Sample records for ultrasound diagnostic signals

  1. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  2. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagzebski, J.

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less

  4. Studies on the foundation and development of diagnostic ultrasound

    PubMed Central

    Wagai, Toshio

    2007-01-01

    In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150

  5. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-01-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurologic and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared with other available imaging modalities, (2) describe how ultrasound machines produce images using sound waves, (3) discuss the steps necessary to acquire and optimize an ultrasound image, (4) understand the different ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones, and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound in musculoskeletal practice. Part 1 of this 2-part article reviews the fundamentals of clinical ultrasonographic imaging, including relevant physics, equipment, training, image optimization, and scanning principles for diagnostic and interventional purposes.

  6. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  7. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  8. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical

  9. Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-02-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.

  10. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  11. Diagnostic value of contrast-enhanced ultrasound in thyroid nodules with calcification.

    PubMed

    Jiang, Jue; Shang, Xu; Wang, Hua; Xu, Yong-Bo; Gao, Ya; Zhou, Qi

    2015-03-01

    The aim of this study was to investigate the diagnostic values of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in benign and malignant thyroid nodules with calcification. Conventional ultrasound and CEUS were performed in 122 patients with thyroid nodules with calcification. The thyroid nodules were characterized as benign or malignant by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of the two imaging methods were determined. The area under the receiver operating characteristics curve (AUC) was used to assess the diagnostic values of the two imaging methods. In 122 cases of thyroid nodules with calcification, 73 benign nodules and 49 malignant nodules were verified by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of conventional ultrasound were 50%, 77%, 59%, 69%, and 66%, respectively, and those of CEUS were 90%, 92%, 88%, 93%, and 91%, respectively. There were significant differences between the two imaging methods. AUCs of conventional ultrasound and CEUS were 0.628 ± 0.052 and 0.908 ± 0.031, suggesting low and high diagnostic values, respectively. CEUS has high diagnostic values, being significantly greater than those of conventional ultrasound, in differential diagnosis of benign and malignant thyroid nodules with calcification. Copyright © 2014. Published by Elsevier Taiwan.

  12. Ultrasound as Diagnostic Tool for Diaphragmatic Myoclonus

    PubMed Central

    Llaneza Ramos, Vesper Fe Marie; Considine, Elaine; Karp, Barbara I.; Lungu, Codrin; Alter, Katharine; Hallett, Mark

    2015-01-01

    Background Diaphragmatic myoclonus is a rare disorder of repetitive diaphragmatic contractions, acknowledged to be a spectrum that includes psychogenic features. Electromyography has been the diagnostic tool most commonly used in the literature. Methods To test if we could perform a noninvasive technique to delineate the diaphragm as the source of abnormal movements and demonstrate distractibility and entrainability, we used B-mode ultrasound in a patient with diaphragmatic myoclonus. Results Ultrasound imaging clearly delineated the diaphragm as the source of her abdominal movements. We were able to demonstrate entrainability of the diaphragm to hand tapping to a prescribed rhythm set by examiner. Conclusion We recommend the use of ultrasound as a noninvasive, convenient diagnostic tool for further studies of diaphragmatic myoclonus. We agree with previous findings that diaphragmatic myoclonus may be a functional movement disorder, as evidenced by distractibility and entrainability demonstrated on real-time video with ultrasonography. PMID:27430001

  13. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine.

    PubMed

    Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S

    2016-04-01

    Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

  14. Assessing the Risks for Modern Diagnostic Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    William, Jr.

    1998-05-01

    Some 35 years after Paul-Jacques and Pierre Curie discovered piezoelectricity, ultrasonic imaging was developed by Paul Langevin. During this work, ultrasonic energy was observed to have a detrimental biological effect. These observations were confirmed a decade later by R. W. Wood and A. L. Loomis. It was not until the early 1950s that ultrasonic exposure conditions were controlled and specified so that studies could focus on the mechanisms by which ultrasound influenced biological materials. In the late 1940s, pioneering work was initiated to image the human body by ultrasonic techniques. These engineers and physicians were aware of the deleterious ultrasound effects at sufficiently high levels; this endeavored them to keep the exposure levels reasonably low. Over the past three decades, diagnostic ultrasound has become a sophisticated technology. Yet, our understanding of the potential risks has not changed appreciably. It is very encouraging that human injury has never been attributed to clinical practice of diagnostic ultrasound.

  15. Ultrasound microscope: the new field in ultrasound diagnostics

    NASA Astrophysics Data System (ADS)

    Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    A device which is a new stage in the development of medical equipment has been developed. The device works as an ultrasound microscope in vivo and provides 4 up to 32 colored histological image. It gives possibility to estimate tissue acoustic density with the help of 4 up to 32 gradation coloring different tissues and enables tissue microcirculation visualization. With the help of the device a doctor can objectify fatty hepatitis and cirrhosis, edema of different organs and tissues as well as microcirculation in organs and tissues (e.g. muscles, myocard and bone system). New promising applications of ultrasound systems in diagnostics and for choosing individual treatment tactics, with pathogenesis being taken into account, may be developed with the help of the device.

  16. WE-A-210-00: Educational: Diagnostic Ultrasound QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will focus on the present role of ultrasound medical physics in clinical practices. The first part of the presentation will provide an overview of ultrasound QC methodologies and testing procedures. A brief review of ultrasound phantoms utilized in these testing procedures will be presented. The second part of the presentation will summarize ultrasound imaging technical standards and professional guidelines by American College of Radiology (ACR), American Institute of Ultrasound in Medicine (AIUM), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC). The current accreditation requirements by ACR and AIUM for ultrasound practices will be describedmore » and the practical aspects of implementing QC programs to be compliant with these requirements will be discussed. Learning Objectives: Achieve familiarity with common ultrasound QC test methods and ultrasound phantoms. Understand the coverage of the existing testing standards and professional guidelines on diagnostic ultrasound imaging. Learn what a medical physicist needs to know about ultrasound program accreditation and be able to implement ultrasound QC programs accordingly.« less

  17. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  18. Enhanced cytotoxic effect of cisplatin using diagnostic ultrasound and microbubbles in vitro

    NASA Astrophysics Data System (ADS)

    Sasaki, Noboru; Nakamura, Kensuke; Murakami, Masahiro; Lim, Sue Yee; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2012-10-01

    Diagnostic ultrasound has accomplished drug and gene delivery by ultrasound targeted microbubble destruction (UTMD). However, the efficacy of delivery is still relatively low. Therefore, we optimized conditions of UTMD using diagnostic ultrasound and ultrasound contrast agent microbubbles. Canine thyroid adenocarcinoma cells were cultured in a 96-well plate. After addition of cisplatin and Sonazoid®, the plate was inverted to raise microbubbles near cells and incubated. Cells were exposed to diagnostic ultrasound using a linear probe operated in the contrast harmonic imaging mode. The center frequency was 2.5 MHz with a mechanical index of 1.33 and a frame rate of 48 frames/sec. Cytotoxic effect of cisplatin was evaluated 24h after exposure using trypan blue dye exclusion test. We optimized incubation duration, cisplatin concentration, and the relationship between microbubble concentration and exposure duration. The optimum enhancement was observed at incubation duration of 5min, cisplatin concentration of 1 μg/ml, and microbubble concentration of 2.4 × 105 microbubbles/ml. Exposure duration did not influence the enhancement at the microbubble concentration of 2.4 × 105 microbubbles/ml. Our results suggest that relative low concentrations of drug and microbubbles with short exposure duration might be sufficient for drug delivery by UTMD using diagnostic ultrasound.

  19. Dependence of thresholds for pulmonary capillary hemorrhage on diagnostic ultrasound frequency.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan

    2015-06-01

    Pulmonary ultrasound examination has become routine for diagnosis in many clinical and point-of-care medical settings. However, the phenomenon of pulmonary capillary hemorrhage (PCH) induction during diagnostic ultrasound imaging presents a poorly understood risk factor. PCH was observed in anesthetized rats exposed to 1.5-, 4.5- and 12.0-MHz diagnostic ultrasound to investigate the frequency dependence of PCH thresholds. PCH was detected in the ultrasound images as growing comet tail artifacts and was assessed using photographs of the surface of excised lungs. Previous photographs acquired after exposure to 7.6-MHz diagnostic ultrasound were included for analysis. In addition, at each frequency we measured dosimetric parameters, including peak rarefactional pressure amplitude and spatial peak, pulse average intensity attenuated by rat chest wall samples. Peak rarefactional pressure amplitude thresholds determined at each frequency, based on the proportion of PCH in groups of five rats, were 1.03 ± 0.02, 1.28 ± 0.14, 1.18 ± 0.12 and 1.36 ± 0.15 MPa at 1.5, 4.5, 7.6 and 12.0 MHz, respectively. Although the PCH lesions decreased in size with increasing ultrasonic frequency, owing to the smaller beam widths and scan lengths, the peak rarefactional pressure amplitude thresholds remained approximately constant. This dependence was different from that of the mechanical index, which indicates a need for a specific dosimetric parameter for safety guidance in pulmonary ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination.

    PubMed

    Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre

    2015-10-01

    Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.

  1. Hazards, risks and safety of diagnostic ultrasound.

    PubMed

    Duck, Francis A

    2008-12-01

    The safety of exposure to diagnostic ultrasound is evaluated using a structured approach to risk assessment, based on the acoustic output of present ultrasound scanners. Thermal hazard is described, the magnitude and probability of temperature rise is reviewed, and the severity of harm from any outcome is reviewed. Similar assessments are made separately for acoustic cavitation and gas-body effects, which have previously been considered together. Finally, radiation pressure is considered in a similar manner. In each case, means to minimize the risk are suggested where appropriate. The highest risks are associated with the use of gas-bubble contrast agents. It is concluded that there is a medium risk associated with trans-cranial Doppler use, and that this use of ultrasound deserves more detailed safety review. The risks associated with the current practice of obstetric ultrasound are low. Whilst the severity of radiation pressure as a hazard is low, it is always present. Little is known about any associated cell responses and so the associated risk cannot be evaluated.

  2. Ultrasound for Distal Forearm Fracture: A Systematic Review and Diagnostic Meta-Analysis

    PubMed Central

    Douma-den Hamer, Djoke; Blanker, Marco H.; Edens, Mireille A.; Buijteweg, Lonneke N.; Boomsma, Martijn F.; van Helden, Sven H.; Mauritz, Gert-Jan

    2016-01-01

    Study Objective To determine the diagnostic accuracy of ultrasound for detecting distal forearm fractures. Methods A systematic review and diagnostic meta-analysis was performed according to the PRISMA statement. We searched MEDLINE, Web of Science and the Cochrane Library from inception to September 2015. All prospective studies of the diagnostic accuracy of ultrasound versus radiography as the reference standard were included. We excluded studies with a retrospective design and those with evidence of verification bias. We assessed the methodological quality of the included studies with the QUADAS-2 tool. We performed a meta-analysis of studies evaluating ultrasound to calculate the pooled sensitivity and specificity with 95% confidence intervals (CI95%) using a bivariate model with random effects. Subgroup and sensitivity analysis were used to examine the effect of methodological differences and other study characteristics. Results Out of 867 publications we included 16 studies with 1,204 patients and 641 fractures. The pooled test characteristics for ultrasound were: sensitivity 97% (CI95% 93–99%), specificity 95% (CI95% 89–98%), positive likelihood ratio (LR) 20.0 (8.5–47.2) and negative LR 0.03 (0.01–0.08). The corresponding pooled diagnostic odds ratio (DOR) was 667 (142–3,133). Apparent differences were shown for method of viewing, with the 6-view method showing higher specificity, positive LR, and DOR, compared to the 4-view method. Conclusion The present meta-analysis showed that ultrasound has a high accuracy for the diagnosis of distal forearm fractures in children when used by proper viewing method. Based on this, ultrasound should be considered a reliable alternative, which has the advantages of being radiation free. PMID:27196439

  3. MP3 compression of Doppler ultrasound signals.

    PubMed

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  4. Uncertainty evaluation of dead zone of diagnostic ultrasound equipment

    NASA Astrophysics Data System (ADS)

    Souza, R. M.; Alvarenga, A. V.; Braz, D. S.; Petrella, L. I.; Costa-Felix, R. P. B.

    2016-07-01

    This paper presents a model for evaluating measurement uncertainty of a feature used in the assessment of ultrasound images: dead zone. The dead zone was measured by two technicians of the INMETRO's Laboratory of Ultrasound using a phantom and following the standard IEC/TS 61390. The uncertainty model was proposed based on the Guide to the Expression of Uncertainty in Measurement. For the tested equipment, results indicate a dead zone of 1.01 mm, and based on the proposed model, the expanded uncertainty was 0.17 mm. The proposed uncertainty model contributes as a novel way for metrological evaluation of diagnostic imaging by ultrasound.

  5. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.

    PubMed

    Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A

    2009-07-01

    An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.

  6. [Contrast-enhanced Ultrasound in Diagnostic Imaging of Muscle Injuries: Perfusion Imaging in the Early Arterial Phase].

    PubMed

    Hotfiel, T; Carl, H D; Swoboda, B; Engelhardt, M; Heinrich, M; Strobel, D; Wildner, D

    2016-03-01

    Ultrasound is a standard procedure widely used in the diagnostic investigation of muscle injuries and widely described in the literature. Its advantages include rapid availability, cost effectiveness and the possibility to perform a real-time dynamic examination with the highest possible spatial resolution. In the diagnostic work-up of minor lesions (muscle stiffness, muscle strain), plain ultrasound has so far been inferior to MRI. The case presented by us is an example of the possibilities offered by contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries compared with plain B-mode image ultrasound and MRI imaging of the affected region. This case report is about a high-performance football player who sustained a muscle injury. He underwent an ultrasound examination (S 2000, 9L4 Probe, Siemens, Germany), which was performed simultaneously in the conventional and contrast-enhanced mode at the level of the lesion. An intravenous bolus injection of 4.8 ml of intravascular contrast agent (SonoVue(®), Bracco, Italy) was given via a cubital intravenous line. After that, the distribution of contrast agent was visualised in the early arterial phase. In addition, a plain magnetic resonance imaging scan of both thighs was performed for reference. On conventional ultrasound, the lesion was not clearly distinguishable from neighbouring tissue, whereas contrast-enhanced ultrasound demonstrated a well delineated, circumscribed area of impaired perfusion with hypoenhancement compared with the surrounding muscles at the clinical level of the lesion in the arterial wash-in phase (0-30 sec, after intravenous administration). The MRI scan revealed an edema signal with perifascial fluid accumulation in the corresponding site. The use of intravascular contrast agent enabled the sensitive detection of a minor injury by ultrasound for the first time. An intramuscular edema seen in the MRI scan showed a functional arterial perfusion impairment on ultrasound, which was

  7. Diagnostic performance and useful findings of ultrasound re-evaluation for patients with equivocal CT features of acute appendicitis.

    PubMed

    Kim, Mi Sung; Kwon, Heon-Ju; Kang, Kyung A; Do, In-Gu; Park, Hee-Jin; Kim, Eun Young; Hong, Hyun Pyo; Choi, Yoon Jung; Kim, Young Hwan

    2018-02-01

    To evaluate the diagnostic performance of ultrasound and to determine which ultrasound findings are useful to differentiate appendicitis from non-appendicitis in patients who underwent ultrasound re-evaluation owing to equivocal CT features of acute appendicitis. 62 patients who underwent CT examinations for suspected appendicitis followed by ultrasound re-evaluation owing to equivocal CT findings were included. Equivocal CT findings were considered based on the presence of only one or two findings among the CT criteria, and ultrasound re-evaluation was done based on a predefined structured report form. The diagnostic performance of ultrasound and independent variables to discriminate appendicitis from non-appendicitis were assessed. There were 27 patients in the appendicitis group. The overall diagnostic performance of ultrasound re-evaluation was sensitivity of 96.3%, specificity of 91.2% and accuracy of 91.9%. In terms of the performance of individual ultrasound findings, probe-induced tenderness showed the highest accuracy (86.7%) with sensitivity of 74% and specificity of 97%, followed by non-compressibility (accuracy 71.7%, sensitivity 85.2% and specificity 60.6%). The independent ultrasound findings for discriminating appendicitis were non-compressibility (p = 0.002) and increased flow on the appendiceal wall (p = 0.001). Ultrasound re-evaluation can be used to improve diagnostic accuracy in cases with equivocal CT features for diagnosing appendicitis. The presence of non-compressibility and increased vascular flow on the appendix wall are useful ultrasound findings to discriminate appendicitis from non-appendicitis. Advances in knowledge: Ultrasound re-evaluation is useful to discriminate appendicitis from non-appendicitis when CT features are inconclusive.

  8. Application of light and ultrasound for medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.

    2002-07-01

    We develop novel optical and ultrasound techniques for medical noninvasive diagnostics and treatment. In this review, we present our results on the development of: (1) optoacoustic technique for detection of small tumors; (2) optoacoustic monitoring of blood oxygenation; (3) optoacoustic monitoring during thermotherapy; (4) optical coherence tomography for monitoring of blood glucose concentration; and (5) laser- and ultrasound-based anti- cancer drug delivery technique. Motivation, experimental methods, results obtained in vitro and in vivo with the use of these techniques are presented.

  9. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    PubMed

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  10. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  11. Virtual guidance as a tool to obtain diagnostic ultrasound for spaceflight and remote environments.

    PubMed

    Martin, David S; Caine, Timothy L; Matz, Timothy; Lee, Stuart M C; Stenger, Michael B; Sargsyan, Ashot E; Platts, Steven H

    2012-10-01

    With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.

  12. Contrast-Enhanced Ultrasound as a New Investigative Tool in Diagnostic Imaging of Muscle Injuries-A Pilot Study Evaluating Conventional Ultrasound, CEUS, and Findings in MRI.

    PubMed

    Hotfiel, Thilo; Heiss, Rafael; Swoboda, Bernd; Kellermann, Marion; Gelse, Kolja; Grim, Casper; Strobel, Deike; Wildner, Dane

    2018-07-01

    To emphasize the diagnostic value of contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries with different degrees of severity by comparing findings to established imaging modalities such as conventional ultrasound and magnetic resonance imaging (MRI). Case series. Institutional study. Conventional ultrasound and CEUS were performed in the Department of Internal Medicine. Magnetic resonance imaging was carried out in the Department of Radiology within the Magnetom Avanto 1.5T and Magnetom Skyra fit 3T (Siemens Healthineers, Erlangen, Germany) and in the Institution of Imaging Diagnostics and Therapy (Magnetom Avanto 1.5T; Siemens, Erlangen, Germany). Fifteen patients who underwent an acute muscle injury were recruited. The appearance and detectable size of muscle injuries were compared between each imaging modality. The injuries were assessed by 3 independent observers and blinded between imaging modalities. All 15 injuries were identified on MRI and CEUS, whereas 10 injuries showed abnormalities in conventional ultrasound. The determination and measurement revealed significant differences between conventional ultrasound and CEUS depending on injury severity. Contrast-enhanced ultrasound revealed an impairment of microcirculation in grade I lesions (corresponding to intramuscular edema observed in MRI), which was not detectable using conventional ultrasound. Our results indicate that performing CEUS seems to be a sensitive additional diagnostic modality in the early assessment of muscle injuries. Our results highlight the advantages of CEUS in the imaging of low-grade lesions when compared with conventional ultrasound, as this was the more accurate modality for identifying intramuscular edema.

  13. Diagnostic Performance of Wells Score Combined With Point-of-care Lung and Venous Ultrasound in Suspected Pulmonary Embolism.

    PubMed

    Nazerian, Peiman; Volpicelli, Giovanni; Gigli, Chiara; Becattini, Cecilia; Sferrazza Papa, Giuseppe Francesco; Grifoni, Stefano; Vanni, Simone

    2017-03-01

    Lung and venous ultrasound are bedside diagnostic tools increasingly used in the early diagnostic approach of suspected pulmonary embolism (PE). However, the possibility of improving the conventional prediction rule for PE by integrating ultrasound has never been investigated. We performed lung and venous ultrasound in consecutive patients suspected of PE in four emergency departments. Conventional Wells score (Ws) was adjudicated by the attending physician, and ultrasound was performed by one of 20 investigators. Signs of deep venous thrombosis (DVT) at venous ultrasound and signs of pulmonary infarcts or alternative diagnoses at lung ultrasound were considered to recalculate two items of the Ws: signs and symptoms of DVT and alternative diagnosis less likely than PE. The diagnostic performances of the ultrasound-enhanced Ws (USWs) and Ws were then compared after confirmation of the final diagnosis. A total of 446 patients were studied. PE was confirmed in 125 patients (28%). USWs performed significantly better than Ws, with a sensitivity of 69.6% versus 57.6% and a specificity of 88.2% versus 68.2%. In combination with D-dimer, USWs showed an optimal failure rate (0.8%) and a significantly superior efficiency than Ws (32.3% vs. 27.2%). A strategy based on lung and venous ultrasound combined with D-dimer would allow to avoid CT pulmonary angiography in 50.5% of patients with suspected PE, compared to 27.2% when the rule without ultrasound is applied. A pretest risk stratification enhanced by ultrasound of lung and venous performs better than Ws in the early diagnostic process of PE. © 2016 by the Society for Academic Emergency Medicine.

  14. Ultrasound Metrology in Mexico: a round robin test for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Amezola Luna, R.; López Sánchez, A. L.; Elías Juárez, A. A.

    2011-02-01

    This paper presents preliminary statistical results from an on-going imaging medical ultrasound study, of particular relevance for gynecology and obstetrics areas. Its scope is twofold, firstly to compile the medical ultrasound infrastructure available in cities of Queretaro-Mexico, and second to promote the use of traceable measurement standards as a key aspect to assure quality of ultrasound examinations performed by medical specialists. The experimental methodology is based on a round robin test using an ultrasound phantom for medical imaging. The physician, using its own ultrasound machine, couplant and facilities, measures the size and depth of a set of pre-defined reflecting and absorbing targets of the reference phantom, which simulate human illnesses. Measurements performed give the medical specialist an objective feedback regarding some performance characteristics of their ultrasound examination systems, such as measurement system accuracy, dead zone, axial resolution, depth of penetration and anechoic targets detection. By the end of March 2010, 66 entities with medical ultrasound facilities, from both public and private institutions, have performed measurements. A network of medical ultrasound calibration laboratories in Mexico, with traceability to The International System of Units via national measurement standards, may indeed contribute to reduce measurement deviations and thus attain better diagnostics.

  15. Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

    PubMed Central

    2011-01-01

    Background: New transbronchial needle aspiration (TBNA) technologies have been developed, but their clinical effectiveness and determinants of diagnostic yield have not been quantified. Prospective data are needed to determine risk-adjusted diagnostic yield. Methods: We prospectively enrolled patients undergoing TBNA of mediastinal lymph nodes in the American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education (AQuIRE) multicenter database and recorded clinical, procedural, and provider information. All clinical decisions, including type of TBNA used (conventional vs endobronchial ultrasound-guided), were made by the attending bronchoscopist. The primary outcome was obtaining a specific diagnosis. Results: We enrolled 891 patients at six hospitals. Most procedures (95%) were performed with ultrasound guidance. A specific diagnosis was made in 447 cases. Unadjusted diagnostic yields were 37% to 54% for different hospitals, with significant between-hospital heterogeneity (P = .0001). Diagnostic yield was associated with annual hospital TBNA volume (OR, 1.003; 95% CI, 1.000-1.006; P = .037), smoking (OR, 1.55; 95% CI, 1.02-2.34; P = .042), biopsy of more than two sites (OR, 0.57; 95% CI, 0.38-0.85; P = .015), lymph node size (reference > 1-2 cm, ≤ 1 cm: OR, 0.51; 95% CI, 0.34-0.77; P = .003; > 2-3 cm: OR, 2.49; 95% CI, 1.61-3.85; P < .001; and > 3 cm: OR, 3.61; 95% CI, 2.17-6.00; P < .001), and positive PET scan (OR, 3.12; 95% CI, 1.39-7.01; P = .018). Biopsy was performed on more and smaller nodes at high-volume hospitals (P < .0001). Conclusions: To our knowledge, this is the first bronchoscopy study of risk-adjusted diagnostic yields on a hospital-level basis. High-volume hospitals were associated with high diagnostic yields. This study also demonstrates the value of procedural registries as a quality improvement tool. A larger number and variety of participating hospitals is needed to verify these results and to further

  16. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Diagnostic Ultrasound High Mechanical Index Impulses Restore Microvascular Flow in Peripheral Arterial Thromboembolism.

