joint was conducted by Bostman system. The follow-up time was 13.1 months (range: 12-19 months) after surgery on average, immediate motion without immobilization in all the cases was allowed and there was no case of reduction loss of the fracture and wire breakage. There was no case of irritation from the implant. At the final follow-up, the average range of motion (ROM) arc was 126.7° (range: 115°-140°), the average ROM lag versus contralateral healthy leg was 10.3° (range: 0°-35°). The mean Bostman score at the last follow-up was 28.9 (range: 27-30), and graded excellent in most cases. Two separate vertical wiring is an easy and effective method to reduce the displaced inferior pole fracture of patella. Augmentation of separate vertical wiring with tension band and Kirschner-wire plus cerclage wire in these patients provides enough strength to protected the early exercise of the knee joint and

  13. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at

  14. Self-Catalyzed CdTe Wires.

    PubMed

    Baines, Tom; Papageorgiou, Giorgos; Hutter, Oliver S; Bowen, Leon; Durose, Ken; Major, Jonathan D

    2018-04-25

    CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  15. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  16. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  17. Moving Large Wiring-Harness Boards

    NASA Technical Reports Server (NTRS)

    Shepherd, Samuel D.; Gurman, Isaac

    1990-01-01

    Carrier for wiring-harness fabrication boards enables lone operator to move board easily and safely. Holds harness while operator fabricating, while being stored, and being transported to equipment frame for mounting. When positioned for assembly of wiring harness, board and carrier give operator easy and convenient access to wires and cables, when positioned for transfer of wiring harness to or from storage area, carrier holds board securely while moved by one person.

  18. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  19. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  20. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer... ultrasonic energy that is used in conjunction with an echocardiograph to provide imaging of cardiovascular...

  1. High strength, wire-reinforced electroformed structures

    NASA Technical Reports Server (NTRS)

    Kazaroff, J. M.; Duscha, R. A.; Mccandless, L. C.

    1974-01-01

    Using half-round reinforcing wires, electrodeposited matrix metal readily fills spaces between wires in intimate contact with wires and without voids. Procedure combines advantages of electroforming with high-strength of commonly available wire to produce non-welded shell structures for high pressure uses.

  2. Ultrasonic propulsion of kidney stones.

    PubMed

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  3. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  4. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  5. Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density.

    PubMed

    Ghoshdastidar, Debostuti; Senapati, Sanjib

    2016-03-28

    Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.

  6. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order

  7. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements.

    PubMed

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-10-16

    For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used-rectangular or non-rectangular-with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to

  8. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  9. SpaceWire Data Handling Demonstration System

    NASA Astrophysics Data System (ADS)

    Mills, S.; Parkes, S. M.; O'Gribin, N.

    2007-08-01

    The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.

  10. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  11. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  12. Ultrasonic humidification for telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, F.

    1994-03-01

    This article examines two installations which demonstrate that ultrasonic humidification is an excellent option for large-scale commercial installations. Many existing telephone switching centers constructed 20 to 30 years ago were equipped with electro-mechanical switching equipment that was not sensitive to humidity. Today's sophisticated solid-state telecommunications equipment requires specific levels of relative humidity to operate properly. Over the last several years, Einhorn Yaffee Prescott (formerly Rose Beaton + Rose) designed two of the largest ultrasonic humidification systems at telecommunications buildings located in Cheshire, Conn., and White Plains, N.Y. The Cheshire project was a retrofit to the existing system in a 1960smore » building; the White Plains project involved an upgrade to a totally new air handling system, including an ultrasonic humidification component, in a 1950s building.« less

  13. Investigation of factors affecting the heater wire method of calibrating fine wire thermocouples

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.

    1972-01-01

    An analytical investigation was made of a transient method of calibrating fine wire thermocouples. The system consisted of a 10 mil diameter standard thermocouple (Pt, Pt-13% Rh) and an 0.8 mil diameter chromel-alumel thermocouple attached to a 20 mil diameter electrically heated platinum wire. The calibration procedure consisted of electrically heating the wire to approximately 2500 F within about a seven-second period in an environment approximating atmospheric conditions at 120,000 feet. Rapid periodic readout of the standard and fine wire thermocouple signals permitted a comparison of the two temperature indications. An analysis was performed which indicated that the temperature distortion at the heater wire produced by the thermocouple junctions appears to be of negligible magnitude. Consequently, the calibration technique appears to be basically sound, although several practical changes which appear desirable are presented and discussed. Additional investigation is warranted to evaluate radiation effects and transient response characteristics.

  14. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  15. Towards plant wires.