    PubMed

    Porter, Thomas R; Radio, Stanley; Lof, John; Everbach, Carr; Powers, Jeffry E; Vignon, Francois; Shi, William T; Xie, Feng

    2016-07-01

    We sought to explore mechanistically how intermittent high-mechanical-index (MI) diagnostic ultrasound impulses restore microvascular flow. Thrombotic microvascular obstruction was created in the rat hindlimb muscle of 36 rats. A diagnostic transducer confirmed occlusion with low-MI imaging during an intravenous microbubble infusion. This same transducer was used to intermittently apply ultrasound with an MI that produced stable or inertial cavitation (IC) for 10 min through a tissue-mimicking phantom. A nitric oxide inhibitor, L-Nω-nitroarginine methyl ester (L-NAME), was pre-administered to six rats. Plateau microvascular contrast intensity quantified skeletal microvascular blood volume, and postmortem staining was used to detect perivascular hemorrhage. Intermittent IC impulses produced the greatest recovery of microvascular blood volume (p < 0.0001, analysis of variance). Nitric oxide inhibition did not affect the skeletal microvascular blood volume improvement, but did result in more perivascular hemorrhage. IC inducing pulses from a diagnostic transducer can reverse microvascular obstruction after acute arterial thromboembolism. Nitric oxide may prevent unwanted bio-effects of these IC pulses. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    NASA Astrophysics Data System (ADS)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  19. The diagnostic validity of musculoskeletal ultrasound in lateral epicondylalgia: a systematic review.

    PubMed

    Dones, Valentin C; Grimmer, Karen; Thoirs, Kerry; Suarez, Consuelo G; Luker, Julie

    2014-03-03

    Ultrasound is considered a reliable, widely available, non-invasive and inexpensive imaging technique for assessing soft tissue involvement in Lateral epicondylalgia. Despite the number of diagnostic studies for Lateral Epicondylalgia, there is no consensus in the current literature on the best abnormal ultrasound findings that confirm lateral epicondylalgia. Eligible studies identified by searching electronic databases, scanning reference lists of articles and chapters on ultrasound in reference books, and consultation of experts in sonography. Three reviewers (VCDIII, KP, KW) independently searched the databases using the agreed search strategy, and independently conducted all stages of article selection. Two reviewers (VCDIII, KP) then screened titles and abstracts to remove obvious irrelevance. Potentially relevant full text publications which met the inclusion criteria were reviewed by the primary investigator (VCDIII) and another reviewer (CGS). Among the 15 included diagnostic studies in this review, seven were Level II diagnostic accuracy studies for chronic lateral epicondylalgia based on the National Health and Medical Research Council Hierarchy of Evidence. Based from the pooled sensitivity of abnormal ultrasound findings with homogenous results (p > 0.05), the hypoechogenicity of the common extensor origin has the best combination of diagnostic sensitivity and specificity. It is moderately sensitive [Sensitivity: 0.64 (0.56-0.72)] and highly specific [Specificity: 0.82 (0.72-0.90)] in determining elbows with lateral epicondylalgia. Additionally, bone changes on the lateral epicondyle [Sensitivity: 0.56 (0.50-0.62)] were moderately sensitive to chronic LE. Conversely, neovascularity [Specificity: 1.00 (0.97-1.00)], calcifications [Specificity: 0.97 (0.94-0.99)] and cortical irregularities [Specificity: 0.96 (0.88-0.99)] have strong specificity for chronic lateral epicondylalgia. There is insufficient evidence supporting the use of Power Doppler

  20. Ultrasound diagnostic of mesonephric paraovarian cyst - case report

    PubMed Central

    Bohîlțea, RE; Cîrstoiu, MM; Turcan, N; Ionescu, CA

    2016-01-01

    Paraovarian cysts are a rare pathology, constituting 10-20% of the adnexal masses. The origin can be represented by paramesonephric ducts (Hydatid cysts of Morgagni), vestiges of mesonephric ducts also represented by mesothelium, or neoplastic (cystadenomas or cystadenofibromas) that are mostly benign. Borderline or malignant paraovarian tumors are encountered less often. This article presents a case of paraovarian cyst in a 37-year-old patient, with a history of 2 pregnancies, completed by cesarean. The patient sought medical attention for an asymptomatic voluminous ovarian cyst, detected in a routine ultrasound scan. Laboratory tests and tumor markers were within normal limits. Transvaginal ultrasound and color Doppler revealed a cystic adnexal mass with 10 cm transonic, smooth, homogeneous content, avascular walls with no internal papillary projections, with a “hyperechoic line” sign of delimitation from the ovarian capsule, mostly visible when the adnexa was mobilized. The diagnostic and curative laparoscopic surgery was successful, followed by a quick recovery. The histopathological exam confirmed the benignity and the origin of the paraovarian cyst. The case was discussed in the context of the literature review concerning this pathology, drawing attention to the real possibility of differentiating ovarian from paraovarian cysts by ultrasound. PMID:27974934

  1. Comparison of Thermal Safety Practice Guidelines for Diagnostic Ultrasound Exposures.

    PubMed

    Harris, Gerald R; Church, Charles C; Dalecki, Diane; Ziskin, Marvin C; Bagley, Jennifer E

    2016-02-01

    This article examines the historical evolution of various practice guidelines designed to minimize the possibility of thermal injury during a diagnostic ultrasound examination, including those published by the American Institute of Ultrasound in Medicine, British Medical Ultrasound Society and Health Canada. The guidelines for prenatal/neonatal examinations are in general agreement, but significant differences were found for postnatal exposures. We propose sets of thermal index versus exposure time for these examination categories below which there is reasonable assurance that an examination can be conducted without risk of producing an adverse thermal effect under any scanning conditions. If it is necessary to exceed these guidelines, the occurrence of an adverse thermal event is still unlikely in most situations because of mitigating factors such as transducer movement and perfusion, but the general principle of "as low as reasonably achievable" should be followed. Some limitations of the biological effects studies underpinning the guidelines also are discussed briefly. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    NASA Astrophysics Data System (ADS)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  3. Principles of Billing for Diagnostic Ultrasound in the Office and Operating Room.

    PubMed

    Grasu, Beatrice L; Wolock, Bruce S; Sedgley, Matthew D; Murphy, Michael S

    2018-05-08

    Ultrasound is becoming more prevalent as physicians gain comfort in its diagnostic and therapeutic uses. It allows for both static and dynamic evaluation of conditions and assists in therapeutic injections of joints and tendons. Proper technique is necessary for successful use of this modality. Appropriate coding for physician reimbursement is required. We discuss common wrist and hand pathology for which ultrasound may be useful as an adjunct to diagnosis and treatment and provide an overview of technique and reimbursement codes when using ultrasound in a variety of situations. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. Therapeutic Ultrasound Bypasses Canonical Syndecan-4 Signaling to Activate Rac1*S⃞

    PubMed Central

    Mahoney, Claire M.; Morgan, Mark R.; Harrison, Andrew; Humphries, Martin J.; Bass, Mark D.

    2009-01-01

    The application of pulsed, low intensity ultrasound is emerging as a potent therapy for the treatment of complex bone fractures and tissue damage. Ultrasonic stimuli accelerate fracture healing by up to 40% and enhance tendon and ligament healing by promoting cell proliferation, migration, and matrix synthesis through an unresolved mechanism. Ultrasound treatment also induces closure of nonunion fractures, at a success rate (85% of cases) similar to that of surgical intervention (68-96%) while avoiding the complications associated with surgery. The regulation of cell adhesion necessary for wound healing depends on cooperative engagement of the extracellular matrix receptors, integrin and syndecan, as exemplified by the wound healing defects observed in syndecan- and integrin-knock-out mice. This report distinguishes the influence of ultrasound on signals downstream of the prototypic fibronectin receptors, α5β1 integrin and syndecan-4, which cooperate to regulate Rac1 and RhoA. Ultrasonic stimulation fails to activate integrins or induce cell spreading on poor, electrostatic ligands. By contrast, ultrasound treatment overcomes the necessity of engagement or expression of syndecan-4 during the process of focal adhesion formation, which normally requires simultaneous engagement of both receptors. Ultrasound exerts an influence downstream of syndecan-4 and PKCα to specifically activate Rac1, itself a critical regulator of tissue repair, and to a lesser extent RhoA. The ability of ultrasound to bypass syndecan-4 signaling, which is known to facilitate efficient tissue repair, explains the reduction in healing times observed in ultrasound-treated patients. By substituting for one of the key axes of adhesion-dependent signaling, ultrasound therapy has considerable potential as a clinical technique. PMID:19147498

  5. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice

    PubMed Central

    Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-01

    Objective To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. Results The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. Conclusions These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. Methods The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption. PMID:29435150

  6. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    PubMed

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  7. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging.

    PubMed

    McCarthy, C L; Wilson, D J; Coltman, T P

    2008-03-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  8. Comparison of Diagnostic Performance of Semi-Quantitative Knee Ultrasound and Knee Radiography with MRI: Oulu Knee Osteoarthritis Study.

    PubMed

    Podlipská, Jana; Guermazi, Ali; Lehenkari, Petri; Niinimäki, Jaakko; Roemer, Frank W; Arokoski, Jari P; Kaukinen, Päivi; Liukkonen, Esa; Lammentausta, Eveliina; Nieminen, Miika T; Tervonen, Osmo; Koski, Juhani M; Saarakkala, Simo

    2016-03-01

    Osteoarthritis (OA) is a common degenerative musculoskeletal disease highly prevalent in aging societies worldwide. Traditionally, knee OA is diagnosed using conventional radiography. However, structural changes of articular cartilage or menisci cannot be directly evaluated using this method. On the other hand, ultrasound is a promising tool able to provide direct information on soft tissue degeneration. The aim of our study was to systematically determine the site-specific diagnostic performance of semi-quantitative ultrasound grading of knee femoral articular cartilage, osteophytes and meniscal extrusion, and of radiographic assessment of joint space narrowing and osteophytes, using MRI as a reference standard. Eighty asymptomatic and 79 symptomatic subjects with mean age of 57.7 years were included in the study. Ultrasound performed best in the assessment of femoral medial and lateral osteophytes, and medial meniscal extrusion. In comparison to radiography, ultrasound performed better or at least equally well in identification of tibio-femoral osteophytes, medial meniscal extrusion and medial femoral cartilage morphological degeneration. Ultrasound provides relevant additional diagnostic information on tissue-specific morphological changes not depicted by conventional radiography. Consequently, the use of ultrasound as a complementary imaging tool along with radiography may enable more accurate and cost-effective diagnostics of knee osteoarthritis at the primary healthcare level.

  9. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  10. Implementation and optimization of ultrasound signal processing algorithms on mobile GPU

    NASA Astrophysics Data System (ADS)

    Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong

    2014-03-01

    A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNR<52.51 dB). The comparable results of CNR were obtained from both processing methods (i.e., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.

  11. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography

    PubMed Central

    Liu, Mei-Juan; Men, Yan-Ming; Zhang, Yong-Lin; Zhang, Yu-Xi; Liu, Hao

    2017-01-01

    We aimed to evaluate the diagnostic values of conventional ultrasound (US), ultrasound contrast (UC) and ultrasound elastography (UE) in distinguishing the benign and malignant thyroid nodules. A total of 100 patients with thyroid nodules receiving operative treatment were selected; they underwent the conventional US, UE and UC examinations before operation, respectively. The nodules received pathological examination after operation to distinguish benign from malignant lesions. The sensitivity, specificity and diagnostic accordance rate of each diagnostic method was evaluated by receiver operating characteristic (ROC) curve, and the area under the curve (AUC) of ROC was calculated. The manifestations of malignant thyroid nodules in conventional US examination were mostly the hypoecho, heterogeneous echo, irregular shape, unclear boundary, aspect ratio <1, microcalcification and irregular peripheral echo halo, and there were statistically significant differences compared with the benign nodules (P<0.05). UE showed that the differences between benign and malignant nodules in 2, 3 and 4 points were statistically significant (P<0.05). The manifestations of malignant nodules in UC were mostly the irregular shape, obscure boundary, no obvious enhancement, heterogeneous enhancement and visible perfusion defects, and there were statistically significant differences compared with the benign nodules (P<0.05). ROC curve showed that both sensitivity and specificity of UE and UC were superior to those of conventional US. AUC was the largest (AUC = 0.908) and the diagnostic value was the highest in the conventional US combined with UE and UC. Conventional US combined with elastography and UC can significantly improve the sensitivity, specificity and accuracy of diagnosis of benign and malignant thyroid nodules. PMID:28693244

  12. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography.

    PubMed

    Liu, Mei-Juan; Men, Yan-Ming; Zhang, Yong-Lin; Zhang, Yu-Xi; Liu, Hao

    2017-07-01

    We aimed to evaluate the diagnostic values of conventional ultrasound (US), ultrasound contrast (UC) and ultrasound elastography (UE) in distinguishing the benign and malignant thyroid nodules. A total of 100 patients with thyroid nodules receiving operative treatment were selected; they underwent the conventional US, UE and UC examinations before operation, respectively. The nodules received pathological examination after operation to distinguish benign from malignant lesions. The sensitivity, specificity and diagnostic accordance rate of each diagnostic method was evaluated by receiver operating characteristic (ROC) curve, and the area under the curve (AUC) of ROC was calculated. The manifestations of malignant thyroid nodules in conventional US examination were mostly the hypoecho, heterogeneous echo, irregular shape, unclear boundary, aspect ratio <1, microcalcification and irregular peripheral echo halo, and there were statistically significant differences compared with the benign nodules (P<0.05). UE showed that the differences between benign and malignant nodules in 2, 3 and 4 points were statistically significant (P<0.05). The manifestations of malignant nodules in UC were mostly the irregular shape, obscure boundary, no obvious enhancement, heterogeneous enhancement and visible perfusion defects, and there were statistically significant differences compared with the benign nodules (P<0.05). ROC curve showed that both sensitivity and specificity of UE and UC were superior to those of conventional US. AUC was the largest (AUC = 0.908) and the diagnostic value was the highest in the conventional US combined with UE and UC. Conventional US combined with elastography and UC can significantly improve the sensitivity, specificity and accuracy of diagnosis of benign and malignant thyroid nodules.

  13. Discussion of the quality control and performance testing of ultrasound diagnostic equipment

    NASA Astrophysics Data System (ADS)

    Jiang, Junjie

    2018-03-01

    In recent years, with the rapid development of ultrasonography, the application and popularization of new technology used in ultrasound equipment, the level of providing diagnostic information for doctors enhances unceasingly, which has become the indispensable diagnostic tool for medical institutions. The performance of equipment is directly related to the doctor’s diagnosis and the patient’s health, therefore, it is very important to choose a good method for quality control and performance testing.

  14. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  15. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  16. Diagnostic ultrasound imaging for lateral epicondylalgia: a case-control study.

    PubMed

    Heales, Luke James; Broadhurst, Nathan; Mellor, Rebecca; Hodges, Paul William; Vicenzino, Bill

    2014-11-01

    Lateral epicondylalgia (LE) is clinically diagnosed as pain over the lateral elbow that is provoked by gripping. Usually, LE responds well to conservative intervention; however, those who fail such treatment require further evaluation, including musculoskeletal ultrasound. Previous studies of musculoskeletal ultrasound have methodological flaws, such as lack of assessor blinding and failure to control for participant age, sex, and arm dominance. The purpose of this study was to assess the diagnostic use of blinded ultrasound imaging in people with clinically diagnosed LE compared with that in a control group matched for age, sex, and arm dominance. Participants (30 with LE and 30 controls) underwent clinical examination as the criterion standard test. Unilateral LE was defined as pain over the lateral epicondyle, which was provoked by palpation, resisted wrist and finger extension, and gripping. Controls without symptoms were matched for age, sex, and arm dominance. Ultrasound investigations were performed by two sonographers using a standardized protocol. Grayscale images were assessed for signs of tendon pathology and rated on a four-point ordinal scale. Power Doppler was used to assess neovascularity and rated on a five-point ordinal scale. The combination of grayscale and power Doppler imaging revealed an overall sensitivity of 90% and specificity of 47%. The positive and negative likelihood ratios for combined grayscale and power Doppler imaging were 1.69 and 0.21, respectively. Although ultrasound imaging helps confirm the absence of LE, when findings are negative for tendinopathic changes, the high prevalence of tendinopathic changes in pain-free controls challenges the specificity of the measure. The validity of ultrasound imaging to confirm tendon pathology in clinically diagnosed LE requires further study with strong methodology.

  17. Source Book of Educational Materials for Diagnostic Medical Ultrasound. Radiological Health Series.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp; And Others

    This report is a compilation of educational materials that are available in the field of diagnostic medical ultrasound. Materials, which include publications, audiovisual aids, and teaching aids, are listed under the following categories: abdominal imaging; anatomy and physiology; anatomy and embryology; bioeffects; cardiology and vasculature;…

  18. Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index.

    PubMed

    Retz, K; Kotopoulis, S; Kiserud, T; Matre, K; Eide, G E; Sande, R

    2017-08-01

    To investigate if the thermal index for bone (TIB) displayed on screen is an adequate predictor for the derated spatial-peak temporal-average (I SPTA .3 ) and spatial-peak pulse-average (I SPPA .3 ) acoustic intensities in a selection of clinical diagnostic ultrasound machines and transducers. We calibrated five clinical diagnostic ultrasound scanners and 10 transducers, using two-dimensional grayscale, color Doppler and pulsed-wave Doppler, both close to and far from the transducer, with a TIB between 0.1 and 4.0, recording 103 unique measurements. Acoustic measurements were performed in a bespoke three-axis computer-controlled scanning tank, using a 200-μm-diameter calibrated needle hydrophone. There was significant but poor correlation between the acoustic intensities and the on-screen TIB. At a TIB of 0.1, the I SPTA .3 range was 0.51-50.49 mW/cm 2 and the I SPPA .3 range was 0.01-207.29 W/cm 2 . At a TIB of 1.1, the I SPTA .3 range was 19.02-309.44 mW/cm 2 and the I SPPA .3 range was 3.87-51.89 W/cm 2 . TIB is a poor predictor for I SPTA .3 and I SPPA .3 and for the potential bioeffects of clinical diagnostic ultrasound scanners. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  19. AUGMENTATION OF MUSCLE BLOOD FLOW BY ULTRASOUND CAVITATION IS MEDIATED BY ATP AND PURINERGIC SIGNALING

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Xie, Aris; Wu, Melinda D.; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y.; Field, Joshua; Harmann, Leanne; Chilian, William M.; Linden, Joel; Lindner, Jonathan R.

    2017-01-01

    Background Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signalling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Methods Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for ten minutes after intravenous injection of 2×108 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signalling pathways were assessed by studying interventions that either (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or KATP channels; or (3) inhibited downstream signalling pathways involving endothelial nitric oxide synthase (eNOS) or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease (SCD). Results Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hrs in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with SCD. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced a nearly 40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or through adenosine produced by ectonucleotidase activity. Combined

  20. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling.

    PubMed

    Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R

    2017-03-28

    Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of

  1. Diagnostic evaluations of ultrasound and magnetic resonance imaging in mammary duct ectasia and breast cancer

    PubMed Central

    Song, Lei; Li, Liang; Liu, Bin; Yu, Dexin; Sun, Fengguo; Guo, Mingming; Ruan, Zhengmin; Zhang, Feixue

    2018-01-01

    The objective of the present study was to evaluate the diagnostic efficiency of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis and differential diagnosis of mammary duct ectasia (MDE) and breast cancer. This retrospective study was performed on 35 patients with MDE and 105 patients with breast cancer using US and MRI. Imaging features, semi-quantitative and quantitative parameters were analyzed to determine their diagnostic value for MDE and breast cancer. The average age of patients with breast cancer was increased compared with that of patients with MDE. There were no significant differences in local packages with or without tenderness ratio (P=0.259) and grade of color Doppler flow imaging (P=0.273) between the two groups. However, the morphological changes were significantly increased in breast cancer compared with MDE. In addition, there were significant diagnostic differences in US and MRI between breast cancer and MDE, including resistance index, US elastography, time-signal intensity curve, apparent diffusion coefficient, early-stage enhancement ratio, peak-of-enhancement ratio and Tpeak (P<0.05). However, there were no observable significant diagnostic differences between US, MRI and US with MRI for MDE and breast cancer (P=0.103, P=0.263 and P=0.403 respectively). Diagnosis of MDE and breast cancer requires full evaluation of multiple parameters and morphological changes of US and MRI to increase the diagnostic efficiency. US, MRI and US with MRI were all of diagnostic value for MDE and breast cancer, while US with MRI had the highest efficacy. PMID:29434865

  2. Diagnostic ultrasound and telemedicine utilization in the international space station

    NASA Astrophysics Data System (ADS)

    Carter, Stephen J.; Stewart, Brent K.; Kushmerick, Martin J.; Langer, Steve G.; Schmiedl, Udo P.; Winter, Thomas C.; Conley, Kevin E.; Jubrias, Sharon A.

    1999-01-01

    Clinical diagnostic ultrasound (US) is experiencing an expanding role that is well suited to application on the International Space Station (ISS). Diagnostic US can be used to reduce the risks associated with long duration human space flight by providing a non-invasive tool with head-to-toe diagnostic capability in both biomedical research and crew health care. General health care of the astronauts will be diagnosed with US, e.g., kidney stones, gall bladder disease, appendicitis, etc. Initial studies will focus on detection of ``ureteral jets'' in the bladder. This is a non-invasive test to rule out obstructive uropathy from kidney stones with minimal requirements for crew training. Biomedical research experiments, focusing on the effects of the microgravity environment, will be performed using both the HHU and the HDI 5000. US will be used to evaluate bone density and muscle mass in this environment. Prolonged or emergency EVAs may occur with the ISS. The hand-held ultrasound unit (HHU) and its telemedicine capability will be used in EVA settings to monitor events such as decompression sickness (DCS) microbubble formation in the cardiovascular system. There will be telemetry links between the HHU and the ATL/Lockheed Martin rack mounted HDI 5000 in the ISS Human Research Facility (HRF), as well as between the HRF and medical expertise on the ground. These links will provide the ISS with both real-time and store-and-forward telemedicine capabilities. The HHU can also be used with the existing telemedicine instrument pack (TIP).

  3. Evaluating the risk of appendiceal perforation when using ultrasound as the initial diagnostic imaging modality in children with suspected appendicitis.

    PubMed

    Alerhand, Stephen; Meltzer, James; Tay, Ee Tein

    2017-08-01

    Ultrasound scan has gained attention for diagnosing appendicitis due to its avoidance of ionizing radiation. However, studies show that ultrasound scan carries inferior sensitivity to computed tomography scan. A non-diagnostic ultrasound scan could increase the time to diagnosis and appendicectomy, particularly if follow-up computed tomography scan is needed. Some studies suggest that delaying appendicectomy increases the risk of perforation. To investigate the risk of appendiceal perforation when using ultrasound scan as the initial diagnostic imaging modality in children with suspected appendicitis. We retrospectively reviewed 1411 charts of children ≤17 years old diagnosed with appendicitis at two urban academic medical centers. Patients who underwent ultrasound scan first were compared to those who underwent computed tomography scan first. In the sub-group analysis, patients who only received ultrasound scan were compared to those who received initial ultrasound scan followed by computed tomography scan. Main outcome measures were appendiceal perforation rate and time from triage to appendicectomy. In 720 children eligible for analysis, there was no significant difference in perforation rate between those who had initial ultrasound scan and those who had initial computed tomography scan (7.3% vs. 8.9%, p = 0.44), nor in those who had ultrasound scan only and those who had initial ultrasound scan followed by computed tomography scan (8.0% vs. 5.6%, p = 0.42). Those patients who had ultrasound scan first had a shorter triage-to-incision time than those who had computed tomography scan first (9.2 (IQR: 5.9, 14.0) vs. 10.2 (IQR: 7.3, 14.3) hours, p = 0.03), whereas those who had ultrasound scan followed by computed tomography scan took longer than those who had ultrasound scan only (7.8 (IQR: 5.3, 11.6) vs. 15.1 (IQR: 10.6, 20.6), p < 0.001). Children < 12 years old receiving ultrasound scan first had lower perforation rate (p = 0.01) and

  4. Lung ultrasound as a diagnostic tool for radiographically-confirmed pneumonia in low resource settings.

    PubMed

    Ellington, Laura E; Gilman, Robert H; Chavez, Miguel A; Pervaiz, Farhan; Marin-Concha, Julio; Compen-Chang, Patricia; Riedel, Stefan; Rodriguez, Shalim J; Gaydos, Charlotte; Hardick, Justin; Tielsch, James M; Steinhoff, Mark; Benson, Jane; May, Evelyn A; Figueroa-Quintanilla, Dante; Checkley, William

    2017-07-01

    Pneumonia is a leading cause of morbidity and mortality in children worldwide; however, its diagnosis can be challenging, especially in settings where skilled clinicians or standard imaging are unavailable. We sought to determine the diagnostic accuracy of lung ultrasound when compared to radiographically-confirmed clinical pediatric pneumonia. Between January 2012 and September 2013, we consecutively enrolled children aged 2-59 months with primary respiratory complaints at the outpatient clinics, emergency department, and inpatient wards of the Instituto Nacional de Salud del Niño in Lima, Peru. All participants underwent clinical evaluation by a pediatrician and lung ultrasonography by one of three general practitioners. We also consecutively enrolled children without respiratory symptoms. Children with respiratory symptoms had a chest radiograph. We obtained ancillary laboratory testing in a subset. Final clinical diagnoses included 453 children with pneumonia, 133 with asthma, 103 with bronchiolitis, and 143 with upper respiratory infections. In total, CXR confirmed the diagnosis in 191 (42%) of 453 children with clinical pneumonia. A consolidation on lung ultrasound, which is our primary endpoint for pneumonia, had a sensitivity of 88.5%, specificity of 100%, and an area under-the-curve of 0.94 (95% CI 0.92-0.97) when compared to radiographically-confirmed clinical pneumonia. When any abnormality on lung ultrasound was compared to radiographically-confirmed clinical pneumonia the sensitivity increased to 92.2% and the specificity decreased to 95.2%, with an area under-the-curve of 0.94 (95% CI 0.91-0.96). Lung ultrasound had high diagnostic accuracy for the diagnosis of radiographically-confirmed pneumonia. Added benefits of lung ultrasound include rapid testing and high inter-rater agreement. Lung ultrasound may serve as an alternative tool for the diagnosis of pediatric pneumonia. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights

  5. Tuberculosis and the pancreas: a diagnostic challenge solved by endoscopic ultrasound. A case series.

    PubMed

    Chatterjee, Suvadip; Schmid, Matthias L; Anderson, Kirsty; Oppong, Kofi W

    2012-03-01

    Pancreatic tuberculosis is a rare disease. It can be easily confused with malignancy or pancreatitis on imaging. This could result in unnecessary surgery. As this is a treatable disease it is imperative to diagnose this condition pre-operatively. We report three cases of pancreatic tuberculosis that were diagnosed by endoscopic ultrasound. In conclusion, endoscopic ultrasound is the diagnostic modality of choice for pancreatic tuberculosis facilitating high resolution imaging, as well as sampling of tissue for staining, cytology, culture and polymerase chain reaction assay.

  6. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed Central

    Knapp, Karen

    2013-01-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners. PMID:27433192

  7. Sensitivity and specificity of diagnostic ultrasound in the diagnosis of phrenic neuropathy.

    PubMed

    Boon, Andrea J; Sekiguchi, Hiroshi; Harper, Caitlin J; Strommen, Jeffrey A; Ghahfarokhi, Leili S; Watson, James C; Sorenson, Eric J

    2014-09-30

    To determine the sensitivity and specificity of B-mode ultrasound in the diagnosis of neuromuscular diaphragmatic dysfunction, including phrenic neuropathy. A prospective study of patients with dyspnea referred to the EMG laboratory over a 2-year time frame for evaluation of neuromuscular respiratory failure who were recruited consecutively and examined with ultrasound for possible diaphragm dysfunction. Sonographic outcome measures were absolute thickness of the diaphragm and degree of increased thickness with maximal inspiration. The comparison standard for diagnosis of diaphragm dysfunction was the final clinical diagnosis of clinicians blinded to the diaphragm ultrasound results, but taking into account other diagnostic workup, including chest radiographs, fluoroscopy, phrenic nerve conduction studies, diaphragm EMG, and/or pulmonary function tests. Of 82 patients recruited over a 2-year period, 66 were enrolled in the study. Sixteen patients were excluded because of inconclusive or insufficient reference testing. One hemidiaphragm could not be adequately visualized; therefore, hemidiaphragm assessment was conducted in a total of 131 hemidiaphragms in 66 patients. Of the 82 abnormal hemidiaphragms, 76 had abnormal sonographic findings (atrophy or decreased contractility). Of the 49 normal hemidiaphragms, none had a false-positive ultrasound. Diaphragmatic ultrasound was 93% sensitive and 100% specific for the diagnosis of neuromuscular diaphragmatic dysfunction. B-mode ultrasound imaging of the diaphragm is a highly sensitive and specific tool for diagnosis of neuromuscular diaphragm dysfunction. This study provides Class II evidence that diaphragmatic ultrasound performed by well-trained individuals accurately identifies patients with neuromuscular diaphragmatic respiratory failure (sensitivity 93%; specificity 100%). © 2014 American Academy of Neurology.

  8. Ultrasound imaging using all-optical power and signal transfer in catheters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pekar, Martin; van der Mark, Martin B.

    2017-02-01

    Smart medical catheters face a connectivity challenge. An example is found in ultrasound imaging where the supply of power at the distal end and the signal transmission requires many thin and fragile wires in order to keep the catheter thin and flexible and this leads to a relatively high cost of production. We have built a fully functional benchtop demonstrator that is immediately scalable to catheter dimensions, in which all electrical wires are replaced by just two optical fibers. We show signal transfer of synthetic aperture ultrasound images as well as photovoltaic conversion to supply all electronics. The absence of conductors provides excellent galvanic isolation as well as RF and MRI compatibility and the simple design utilizing off the shelf components holds a promise of cost effectiveness all of which may help translation of these advanced devices into the clinic. We show photovoltaic conversion of 405 nm light to 45 V and 1.8 V by two blue LEDs as well as 200 MHz broad-band signal transfer using modulated 850 nm VCSEL light. Synthetic aperture ultrasound images are acquired at a frequency of 12 MHz with a collapse-mode capacitive-micromachined ultrasonic transducer. Bandwidth, noise level and dynamic range are nearly identical as shown in comparison of the images acquired with the optical link and its electrical equivalent. In conclusion, we have successfully demonstrated low-cost and scalable optical signal and power transmission for an ultrasound imaging system enjoying intrinsic RF / MRI compatibility and galvanic isolation.

  9. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  10. FPGA-based architecture for real-time data reduction of ultrasound signals.

    PubMed

    Soto-Cajiga, J A; Pedraza-Ortega, J C; Rubio-Gonzalez, C; Bandala-Sanchez, M; Romero-Troncoso, R de J

    2012-02-01

    This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-07

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  12. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    PubMed Central

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.

    2015-01-01

    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more

  13. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia.

    PubMed

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R; Harris-Love, Michael O

    2015-01-01

    Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht(2)), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m(2) determined participant assignment into the Normal LBM and Low LBM subgroups. The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht(2) (adj. R (2) = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R (2) = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R (2) = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht(2) in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with

  14. Wigner-Ville distribution and Gabor transform in Doppler ultrasound signal processing.

    PubMed

    Ghofrani, S; Ayatollahi, A; Shamsollahi, M B

    2003-01-01

    Time-frequency distributions have been used extensively for nonstationary signal analysis, they describe how the frequency content of a signal is changing in time. The Wigner-Ville distribution (WVD) is the best known. The draw back of WVD is cross-term artifacts. An alternative to the WVD is Gabor transform (GT), a signal decomposition method, which displays the time-frequency energy of a signal on a joint t-f plane without generating considerable cross-terms. In this paper the WVD and GT of ultrasound echo signals are computed analytically.

  15. Singular value decomposition of received ultrasound signal to separate tissue, blood flow, and cavitation signals

    NASA Astrophysics Data System (ADS)

    Ikeda, Hayato; Nagaoka, Ryo; Lafond, Maxime; Yoshizawa, Shin; Iwasaki, Ryosuke; Maeda, Moe; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2018-07-01

    High-intensity focused ultrasound is a noninvasive treatment applied by externally irradiating ultrasound to the body to coagulate the target tissue thermally. Recently, it has been proposed as a noninvasive treatment for vascular occlusion to replace conventional invasive treatments. Cavitation bubbles generated by the focused ultrasound can accelerate the effect of thermal coagulation. However, the tissues surrounding the target may be damaged by cavitation bubbles generated outside the treatment area. Conventional methods based on Doppler analysis only in the time domain are not suitable for monitoring blood flow in the presence of cavitation. In this study, we proposed a novel filtering method based on the differences in spatiotemporal characteristics, to separate tissue, blood flow, and cavitation by employing singular value decomposition. Signals from cavitation and blood flow were extracted automatically using spatial and temporal covariance matrices.

  16. A new method for blood velocity measurements using ultrasound FMCW signals.

    PubMed

    Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro

    2010-05-01

    The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.

  17. Evaluation of lymph node status after neoadjuvant chemotherapy in breast cancer patients: comparison of diagnostic performance of ultrasound, MRI and ¹⁸F-FDG PET/CT.

    PubMed

    You, S; Kang, D K; Jung, Y S; An, Y-S; Jeon, G S; Kim, T H

    2015-08-01

    To evaluate the diagnostic performance of ultrasound, MRI and fluorine-18 fludeoxyglucose positron emission tomography (¹⁸F-FDG PET)/CT for the diagnosis of metastatic axillary lymph node (ALN) after neoadjuvant chemotherapy (NAC) and to find out histopathological factors affecting the diagnostic performance of these imaging modalities. From January 2012 to November 2014, 191 consecutive patients with breast cancer who underwent NAC before surgery were retrospectively reviewed. We included 139 patients with ALN metastasis that was confirmed on fine needle aspiration or core needle biopsy at initial diagnosis. After NAC, 39 (28%) patients showed negative conversion of ALN on surgical specimens of sentinel lymph node (LN) or ALN. The sensitivity of ultrasound, MRI and PET/CT was 50% (48/96), 72% (70/97) and 22% (16/73), respectively. The specificity of ultrasound, MRI and PET/CT was 77% (30/39), 54% (21/39) and 85% (22/26), respectively. The Az value of combination of ultrasound and PET/CT was the highest (0.634) followed by ultrasound (0.626) and combination of ultrasound, MRI and PET/CT (0.617). The size of tumour deposit in LN and oestrogen receptor was significantly associated with the diagnostic performance of ultrasound (p < 0.001 and p = 0.009, respectively) and MRI (p = 0.045 and p = 0.036, respectively). The percentage diameter decrease, size of tumour deposit in LN, progesterone receptor, HER2 and histological grade were significantly associated with the diagnostic performance of PET/CT (p = 0.023, p = 0.002, p = 0.036, p = 0.044 and p = 0.008, respectively). On multivariate logistic regression analysis, size of tumour deposit within LN was identified as being independently associated with diagnostic performance of ultrasound [odds ratio, 13.07; 95% confidence interval (CI), 2.95-57.96] and PET/CT (odds ratio, 6.47; 95% CI, 1.407-29.737). Combination of three imaging modalities showed the highest sensitivity, and PET

  18. Comparison of the Diagnostic Performance of Power Doppler Ultrasound and a New Microvascular Doppler Ultrasound Technique (AngioPLUS) for Differentiating Benign and Malignant Breast Masses.

    PubMed

    Jung, Hae Kyoung; Park, Ah Young; Ko, Kyung Hee; Koh, Jieun

    2018-03-12

    This study was performed to compare the diagnostic performance of power Doppler ultrasound (US) and a new microvascular Doppler US technique (AngioPLUS; SuperSonic Imagine, Aix-en-Provence, France) for differentiating benign and malignant breast masses. Power Doppler US and AngioPLUS findings were available in 124 breast masses with confirmed pathologic results (benign, 80 [64.5%]; malignant, 44 [35.5%]). The diagnostic performance of each tool was calculated to distinguish benign from malignant masses using a receiver operating characteristic curve analysis and compared. The area under the curve showed that AngioPLUS was superior to power Doppler US in differentiating benign from malignant breast masses, but the difference was not statistically significant. © 2018 by the American Institute of Ultrasound in Medicine.

  19. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea.

    PubMed

    Sforza, Alfonso; Mancusi, Costantino; Carlino, Maria Viviana; Buonauro, Agostino; Barozzi, Marco; Romano, Giuseppe; Serra, Sossio; de Simone, Giovanni

    2017-06-19

    The availability of ultra-miniaturized pocket ultrasound devices (PUD) adds diagnostic power to the clinical examination. Information on accuracy of ultrasound with handheld units in immediate differential diagnosis in emergency department (ED) is poor. The aim of this study is to test the usefulness and accuracy of lung ultrasound (LUS) alone or combined with ultrasound of the heart and inferior vena cava (IVC) using a PUD for the differential diagnosis of acute dyspnea (AD). We included 68 patients presenting to the ED of "Maurizio Bufalini" Hospital in Cesena (Italy) for AD. All patients underwent integrated ultrasound examination (IUE) of lung-heart-IVC, using PUD. The series was divided into patients with dyspnea of cardiac or non-cardiac origin. We used 2 × 2 contingency tables to analyze sensitivity, specificity, positive predictive value and negative predictive value of the three ultrasonic methods and their various combinations for the diagnosis of cardiogenic dyspnea (CD), comparing with the final diagnosis made by an independent emergency physician. LUS alone exhibited a good sensitivity (92.6%) and specificity (80.5%). The highest accuracy (90%) for the diagnosis of CD was obtained with the combination of LUS and one of the other two methods (heart or IVC). The IUE with PUD is a useful extension of the clinical examination, can be readily available at the bedside or in ambulance, requires few minutes and has a reliable diagnostic discriminant ability in the setting of AD.

  20. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. © 2015 by the American Institute of

  1. WE-AB-206-02: ACR Ultrasound Accreditation: Requirements and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, J.

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less

  2. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone.

    PubMed

    Park, Young Mi; Fornage, Bruno D; Benveniste, Ana Paula; Fox, Patricia S; Bassett, Roland L; Yang, Wei Tse

    2014-12-01

    The purpose of this study was to determine the diagnostic value of strain elastography (SE) alone and in combination with gray-scale ultrasound in the diagnosis of benign versus metastatic disease for abnormal axillary lymph nodes in breast cancer patients. Patients with breast cancer and axillary lymph nodes suspicious for metastatic disease on conventional ultrasound who underwent SE of the suspicious node before ultrasound-guided fine-needle aspiration biopsy (FNAB) were included in this study. On conventional ultrasound, the long- and short-axis diameters, long-axis-to-short-axis ratio, cortical echogenicity, thickness, and evenness were documented. The nodal vascularity was assessed on power Doppler imaging. Elastograms were evaluated for the percentage of black (hard) areas in the lymph node, and the SE-ultrasound size ratio was calculated. Two readers assessed the images independently and then in consensus in cases of disagreement. ROC AUCs were calculated for conventional ultrasound, SE, and both methods combined. Interreader reliability was assessed using kappa statistics. A total of 101 patients with 104 nodes were examined; 35 nodes were benign, and 69 had metastases. SE alone showed a significantly lower AUC (62%) than did conventional ultrasound (92%) (p<0.001). There was no difference between the AUC of conventional ultrasound and the AUC of the combination of conventional ultrasound and SE (93%) (p=0.16). Interreader reliability was moderate for all variables (κ≥0.60) except the SE-ultrasound size ratio (κ=0.35). Added SE does not improve the diagnostic ability of conventional ultrasound when evaluating abnormal axillary lymph nodes.

  3. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging.

    PubMed

    Bachawal, Sunitha V; Jensen, Kristin C; Wilson, Katheryne E; Tian, Lu; Lutz, Amelie M; Willmann, Jürgen K

    2015-06-15

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T-cell coregulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor, and malignant breast pathologies for diagnostic purposes. Through an IHC analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients. ©2015 American Association for Cancer Research.

  4. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography

    ERIC Educational Resources Information Center

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  5. [Ultrasound diagnostics of muscle and tendon injuries].

    PubMed

    Stević, Ruza; Masulović, Dragan

    2009-01-01

    Sonography is a useful technique for the investigation of a number of musculoskeletal disorders. The most common indication for ultrasonography of muscles and tendons is the diagnosis of traumatic lesions, distinguishing them from other disorders and follow- up of healing process. The purpose of this paper is to show the importance of ultrasound in the diagnosis of muscle and tendon injuries. The study included 170 patients (148 male and 22 female), mean age 29.6 years (range 14-60 years). All examinations were performed by linear transducer of 7.5-10 MHz, with longitudinal and transverse scanning. Ultrasound examination followed physical examination. Traumatic lesions of muscles were diagnosed in 113 patients (66.7%) and tendon injuries in 57 cases (33.2%). The muscle changes detected by ultrasonography were the following: 70 (61.9%) partial and two (1.76%) complete ruptures, 22 (19.46%) haematoma, 9 (7.96%) strains grade I, 4 fibroses and 4 ossifying myositis 4 (3.5%, respectively). Complications of muscle injuries were diagnosed in two cases, a muscular hernia and an arteriovenous fistula. Among tendon injuries, 21 (33.8%) ruptures and 36 (66.1%) tendinitis were diagnosed. Accompanying effusion in the bursa of patients with tendon injuries was found in 9 cases. Ultrasonography allowed visualization and objective assessment of the type and the extent of traumatic pathomorphological changes of muscles and tendons. Such diagnostic possibilities of ultrasonography are especially important in the choice of appropriate therapy.

  6. A novel technique for fetal heart rate estimation from Doppler ultrasound signal

    PubMed Central

    2011-01-01

    Background The currently used fetal monitoring instrumentation that is based on Doppler ultrasound technique provides the fetal heart rate (FHR) signal with limited accuracy. It is particularly noticeable as significant decrease of clinically important feature - the variability of FHR signal. The aim of our work was to develop a novel efficient technique for processing of the ultrasound signal, which could estimate the cardiac cycle duration with accuracy comparable to a direct electrocardiography. Methods We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation. Results The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid. Conclusions The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements. PMID:21999764

  7. Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography.

    PubMed

    Kim, Chulhong; Zemp, Roger J; Wang, Lihong V

    2006-08-15

    Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.

  8. Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique.

    PubMed

    Ellis, Richard; Hing, Wayne; Dilley, Andrew; McNair, Peter

    2008-08-01

    Diagnostic ultrasound provides a technique whereby real-time, in vivo analysis of peripheral nerve movement is possible. This study measured sciatic nerve movement during a "slider" neural mobilisation technique (ankle dorsiflexion/plantar flexion and cervical extension/flexion). Transverse and longitudinal movement was assessed from still ultrasound images and video sequences by using frame-by-frame cross-correlation software. Sciatic nerve movement was recorded in the transverse and longitudinal planes. For transverse movement, at the posterior midthigh (PMT) the mean value of lateral sciatic nerve movement was 3.54 mm (standard error of measurement [SEM] +/- 1.18 mm) compared with anterior-posterior/vertical (AP) movement of 1.61 mm (SEM +/- 0.78 mm). At the popliteal crease (PC) scanning location, lateral movement was 6.62 mm (SEM +/- 1.10 mm) compared with AP movement of 3.26 mm (SEM +/- 0.99 mm). Mean longitudinal sciatic nerve movement at the PMT was 3.47 mm (SEM +/- 0.79 mm; n = 27) compared with the PC of 5.22 mm (SEM +/- 0.05 mm; n = 3). The reliability of ultrasound measurement of transverse sciatic nerve movement was fair to excellent (Intraclass correlation coefficient [ICC] = 0.39-0.76) compared with excellent (ICC = 0.75) for analysis of longitudinal movement. Diagnostic ultrasound presents a reliable, noninvasive, real-time, in vivo method for analysis of sciatic nerve movement.

  9. Direct comparison of the diagnostic yield of ultrasound-assisted Abrams and Tru-Cut needle biopsies for pleural tuberculosis.

    PubMed

    Koegelenberg, Coenraad Frederik N; Bolliger, Christoph Thomas; Theron, Johan; Walzl, Gerhard; Wright, Colleen Anne; Louw, Mercia; Diacon, Andreas Henri

    2010-10-01

    Tuberculous pleuritis remains the commonest cause of exudative effusions in areas with a high prevalence of tuberculosis and histological and/or microbiological confirmation on pleural tissue is the gold standard for its diagnosis. Uncertainty remains regarding the choice of closed pleural biopsy needles. This prospective study compared ultrasound-assisted Abrams and Tru-Cut needle biopsies with regard to their diagnostic yield for pleural tuberculosis. 89 patients (54 men) of mean ± SD age 38.7 ± 16.7 years with pleural effusions and a clinical suspicion of tuberculosis were enrolled in the study. Transthoracic ultrasound was performed on all patients, who were then randomly assigned to undergo ≥ 4 Abrams needle biopsies followed by ≥ 4 Tru-Cut needle biopsies or vice versa. Medical thoracoscopy was performed on cases with non-diagnostic closed biopsies. Histological and/or microbiological proof of tuberculosis on any pleural specimen was considered the gold standard for pleural tuberculosis. Pleural tuberculosis was diagnosed in 66 patients, alternative diagnoses were established in 20 patients and 3 remained undiagnosed. Pleural biopsy specimens obtained with Abrams needles contained pleural tissue in 81 patients (91.0%) and were diagnostic for tuberculosis in 54 patients (sensitivity 81.8%), whereas Tru-Cut needle biopsy specimens only contained pleural tissue in 70 patients (78.7%, p=0.015) and were diagnostic in 43 patients (sensitivity 65.2%, p=0.022). Ultrasound-assisted pleural biopsies performed with an Abrams needle are more likely to contain pleura and have a significantly higher diagnostic sensitivity for pleural tuberculosis.

  10. [Abdominal ultrasound course an introduction to the ultrasound technique. Physical basis. Ultrasound language].

    PubMed

    Segura-Grau, A; Sáez-Fernández, A; Rodríguez-Lorenzo, A; Díaz-Rodríguez, N

    2014-01-01

    Ultrasound is a non-invasive, accessible, and versatile diagnostic technique that uses high frequency ultrasound waves to define outline the organs of the human body, with no ionising radiation, in real time and with the capacity to visual several planes. The high diagnostic yield of the technique, together with its ease of uses plus the previously mentioned characteristics, has currently made it a routine method in daily medical practice. It is for this reason that the multidisciplinary character of this technique is being strengthened every day. To be able to perform the technique correctly requires knowledge of the physical basis of ultrasound, the method and the equipment, as well as of the human anatomy, in order to have the maximum information possible to avoid diagnostic errors due to poor interpretation or lack of information. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  11. Detection of intracavitary uterine pathology using offline analysis of three-dimensional ultrasound volumes: interobserver agreement and diagnostic accuracy.

    PubMed

    Van den Bosch, T; Valentin, L; Van Schoubroeck, D; Luts, J; Bignardi, T; Condous, G; Epstein, E; Leone, F P; Testa, A C; Van Huffel, S; Bourne, T; Timmerman, D

    2012-10-01

    To estimate the diagnostic accuracy and interobserver agreement in predicting intracavitary uterine pathology at offline analysis of three-dimensional (3D) ultrasound volumes of the uterus. 3D volumes (unenhanced ultrasound and gel infusion sonography with and without power Doppler, i.e. four volumes per patient) of 75 women presenting with abnormal uterine bleeding at a 'bleeding clinic' were assessed offline by six examiners. The sonologists were asked to provide a tentative diagnosis. A histological diagnosis was obtained by hysteroscopy with biopsy or operative hysteroscopy. Proliferative, secretory or atrophic endometrium was classified as 'normal' histology; endometrial polyps, intracavitary myomas, endometrial hyperplasia and endometrial cancer were classified as 'abnormal' histology. The diagnostic accuracy of the six sonologists with regard to normal/abnormal histology and interobserver agreement were estimated. Intracavitary pathology was diagnosed at histology in 39% of patients. Agreement between the ultrasound diagnosis and the histological diagnosis (normal vs abnormal) ranged from 67 to 83% for the six sonologists. In 45% of cases all six examiners agreed with regard to the presence/absence of intracavitary pathology. The percentage agreement between any two examiners ranged from 65 to 91% (Cohen's κ, 0.31-0.81). The Schouten κ for all six examiners was 0.51 (95% CI, 0.40-0.62), while the highest Schouten κ for any three examiners was 0.69. When analyzing stored 3D ultrasound volumes, agreement between sonologists with regard to classifying the endometrium/uterine cavity as normal or abnormal as well as the diagnostic accuracy varied substantially. Possible actions to improve interobserver agreement and diagnostic accuracy include optimization of image quality and the use of a consistent technique for analyzing the 3D volumes. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  12. [Diagnostic ultrasound in pneumothorax].