    PubMed

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Twin-Axial Wire Antenna

    DTIC Science & Technology

    2015-08-06

    12 and 14 can be of differing gauges and can be either stranded or solid. In a prototype, both conductors were made from #22 solid copper wire ...08-2015 Publication Twin-Axial Wire Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L, Bldg 102T...Approved for Public Release Distribution is unlimited Attorney Docket No. 300030 1 of 10 TWIN-AXIAL WIRE ANTENNA STATEMENT OF GOVERNMENT INTEREST

  17. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  18. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    PubMed

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of lead-free single-element ultrahigh frequency (170 – 320 MHz) ultrasonic transducers

    PubMed Central

    Lam, Kwok Ho; Ji, Hong Fen; Zheng, Fan; Ren, Wei; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper presents the design, fabrication and characterization of single-element ultrahigh frequency (UHF) ultrasonic transducers in which the center frequency ranged from 170 to 320 MHz. The center frequency of > 300 MHz is the highest value of lead-free ceramic ultrasonic transducers ever reported. With concern in the environmental pollution of lead-based materials, the transducer elements presented in this work were lead-free K0.5Na0.5NbO3/Bi0.5Na0.5TiO3 (KNN/BNT) composite thick films. All transducers were evaluated in a pulse-echo arrangement. The measured −6 dB bandwidth of the transducers ranged from 35 to 64 %. With the optimized piezoelectric properties of the composite film, the insertion loss of the UHF transducers was measured and determined to range from −50 to −60 dB. In addition to the pulse-echo measurement, a 6-μm tungsten wire phantom was also imaged with a 205 MHz transducer to demonstrate the imaging capability. The measured −6 dB axial and lateral resolutions were found to be 12 μm and 50 μm, respectively. The transducer performance presented in this work is shown to be better or comparable to previously reported results even though the frequency is much higher. PMID:23485349

  20. Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.

    2013-03-01

    The wire tips in twin-wire arc-spraying (TWAS) are heated in three different zones. A high-speed camera was used to observe the melting behavior, metal breakup, and particle formation under different operating conditions. In zone (I), the wire tips are melted (liquidus metal) and directly atomized in the form of smaller droplets. Their size is a function of the specific properties of the molten metal and the exerting aerodynamic forces. Zone (II) is directly beneath zone (I) and the origin of the extruded metal sheets at the wire tips. The extruded metal sheets in the case of cored wires are shorter than those observed while using solid wires. In this study, the effects of adjustable parameters and powder filling on melting behavior, particle formation, and process instability were revealed, and a comparison between solid and cored wires was made. The findings can improve the accuracy of the TWAS process modeling.

  1. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    NASA Astrophysics Data System (ADS)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  2. Prediction of ultrasonic properties from grain angle

    Treesearch

    M.F. Kabir

    2001-01-01

    The ultrasonic properties of rubber wood were evaluated in three main symmetry axes – longitudinal (L), radial (R) and tangential direction and also at an angle rotating from the symmetry axes at different moisture content. The ultrasonic velocity were determined with a commercial ultrasonic tester of 45 kHz pulsed longitudinal waves. The experimental results were...

  3. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  4. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  5. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  6. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  7. Wiring photosystem I for direct solar hydrogen production.

    PubMed

    Lubner, Carolyn E; Grimme, Rebecca; Bryant, Donald A; Golbeck, John H

    2010-01-26

    The generation of H(2) by the use of solar energy is a promising way to supply humankind's energy needs while simultaneously mitigating environmental concerns that arise due to climate change. The challenge is to find a way to connect a photochemical module that harnesses the sun's energy to a catalytic module that generates H(2) with high quantum yields and rates. In this review, we describe a technology that employs a "molecular wire" to connect a terminal [4Fe-4S] cluster of Photosystem I directly to a catalyst, which can be either a Pt nanoparticle or the distal [4Fe-4S] cluster of an [FeFe]- or [NiFe]-hydrogenase enzyme. The keys to connecting these two moieties are surface-located cysteine residues, which serve as ligands to Fe-S clusters and which can be changed through site-specific mutagenesis to glycine residues, and the use of a molecular wire terminated in sulfhydryl groups to connect the two modules. The sulfhydryl groups at the end of the molecular wire form a direct chemical linkage to a suitable catalyst or can chemically rescue a [4Fe-4S] cluster, thereby generating a strong coordination bond. Specifically, the molecular wire can connect the F(B) iron-sulfur cluster of Photosystem I either to a Pt nanoparticle or, by using the same type of genetic modification, to the differentiated iron atom of the distal [4Fe-4S].(Cys)(3)(Gly) cluster of hydrogenase. When electrons are supplied by a sacrificial donor, this technology forms the cathode of a photochemical half-cell that evolves H(2) when illuminated. If such a device were connected to the anode of a photochemical half-cell that oxidizes water, an in vitro solar energy converter could be realized that generates only O(2) and H(2) in the light. A similar methodology can be used to connect Photosystem I to other redox proteins that have surface-located [4Fe-4S] clusters. The controlled light-driven production of strong reductants by such systems can be used to produce other biofuels or to provide

  8. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  9. Continuous Ultrasonic Inspection of Extruded Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Brian J.; Bender, Donald A.