    PubMed

    Maury, É; Pichereau, C; Bourcier, S; Galbois, A; Lejour, G; Baudel, J-L; Ait-Oufella, H; Guidet, B

    2016-10-01

    For a long time the lung has been regarded as inaccessible to ultrasound. However, recent clinical studies have shown that this organ can be examined by this technique, which appears, in some situations, to be superior to thoracic radiography. The examination does not require special equipment and is possible using a combination of simple qualitative signs: lung sliding, the presence of B lines and the demonstration of the lung point. The lung sliding corresponds to the artefact produced by the movement of the two pleural layers, one against the other. The B lines indicate the presence of an interstitial syndrome. The presence of lung sliding and/or B lines has a negative predictive value of 100% and formally excludes a pneumothorax in the area where the probe has been applied. The presence of the lung point is pathognomonic of pneumothorax but the sensitivity is no more than 60%. Ultrasound is therefore a rapid and simple means of excluding a pneumothorax (lung sliding or B lines) and of confirming a pneumothorax when the lung point is visible. The question that remains is whether ultrasound can totally replace radiography in the management of this disorder. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  13. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure.

    PubMed

    Miller, Douglas L

    2016-12-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2016-08-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and display this as "comet tail" artifacts (CTAs) after a time delay. To test the hypothesis that no PCH occurs for brief scans, anesthetized rats were scanned using a 6-MHz linear array for different durations. PCH was characterized by ultrasound CTAs, micro-computed tomography (μCT), and measurements of fixed lung tissue. The μCT images revealed regions of PCH, sometimes penetrating the entire depth of a lobe, which were reflected in the fixed tissue measurements. At -3 dB of power, PCH was substantial for 300-s scans, but not significant for 25-s scans. At 0 dB, PCH was not strongly dependent on scan durations of 300 to 10 s. Contrary to the hypothesis, CTAs were not evident during most 10-s scans (p > 0.05), but PCH was significant (p = 0.02), indicating that PCH could occur without evidence of the injury in the images. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Observations of experimental and numerical waveforms of piezoelectric signals generated in bovine cancellous bone by ultrasound waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2018-07-01

    Experimental and numerical waveforms of piezoelectric signals generated in the bovine cancellous bone by ultrasound waves at 1.0 MHz were observed. The experimental observations were performed using a “piezoelectric cell (PE-cell)”, in which an air-saturated cancellous bone specimen was electrically shielded. The PE-cell was used to receive burst ultrasound waves. The numerical observations were performed using a piezoelectric finite-difference time-domain (PE-FDTD) method, which was an elastic FDTD method with piezoelectric constitutive equations. The cancellous bone model was reconstructed from the three-dimensional X-ray microcomputed tomographic image of the specimen used in the experiments. Both experimental and numerical results showed that the repetitive piezoelectric signals could be generated by the multireflected ultrasound waves within the cancellous bone specimen. Moreover, it was shown that the output piezoelectric signal in the PE-cell could be the overlap of the local signals in the trabecular elements at various depths (or thicknesses) in the cancellous bone specimen.

  16. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  17. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  18. Interceptive Beam Diagnostics - Signal Creation and Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, Michael; Spallation Neutron Source, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN

    2004-11-10

    The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.

  19. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  20. The diagnostic performance of ultrasound for acute appendicitis in pregnant and young nonpregnant women: A case-control study.

    PubMed

    Segev, Lior; Segev, Yakir; Rayman, Shlomi; Nissan, Aviram; Sadot, Eran

    2016-10-01

    Ultrasonography is frequently used to diagnose acute appendicitis in women of reproductive age, but its diagnostic value in pregnant patients remains unclear. This study sought to compare the diagnostic performance of ultrasound in pregnant and young nonpregnant women with suspected acute appendicitis. The database of a single tertiary medical center was reviewed for all women of reproductive age who underwent appendectomy either during pregnancy (2000-2014) or in the nonpregnant state (2004-2007) following ultrasound evaluation. The performance of ultrasound in terms of predicting the final pathologic diagnosis was compared between the pregnant and non pregnant groups using receiver operating characteristic curve analysis. Of 586 young women treated for appendicitis during the study periods (92 pregnant, 494 non-pregnant), 200 underwent preoperative ultrasound [67 pregnant, and 133 nonpregnant young women]. The pregnant and nonpregnant groups were comparable in age and presenting symptoms. There was no significant difference in the predictive performance of ultrasound between the two groups (AUC 0.76 and 0.73 respectively, p = 0.78) or within the pregnant group, by trimester [first (n = 23), AUC 0.73; second (n = 32), AUC 0.67; third (n = 12), AUC 0.86; p = 0.4]. Ultrasound had a positive predictive value of 0.94 in the pregnant group and 0.91 in the nonpregnant group; corresponding negative predictive values were 0.40 and 0.43. There appears to be no difference in the ability of ultrasound to predict the diagnosis of acute appendicitis between pregnant women and nonpregnant women of reproductive age. Therefore, similar preoperative imaging algorithms may be used in both patient populations. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Diagnostic Ultrasound Impulses Improve Microvascular Flow in Patients With STEMI Receiving Intravenous Microbubbles.

    PubMed

    Mathias, Wilson; Tsutsui, Jeane M; Tavares, Bruno G; Xie, Feng; Aguiar, Miguel O D; Garcia, Diego R; Oliveira, Mucio T; Soeiro, Alexandre; Nicolau, Jose C; Lemos, Pedro A; Rochitte, Carlos E; Ramires, José A F; Kalil, Roberto; Porter, Thomas R

    2016-05-31

    Pre-clinical trials have demonstrated that, during intravenous microbubble infusion, high mechanical index (HMI) impulses from a diagnostic ultrasound (DUS) transducer might restore epicardial and microvascular flow in acute ST-segment elevation myocardial infarction (STEMI). The purpose of this study was to test the safety and efficacy of this adjunctive approach in humans. From May 2014 through September 2015, patients arriving with their first STEMI were randomized to either DUS intermittent HMI impulses (n = 20) just prior to emergent percutaneous coronary intervention (PCI) and for an additional 30 min post-PCI (HMI + PCI), or low mechanical index (LMI) imaging only (n = 10) for perfusion assessments before and after PCI (LMI + PCI). All studies were conducted during an intravenous perflutren lipid microsphere infusion. A control reference group (n = 70) arrived outside of the time window of ultrasound availability and received emergent PCI alone (PCI only). Initial epicardial recanalization rates prior to emergent PCI and improvements in microvascular flow were compared between ultrasound-treated groups. Median door-to-dilation times were 82 ± 26 min in the LMI + PCI group, 72 ± 15 min in the HMI + PCI group, and 103 ± 42 min in the PCI-only group (p = NS). Angiographic recanalization prior to PCI was seen in 12 of 20 HMI + PCI patients (60%) compared with 10% of LMI + PCI and 23% of PCI-only patients (p = 0.002). There were no differences in microvascular obstructed segments prior to treatment, but there were significantly smaller proportions of obstructed segments in the HMI + PCI group at 1 month (p = 0.001) and significant improvements in left ventricular ejection fraction (p < 0.005). HMI impulses from a diagnostic transducer, combined with a commercial microbubble infusion, can prevent microvascular obstruction and improve functional outcome when added to the contemporary PCI management of acute STEMI. (Therapeutic Use of Ultrasound in

  2. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure

    PubMed Central

    Miller, Douglas L.

    2016-01-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustic radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds, and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiological conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. PMID:27649878

  3. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  4. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  5. Diagnostic Accuracy of Abdominal Ultrasound for Diagnosis of Acute Appendicitis: Systematic Review and Meta-analysis.

    PubMed

    Giljaca, Vanja; Nadarevic, Tin; Poropat, Goran; Nadarevic, Vesna Stefanac; Stimac, Davor

    2017-03-01

    To determine the diagnostic accuracy of abdominal ultrasound (US) for the diagnosis of acute appendicitis (AA), in terms of sensitivity, specificity and post-test probabilities for positive and negative result. A systematic search of MEDLINE, Embase, The Cochrane library and Science Citation Index Expanded from January 1994 to October 2014 was performed. Two authors independently evaluated studies for inclusion, extracted data and performed analyses. The reference standard for evaluation of final diagnosis was pathohistological report on tissue obtained at appendectomy. Summary sensitivity, specificity and post-test probability of AA after positive and negative result of US with corresponding 95% confidence intervals (CI) were calculated. Out of 3306 references identified through electronic searches, 17 reports met the inclusion criteria, with 2841 included participants. The summary sensitivity and specificity of US for diagnosis of AA were 69% (95% CI 59-78%) and 81% (95% CI 73-88%), respectively. At the median pretest probability of AA of 76.4%, the post-test probability for a positive and negative result of US was 92% (95% CI 88-95%) and 55% (95% CI 46-63%), respectively. Abdominal ultrasound does not seem to have a role in the diagnostic pathway for diagnosis of AA in suspected patients. The summary sensitivity and specificity of US do not exceed that of physical examination. Patients that require additional diagnostic workup should be referred to more sensitive and specific diagnostic procedures, such as computed tomography.

  6. Diagnostic value of ultrasound indicators of neoplastic risk in preoperative differentiation of adnexal masses

    PubMed Central

    Bachanek, Michał; Trojanowski, Seweryn; Cendrowski, Krzysztof; Sawicki, Włodzimierz

    2013-01-01

    Aim To assess the diagnostic value of the risk of malignancy indices and simple ultrasound- based rules in preoperative differentiation of adnexal masses. Material and methods Retrospective examination of 87 patients admitted to hospital due to adnexal tumors. The lesions were evaluated on the basis of international ultrasound classification of ovarian tumors and four risk of malignancy indices were calculated based on ultrasound examination, concentration of CA 125 and menopausal status. Results The patients were aged between 17 and 79, the mean age was 44.5 (standard deviation SD=16.6). Most of the patients (60.91%) were before their menopause. The sensitivity of the simple ultrasound-based rules in the diagnosis of malignancies equaled 64.71% and the specificity constituted 90.00%. A significant statistical difference in the presence of the malignant process was demonstrated in relation to age, menopausal status, CA 125 concentration and analyzed ultrasound score. All indices were characterized by similar sensitivity and specificity. The highest specificity and predictive value of malignant lesions out of the assessed ones was demonstrated by the risk of malignancy index proposed by Yamamoto. The risk of malignancy index according to Jacobs, however, showed the highest predictive value in the case of non-malignant lesions. Conclusions The multiparametric ultrasound examination may facilitate the selection of patients with adnexal tumors to provide them with an appropriate treatment – observation, laparotomy and laparoscopy. These parameters constitute a simple ambulatory method of determining the character of adnexal masses before recommending appropriate treatment. PMID:26674849

  7. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  8. Comparing diagnostic accuracy of bedside ultrasound and radiography for bone fracture screening in multiple trauma patients at the ED.

    PubMed

    Bolandparvaz, Shahram; Moharamzadeh, Payman; Jamali, Kazem; Pouraghaei, Mahboob; Fadaie, Maryam; Sefidbakht, Sepideh; Shahsavari, Kavous

    2013-11-01

    Long bone fractures are currently diagnosed using radiography, but radiography has some disadvantages (radiation and being time consuming). The present study compared the diagnostic accuracy of bedside ultrasound and radiography in multiple trauma patients at the emergency department (ED). The study assessed 80 injured patients with multiple trauma from February 2011 to July 2012. The patients were older than 18 years and triaged to the cardiopulmonary resuscitation ward of the ED. Bedside ultrasound and radiography were conducted for them. The findings were separately and blindly assessed by 2 radiologists. Sensitivity, specificity, the positive and negative predictive value, and κ coefficient were measured to assess the accuracy and validity of ultrasound as compared with radiography. The sensitivity of ultrasound for diagnosis of limb bone fractures was not high enough and ranged between 55% and 75% depending on the fracture site. The specificity of this diagnostic method had an acceptable range of 62% to 84%. Ultrasound negative prediction value was higher than other indices under study and ranged between 73% and 83%, but its positive prediction value varied between 33.3% and 71%. The κ coefficient for diagnosis of long bone fractures of upper limb (κ = 0.58) and upper limb joints (κ = 0.47) and long bones of lower limb (κ = 0.52) was within the medium range. However, the value for diagnosing fractures of lower limb joints (κ = 0.47) was relatively low. Bedside ultrasound is not a reliable method for diagnosing fractures of upper and lower limb bones compared with radiography. © 2013 Elsevier Inc. All rights reserved.

  9. WE-AB-206-00: Diagnostic QA/QC Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less

  10. Diagnostic Criteria and Accuracy of Categorizing Malignant Thyroid Nodules by Ultrasonography and Ultrasound Elastography with Pathologic Correlation.

    PubMed

    Elsayed, Naglaa Mostafa; Elkhatib, Yasser Atta

    2016-03-01

    Thyroid nodules are a common medical and surgical concern. Thyroid ultrasound (US) is the primary imaging modality used for initial evaluation and assortment of nodules for fine needle aspiration (FNA) cytology/biopsy. Ultrasound elastography (USE) is believed to improve the diagnostic accuracy of US in distinguishing benign from malignant nodules. The aim of the work described here is to evaluate the diagnostic criteria and accuracy of US and USE in the diagnosis of malignant thyroid nodules. A prospective study of 88 patients who have thyroid nodules was performed. US, color Doppler, and USE were evaluated using a Philips iU22 equipped with a 5 to 12 MHz, linear transducer, followed by FNA of the each scanned nodule. The most sensitive US criteria for malignant nodules were a height-to-width ratio greater than one and the absence of a halo sign (sensitivity 0.875% and 1.000%, respectively). The most specific criteria for malignancy were a spiculated/blurred margin and the presence of microcalcifications (specificity 0.968% and 0.888%, respectively). The receiver operating characteristic curve showed that the cutoff diagnostic criteria of malignancy are two US characteristics and an elastography score of 4. The diagnostic accuracy of US for malignant thyroid nodules increases by combining US and USE. © The Author(s) 2015.

  11. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  12. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  13. Diagnostic value of chest ultrasound after cardiac surgery: a comparison with chest X-ray and auscultation.

    PubMed

    Vezzani, Antonella; Manca, Tullio; Brusasco, Claudia; Santori, Gregorio; Valentino, Massimo; Nicolini, Francesco; Molardi, Alberto; Gherli, Tiziano; Corradi, Francesco

    2014-12-01

    Chest auscultation and chest x-ray commonly are used to detect postoperative abnormalities and complications in patients admitted to intensive care after cardiac surgery. The aim of the study was to evaluate whether chest ultrasound represents an effective alternative to bedside chest x-ray to identify early postoperative abnormalities. Diagnostic accuracy of chest auscultation and chest ultrasound were compared in identifying individual abnormalities detected by chest x-ray, considered the reference method. Cardiac surgery intensive care unit. One hundred fifty-one consecutive adult patients undergoing cardiac surgery. All patients included were studied by chest auscultation, ultrasound, and x-ray upon admission to intensive care after cardiac surgery. Six lung pathologic changes and endotracheal tube malposition were found. There was a highly significant correlation between abnormalities detected by chest ultrasound and x-ray (k = 0.90), but a poor correlation between chest auscultation and x-ray abnormalities (k = 0.15). Chest auscultation may help identify endotracheal tube misplacement and tension pneumothorax but it may miss most major abnormalities. Chest ultrasound represents a valid alternative to chest x-ray to detect most postoperative abnormalities and misplacements. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Diagnostic accuracy of 3D-transvaginal ultrasound in detecting uterine cavity abnormalities in infertile patients as compared with hysteroscopy.

    PubMed

    Apirakviriya, Chayanis; Rungruxsirivorn, Tassawan; Phupong, Vorapong; Wisawasukmongchol, Wirach

    2016-05-01

    To assess diagnostic accuracy of 3D transvaginal ultrasound (3D-TVS) compared with hysteroscopy in detecting uterine cavity abnormalities in infertile women. This prospective observational cross-sectional study was conducted during the July 2013 to December 2013 study period. Sixty-nine women with infertility were enrolled. In the mid to late follicular phase of each subject's menstrual cycle, 3D transvaginal ultrasound and hysteroscopy were performed on the same day in each patient. Hysteroscopy is widely considered to be the gold standard method for investigation of the uterine cavity. Uterine cavity characteristics and abnormalities were recorded. Diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and positive and negative likelihood ratios were evaluated. Hysteroscopy was successfully performed in all subjects. Hysteroscopy diagnosed pathological findings in 22 of 69 cases (31.8%). There were 18 endometrial polyps, 3 submucous myomas, and 1 septate uterus. Three-dimensional transvaginal ultrasound in comparison with hysteroscopy had 84.1% diagnostic accuracy, 68.2% sensitivity, 91.5% specificity, 79% positive predictive value, and 86% negative predictive value. The positive and negative likelihood ratios were 8.01 and 0.3, respectively. 3D-TVS successfully detected every case of submucous myoma and uterine anomaly. For detection of endometrial polyps, 3D-TVS had 61.1% sensitivity, 91.5% specificity, and 83.1% diagnostic accuracy. 3D-TVS demonstrated 84.1% diagnostic accuracy for detecting uterine cavity abnormalities in infertile women. A significant percentage of infertile patients had evidence of uterine cavity pathology. Hysteroscopy is, therefore, recommended for accurate detection and diagnosis of uterine cavity lesion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  16. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammet, S.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  17. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  18. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  19. Prenatal Sex Selection and Missing Girls in China: Evidence from the Diffusion of Diagnostic Ultrasound

    ERIC Educational Resources Information Center

    Chen, Yuyu; Li, Hongbin; Meng, Lingsheng

    2013-01-01

    How much of the increase in sex ratio (male to female) at birth since the early 1980s in China is attributed to increased prenatal sex selection? This question is addressed by exploiting the differential introduction of diagnostic ultrasound in the country during the 1980s, which significantly reduced the cost of prenatal sex selection. We…

  20. Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound

    PubMed Central

    Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.

    2012-01-01

    Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643

  1. Radio Frequency Ultrasound Time Series Signal Analysis to Evaluate High-intensity Focused Ultrasound Lesion Formation Status in Tissue.

    PubMed

    Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan

    2016-01-01

    High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.

  2. Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters

    PubMed Central

    Carpenter, Thomas M.; Rashid, M. Wasequr; Ghovanloo, Maysam; Cowell, David M. J.; Freear, Steven; Degertekin, F. Levent

    2016-01-01

    In real-time catheter based 3D ultrasound imaging applications, gathering data from the transducer arrays is difficult as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications like intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper an alternative approach using Analog Time Division Multiplexing (TDM) is presented which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4 MHz to 11 MHz range. A TDM integrated circuit (IC) with 8:1 multiplexer is interfaced with a fast ADC through a micro-coaxial catheter cable bundle, and processed with an FPGA RTL simulation. Input signals to the TDM IC are recovered with −40 dB crosstalk between channels on the same micro-coax, showing the feasibility of this system for ultrasound imaging applications. PMID:27116738

  3. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Molinari, Filippo; Zieleźnik, Witold; Bardales, Ricardo H; Witkowska, Agnieszka; Suri, Jasjit S

    2014-02-01

    Computer-aided diagnostic (CAD) techniques aid physicians in better diagnosis of diseases by extracting objective and accurate diagnostic information from medical data. Hashimoto thyroiditis is the most common type of inflammation of the thyroid gland. The inflammation changes the structure of the thyroid tissue, and these changes are reflected as echogenic changes on ultrasound images. In this work, we propose a novel CAD system (a class of systems called ThyroScan) that extracts textural features from a thyroid sonogram and uses them to aid in the detection of Hashimoto thyroiditis. In this paradigm, we extracted grayscale features based on stationary wavelet transform from 232 normal and 294 Hashimoto thyroiditis-affected thyroid ultrasound images obtained from a Polish population. Significant features were selected using a Student t test. The resulting feature vectors were used to build and evaluate the following 4 classifiers using a 10-fold stratified cross-validation technique: support vector machine, decision tree, fuzzy classifier, and K-nearest neighbor. Using 7 significant features that characterized the textural changes in the images, the fuzzy classifier had the highest classification accuracy of 84.6%, sensitivity of 82.8%, specificity of 87.0%, and a positive predictive value of 88.9%. The proposed ThyroScan CAD system uses novel features to noninvasively detect the presence of Hashimoto thyroiditis on ultrasound images. Compared to manual interpretations of ultrasound images, the CAD system offers a more objective interpretation of the nature of the thyroid. The preliminary results presented in this work indicate the possibility of using such a CAD system in a clinical setting after evaluating it with larger databases in multicenter clinical trials.

  4. Modulated Excitation Imaging System for Intravascular Ultrasound.

    PubMed

    Qiu, Weibao; Wang, Xingying; Chen, Yan; Fu, Qiang; Su, Min; Zhang, Lining; Xia, Jingjing; Dai, Jiyan; Zhang, Yaonan; Zheng, Hairong

    2017-08-01

    Advances in methodologies and tools often lead to new insights into cardiovascular diseases. Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides high-resolution images of the vessel wall and atherosclerotic plaques. High-frequency (>50 MHz) ultrasound enables the spatial resolution of IVUS to approach that of optical imaging methods. However, the penetration depth decreases when using higher imaging frequencies due to the greater acoustic attenuation. An imaging method that improves the penetration depth of high-resolution IVUS would, therefore, be of major clinical importance. Modulated excitation imaging is known to allow ultrasound waves to penetrate further. This paper presents an ultrasound system specifically for modulated-excitation-based IVUS imaging. The system incorporates a high-voltage waveform generator and an image processing board that are optimized for IVUS applications. In addition, a miniaturized ultrasound transducer has been constructed using a Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystal to improve the ultrasound characteristics. The results show that the proposed system was able to provide increases of 86.7% in penetration depth and 9.6 dB in the signal-to-noise ratio for 60 MHz IVUS. In vitro tissue samples were also investigated to demonstrate the performance of the system.

  5. The Thrombolytic Effect of Diagnostic Ultrasound-Induced Microbubble Cavitation in Acute Carotid Thromboembolism.

    PubMed

    Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew

    2017-08-01

    Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a

  6. Contrast-Enhanced Ultrasound Improves the Pathological Outcomes of US-Guided Core Needle Biopsy That Targets the Viable Area of Anterior Mediastinal Masses

    PubMed Central

    Zhou, Jian-hua; Shan, Hong-bo; Ou, Wei; Mo, Yun-xian; Xiang, Jin; Wang, Yu; Wang, Si-yu

    2018-01-01

    Based on the option that ultrasound-guided core needle biopsy (US-CNB) of the enhanced portion of anterior mediastinal masses (AMMs) identified by contrast-enhanced ultrasound (CEUS) would harvest viable tissue and benefit the histological diagnoses, a retrospective study was performed to elucidate the correlation between the prebiopsy CEUS and diagnostic yield of AMMs and found that CEUS potentially improved the diagnostic yield of AMMs compared with conventional US with a significant increase in the cellularity of samples. Furthermore, the marginal blood flow signals and absence of necrosis can predict the diagnostic yield of AMM. It was concluded that US-CNB of the viable part of AMMs, as verified by CEUS, was able to harvest sufficient tissue with more cellularity that could be used for ancillary studies and improve the diagnostic yield. And CEUS was recommended to those patients with AMMs undergoing repeated US-CNB, with the absence of marginal blood signals or presence of necrosis. PMID:29581992

  7. [Occupational risk caused by ultrasound in medicine].

    PubMed

    Magnavita, N; Fileni, A

    1994-01-01

    Ultrasound (US) is extensively used in the medical field for its therapeutic and diagnostic applications. US units are commonly found in hospitals and clinics of all sizes, and a growing number of medical staff such as doctors and nurses are exposed to hand-transmitted ultrasound waves in their work-place. This review discusses the available information on the occupational risk of the operators using diagnostic and therapeutic ultrasound devices. The new occupational groups of medical workers who use ultrasound (diagnostic, surgical, sterilization, and physiotherapeutic) equipment are exposed to contact ultrasound waves. Contact ultrasound -- i.e., no airspace between the energy source and the biological tissue -- is much more hazardous than exposure to airborne ultrasound because air transmits less than one percent of this kind of energy. In spite of being a non-ionizing radiation with an excellent safety record, US is likely to induce some changes in the exposed organ. Recent Russian studies indicate that the hospital workers who have been long exposed to ultrasound at work may develop neurovascular dose-dependent disorders of the peripheral nervous system in the form of the angiodystonic syndrome of vegetative polyneuritis of the hands. In some Scandinavian studies, female physiotherapists (exposed to ultrasound and short waves) exhibit increased rate of spontaneous abortions and congenital malformations, but no definite conclusion can be drawn on the basis of these results alone. Trends in exposure for diagnostic ultrasound equipment over the last two decades show a continuous increase. While there is no reason for alarm, there is a growing need for avoiding unnecessary exposure to medical workers.

  8. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  9. New heights in ultrasound: first report of spinal ultrasound from the international space station.

    PubMed

    Marshburn, Thomas H; Hadfield, Chris A; Sargsyan, Ashot E; Garcia, Kathleen; Ebert, Douglas; Dulchavsky, Scott A

    2014-01-01

    Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ultrasound criteria and guided fine-needle aspiration diagnostic yields in small animal peritoneal, mesenteric and omental disease.

    PubMed

    Feeney, Daniel A; Ober, Christopher P; Snyder, Laura A; Hill, Sara A; Jessen, Carl R

    2013-01-01

    Peritoneal, mesenteric, and omental diseases are important causes of morbidity and mortality in humans and animals, although information in the veterinary literature is limited. The purposes of this retrospective study were to determine whether objectively applied ultrasound interpretive criteria are statistically useful in differentiating among cytologically defined normal, inflammatory, and neoplastic peritoneal conditions in dogs and cats. A second goal was to determine the cytologically interpretable yield on ultrasound-guided, fine-needle sampling of peritoneal, mesenteric, or omental structures. Sonographic criteria agreed upon by the authors were retrospectively and independently applied by two radiologists to the available ultrasound images without knowledge of the cytologic diagnosis and statistically compared to the ultrasound-guided, fine-needle aspiration cytologic interpretations. A total of 72 dogs and 49 cats with abdominal peritoneal, mesenteric, or omental (peritoneal) surface or effusive disease and 17 dogs and 3 cats with no cytologic evidence of inflammation or neoplasia were included. The optimized, ultrasound criteria-based statistical model created independently for each radiologist yielded an equation-based diagnostic category placement accuracy of 63.2-69.9% across the two involved radiologists. Regional organ-associated masses or nodules as well as aggregated bowel and peritoneal thickening were more associated with peritoneal neoplasia whereas localized, severely complex fluid collections were more associated with inflammatory peritoneal disease. The cytologically interpretable yield for ultrasound-guided fine-needle sampling was 72.3% with no difference between species, making this a worthwhile clinical procedure. © 2013 Veterinary Radiology & Ultrasound.

  11. Development of a reliable simulation-based test for diagnostic abdominal ultrasound with a pass/fail standard usable for mastery learning.

    PubMed

    Østergaard, Mia L; Nielsen, Kristina R; Albrecht-Beste, Elisabeth; Konge, Lars; Nielsen, Michael B

    2018-01-01

    This study aimed to develop a test with validity evidence for abdominal diagnostic ultrasound with a pass/fail-standard to facilitate mastery learning. The simulator had 150 real-life patient abdominal scans of which 15 cases with 44 findings were selected, representing level 1 from The European Federation of Societies for Ultrasound in Medicine and Biology. Four groups of experience levels were constructed: Novices (medical students), trainees (first-year radiology residents), intermediates (third- to fourth-year radiology residents) and advanced (physicians with ultrasound fellowship). Participants were tested in a standardized setup and scored by two blinded reviewers prior to an item analysis. The item analysis excluded 14 diagnoses. Both internal consistency (Cronbach's alpha 0.96) and inter-rater reliability (0.99) were good and there were statistically significant differences (p < 0.001) between all four groups, except the intermediate and advanced groups (p = 1.0). There was a statistically significant correlation between experience and test scores (Pearson's r = 0.82, p < 0.001). The pass/fail-standard failed all novices (no false positives) and passed all advanced (no false negatives). All intermediate participants and six out of 14 trainees passed. We developed a test for diagnostic abdominal ultrasound with solid validity evidence and a pass/fail-standard without any false-positive or false-negative scores. • Ultrasound training can benefit from competency-based education based on reliable tests. • This simulation-based test can differentiate between competency levels of ultrasound examiners. • This test is suitable for competency-based education, e.g. mastery learning. • We provide a pass/fail standard without false-negative or false-positive scores.

  12. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    NASA Astrophysics Data System (ADS)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  <  200 nm) population without micron-sized outliers (>1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  13. [Diagnostic performance of biliary ultrasound vs. magnetic resonance cholangiogram in patients with recurrent biliary obstruction.].

    PubMed

    Chávez-Valencia, V; Espinosa-Ortega, H F; Espinoza-Peralta, D; Arce-Salinas, C A

    2009-01-01

    Obstructive jaundice in patients with previous cholecystectomy requires a precise diagnosis. In the diagnostic algorithm, biliary ultrasound (BUS) and magnetic resonance cholangiogram (MRC) are used, although the accuracy of each method is unknown in our setting. No previous comparison of US and MRC in subjects with cholecystectomy has been made. To determine diagnostic accuracy of BUS and MRC in patients with recurrent biliary obstruction. Patients with endoscopic retrograde cholangiopacreatography (ERCP) demonstrating recurrent biliary obstruction by stones were included. All patients underwent BUS and MRC. We determined the diagnostic performance of each image study compared with ERCP. Twenty-seven patients with a mean age of 62.9 +/- 17.3 years-old were included. Sensitivity and specificity of BUS were 0.12 and 0.58, respectively. Figures for MRC were 0.88 and 0.82. Diagnostic agreement between ERCP and MRC was k= 0.66 whereas BUS had a k of only 0.26. MRC had good diagnostic performance for recurrent choledocolithiasis. BUS demonstrated lower accuracy compared with previous reports, so should not be considered in the initial approach of recurrent choledocus obstruction.

  14. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    PubMed Central

    Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system. PMID:29687000

  15. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.

    PubMed

    Huang, Qinghua; Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

  16. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    PubMed

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Diagnostic accuracy of central venous catheter confirmation by bedside ultrasound versus chest radiography in critically ill patients: A systematic review and meta-analysis

    PubMed Central

    Ablordeppey, Enyo A.; Drewry, Anne M.; Beyer, Alexander B.; Theodoro, Daniel L.; Fowler, Susan A.; Fuller, Brian M.; Carpenter, Christopher R.

    2016-01-01

    Objective We performed a systematic review and meta-analysis to examine the accuracy of bedside ultrasound for confirmation of central venous catheter position and exclusion of pneumothorax compared to chest radiography. Data Sources PubMed, EMBASE, Cochrane Central Register of Controlled Trials, reference lists, conference proceedings and ClinicalTrials.gov Study Selection Articles and abstracts describing the diagnostic accuracy of bedside ultrasound compared with chest radiography for confirmation of central venous catheters in sufficient detail to reconstruct 2×2 contingency tables were reviewed. Primary outcomes included the accuracy of confirming catheter positioning and detecting a pneumothorax. Secondary outcomes included feasibility, inter-rater reliability, and efficiency to complete bedside ultrasound confirmation of central venous catheter position. Data Extraction Investigators abstracted study details including research design and sonographic imaging technique to detect catheter malposition and procedure-related pneumothorax. Diagnostic accuracy measures included pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Data Synthesis 15 studies with 1553 central venous catheter placements were identified with a pooled sensitivity and specificity of catheter malposition by ultrasound of 0.82 [0.77, 0.86] and 0.98 [0.97, 0.99] respectively. The pooled positive and negative likelihood ratios of catheter malposition by ultrasound were 31.12 [14.72, 65.78] and 0.25 [0.13, 0.47]. The sensitivity and specificity of ultrasound for pneumothorax detection was nearly 100% in the participating studies. Bedside ultrasound reduced mean central venous catheter confirmation time by 58.3 minutes. Risk of bias and clinical heterogeneity in the studies were high. Conclusions Bedside ultrasound is faster than radiography at identifying pneumothorax after central venous catheter insertion. When a central venous catheter malposition

  18. Diagnostic Accuracy of Central Venous Catheter Confirmation by Bedside Ultrasound Versus Chest Radiography in Critically Ill Patients: A Systematic Review and Meta-Analysis.

    PubMed

    Ablordeppey, Enyo A; Drewry, Anne M; Beyer, Alexander B; Theodoro, Daniel L; Fowler, Susan A; Fuller, Brian M; Carpenter, Christopher R

    2017-04-01

    We performed a systematic review and meta-analysis to examine the accuracy of bedside ultrasound for confirmation of central venous catheter position and exclusion of pneumothorax compared with chest radiography. PubMed, Embase, Cochrane Central Register of Controlled Trials, reference lists, conference proceedings and ClinicalTrials.gov. Articles and abstracts describing the diagnostic accuracy of bedside ultrasound compared with chest radiography for confirmation of central venous catheters in sufficient detail to reconstruct 2 × 2 contingency tables were reviewed. Primary outcomes included the accuracy of confirming catheter positioning and detecting a pneumothorax. Secondary outcomes included feasibility, interrater reliability, and efficiency to complete bedside ultrasound confirmation of central venous catheter position. Investigators abstracted study details including research design and sonographic imaging technique to detect catheter malposition and procedure-related pneumothorax. Diagnostic accuracy measures included pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Fifteen studies with 1,553 central venous catheter placements were identified with a pooled sensitivity and specificity of catheter malposition by ultrasound of 0.82 (0.77-0.86) and 0.98 (0.97-0.99), respectively. The pooled positive and negative likelihood ratios of catheter malposition by ultrasound were 31.12 (14.72-65.78) and 0.25 (0.13-0.47). The sensitivity and specificity of ultrasound for pneumothorax detection was nearly 100% in the participating studies. Bedside ultrasound reduced mean central venous catheter confirmation time by 58.3 minutes. Risk of bias and clinical heterogeneity in the studies were high. Bedside ultrasound is faster than radiography at identifying pneumothorax after central venous catheter insertion. When a central venous catheter malposition exists, bedside ultrasound will identify four out of every five earlier than

  19. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  20. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    PubMed

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  1. Ultrasound-guided synovial biopsy

    PubMed Central

    Sitt, Jacqueline C M; Wong, Priscilla

    2016-01-01

    Ultrasound-guided needle biopsy of synovium is an increasingly performed procedure with a high diagnostic yield. In this review, we discuss the normal synovium, as well as the indications, technique, tissue handling and clinical applications of ultrasound-guided synovial biopsy. PMID:26581578

  2. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  3. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  4. Non-invasive assessment of negative pressure wound therapy using high frequency diagnostic ultrasound: oedema reduction and new tissue accumulation.

    PubMed

    Young, Stephen R; Hampton, Sylvie; Martin, Robin

    2013-08-01

    Tissue oedema plays an important role in the pathology of chronic and traumatic wounds. Negative pressure wound therapy (NPWT) is thought to contribute to active oedema reduction, yet few studies have showed this effect. In this study, high frequency diagnostic ultrasound at 20 MHz with an axial resolution of 60 µm was used to assess the effect of NPWT at - 80 mmHg on pressure ulcers and the surrounding tissue. Wounds were monitored in four patients over a 3-month period during which changes in oedema and wound bed thickness (granulation tissue) were measured non-invasively. The results showed a rapid reduction of periwound tissue oedema in all patients with levels falling by a mean of 43% after 4 days of therapy. A 20% increase in the thickness of the wound bed was observed after 7 days due to new granulation tissue formation. Ultrasound scans through the in situ gauze NPWT filler also revealed the existence of macrodeformation in the tissue produced by the negative pressure. These preliminary studies suggest that non-invasive assessment using high frequency diagnostic ultrasound could be a valuable tool in clinical studies of NPWT. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  5. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density.more » Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.« less

  6. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrast-Enhanced Diagnostic Ultrasound?

    PubMed

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-02-01

    Glomerular capillary hemorrhage can be induced by ultrasonic cavitation during contrast-enhanced diagnostic ultrasound (US) exposure, an important nonthermal US bioeffect. Recent studies of pulmonary US exposure have shown that thresholds for another nonthermal bioeffect of US, pulmonary capillary hemorrhage, is strongly influenced by whether xylazine is included in the specific anesthetic technique. The objective of this study was to determine the influence of xylazine on contrast-enhanced diagnostic US-induced glomerular capillary hemorrhage. In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for induction of glomerular capillary hemorrhage in rats by 1.6-MHz intermittent diagnostic US with a microsphere contrast agent (similar to Definity; Lantheus Medical Imaging, Inc, North Billerica, MA). Glomerular capillary hemorrhage was measured as a percentage of glomeruli with hemorrhage found in histologic sections for groups of rats scanned at different peak rarefactional pressure amplitudes. There was a significant difference between the magnitude of the glomerular capillary hemorrhage between the anesthetics at 2.3 MPa, with 45.6% hemorrhage for ketamine only, increasing to 63.2% hemorrhage for ketamine plus xylazine (P < .001). However, the thresholds for the two anesthetic methods were virtually identical at 1.0 MPa, based on linear regression of the exposure response data. Thresholds for contrast-enhanced diagnostic US-induced injury of the microvasculature appear to be minimally affected by anesthetic methods. © 2016 by the American Institute of Ultrasound in Medicine.

  7. Diagnostic yield of endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal staging in lung cancer*

    PubMed Central

    Fernández-Bussy, Sebastián; Labarca, Gonzalo; Canals, Sofia; Caviedes, Iván; Folch, Erik; Majid, Adnan

    2015-01-01

    OBJECTIVE: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive diagnostic test with a high diagnostic yield for suspicious central pulmonary lesions and for mediastinal lymph node staging. The main objective of this study was to describe the diagnostic yield of EBUS-TBNA for mediastinal lymph node staging in patients with suspected lung cancer. METHODS: Prospective study of patients undergoing EBUS-TBNA for diagnosis. Patients ≥ 18 years of age were recruited between July of 2010 and August of 2013. We recorded demographic variables, radiological characteristics provided by axial CT of the chest, location of the lesion in the mediastinum as per the International Association for the Study of Lung Cancer classification, and definitive diagnostic result (EBUS with a diagnostic biopsy or a definitive diagnostic method). RESULTS: Our analysis included 354 biopsies, from 145 patients. Of those 145 patients, 54.48% were male. The mean age was 63.75 years. The mean lymph node size was 15.03 mm, and 90 lymph nodes were smaller than 10.0 mm. The EBUS-TBNA method showed a sensitivity of 91.17%, a specificity of 100.0%, and a negative predictive value of 92.9%. The most common histological diagnosis was adenocarcinoma. CONCLUSIONS: EBUS-TBNA is a diagnostic tool that yields satisfactory results in the staging of neoplastic mediastinal lesions. PMID:26176519

  8. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Hossack, James (Inventor); Owen, Neil (Inventor); Bailey, Michael R. (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  9. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  10. Technical Note: Development of a combined molecular breast imaging/ultrasound system for diagnostic evaluation of MBI-detected lesions.

    PubMed

    O'Connor, Michael K; Morrow, Melissa M; Tran, Thuy; Hruska, Carrie B; Conners, Amy L; Hunt, Katie N

    2017-02-01

    The purpose of this study was to perform a pilot evaluation of an integrated molecular breast imaging/ultrasound (MBI/US) system designed to enable, in real-time, the registration of US to MBI and diagnostic evaluation of breast lesions detected on MBI. The MBI/US system was constructed by modifying an existing dual-head cadmium zinc telluride (CZT)-based MBI gamma camera. The upper MBI detector head was replaced with a mesh panel, which allowed an ultrasound probe to access the breast. An optical tracking system was used to monitor the location of the ultrasound transducer, referenced to the MBI detector. The lesion depth at which ultrasound was targeted was estimated from analysis of previously acquired dual-head MBI datasets. A software tool was developed to project the US field of view onto the current MBI image. Correlation of lesion location between both modalities with real-time MBI/US scanning was confirmed in a breast phantom model and assessed in 12 patients with a breast lesion detected on MBI. Combined MBI/US scanning allowed for registration of lesions detected on US and MBI as validated in phantom experiments. In patient studies, successful registration was achieved in 8 of 12 (67%) patients, with complete registration achieved in seven and partial registration achieved in one patient. In 4 of 12 (37%) patients, lesion registration was not achieved, partially attributed to uncertainty in lesion depth estimates from MBI. The MBI/US system enabled successful registration of US to MBI in over half of patients studied in this pilot evaluation. Future studies are needed to determine if real-time, registered US imaging of MBI-detected lesions may obviate the need to proceed to more expensive procedures such as contrast-enhanced breast MRI for diagnostic workup or biopsy of MBI findings. © 2016 American Association of Physicists in Medicine.

  11. Diagnostic ultrasound exposure in man.

    PubMed

    Gramiak, R

    1975-09-01

    In his review of the AAPM statement on ultrasound, the author feels that allowing "some" research or demonstration on normal persons in the face of cautionary statements on as yet unknown side effects is an inconsistent position. The use of videotapes and the development of simulators hacked by data banks are offered in place of tissue phantoms.

  12. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  13. Endoscopic Ultrasound-guided Specimen Collection and Evaluation Techniques Affect Diagnostic Accuracy.

    PubMed

    Bang, Ji Young; Navaneethan, Udayakumar; Hasan, Muhammad K; Hawes, Robert; Varadarajulu, Shyam

    2018-03-11

    Outcomes of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) evaluation vary with technique, needles, and methods of specimen evaluation. We performed a direct comparison of diagnostic yields of EUS-FNA samples collected using different gauge needles (22- vs 25-gauge), with or without suction. We performed a randomized controlled study of 352 patients with suspected pancreatic masses, referred for EUS-FNA at a tertiary referral center. Patients were randomly assigned to 22-gauge needles with or without suction or 25-gauge needles with or without suction. Specimens were evaluated offsite by cell block and rapid onsite cytologic evaluation (ROSE). Final diagnoses were made based on histologic analyses or 12-month follow-up evaluations. The primary outcome was diagnostic adequacy of cell blocks. Secondary outcomes were operating characteristics of ROSE and EUS-FNA, number of passes required for accurate onsite diagnosis, and amount of blood in specimens. The final diagnoses were malignancy (81.5% of patients) and benign disease (17.0% of patients); 1.4% of patients were lost during follow up. Cell block, ROSE, and EUS-FNA led to diagnostic accuracies of 71.9%, 95.5%, and 96.6%, respectively. A 22-gauge needle with suction was associated with more passes for adequate onsite diagnosis (P = .003) and specimens contained more blood (P = .01). Diagnostic accuracy of specimens collected by transduodenal EUS-FNA was lower with 22-gauge needles with suction compared to other techniques (P = .004). In a randomized trial of patients undergoing EUS-FNA for pancreatic masses, samples collected with 22-gauge vs 25-gauge needles performed equally well for offsite specimen evaluation. Use of suction appears to increase number of passes needed and specimen bloodiness. Specimen collection techniques should be individualized based on method of evaluation. ClinicalTrials.gov no: NCT02424838. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Advanced Ultrasound Technologies for Diagnosis and Therapy.

    PubMed

    Rix, Anne; Lederle, Wiltrud; Theek, Benjamin; Lammers, Twan; Moonen, Chrit; Schmitz, Georg; Kiessling, Fabian

    2018-05-01

    Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  15. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  16. Outcomes of ultrasound guided renal mass biopsies.

    PubMed

    Sutherland, Edward L; Choromanska, Agnieszka; Al-Katib, Sayf; Coffey, Mary

    2018-06-01

    The purpose of this study was to evaluate the rate of nondiagnostic ultrasound-guided renal mass biopsies (RMBs) at our institution and to determine what patient, procedural, and focal renal mass (FRM) factors were associated with nondiagnostic ultrasound-guided RMBs. Eighty-two ultrasound-guided renal mass biopsies performed between January 2014 and October 2016 were included in our study. Biopsy outcomes (diagnostic vs. nondiagnostic) and patient, procedural, and FRM characteristics were retrospectively reviewed and recorded. Univariate statistical analyses were performed to identify biopsy characteristics that were indicative of nondiagnostic biopsy. Ultrasound-guided RMBs were diagnostic in 70 out of 82 cases (85%) and non-diagnostic in 12 cases (15%). Among the diagnostic biopsies, 54 (77%) were malignant cases, 94% of which were renal cell carcinoma (RCC). Of the 12 nondiagnostic cases, the final diagnosis was RCC in 4 cases and angiomyolipoma in one case; seven of the nondiagnostic cases were lost to follow-up. A weak association (p = 0.04) was found between the number of needle passes and the biopsy outcome. None of the remaining collected RMB characteristics showed a significant correlation with a diagnostic or nondiagnostic RMB. Six patients (7%) experienced complications. Ultrasound-guided renal mass biopsy is a safe and effective method for the diagnosis of renal masses with a low rate of nondiagnostic outcomes. A nondiagnostic biopsy should not be treated as a surrogate for a diagnosis since a significant number of patients with nondiagnostic biopsies have subsequently been shown to have renal malignancies. Repeat biopsy should be considered in such cases.

  17. Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound.

    PubMed

    Wan, Jinjin; He, Fangli; Zhao, Yongfeng; Zhang, Hongmei; Zhou, Xiaodong; Wan, Mingxi

    2014-03-01

    The aim of this work was to develop a convenient method for radial/circumferential strain imaging and shear rate estimation that could be used as a supplement to the current routine screening for carotid atherosclerosis using video images of diagnostic ultrasound. A reflection model-based correction for gray-scale non-uniform distribution was applied to B-mode video images before strain estimation to improve the accuracy of radial/circumferential strain imaging when applied to vessel transverse cross sections. The incremental and cumulative radial/circumferential strain images can then be calculated based on the displacement field between consecutive B-mode images. Finally, the transverse Doppler spectra acquired at different depths along the vessel diameter were used to construct the spatially matched instantaneous wall shear values in a cardiac cycle. Vessel phantom simulation results revealed that the signal-to-noise ratio and contrast-to-noise ratio of the radial and circumferential strain images were increased by 2.8 and 5.9 dB and by 2.3 and 4.4 dB, respectively, after non-uniform correction. Preliminary results for 17 patients indicated that the accuracy of radial/circumferential strain images was improved in the lateral direction after non-uniform correction. The peak-to-peak value of incremental strain and the maximum cumulative strain for calcified plaques are evidently lower than those for other plaque types, and the echolucent plaques had higher values, on average, than the mixed plaques. Moreover, low oscillating wall shear rate values, found near the plaque and stenosis regions, are closely related to plaque formation. In conclusion, the method described can provide additional valuable results as a supplement to the current routine ultrasound examination for carotid atherosclerosis and, therefore, has significant potential as a feasible screening method for atherosclerosis diagnosis in the future. Copyright © 2014 World Federation for Ultrasound in

  18. Quantitative diagnostic method for biceps long head tendinitis by using ultrasound.

    PubMed

    Huang, Shih-Wei; Wang, Wei-Te

    2013-01-01

    To investigate the feasibility of grayscale quantitative diagnostic method for biceps tendinitis and determine the cut-off points of a quantitative biceps ultrasound (US) method to diagnose biceps tendinitis. Design. Prospective cross-sectional case controlled study. Outpatient rehabilitation service. A total of 336 shoulder pain patients with suspected biceps tendinitis were recruited in this prospective observational study. The grayscale pixel data of the range of interest (ROI) were obtained for both the transverse and longitudinal views of the biceps US. A total of 136 patients were classified with biceps tendinitis, and 200 patients were classified as not having biceps tendinitis based on the diagnostic criteria. Based on the Youden index, the cut-off points were determined as 26.85 for the transverse view and 21.25 for the longitudinal view of the standard deviation (StdDev) of the ROI values, respectively. When the ROI evaluation of the US surpassed the cut-off point, the sensitivity was 68% and the specificity was 90% in the StdDev of the transverse view, and the sensitivity was 81% and the specificity was 73% in the StdDev of the longitudinal view to diagnose biceps tendinitis. For equivocal cases or inexperienced sonographers, our study provides a more objective method for diagnosing biceps tendinitis in shoulder pain patients.