    Nondestructive evaluation (NDE) techniques are needed for in-line monitoring of wood-plastic composite (WPC) quality during manufacturing for process control. Through-transmission ultrasonic inspection is useful in characterizing stiffness and detecting cracks and voids in a range of materials; however, little is documented about ultrasound propagation in WPC materials. The objectives of this research were to determine applicable ultrasonic transducer frequencies, coupling methods, configurations and placements for wave speed monitoring and web defect detection within an extrusion process; to quantify the effects of temperature on ultrasonic parameters; and to develop a prototype ultrasonic inspection system for a full-size extrusion line. An angledmore » beam, water-coupled ultrasonic inspection system using a pair of 50-kHz narrowband transducers was adequate for monitoring wave speed parallel to the extrusion direction. For locating internal web defects, water-coupled, 500-kHz broadband ultrasonic transducers were used in a through-thickness transmission setup. Temperature compensation factors were developed to adjust ultrasonic wave speed measurements. The prototype inspection system was demonstrated in a 55 mm conical twin-screw extrusion line.« less

  10. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  11. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  12. Ultrasonic nebulization platforms for pulmonary drug delivery.

    PubMed

    Yeo, Leslie Y; Friend, James R; McIntosh, Michelle P; Meeusen, Els N T; Morton, David A V

    2010-06-01

    Since the 1950s, ultrasonic nebulizers have played an important role in pulmonary drug delivery. As the process in which aerosol droplets are generated is independent and does not require breath-actuation, ultrasonic nebulizers, in principle, offer the potential for instantaneously fine-tuning the dose administered to the specific requirements of a patient, taking into account the patient's breathing pattern, physiological profile and disease state. Nevertheless, owing to the difficulties and limitations associated with conventional designs and technologies, ultrasonic nebulizers have never been widely adopted, and have in recent years been in a state of decline. An overview is provided on the advances in new miniature ultrasonic nebulization platforms in which large increases in lung dose efficiency have been reported. In addition to a discussion of the underlying mechanisms governing ultrasonic nebulization, in which there appears to be widely differing views, the advantages and shortcomings of conventional ultrasonic nebulization technology are reviewed and advanced state-of-the-art technologies that have been developed recently are discussed. Recent advances in ultrasonic nebulization technology demonstrate significant potential for the development of smart, portable inhalation therapy platforms for the future. Nevertheless, there remain considerable challenges that need to be addressed before such personalized delivery systems can be realized. These have to be addressed across the spectrum from fundamental physics through to in vivo device testing and dealing with the relevant regulatory framework.

  13. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant woman...

  14. Ultrasonic assisted hot metal powder compaction.

    PubMed

    Abedini, Rezvan; Abdullah, Amir; Alizadeh, Yunes

    2017-09-01

    Hot pressing of metal powders is used in production of parts with similar properties to wrought materials. During hot pressing processes, particle rearrangement, plastic deformation, creep, and diffusion are of the most effective powder densification mechanisms. Applying ultrasonic vibration is thought to result in great rates of densification and therefore higher efficiency of the process is expected. This paper deals with the effects of power ultrasonic on the densification of AA1100 aluminum powder under constant applied stress. The effects of particle size and process temperature on the densification behavior are discussed. The results show that applying ultrasonic vibration leads to an improved homogeneity and a higher relative density. Also, it is found that the effect of ultrasonic vibration is greater for finer particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial.

    PubMed

    Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore

    2009-08-01

    The purpose of this study was to investigate the efficiency of copper-nickel-titanium (CuNiTi) vs nickel-titanium (NiTi) archwires in resolving crowding of the anterior mandibular dentition. Sixty patients were included in this single-center, single-operator, double-blind randomized trial. All patients were bonded with the In Ovation-R self-ligating bracket (GAC, Central Islip, NY) with a 0.022-in slot, and the amount of crowding of the mandibular anterior dentition was assessed by using the irregularity index. The patients were randomly allocated into 2 groups of 30 patients, each receiving a 0.016-in CuNiTi 35 degrees C (Ormco, Glendora, Calif) or a 0.016-in NiTi (ModernArch, Wyomissing, Pa) wire. The type of wire selected for each patient was not disclosed to the provider or the patient. The date that each patient received a wire was recorded, and all patients were followed monthly for a maximum of 6 months. Demographic and clinical characteristics between the 2 wire groups were compared with the t test or the chi-square test and the Fisher exact test. Time to resolve crowding was explored with statistical methods for survival analysis, and alignment rate ratios for wire type and crowding level were calculated with Cox proportional hazards multivariate modeling. The type of wire (CuNiTi vs NiTi) had no significant effect on crowding alleviation (129.4 vs 121.4 days; hazard ratio, 1.3; P >0.05). Severe crowding (>5 on the irregularity index) showed a significantly higher probability of crowding alleviation duration relative to dental arches with a score of <5 (138.5 vs 113.1 days; hazard ratio, 2.2; P=0.02). The difference of the loading pattern of wires in laboratory and clinical conditions might effectively eliminate the laboratory-derived advantage of CuNiTi wires.

  16. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  17. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  18. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  19. Lumber defect detection by ultrasonics

    Treesearch

    K. A. McDonald

    1978-01-01

    Ultrasonics, the technology of high-frequency sound, has been developed as a viable means for locating most defects In lumber for use in digital form in decision-making computers. Ultrasonics has the potential for locating surface and internal defects in lumber of all species, green or dry, and rough sawn or surfaced.

  20. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    PubMed

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.