  19. Sterile working in ultrasonography: the use of dedicated ultrasound covers and sterile ultrasound gel.

    PubMed

    Marhofer, Peter; Fritsch, Gerhard

    2015-01-01

    Ultrasound is currently an important tool for diagnostic and interventional procedures. Ultrasound imaging provides significant advantages as compared to other imaging methods. The widespread use of ultrasound also carries the risk of drawbacks such as cross-infections. A large body of literature reports this possibly life-threatening side effect and specific patient populations are particularly at risk (e.g., neonates). Various methods of ultrasound probe disinfection are described; however, none of the mechanical or chemical probe disinfection procedures is optimal and, in particular, disinfection with high concentration of alcohol might be associated with ultrasound probe damage. The preparation of ultrasound probes with dedicated probe covers is a useful alternative for sterile working conditions. One ultrasound probe cover discussed in this paper is directly glued on to the ultrasound probe without the use of ultrasound coupling gel. By the use of sterile ultrasound coupling gel at the outer surface, additional effects on aseptic working conditions can be obtained.

  20. Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.

    PubMed

    Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M

    2012-12-01

    Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Performance Evaluation of Adaptive Imaging Based on Multiphase Apodization with Cross-correlation: A Pilot Study in Abdominal Ultrasound.

    PubMed

    Shin, Junseob; Chen, Yu; Malhi, Harshawn; Chen, Frank; Yen, Jesse

    2018-05-01

    Degradation of image contrast caused by phase aberration, off-axis clutter, and reverberation clutter remains one of the most important problems in abdominal ultrasound imaging. Multiphase apodization with cross-correlation (MPAX) is a novel beamforming technique that enhances ultrasound image contrast by adaptively suppressing unwanted acoustic clutter. MPAX employs multiple pairs of complementary sinusoidal phase apodizations to intentionally introduce grating lobes that can be used to derive a weighting matrix, which mostly preserves the on-axis signals from tissue but reduces acoustic clutter contributions when multiplied with the beamformed radio-frequency (RF) signals. In this paper, in vivo performance of the MPAX technique was evaluated in abdominal ultrasound using data sets obtained from 10 human subjects referred for abdominal ultrasound at the USC Keck School of Medicine. Improvement in image contrast was quantified, first, by the contrast-to-noise ratio (CNR) and, second, by the rating of two experienced radiologists. The MPAX technique was evaluated for longitudinal and transverse views of the abdominal aorta, the inferior vena cava, the gallbladder, and the portal vein. Our in vivo results and analyses demonstrate the feasibility of the MPAX technique in enhancing image contrast in abdominal ultrasound and show potential for creating high contrast ultrasound images with improved target detectability and diagnostic confidence.

  2. Diagnostic utility of three-dimensional power Doppler ultrasound for postmenopausal bleeding.

    PubMed

    Kim, Ari; Lee, Ji Young; Chun, Sungwook; Kim, Heung Yeol

    2015-06-01

    We evaluated the role of three-dimensional power Doppler ultrasound (3D PD-US) to detect endometrial lesions in women with postmenopausal endometrial bleeding. In this prospective observational study, from January 2009 to November 2012, we recruited 225 postmenopausal women with postmenopausal uterine bleeding who met the study criteria. Women who had hematologic disease, chronic medical diseases, or nonuterine pelvic diseases were excluded. Prior to endometrial biopsy, the patients underwent a baseline transvaginal ultrasound screening. The vascular indices and endometrial volumes were calculated with 3D PD-US and compared with the endometrial histopathology. Among the endometrial histopathologic findings of 174 women, atrophic endometrium was the most common finding (30.5%). Endometrial malignancy was confirmed in 28 cases (16.1%), and endometrial hyperplasia was diagnosed in 17 cases (9.8%). The prevalence of endometrial cancer was high in patients who had endometrial thickness >9.5 mm (p < 0.001) and volume greater than 4.05 mL (p < 0.001). For the endometrial carcinoma only, the cutoff values of vascular index, flow index, and vascular flow index for predicting malignancy were 13.070, 12.610, and 3.764, respectively. For endometrial hyperplasia, endometrial thickness and vascular flow index were significant findings. Endometrial vasculature and volume can be obtained using 3D PD-US. The diagnostic usefulness of 3D PD-US for endometrial diseases is promising in women with postmenopausal endometrial bleeding. Copyright © 2015. Published by Elsevier B.V.

  3. Multiparametric ultrasound in the detection of prostate cancer: a systematic review.

    PubMed

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-11-01

    To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.

  4. Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments.

    PubMed

    Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H

    2006-12-01

    To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (p<0.01) and 0.328 (p<0.05), respectively. The ultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.

  5. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr

  6. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  7. Role of ultrasound in colorectal diseases.

    PubMed

    Bor, Renáta; Fábián, Anna; Szepes, Zoltán

    2016-11-21

    Ultrasound is an undervalued non-invasive examination in the diagnosis of colonic diseases. It has been replaced by the considerably more expensive magnetic resonance imaging and computed tomography, despite the fact that, as first examination, it can usefully supplement the diagnostic process. Transabdominal ultrasound can provide quick information about bowel status and help in the choice of adequate further examinations and treatment. Ultrasonography, as a screening imaging modality in asymptomatic patients can identify several colonic diseases such as diverticulosis, inflammatory bowel disease or cancer. In addition, it is widely available, cheap, non-invasive technique without the use of ionizing radiation, therefore it is safe to use in childhood or during pregnancy, and can be repeated at any time. New ultrasound techniques such as elastography, contrast enhanced and Doppler ultrasound, mini-probes rectal and transperineal ultrasonography have broadened the indication. It gives an overview of the methodology of various ultrasound examinations, presents the morphology of normal bowel wall and the typical changes in different colonic diseases. We will pay particular attention to rectal and transperineal ultrasound because of their outstanding significance in the diagnosis of rectal and perineal disorders. This article seeks to overview the diagnostic impact and correct indications of bowel ultrasound.

  8. Vascular applications of contrast-enhanced ultrasound imaging.

    PubMed

    Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A

    2017-07-01

    Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. A signal-detection-based diagnostic-feature-detection model of eyewitness identification.

    PubMed

    Wixted, John T; Mickes, Laura

    2014-04-01

    The theoretical understanding of eyewitness identifications made from a police lineup has long been guided by the distinction between absolute and relative decision strategies. In addition, the accuracy of identifications associated with different eyewitness memory procedures has long been evaluated using measures like the diagnosticity ratio (the correct identification rate divided by the false identification rate). Framed in terms of signal-detection theory, both the absolute/relative distinction and the diagnosticity ratio are mainly relevant to response bias while remaining silent about the key issue of diagnostic accuracy, or discriminability (i.e., the ability to tell the difference between innocent and guilty suspects in a lineup). Here, we propose a signal-detection-based model of eyewitness identification, one that encourages the use of (and helps to conceptualize) receiver operating characteristic (ROC) analysis to measure discriminability. Recent ROC analyses indicate that the simultaneous presentation of faces in a lineup yields higher discriminability than the presentation of faces in isolation, and we propose a diagnostic feature-detection hypothesis to account for that result. According to this hypothesis, the simultaneous presentation of faces allows the eyewitness to appreciate that certain facial features (viz., those that are shared by everyone in the lineup) are non-diagnostic of guilt. To the extent that those non-diagnostic features are discounted in favor of potentially more diagnostic features, the ability to discriminate innocent from guilty suspects will be enhanced.

  10. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    NASA Astrophysics Data System (ADS)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  11. Power Doppler signal calibration between ultrasound machines by use of a capillary-flow phantom for pannus vascularity in rheumatoid finger joints: a basic study.

    PubMed

    Sakano, Ryosuke; Kamishima, Tamotsu; Nishida, Mutsumi; Horie, Tatsunori

    2015-01-01

    Ultrasound allows the detection and grading of inflammation in rheumatology. Despite these advantages of ultrasound in the management of rheumatoid patients, it is well known that there are significant machine-to-machine disagreements regarding signal quantification. In this study, we tried to calibrate the power Doppler (PD) signal of two models of ultrasound machines by using a capillary-flow phantom. After flow velocity analysis in the perfusion cartridge at various injection rates (0.1-0.5 ml/s), we measured the signal count in the perfusion cartridge at various injection rates and pulse repetition frequencies (PRFs) by using PD, perfusing an ultrasound micro-bubble contrast agent diluted with normal saline simulating human blood. By use of the data from two models of ultrasound machines, Aplio 500 (Toshiba) and Avius (Hitachi Aloka), the quantitative PD (QPD) index [the summation of the colored pixels in a 1 cm × 1 cm rectangular region of interest (ROI)] was calculated via Image J (internet free software). We found a positive correlation between the injection rate and the flow velocity. In Aplio 500 and Avius, we found negative correlations between the PRF and the QPD index when the flow velocity was constant, and a positive correlation between flow velocity and the QPD index at constant PRF. The equation for the relationship of the PRF between Aplio 500 and Avius was: y = 0.023x + 0.36 [y = PRF of Avius (kHz), x = PRF of Aplio 500 (kHz)]. Our results suggested that the signal calibration of various models of ultrasound machines is possible by adjustment of the PRF setting.

  12. Conformal drug delivery and instantaneous monitoring based on an inverse synthesis method at a diagnostic ultrasound platform

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zong, Yujin; Liu, Xiaodong; Lu, Mingzhu; Wan, Mingxi

    2017-03-01

    In this paper, based on a programmable diagnostic ultrasound scanner, a combined approach was proposed, in which a variable-sized focal region wherein the acoustic pressure is above the ultrasound contrast agents (UCA) fragmentation threshold is synthesized by reasonably matching the excitation voltage and the transmit aperture of the linear array at 5MHz, the UCAs' temporal and spatial distribution before and after the microbubbles fragmentation is monitored using the plane-wave transmission and reception at 400Hz and, simultaneously, the broadband noise emission during the microbubbles fragmentation is extracted using the backscattering of focused release bursts (destruction pulse) themselves on the linear array. Then, acquired radio frequency (RF) data are processed to draw parameters which can be correlated with the indicator of broadband noise emission level, namely inertial cavitation dose (ICD) and microbubble fragmentation efficiency, namely decay rate of microbubbles.

  13. Optimization of contrast-to-tissue ratio by adaptation of transmitted ternary signal in ultrasound pulse inversion imaging.

    PubMed

    Ménigot, Sébastien; Girault, Jean-Marc

    2013-01-01

    Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR) is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.

  14. Critical Care Ultrasound: A Review for Practicing Nephrologists.

    PubMed

    Wilson, Jennifer G; Breyer, Kristine E W

    2016-05-01

    The use of point-of-care ultrasound in the intensive care unit, both for diagnostic and procedural purposes, has rapidly proliferated, and evidence supporting its use is growing. Conceptually, critical care ultrasound (CCUS) should be considered an extension of the physical examination and should not be considered a replacement for formal echocardiography or radiology-performed ultrasound. Several CCUS applications are of particular relevance to nephrologists, including focused renal ultrasound in patients at high risk for urinary tract obstruction, real-time ultrasound guidance and verification during the placement of central venous catheters, and ultrasound-augmented assessment of shock and volume status. Each of these applications has the capacity to improve outcomes in patients with acute kidney injury. Although robust evidence regarding long-term outcomes is lacking, existing data demonstrate that CCUS has the potential to improve diagnostic accuracy, expedite appropriate management, and increase safety for critically ill patients across a spectrum of pathologies. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Incremental cancer detection of locoregional restaging with diagnostic mammography combined with whole breast and regional nodal ultrasound in women with newly-diagnosed breast cancer

    PubMed Central

    Candelaria, Rosalind P.; Huang, Monica L.; Adrada, Beatriz E.; Bassett, Roland; Hunt, Kelly K.; Kuerer, Henry M.; Smith, Benjamin D.; Chavez-MacGregor, Mariana; Yang, Wei Tse

    2016-01-01

    RATIONALE AND OBJECTIVES To determine if locoregional restaging with diagnostic mammography and ultrasound of the whole breast and regional nodes performed for quality assurance in women with newly-diagnosed breast cancer referred to a tertiary care center yields incremental cancer detection. MATERIALS AND METHODS An institutional review board-approved retrospective, single institution database review was performed on the first 1000 women referred to our center in 2010 with a provisional breast cancer diagnosis. Locoregional restaging consisted of diagnostic full-field digital mammography combined with ultrasound of the whole breast and regional nodal basins. Bilateral whole breast ultrasound was performed in women with contralateral mammographic abnormality or had heterogeneously or extremely dense parenchyma. Demographic, clinical and pathologic factors were analyzed. RESULTS Final analyses included 401 women. 34% (138/401) of women did not have their outside images available for review upon referral. Median age was 54 years, range 21–92; median tumor size was 2.9 cm, range 0.6–18, for women whose disease was upstaged and 2.2 cm, range 0.4–15, for women whose disease was not upstaged. Incremental cancer detection rates were 15.5% (62/401) in the ipsilateral breast and 3.9% (6/154) in the contralateral breast (p<0.0001). Total upstage rate was 25% (100/401). Surgical management changed from segmentectomy to mastectomy in 12% (50/401). Re-excision rate after segmentectomy was 19% (35/189). CONCLUSION Locoregional restaging with diagnostic mammography combined with whole breast and regional nodal ultrasound that is performed for standardization of the imaging workup for newly-diagnosed breast cancer patients can reduce underestimation of disease burden and impact therapeutic planning. PMID:27955877

  16. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    PubMed

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards. © 2014 American College of Veterinary Radiology.

  17. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  18. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  19. Analysis of "dry" mesothelioma with ultrasound guided biopsies.

    PubMed

    Stigt, Jos A; Boers, James E; Groen, Harry J M

    2012-12-01

    Image-guided sampling of the thickened pleura is a sensitive approach in patients with malignant pleural mesothelioma with pleural effusion. Malignant pleural mesothelioma presenting without effusion however is more of a diagnostic challenge. In this study we report the diagnostic yield and complications of ultrasound-guided cutting needle biopsies in this particular category of patients. A retrospective database analysis from September 2007 until January 2012 was performed in 56 patients with malignant pleural mesothelioma. Clinical characteristics and results of diagnostic evaluations were analysed. Of the 56 patients with malignant pleural mesothelioma, 20 patients presented without pleural effusion of with locular effusion. Ultrasound-guided cutting needle biopsy was performed in 14/20 patients with a diagnostic accuracy of 80%. Only 1 patient had mild haemoptysis immediately following biopsies. Diagnosing patients with pleural thickenings suspect for malignant mesothelioma without pleural effusion or with loculated pleural effusion is effective and safe with ultrasound-guided cutting needle biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Diagnostic Accuracy and Clinical Implications of Translabial Ultrasound for the Assessment of Levator Ani Defects and Levator Ani Biometry in Women With Pelvic Organ Prolapse: A Systematic Review.

    PubMed

    Notten, Kim J B; Vergeldt, Tineke F M; van Kuijk, Sander M J; Weemhoff, Mirjam; Roovers, Jan-Paul W R

    The aim of this study was to assess the diagnostic accuracy and clinical implications of translabial 3-dimensional (3D) ultrasound for the assessment of levator ani defects and biometry in women with pelvic organ prolapse (POP). We performed a systematic literature search through computerized databases including MEDLINE (via PubMed), EMBASE (via OvidSP), and the Cochrane Library using both medical subject headings and text terms from January 1, 2003, to December 25, 2015.We included articles that reported on POP status and diagnostic accuracy measurements with translabial 3D ultrasound or transperineal ultrasound for the detection of levator ani defects or for measuring pelvic floor biometry, that is, levator ani hiatus, or reported on the clinical relevance of using translabial 3D ultrasound for levator ani defects or measuring pelvic floor biometry in women with POP. Thirty-one articles were selected in accordance with parts of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines that can be applied to studies of diagnostic accuracy. Twenty-two articles (71%) are coauthored by 1 expert in this field. Detecting levator ani defects with translabial 3D ultrasound compared with magnetic resonance imaging showed a moderate to good agreement, whereas measuring hiatal biometry on translabial 3D ultrasound compared with magnetic resonance imaging showed a moderate to very good agreement.The interobserver agreement for diagnosing levator ani defects and measuring the levator hiatal area showed a moderate to very good agreement. Furthermore, levator ani defects increase the risk of cystocele and uterine prolapse, and levator ani defects are associated with recurrent POP.Finally, a larger hiatus was associated with POP and recurrent POP. Translabial 3D ultrasound is reproducible for diagnosing levator ani defects and ballooning hiatus. Both levator ani defects and a larger hiatal area are, in a selected population of patients with pelvic floor

  1. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    NASA Astrophysics Data System (ADS)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  2. Diagnostic accuracy of point-of-care ultrasound for evaluation of early blood-induced joint changes: Comparison with MRI.

    PubMed

    Foppen, W; van der Schaaf, I C; Beek, F J A; Mali, W P T M; Fischer, K

    2018-05-23

    Recurrent joint bleeding is the hallmark of haemophilia. Synovial hypertrophy observed with Magnetic Resonance Imaging (MRI) is associated with an increased risk of future joint bleeding. The aim of this study was to investigate whether point-of-care ultrasound (POC-US) is an accurate alternative for MRI for the detection of early joint changes. In this single centre diagnostic accuracy study, bilateral knees and ankles of haemophilia patients with no or minimal arthropathy on X-rays were scanned using POC-US and 3 Tesla MRI. POC-US was performed by 1 medical doctor, blinded for MRI, according to the "Haemophilia Early Arthropathy Detection with Ultrasound" (HEAD-US) protocol. MRIs were independently scored by 2 radiologists, blinded for clinical data and ultrasound results. Diagnostic accuracy parameters were calculated with 95% confidence intervals (CI). Knees and ankles of 24 haemophilia patients (96 joints), aged 18-34, were studied. Synovial hypertrophy on MRI was observed in 20% of joints. POC-US for synovial tissue was correct (overall accuracy) in 97% (CI: 91-99) with a positive predictive value of 94% (CI: 73-100) and a negative predictive value of 97% (CI: 91-100). The overall accuracy of POC-US for cartilage abnormalities was 91% (CI: 83-96) and for bone surface irregularities 97% (CI: 91-99). POC-US could accurately assess synovial hypertrophy, bone surface irregularities and cartilage abnormalities in haemophilia patients with limited joint disease. As POC-US is an accurate and available alternative for MRI, it can be used for routine evaluation of early joint changes. © 2018 The Authors. Haemophilia published by John Wiley & Sons Ltd.

  3. Breast cancer: determining the genetic profile from ultrasound-guided percutaneous biopsy specimens obtained during the diagnostic workups.

    PubMed

    López Ruiz, J A; Zabalza Estévez, I; Mieza Arana, J A

    2016-01-01

    To evaluate the possibility of determining the genetic profile of primary malignant tumors of the breast from specimens obtained by ultrasound-guided percutaneous biopsies during the diagnostic imaging workup. This is a retrospective study in 13 consecutive patients diagnosed with invasive breast cancer by B-mode ultrasound-guided 12 G core needle biopsy. After clinical indication, the pathologist decided whether the paraffin block specimens seemed suitable (on the basis of tumor size, validity of the sample, and percentage of tumor cells) before sending them for genetic analysis with the MammaPrint® platform. The size of the tumors on ultrasound ranged from 0.6cm to 5cm. In 11 patients the preserved specimen was considered valid and suitable for use in determining the genetic profile. In 1 patient (with a 1cm tumor) the pathologist decided that it was necessary to repeat the core biopsy to obtain additional samples. In 1 patient (with a 5cm tumor) the specimen was not considered valid by the genetic laboratory. The percentage of tumor cells in the samples ranged from 60% to 70%. In 11/13 cases (84.62%) it was possible to do the genetic analysis on the previously diagnosed samples. In most cases, regardless of tumor size, it is possible to obtain the genetic profile from tissue specimens obtained with ultrasound-guided 12 G core biopsy preserved in paraffin blocks. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  4. An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei

    2013-06-01

    Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.

  5. Visualizing ultrasound through computational modeling

    NASA Technical Reports Server (NTRS)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  6. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    NASA Astrophysics Data System (ADS)

    Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.

    2017-08-01

    Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer

  7. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions

    PubMed Central

    Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.

    2016-01-01

    OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762

  8. A comparison of hepatic steatosis index, controlled attenuation parameter and ultrasound as noninvasive diagnostic tools for steatosis in chronic hepatitis B.

    PubMed

    Xu, Liang; Lu, Wei; Li, Ping; Shen, Feng; Mi, Yu-Qiang; Fan, Jian-Gao

    2017-08-01

    To evaluate the value of noninvasive tools for diagnosis of hepatic steatosis in patients with chronic hepatitis B (CHB). Consecutive treatment-naïve patients with CHB with body mass index less than 30kg/m 2 who underwent liver biopsy, ultrasound and FibroScan ® were enrolled. The diagnostic performance of controlled attenuation parameter (CAP), hepatic steatosis index (HSI) and ultrasound for hepatic steatosis compared with liver biopsy was assessed. The areas under receiver operating characteristics curves (AUROCs) were calculated to determine the diagnostic efficacy, with comparisons using the DeLong test. CAP and HSI accuracies were significantly higher than that of ultrasound to detect patients with biopsy-proven mild steatosis (S1, 65.3%, 56.5%, respectively, vs. 17.7%, χ 2 =46.305, 31.736, both P<0.05)and moderate-severe (S2-3) steatosis (92.3%, 100%, respectively, vs. 53.8%, χ 2 =4.887, 7.800, P=0.037, 0.007, respectively). Both CAP and HSI had lower underestimation rates of steatosis grade than ultrasound (12%, 14.8%, respectively, vs. 29.5%, χ 2 =9.765, 6.452; P<0.05 for both), but they exhibited higher overestimation rates (30.5%, 38.2%, respectively, vs. 12.4%, χ 2 =39.222, 70.986; both P<0.05). The AUROCs of CAP and HSI were 0.780 (95% confidence intervals [CIs] 0.735-0.822) and 0.655 (95%CI 0.604-0.704) for S ≥1, 0.932 (95%CI 0.902-0.956) and 0.755 (95%CI 0.707-0.799) for S ≥2, 0.990 (95%CI 0.974-0.998) and 0.786 (95% CI 0.740-0.827) for S3, respectively. CAP might be more accurate for detecting hepatic steatosis than HSI and ultrasound in patients with CHB, but further studies are needed to reduce the overestimation rates. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  9. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinton, Gianmarco

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost.more » Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally

  10. Recent advances in ultrasound-triggered therapy.

    PubMed

    Yang, Chaopin; Li, Yue; Du, Meng; Chen, Zhiyi

    2018-04-27

    As a non-invasive and real-time diagnostic technique, ultrasound has provided a novel strategy for targeted treatment. With the rapid development of ultrasonic technique and ultrasound contrast agents (UCAs), spatiotemporally controllable application of ultrasound with or without UCAs makes it possible for site-specific delivery of therapeutic agents and targeted modulation with minimal side effects, which indicated a promising therapy in clinical use. This review will describe the main mechanism of targeted therapy induced by ultrasound briefly, then focus on the current application of ultrasound mediated targeted therapy in various fields including tumour, cardiovascular disease, central nervous system, skeletal muscle system diseases and stem cells therapy. In addition, ongoing challenges of ultrasound-mediated targeted therapy for further research and its clinical use are reviewed.

  11. Establishment of ultrasound as a diagnostic aid in the referral of patients with abdominal pain in an emergency department – a pilot study

    PubMed Central

    Poulsen, Liv la Cour; Bækgaard, Emilie Stokholm; Istre, Per Grosen; Schmidt, Thomas Andersen; Larsen, Torben

    2015-01-01

    Purpose Ultrasonography is a noninvasive, cheap, and fast way of assessing abdominal pain in an emergency department. Many physicians working in emergency departments do not have pre-existing ultrasound experience. The purpose of this study was to investigate the ability of first-year internship doctors to perform a reliable ultrasound examination on patients with abdominal pain in an emergency setting. Materials and methods This study took place in an emergency department in Denmark. Following a 1-day ultrasound introduction course, three doctors without prior ultrasound experience scanned 45 patients during a 2-month period. The applicability of the examinations was evaluated by subsequent control examination: computed tomography, operation, or ultrasound by a trained radiologist or gynecologist or, in cases where the patient was immediately discharged, by ultrasound image evaluation. Results In 14 out of 21 patients with a control examination, there was diagnostic agreement between the project ultrasound examination and the control. Image evaluation of all patients showed useful images of the gallbladder, kidneys, liver, abdominal aorta, and urinary bladder, but no useful images for either the pancreas or colon. Conclusion With only little formal training, it is possible for first-year internship doctors to correctly visualize some abdominal organs with ultrasonography. However, a longer study time frame, including more patients, and an ultrasound course specifically designed for the purpose of use in an emergency department, is needed to enhance the results. PMID:27147884

  12. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    PubMed

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Ultrasound of the coracoclavicular ligaments in the acute phase of an acromioclavicular disjonction: Comparison of radiographic, ultrasound and MRI findings.

    PubMed

    Faruch Bilfeld, Marie; Lapègue, Franck; Chiavassa Gandois, Hélène; Bayol, Marie Aurélie; Bonnevialle, Nicolas; Sans, Nicolas

    2017-02-01

    Acromioclavicular joint injuries are typically diagnosed by clinical and radiographic assessment with the Rockwood classification, which is crucial for treatment planning. The purpose of this study was to describe how the ultrasound findings of acromioclavicular joint injury compare with radiography and MRI findings. Forty-seven patients with suspected unilateral acromioclavicular joint injury after acute trauma were enrolled in this prospective study. All patients underwent digital radiography, ultrasound and 3T MRI. A modified Rockwood classification was used to evaluate the coracoclavicular ligaments. The classifications of acromioclavicular joint injuries diagnosed with radiography, ultrasound and MRI were compared. MRI was used as the gold standard. The agreement between the ultrasound and MRI findings was very good, with a correlation coefficient of 0.83 (95 % CI: 0.72-0.90; p < 0.0001). Ultrasound detected coracoclavicular ligament injuries with a sensitivity of 88.9 %, specificity of 90.0 %, positive predictive value of 92.3 % and negative predictive value of 85.7 %. The agreement between the ultrasound and radiography findings was poor, with a correlation coefficient of 0.69 (95 % CI: 0.51-0.82; p < 0.0001). Ultrasound is an effective examination for the diagnostic work-up of lesions of the coracoclavicular ligaments in the acute phase of an acromioclavicular injury. • Ultrasound is appropriate for acute acromioclavicular trauma due to its accessibility. • Ultrasound contributes to the diagnostic work-up of acute lesions of the coracoclavicular ligaments. • Ultrasound is appropriate in patients likely to benefit from surgical treatment. • Ultrasound could be a supplement to standard radiography in acute acromioclavicular trauma.

  14. The effects of transducer geometry on artifacts common to diagnostic bone imaging with conventional medical ultrasound.

    PubMed

    Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A

    2012-06-01

    The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.

  15. Evaluation of Computer-aided Strategies for Teaching Medical Students Prenatal Ultrasound Diagnostic Skills.

    PubMed

    Amesse, Lawrence S; Callendar, Ealena; Pfaff-Amesse, Teresa; Duke, Janice; Herbert, William N P

    2008-09-24

    To evaluate whether computer-based learning (CBL) improves newly acquired knowledge and is an effective strategy for teaching prenatal ultrasound diagnostic skills to third-year medical students when compared with instruction by traditional paper-based methods (PBM). We conducted a randomized, prospective study involving volunteer junior (3(rd) year) medical students consecutively rotating through the Obstetrics and Gynecology clerkship during six months of the 2005-2006 academic year. The students were randomly assigned to permuted blocks and divided into two groups. Half of the participants received instruction in prenatal ultrasound diagnostics using an interactive CBL program; the other half received instruction using equivalent material by the traditional PBM. Outcomes were evaluated by comparing changes in pre-tutorial and post instruction examination scores. All 36 potential participants (100%) completed the study curriculum. Students were divided equally between the CBL (n = 18) and PBM (n = 18) groups. Pre-tutorial exam scores (mean+/-s.d.) were 44%+/-11.1% for the CBL group and 44%+/-10.8% for the PBL cohort, indicating no statistically significant differences (p>0.05) between the two groups. After instruction, post-tutorial exam scores (mean+/-s.d.) were increased from the pre-tutorial scores, 74%+/-11% and 67%+/-12%, for students in the CBL and the PBM groups, respectively. The improvement in post-tutorial exam scores from the pre-test scores was considered significant (p<0.05). When post-test scores for the tutorial groups were compared, the CBL subjects achieved a score that was, on average, 7 percentage points higher than their PBM counterparts, a statistically significant difference (p < 0.05). Instruction by either CBL or PBM strategies is associated with improvements in newly acquired knowledge as reflected by increased post-tutorial examination scores. Students that received CBL had significantlyhigher post-tutorial exam scores than those in the

  16. Ultrasonographic diagnosis of early pregnancy in cattle using different ultrasound systems.

    PubMed

    Racewicz, Przemysław; Sickinger, Marlene; Włodarek, Jan; Jaśkowski, Jędrzej M

    2016-06-16

    To evaluate the efficiency of different ultrasound devices in achieving an early diagnosis of pregnancy in dairy herds. A total of 1976 Holstein Friesian cows and heifers were artificially inseminated (AI) according to the herd manager's regime. Pregnancy diagnostics were performed between day 26 and 35 after AI using six different types of ultrasound systems (linear vs. sector scanners). Manual rectal palpation between day 45 and 60 after AI was used as the gold standard for pregnancy diagnostics. Sensitivity (SENS), specificity (SPEC), positive (PPV) and negative predictive value (NPV) and diagnostic accuracy (ACC) of the diagnostic measures were determined. Average SENS was 82% (range 67.7-95.2%) with a mean SPEC of 73% (range 50.0-81.0%). ACC was 78.2% with a minimum of 64.6% and a maximum of 89.4%, depending on the ultrasound system. The PPV (ratio of the number of pregnant cows with a positive examination result to the number of cows actually pregnant) was 80.8% (range 59.1-88.1%), whereas the NPV (defined as the ratio of the number of cows correctly diagnosed negative to the number of cows actually open) was 74.4% (72.3-91.9%). Significant differences for these parameters were found depending on the ultrasound system used (p ≤ 0.01; Cramer's V. = 0.14). Regardless of the ultrasound device used, early pregnancy diagnostics between day 26 and 35 show a moderate diagnostic efficiency. Comparing the accuracy of the different devices, there may be a significant influence of type and technical parameters. Even though ultrasound systems with mechanical sector probes are not as convenient to use as systems with linear probes, according to this study, sector scanners are a reasonable alternative.

  17. Ultrasound for the Anesthesiologists: Present and Future

    PubMed Central

    Terkawi, Abdullah S.; Karakitsos, Dimitrios; Elbarbary, Mahmoud; Blaivas, Michael; Durieux, Marcel E.

    2013-01-01

    Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD) measurement and transcranial color coded duplex (TCCD) are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE) and transesophageal (TEE) echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum. PMID:24348179

  18. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  19. Impact damage monitoring in CFRP using fiber Bragg grating ultrasound sensors

    NASA Astrophysics Data System (ADS)

    Tsuda, Hiroshi; Lee, Jung-Ryul; Eguchi, Shunji

    2006-03-01

    Impact damage in CFRP was monitored by ultrasonic inspection method using small-diameter fiber Bragg grating (FBG) sensors. The FBG ultrasound detection system consisted of broadband light source, FBG sensor and tunable optical filter. Broadband light was launched into the FBG sensor. Light reflected from the FBG sensor was transmitted through the tunable optical filter whose transmissive wavelength range is comparable to the reflected wavelength range of the FBG sensor. The operating wavelength of tunable filter was set to optimize the sensitivity of ultrasound detection. Ultrasound vibration was converted into change in intensity of light transmitted through the filter. A cross-ply carbon fiber-reinforced plastic (CFRP) plate was used as a test specimen for impact damage monitoring. A 6.3 X 9mm2 impact damage was introduced by ball dropping. Both FBG ultrasound sensor and piezoelectric ultrasound transmitter were attached on the CFRP surface. The change in responses to ultrasound excited by either spike signal or toneburst signal before and after impact damage was investigated. In response to ultrasound excited by spike signal, the response after impact damage showed a scattered behavior where the period of response signal got longer. In response to ultrasound excited by toneburst signal, damage signal features scattered and distorted waveform. Experimental results proved that the FBG inspection system could monitor a 6.3 X 9mm2 impact damage in CFRP.

  20. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  1. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  2. Thoracic ultrasound-assisted selection for pleural biopsy with Abrams needle.

    PubMed

    Botana-Rial, Maribel; Leiro-Fernández, Virginia; Represas-Represas, Cristina; González-Piñeiro, Ana; Tilve-Gómez, Amara; Fernández-Villar, Alberto

    2013-11-01

    Closed pleural biopsy (CPB) in patients with malignant pleural effusion is less sensitive than cytology. Ultrasound-assisted CPB allows biopsies to be performed in the lower thoracic parietal pleura, where secondary spread from pleural metastases is initially more likely to be found. We analyzed whether choosing the point of entry for CPB with thoracic ultrasound assistance influences the diagnostic yield in malignant pleural effusion. This prospective study included patients who underwent CPB performed by an experienced pulmonologist in 2008-2010 (group A) and thoracic ultrasound was used to select the biopsy site. The results were compared with a historical series of CPB performed by the same pulmonologist without the assistance of thoracic ultrasound (group B). An Abrams needle was used in all cases. We analyzed the obtaining of pleural tissue and the diagnostic yield. We included 114 CPBs from group A (23% tuberculous pleural effusion, 27% malignant pleural effusion) and 67 CPBs from group B (24% tuberculous pleural effusion, 30% malignant pleural effusion) (P = .70). Pleural tissue was obtained in 96.5% of the group A CPBs and 89.6% of the group B CPBs (P = .05). The diagnostic yields of CPB for tuberculous pleural effusion and malignant pleural effusion in group A were 89.5% and 77.4%, respectively, and 91.7% and 60%, respectively, in group B (P = .80 for tuberculous pleural effusion, and P = .18 for malignant pleural effusion). Selecting the point of entry for CPB using thoracic ultrasound increases the likelihood of obtaining pleural tissue and the diagnostic yield, but without statistical significance. We recommend ultrasound-assisted CPB to investigate pleural effusion, since the diagnostic yield of a pleural biopsy with an Abrams needle increased by > 17% in subjects with malignant pleural effusion.

  3. Diagnostic Value of Endorectal Ultrasound in Preoperative Assessment of Lymph Node Involvement in Colorectal Cancer: a Meta-analysis.

    PubMed

    Li, Li; Chen, Shi; Wang, Ke; Huang, Jiao; Liu, Li; Wei, Sheng; Gao, Hong-Yu

    2015-01-01

    Nodal invasion by colorectal cancer is a critical determinant in estimating patient survival and in choosing appropriate preoperative treatment. The present meta-analysis was designed to evaluate the diagnostic value of endorectal ultrasound (EUS) in preoperative assessment of lymph node involvement in colorectal cancer. We systematically searched PubMed, Web of Science, Embase, and China National Knowledge Infrastructure (CNKI) databases for relevant studies published on or before December 10th, 2014. The sensitivity, specificity, likelihood ratios, diagnostic odds ratio (DOR) and area under the summary receiver operating characteristics curve (AUC) were assessed to estimate the diagnostic value of EUS. Subgroup analysis and meta-regression were performed to explore heterogeneity across studies. Thirty-three studies covering 3,016 subjects were included. The pooled sensitivity and specificity were 0.69 (95%CI: 0.63-0.75) and 0.77 (95%CI: 0.73-0.82), respectively. The positive and negative likelihood ratios were 3.09 (95%CI: 2.52-3.78) and 0.39 (95%CI: 0.32-0.48), respectively. The DOR was 7.84 (95%CI: 5.56-11.08), and AUC was 0.80 (95%CI: 0.77-0.84). This meta-analysis indicated that EUS has moderate diagnostic value in preoperative assessment of lymph node involvement in colorectal cancer. Further refinements in technology and diagnostic criteria are necessary to improve the diagnostic accuracy of EUS.

  4. Novel tissue phantom for testing a dual-modality diagnostic system: time-resolved fluorescence spectroscopy and high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura

    2008-02-01

    A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.

  5. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling.

    PubMed

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Ibaragi, Soichiro; Kunisada, Yuki; Obata, Kyoichi; Masui, Masanori; Pai, Pang; Horikiri, Yuu; Yamanaka, Nobuyuki; Takigawa, Masaharu; Sasaki, Akira

    2018-06-01

    Low-intensity pulsed ultrasound (LIPUS) has been used as an adjunct to fracture healing therapies, but the mechanisms underlying its action are not known. We reported that sonic hedgehog (SHH) signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture. Mechanical stimulation is a crucial factor in bone remodeling, and it is related to the primary cilia as a sensor of hedgehog signaling. Here we observed that LIPUS promoted callus formation in accord with Gli2-positive cells after 14 days at the mouse femur fractured site compared with a control group. An immunofluorescence analysis showed that the numbers of primary cilia and cilia/osterix double-positive osteoblasts were increased at the fracture site by LIPUS. LIPUS stimulated not only the number and the length of primary cilia, but also the levels of ciliated protein, Ift88 mRNA, and SHH, Gli1, and Gli2 in MC3T3-E1 cells. Further experiments revealed that LIPUS stimulated osteogenic differentiation in the presence of smoothened agonist (SAG) treatment. These results indicate that LIPUS stimulates osteogenic differentiation and the maturation of osteoblasts by a primary cilium-mediated activation of hedgehog signaling. © 2017 Wiley Periodicals, Inc.

  6. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  7. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  8. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  9. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  10. [Subclinical findings in the knees of taekwondo athletes: diagnostic ultrasound study].

    PubMed

    Martínez Hernández, Luis Enrique; Hernández Díaz, Cristina; Pegueros Pérez, Andrea; Franco Sánchez, José Gilberto; Pineda Villaseñor, Carlos

    2014-12-01

    Taekwondo is associated with an increased incidence of musculoskeletal injuries such as tendinopathy, synovitis, chondropathy, and ligament and meniscus injuries that may have an asymptomatic course in their initial stages, especially those located in the knee. To describe the presence of morphostructural abnormalities in asymptomatic taekwondo athletes' (TKD) knees through the use of diagnostic ultrasound (US). A cross-sectional, descriptive and comparative study. We evaluated 32 knees of 16 subjects (8 TKD and 8 recreational athletes). All subjects underwent sport-medical history and knee US. A variety of intra- and extra-articular morphostructural abnormalities were observed; the most frequent were synovitis, meniscal extrusion, and enthesopathy. The practice of Taekwondo abnormalities associated with an increased risk of knee injuries that may go unnoticed in the early stages. The use of US as an auxiliary tool in the diagnosis of these injuries and/or advisable since it can define in detail the anatomical structures subject to overuse, biomechanical stress, or repetitive trauma, and contribute to early detection of asymptomatic morphostructural alterations that may ensure timely preventive and therapeutic interventions.

  11. A new method for tracking organ motion on diagnostic ultrasound images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Yoshiki, E-mail: y-kubota@gunma-u.ac.jp; Matsumura, Akihiko, E-mail: matchan.akihiko@gunma-u.ac.jp; Fukahori, Mai, E-mail: fukahori@nirs.go.jp

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather thanmore » organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large

  12. Potential diagnostic performance of contrast-enhanced ultrasound and tumor markers in differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma.

    PubMed

    Huang, Xiao-Wen; Huang, Yang; Chen, Li-da; Wang, Zhu; Yang, Zheng; Liu, Jin-Ya; Xie, Xiao-Yan; Lu, Ming-De; Shen, Shun-Li; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of the combination of tumor markers [alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9)] and imaging features in differentiating combined hepatocellular-cholangiocarcinoma (CHC) from hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). Forty consecutive patients with pathologically proven CHC were retrospectively evaluated with contrast-enhanced ultrasound (CEUS). Additionally, 40 HCC and 40 CC patients who were randomly selected from the same period served as a control group. Images were classified as HCC-like or CC-like pattern according to CEUS guidelines recommended by World and European Federation for Ultrasound in Medicine and Biology (WFUMB-EFSUMB). The diagnostic criteria of CHC were defined as follows: (1) both AFP and CA19-9 are simultaneously elevated (AFP > 20 ng/ml and CA19-9 > 100 units/ml); or (2) elevated AFP with a CC-like pattern on CEUS and without elevated CA19-9 level; or (3) elevated CA19-9 with an HCC-like pattern on CEUS and without elevated AFP level. The diagnostic tests were performed with calculation of the sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). For the 40 CHC patients, the rates of elevated AFP and CA19-9 serology were 55.0 and 30.0%, respectively. Twenty-three (57.5%) patients exhibited an HCC-like pattern, and 15 (37.5%) showed a CC-like pattern. After applying the above diagnostic criteria of CHC in the 120 patients, the sensitivity, specificity, PPV, NPV, accuracy, and AUC were 32.5, 93.8, 72.2, 73.5, 73.3, and 0.631%, respectively. When the actual prevalence rate (0.4-14.3%) was taken into account, the PPV and NPV were modified from 2.1 to 46.7% and 89.3 to 99.7%, respectively. The combination of enhancement patterns on CEUS and serum tumor markers (AFP and CA19-9) may be a potentially specific diagnostic method to differentiate CHC from HCC

  13. Clinical applications of very high frequency ultrasound in ophthalmology

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Coleman, D. Jackson; Reinstein, Dan Z.; Lizzi, Frederic L.

    2004-05-01

    The eye is ideally suited for diagnostic imaging with very high frequency (>35 MHz) ultrasound (VHFU) because of its peripheral location and cystic structure. VHFU allows high resolution visualization of pathologies affecting the anterior segment of the eye, including tumors, cysts, foreign bodies, and corneal pathologies. We developed a series of prototype instruments suitable for ophthalmic studies using both polymer and lithium niobate transducers, with digitization of radiofrequency echo data at up to 500 MHz. While initially using linear scan geometries, we subsequently developed an arc-shaped scan matched to the curvature of the 0.5-mm-thick cornea to circumvent the effect of specular deflection of the ultrasound beam produced by the corneas curved surface. This technique allowed us to obtain data across the entire cornea and determination of the thickness of each corneal layer, including the epithelium (approximately 50 microns in thickness) and the surgically induced interface produced in LASIK, the most common form of refractive surgery. By scanning in a series of meridians, and applying optimized signal processing strategies (deconvolution, analytic signal envelope determination), corneal pachymetric maps representing the local thickness of each layer can be generated and aid in diagnosis of surgically induced defects or refractive abnormalities.

  14. Improving performance of nanoscale ultrasound contrast agents using N,N-diethylacrylamide stabilization.

    PubMed

    Perera, Reshani H; Wu, Hanping; Peiris, Pubudu; Hernandez, Christopher; Burke, Alan; Zhang, Helen; Exner, Agata A

    2017-01-01

    The design of nanoscale yet highly echogenic agents for imaging outside of the vasculature and for ultrasound-mediated drug delivery remains a formidable challenge. We have previously reported on formulation of echogenic perfluoropropane gas nanobubbles stabilized by a lipid-pluronic surfactant shell. In the current work we describe the development of a new generation of these nanoparticles which consist of perfluoropropane gas stabilized by a surfactant and lipid membrane and a crosslinked network of N,N-diethylacrylamide. The resulting crosslinked nanobubbles (CL-PEG-NB) were 95.2±25.2nm in diameter and showed significant improvement in stability and retention of echogenic signal over 24h. In vivo analysis via ultrasound and fluorescence mediated tomography showed greater tumor extravasation and accumulation with CL-PEG-NB compared to microbubbles. Together these results demonstrate the capabilities and advantages of a new, more stable, nanometer-scale ultrasound contrast agent that can be utilized in future work for diagnostic scans and molecular imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The 2D analytic signal for envelope detection and feature extraction on ultrasound images.

    PubMed

    Wachinger, Christian; Klein, Tassilo; Navab, Nassir

    2012-08-01

    The fundamental property of the analytic signal is the split of identity, meaning the separation of qualitative and quantitative information in form of the local phase and the local amplitude, respectively. Especially the structural representation, independent of brightness and contrast, of the local phase is interesting for numerous image processing tasks. Recently, the extension of the analytic signal from 1D to 2D, covering also intrinsic 2D structures, was proposed. We show the advantages of this improved concept on ultrasound RF and B-mode images. Precisely, we use the 2D analytic signal for the envelope detection of RF data. This leads to advantages for the extraction of the information-bearing signal from the modulated carrier wave. We illustrate this, first, by visual assessment of the images, and second, by performing goodness-of-fit tests to a Nakagami distribution, indicating a clear improvement of statistical properties. The evaluation is performed for multiple window sizes and parameter estimation techniques. Finally, we show that the 2D analytic signal allows for an improved estimation of local features on B-mode images. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ultrasound elastography-based assessment of the elasticity of the supraspinatus muscle in impingement syndrome: does elastography has any diagnostic value?

    PubMed

    Demirel, Adnan; Baykara, Murat; Koca, Tuba Tülay; Berk, Ejder

    2018-06-01

    Ultrasound elastography (UE) is a new ultrasound-based imaging technique that provides information about elasticity and stiffness of tissues. This cross-sectional study aimed to identify the diagnostic importance of UE in supraspinatus impingement syndrome. Forty-one subjects, aged 38-70 years, were included in the study. UE was used to determine the elasticity of the supraspinatus muscle. The strain ratio was calculated as the evaluation criteria to measure the elasticity of the muscle. High strain ratio indicated low elasticity. The measurements were made by the blinded radiologist while the patients sat with their shoulder in a neutral position. The diagnostic value of the strain ratio was evaluated using the receiver operating characteristic (ROC) analysis. The mean strain value of the supraspinatus muscle on the intact and pathological shoulders determined by UE was 0.74 ± 0.33 and 0.31 ± 0.24, respectively. A low strain ratio value in the supraspinatus muscle on the side with impingement syndrome was measured. When the test variable was evaluated as "strain ratio" according to ROC curve analysis, it was found to be above the reference line [0.849 (> 0.5)] (P = 0.00). When the cutoff value was selected as 0.495, the sensitivity and specificity were found to be 75.6 and 78% (the strain ratio value > 0.495), respectively. Measurement of strain ratio with UE can be used as a noninvasive, inexpensive, and practical diagnostic test for the shoulder impingement disease.

  17. A Preliminary Study on the Possibility of Using Ultrasound in Driver Assistance Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Honda, Hirohiko

    This paper presents a preliminary study on the possibility of using ultrasound in driver assistance systems. Subjects' lap time in a driving video game was measured as an index of their performance of driving operations under acoustic conditions with and without an ultrasound signal at 23kHz, 70dB. The results show that the performance characteristics of the subjects changed when the ultrasound signal was presented. Ultrasound signal tends to concentrate on handling the vehicle and decreasing an attention to check the over speed driving, as a second task. We prove the possibility to apply ultrasound signal to control operator's attention and behavior.

  18. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS.

    PubMed

    Schellhaas, Barbara; Görtz, Ruediger S; Pfeifer, Lukas; Kielisch, Christian; Neurath, Markus F; Strobel, Deike

    2017-09-01

    A comparison is made of two contrast-enhanced ultrasound (CEUS) algorithms for the diagnosis of hepatocellular carcinoma (HCC) in high-risk patients: Erlanger Synopsis of Contrast-enhanced Ultrasound for Liver lesion Assessment in Patients at Risk (ESCULAP) and American College of Radiology Contrast-Enhanced Ultrasound-Liver Imaging Reporting and Data System (ACR-CEUS-LI-RADSv.2016). Focal liver lesions in 100 high-risk patients were assessed using both CEUS algorithms (ESCULAP and CEUS-LI-RADSv.2016) for a direct comparison. Lesions were categorized according to size and contrast enhancement in the arterial, portal venous and late phases.For the definite diagnosis of HCC, categories ESCULAP-4, ESCULAP-Tr and ESCULAP-V and CEUS-LI-RADS-LR-5, LR-Tr and LR-5-V were compared. In addition, CEUS-LI-RADS-category LR-M (definitely/probably malignant, but not specific for HCC) and ESCULAP-category C [intrahepatic cholangiocellular carcinoma (ICC)] were compared.Histology, CE-computed tomography and CE-MRI served as reference standards. The reference standard among 100 lesions included 87 HCCs, six ICCs and seven non-HCC-non-ICC-lesions. For the diagnosis of HCC, the diagnostic accuracy of CEUS was significantly higher with ESCULAP versus CEUS-LI-RADS (94.3%/72.4%; p<0.01). Sensitivity, specificity and positive predictive value (PPV) and negative predictive value for ESCULAP/CEUS-LI-RADS were 94.3%/72.4%; 61.5%/69.2%; 94.3%/94%; and 61.5%/27.3%, respectively.The diagnostic accuracy for ICC (LR-M/ESCULAP-C) was identical with both algorithms (50%), with higher PPV for ESCULAP-C versus LR-M (75 vs. 50%). CEUS-based algorithms contribute toward standardized assessment and reporting of HCC-suspect lesions in high-risk patients. ESCULAP shows significantly higher diagnostic accuracy, sensitivity and negative predictive value with no loss of specificity compared with CEUS-LI-RADS. Both algorithms have an excellent PPV. Arterial hyperenhancement is the key feature for the

  19. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  20. The Role of Ultrasound Compared to Biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study.

    PubMed

    Luqmani, Raashid; Lee, Ellen; Singh, Surjeet; Gillett, Mike; Schmidt, Wolfgang A; Bradburn, Mike; Dasgupta, Bhaskar; Diamantopoulos, Andreas P; Forrester-Barker, Wulf; Hamilton, William; Masters, Shauna; McDonald, Brendan; McNally, Eugene; Pease, Colin; Piper, Jennifer; Salmon, John; Wailoo, Allan; Wolfe, Konrad; Hutchings, Andrew

    2016-11-01

    Giant cell arteritis (GCA) is a relatively common form of primary systemic vasculitis, which, if left untreated, can lead to permanent sight loss. We compared ultrasound as an alternative diagnostic test with temporal artery biopsy, which may be negative in 9-61% of true cases. To compare the clinical effectiveness and cost-effectiveness of ultrasound with biopsy in diagnosing patients with suspected GCA. Prospective multicentre cohort study. Secondary care. A total of 381 patients referred with newly suspected GCA. Sensitivity, specificity and cost-effectiveness of ultrasound compared with biopsy or ultrasound combined with biopsy for diagnosing GCA and interobserver reliability in interpreting scan or biopsy findings. We developed and implemented an ultrasound training programme for diagnosing suspected GCA. We recruited 430 patients with suspected GCA. We analysed 381 patients who underwent both ultrasound and biopsy within 10 days of starting treatment for suspected GCA and who attended a follow-up assessment (median age 71.1 years; 72% female). The sensitivity of biopsy was 39% [95% confidence interval (CI) 33% to 46%], which was significantly lower than previously reported and inferior to ultrasound (54%, 95% CI 48% to 60%); the specificity of biopsy (100%, 95% CI 97% to 100%) was superior to ultrasound (81%, 95% CI 73% to 88%). If we scanned all suspected patients and performed biopsies only on negative cases, sensitivity increased to 65% and specificity was maintained at 81%, reducing the need for biopsies by 43%. Strategies combining clinical judgement (clinician's assessment at 2 weeks) with the tests showed sensitivity and specificity of 91% and 81%, respectively, for biopsy and 93% and 77%, respectively, for ultrasound; cost-effectiveness (incremental net monetary benefit) was £485 per patient in favour of ultrasound with both cost savings and a small health gain. Inter-rater analysis revealed moderate agreement among sonographers (intraclass

  1. Ultrasound in athletes: emerging techniques in point-of-care practice.

    PubMed

    Yim, Eugene S; Corrado, Gianmichel

    2012-01-01

    Ultrasound offers sports medicine clinicians the potential to diagnose, treat, and manage a broad spectrum of conditions afflicting athletes. This review article highlights applications of ultrasound that hold promise as point-of-care diagnostics and therapeutic tools that can be used directly by clinicians to direct real-time management of athletes. Point-of-care ultrasound has been examined most in the context of musculoskeletal disorders in athletes, with attention given to Achilles tendinopathy, patellar tendinopathy, hip and thigh pathology, elbow tendinopathy, wrist pathology, and shoulder pain. More research has focused on therapeutic applications than diagnostic, but initial evidence has been generated in both. Preliminary evidence has been published also on abdominal ultrasound for splenic enlargement in mononucleosis, cardiopulmonary processes and hydration status, deep vein thrombosis, and bone mineral density. Further research will be required to validate these applications and to explore further applications of portable ultrasound that can be used in the care of athletes.

  2. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  3. Correlation of acoustic emissions associated with effects from diagnostic and therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Samuel, Stanley

    2007-12-01

    This research has investigated the correlation of acoustic emissions with associated contrast-mediated ultrasound bio-effects. The hypothesis that motivated this study was that during exposure with ultrasound, the cavitation occurring in tissue emits acoustical signals, which if correlated with specific bio-effects, could provide a way to monitor the potential bio-effects of exposure. A good bio-effects indicator would find immediate use in research on drug and gene delivery, and could have clinical application in avoiding bio-effects in diagnosis. Studies conducted to test the hypothesis involved investigation of (i) the influence of pulse repetition frequency (PRF) and number of exposures on cell damage, (ii) the effect of total exposure duration and pulse-to-pulse bubble distribution on acoustic emissions and corresponding cell damage, and (iii) the translation of in vitro effects to an in situ environment. Exposures were primarily conducted at a peak rarefactional pressure of 2 MPa, 2.25 MHz insonating frequency and pulse length of 46 cycles. PRFs of 1-, 10-, 100-, 500-, and 1000 Hz were compared. High speed photography (2000 fps) was employed for the investigation of pulse-to-pulse bubble distribution while intravital microscopy was used for in situ studies. A strong correlation was observed between acoustic emissions and bio-effects with the availability of bubbles of resonant size serving as a key link between the two. It was observed that total exposure duration may play an important role in cell damage. Damage increased with increasing total exposure duration from 0 ms to 100 ms with a plateau at above 100 ms. These results were consistent for all studies. There is, therefore, an implication that manipulating these parameters may allow for measurement and control of the extent of bioeffects. Moreover, the correlation of acoustic emission and extravasation observed in in situ studies reveals that cumulative function of the relative integrated power spectrum

  4. The Use of Enteric Contrast Media for Diagnostic CT, MRI, and Ultrasound in Infants and Children: A Practical Approach.

    PubMed

    Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert; Buonomo, Carlo; Taylor, George A

    2016-05-01

    Enteric contrast media are commonly administered for diagnostic cross-sectional imaging studies in the pediatric population. The purpose of this manuscript is to review the use of enteric contrast media for CT, MRI, and ultrasound in infants, children, and adolescents and to share our experiences at a large tertiary care pediatric teaching hospital. The use of enteric contrast material for diagnostic imaging in infants and children continues to evolve with advances in imaging technology and available enteric contrast media. Many principles of enteric contrast use in pediatric imaging are similar to those in adult imaging, but important differences must be kept in mind when imaging the gastrointestinal tract in infants and children, and practical ways to optimize the imaging examination and the patient experience should be employed where possible.

  5. Signal evaluations using singular value decomposition for Thomson scattering diagnostics.

    PubMed

    Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K

    2014-11-01

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  6. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  7. Diagnostics for insufficiencies of posterior calculations in Bayesian signal inference.

    PubMed

    Dorn, Sebastian; Oppermann, Niels; Ensslin, Torsten A

    2013-11-01

    We present an error-diagnostic validation method for posterior distributions in Bayesian signal inference, an advancement of a previous work. It transfers deviations from the correct posterior into characteristic deviations from a uniform distribution of a quantity constructed for this purpose. We show that this method is able to reveal and discriminate several kinds of numerical and approximation errors, as well as their impact on the posterior distribution. For this we present four typical analytical examples of posteriors with incorrect variance, skewness, position of the maximum, or normalization. We show further how this test can be applied to multidimensional signals.

  8. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Transperineal ultrasound compared to evacuation proctography for diagnosing enteroceles and intussusceptions.

    PubMed

    Weemhoff, M; Kluivers, K B; Govaert, B; Evers, J L H; Kessels, A G H; Baeten, C G

    2013-03-01

    This study concerns the level of agreement between transperineal ultrasound and evacuation proctography for diagnosing enteroceles and intussusceptions. In a prospective observational study, 50 consecutive women who were planned to have an evacuation proctography underwent transperineal ultrasound too. Sensitivity, specificity, positive (PPV) and negative predictive value, as well as the positive and negative likelihood ratio of transperineal ultrasound were assessed in comparison to evacuation proctography. To determine the interobserver agreement of transperineal ultrasound, the quadratic weighted kappa was calculated. Furthermore, receiver operating characteristic curves were generated to show the diagnostic capability of transperineal ultrasound. For diagnosing intussusceptions (PPV 1.00), a positive finding on transperineal ultrasound was predictive of an abnormal evacuation proctography. Sensitivity of transperineal ultrasound was poor for intussusceptions (0.25). For diagnosing enteroceles, the positive likelihood ratio was 2.10 and the negative likelihood ratio, 0.85. There are many false-positive findings of enteroceles on ultrasonography (PPV 0.29). The interobserver agreement of the two ultrasonographers assessed as the quadratic weighted kappa of diagnosing enteroceles was 0.44 and that of diagnosing intussusceptions was 0.23. An intussusception on ultrasound is predictive of an abnormal evacuation proctography. For diagnosing enteroceles, the diagnostic quality of transperineal ultrasound was limited compared to evacuation proctography.

  10. Endobronchial Ultrasound (EBUS) - Update 2017.

    PubMed

    Darwiche, Kaid; Özkan, Filiz; Wolters, Celina; Eisenmann, Stephan

    2018-02-01

    Endobronchial ultrasound (EBUS) has revolutionized the diagnosis of lung cancer over the last decade. This minimally invasive diagnostic method has also become increasingly important in the case of other diseases such as sarcoidosis, thereby helping to avoid unnecessary diagnostic interventions. This review article provides an update regarding EBUS and discusses current and future developments of this method. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  12. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience.

    PubMed

    Cantisani, Vito; Maceroni, Piero; D'Andrea, Vito; Patrizi, Gregorio; Di Segni, Mattia; De Vito, Corrado; Grazhdani, Hektor; Isidori, Andrea M; Giannetta, Elisa; Redler, Adriano; Frattaroli, Fabrizio; Giacomelli, Laura; Di Rocco, Giorgio; Catalano, Carlo; D'Ambrosio, Ferdinando

    2016-05-01

    To assess whether ultrasound elastography (USE) with strain ratio increases diagnostic accuracy of Doppler ultrasound in further characterisation of cytologically Thy3 thyroid nodules. In two different university diagnostic centres, 315 patients with indeterminate cytology (Thy3) in thyroid nodules aspirates were prospectively evaluated with Doppler ultrasound and strain ratio USE before surgery. Ultrasonographic features were analysed separately and together as ultrasound score, to assess sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Receiver operating characteristic (ROC) curves to identify optimal cut-off value of the strain ratio were also provided. Diagnosis on a surgical specimen was considered the standard of reference. Higher strain ratio values were found in malignant nodules, with an optimum strain ratio cut-off of 2.09 at ROC analysis. USE with strain ratio showed 90.6% sensitivity, 93% specificity, 82.8% PPV, 96.4% NPV, while US score yielded a sensitivity of 52.9%, specificity of 84.3%, PPV 55.6% and NPV 82.9%. The diagnostic gain with strain ratio was statistically significant as proved by ROC areas, which was 0.9182 for strain ratio and 0.6864 for US score. USE with strain ratio should be considered a useful additional tool to colour-Doppler US, since it improves characterisation of thyroid nodules with indeterminate cytology. • Strain ratio measurements improve differentiation of thyroid nodules with indeterminate cytology • Elastography with strain ratio is more reliable than ultrasound features and ultrasound score • Strain ratio may help to better select patients with Thy 3 nodules candidate for surgery.

  13. The Subharmonic Behavior and Thresholds of High Frequency Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Allen, John

    2016-11-01

    Ultrasound contrast agents are encapsulated micro-bubbles used for diagnostic and therapeutic biomedical ultrasound. The agents oscillate nonlinearly about their equilibrium radii upon sufficient acoustic forcing and produce unique acoustic signatures that allow them to be distinguished from scattering from the surrounding tissue. The subharmonic response occurs below the fundamental and is associated with an acoustic pressure threshold. Subharmonic imaging using ultrasound contrast agents has been established for clinical applications at standard diagnostic frequencies typically below 20 MHz. However, for emerging applications of high frequency applications (above 20 MHz) subharmonic imaging is an area of on-going research. The effects of attenuation from tissue are more significant and the characterization of agents is not as well understood. Due to specificity and control production, polymer agents are useful for high frequency applications. In this study, we highlight novel measurement techniques to measure and characterize the mechanical properties of the shell of polymer contrast agents. The definition of the subharmonic threshold is investigated with respect to mono-frequency and chirp forcing waveforms which have been used to achieve optimal subharmonic content in the backscattered signal. Time frequency analysis using the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform facilitates a more sensitive and robust methodology for characterization of subharmonic content with respect to non-stationary forcing. A new definition of the subharmonic threshold is proposed with respect to the energy content of the associated adaptive basis decomposition. Additional studies with respect to targeted agent behavior and cardiovascular disease are discussed. NIH, ONR.

  14. Development of ultrasound transducer diffractive field theory for nonlinear propagation-based imaging

    NASA Astrophysics Data System (ADS)

    Kharin, Nikolay A.

    2000-04-01

    In nonlinear ultrasound imaging the images are formed using the second harmonic energy generated due to the nonlinear nature of finite amplitude propagation. This propagation can be modeled using the KZK wave equation. This paper presents further development of nonlinear diffractive field theory based on the KZK equation and its solution by means of the slowly changing profile method for moderate nonlinearity. The analytical expression for amplitudes and phases of sum frequency wave are obtained in addition to the second harmonic wave. Also, the analytical expression for the relative curvature of the wave fronts of fundamental and second harmonic signals are derived. The media with different nonlinear properties and absorption coefficients were investigated to characterize the diffractive field of the transducer at medical frequencies. All expressions demonstrate good agreement with experimental results. The expressions are novel and provide an easy way for prediction of amplitude and phase structure of nonlinearly distorted field of a transducer. The sum frequency signal technique could be implemented as well as second harmonic technique to improve the quality of biomedical images. The results obtained are of importance for medical diagnostic ultrasound equipment design.

  15. Holistic ultrasound in trauma: An update.

    PubMed

    Saranteas, Theodosios; Mavrogenis, Andreas F

    2016-10-01

    Holistic ultrasound is a total body examination using an ultrasound device aiming to achieve immediate patient care and decision making. In the setting of trauma, it is one of the most fundamental components of care of the injured patients. Ground-breaking imaging software allows physicians to examine various organs thoroughly, recognize imaging signs early, and potentially foresee the onset or the possible outcome of certain types of injuries. Holistic ultrasound can be performed on a routine basis at the bedside of the patients, at admission and during the perioperative period. Trauma care physicians should be aware of the diagnostic and guidance benefits of ultrasound and should receive appropriate training for the optimal management of their patients. In this paper, the findings of holistic ultrasound in trauma patients are presented, with emphasis on the lungs, heart, cerebral circulation, abdomen, and airway. Additionally, the benefits of ultrasound imaging in interventional anaesthesia techniques such as ultrasound-guided peripheral nerve blocks and central vein catheterization are described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Diagnostic accuracy of the Bedside Lung Ultrasound in Emergency protocol for the diagnosis of acute respiratory failure in spontaneously breathing patients*,**

    PubMed Central

    Dexheimer, Felippe Leopoldo; de Andrade, Juliana Mara Stormovski; Raupp, Ana Carolina Tabajara; Townsend, Raquel da Silva; Beltrami, Fabiana Gabe; Brisson, Hélène; Lu, Qin; Dalcin, Paulo de Tarso Roth

    2015-01-01

    Objective: Bedside lung ultrasound (LUS) is a noninvasive, readily available imaging modality that can complement clinical evaluation. The Bedside Lung Ultrasound in Emergency (BLUE) protocol has demonstrated a high diagnostic accuracy in patients with acute respiratory failure (ARF). Recently, bedside LUS has been added to the medical training program of our ICU. The aim of this study was to investigate the accuracy of LUS based on the BLUE protocol, when performed by physicians who are not ultrasound experts, to guide the diagnosis of ARF. Methods: Over a one-year period, all spontaneously breathing adult patients consecutively admitted to the ICU for ARF were prospectively included. After training, 4 non-ultrasound experts performed LUS within 20 minutes of patient admission. They were blinded to patient medical history. LUS diagnosis was compared with the final clinical diagnosis made by the ICU team before patients were discharged from the ICU (gold standard). Results: Thirty-seven patients were included in the analysis (mean age, 73.2 ± 14.7 years; APACHE II, 19.2 ± 7.3). LUS diagnosis had a good agreement with the final diagnosis in 84% of patients (overall kappa, 0.81). The most common etiologies for ARF were pneumonia (n = 17) and hemodynamic lung edema (n = 15). The sensitivity and specificity of LUS as measured against the final diagnosis were, respectively, 88% and 90% for pneumonia and 86% and 87% for hemodynamic lung edema. Conclusions: LUS based on the BLUE protocol was reproducible by physicians who are not ultrasound experts and accurate for the diagnosis of pneumonia and hemodynamic lung edema. PMID:25750675

  17. Evaluation of Human Research Facility Ultrasound With the ISS Video System

    NASA Technical Reports Server (NTRS)

    Melton, Shannon; Sargsyan, Ashot

    2003-01-01

    Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.

  18. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    PubMed

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  19. Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging.

    PubMed

    Preiswerk, Frank; Toews, Matthew; Cheng, Cheng-Chieh; Chiou, Jr-Yuan George; Mei, Chang-Sheng; Schaefer, Lena F; Hoge, W Scott; Schwartz, Benjamin M; Panych, Lawrence P; Madore, Bruno

    2017-09-01

    To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore. A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second. In one particular implementation, volunteers were taken out of the MRI bore with the ultrasound sensor still in place, and MR images were generated on the basis of ultrasound signal and learned correlations alone in a "scannerless" manner. Hybrid ultrasound-MRI data were acquired in eight separate imaging sessions. Locations of liver features, in synthetic images, were compared with those from acquired images: The mean error was 1.0 pixel (2.1 mm), with best case 0.4 and worst case 4.1 pixels (in the presence of heavy coughing). For results from outside the bore, qualitative validation involved optically tracked ultrasound imaging with/without coughing. The proposed setup can generate an accurate stream of high-speed MR images, up to 100 frames per second, inside or even outside the MR bore. Magn Reson Med 78:897-908, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Oraevsky, A; Stafford, R

    The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less

  1. [Endobronchial Ultrasound (EBUS) - an Update 2017].

    PubMed

    Darwiche, K; Özkan, F; Wolters, C; Eisenmann, S

    2017-11-01

    Endobronchial Ultrasound (EBUS) with the two modalities curved and radial EBUS significantly improved the diagnostics in several pulmonary diseases. The examination and staging of mediastinal and hilar lymph nodes in patients with known or suspected lung malignancy as well as the evaluation of unknown pulmonary or mediastinal lesions can be achieved with minimal invasive means when using EBUS. More invasive surgical procedures for diagnostic purposes can be omitted. The diagnostic yield also increases when EBUS is applied in sarcoidosis or mediastinal lymph node tuberculosis but only to some extend in case of lymphoma. Samples obtained by EBUS-TBNA should be handled efficiently to allow molecular analysis in lung cancer. EBUS is a safe procedure, and complication rate is extremely low. Further advances of the EBUS technology focus on improving analysis of the information provided by the ultrasound image and a better tissue sampling by developing of new EBUS bronchoscopes and TBNA-needles. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Photoacoustic and ultrasound characterization of bone composition

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  3. Point-of-care ultrasound leads to diagnostic shifts in patients with undifferentiated hypotension.

    PubMed

    Shokoohi, Hamid; Boniface, Keith S; Zaragoza, Michelle; Pourmand, Ali; Earls, James P

    2017-12-01

    To assess the impact of an ultrasound hypotension protocol in identifying life-threatening diagnoses that were missed in the initial evaluation of patients with hypotension and shock. A subset of cases from a previously published prospective study of hypotensive patients who presented at the Emergency Department in a single, academic tertiary care hospital is described. An ultrasound-trained emergency physician performed an ultrasound on each patient using a standardized hypotension protocol. In each case, the differential diagnosis and management plan was solicited from the treating physician immediately before and after the ultrasound. This is a case series of patients with missed diagnoses in whom ultrasound led to a dramatic shift in diagnosis and management by detecting life threatening pathologies. Following a published prospective study of the effect on an ultrasound protocol in 118 hypotensive patients, we identified a series of cases that ultrasound protocol unexpectedly determined serious life threatening diagnoses such as Takotsubo cardiomyopathy, pulmonary embolism, pericardial effusion with tamponade physiology, abdominal aortic aneurysm and perforated viscus resulting in proper diagnoses and management. These hypotensive patients had completely unsuspected but critical diagnoses explaining their hypotension, who in every case had their management altered to target the newly identified life-threatening condition. A hypotension protocol is an optimal use of ultrasound that exemplifies "right time, right place", and impacts decision-making at the bedside. In cases with undifferentiated hypotension, ultrasound is often the most readily available option to ensure that the most immediate life-threatening conditions are quickly identified and addressed in the order of their risk potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Point-of-care ultrasound in aerospace medicine: known and potential applications.

    PubMed

    Wagner, Michael S; Garcia, Kathleen; Martin, David S

    2014-07-01

    Since its initial introduction into the bedside assessment of the trauma patient via the Focused Assessment with Sonography for Trauma (FAST) exam, the use of point-of-care ultrasound has expanded rapidly. A growing body of literature demonstrates ultrasound can be used by nonradiologists as an extension of the physical exam to accurately diagnose or exclude a variety of conditions. These conditions include, but are not limited to, hemoperitoneum, pneumothorax, pulmonary edema, long-bone fracture, deep vein thrombosis, and elevated intracranial pressure. As ultrasound machines have become more compact and portable, their use has extended outside of hospitals to places where the physical exam and diagnostic capabilities may be limited, including the aviation environment. A number of studies using focused sonography have been performed to meet the diagnostic challenges of space medicine. The following article reviews the available literature on portable ultrasound use in aerospace medicine and highlights both known and potential applications of point-of-care ultrasound for the aeromedical clinician.

  5. Diagnostic accuracy of a noninvasive hepatic ultrasound score for non-alcoholic fatty liver disease (NAFLD) in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Goulart, Alessandra Carvalho; Oliveira, Ilka Regina Souza de; Alencar, Airlane Pereira; Santos, Maira Solange Camara dos; Santos, Itamar Souza; Martines, Brenda Margatho Ramos; Meireles, Danilo Peron; Martines, João Augusto dos Santos; Misciagna, Giovanni; Benseñor, Isabela Martins; Lotufo, Paulo Andrade

    2015-01-01

    Noninvasive strategies for evaluating non-alcoholic fatty liver disease (NAFLD) have been investigated over the last few decades. Our aim was to evaluate the diagnostic accuracy of a new hepatic ultrasound score for NAFLD in the ELSA-Brasil study. Diagnostic accuracy study conducted in the ELSA center, in the hospital of a public university. Among the 15,105 participants of the ELSA study who were evaluated for NAFLD, 195 individuals were included in this sub-study. Hepatic ultrasound was performed (deep beam attenuation, hepatorenal index and anteroposterior diameter of the right hepatic lobe) and compared with the hepatic steatosis findings from 64-channel high-resolution computed tomography (CT). We also evaluated two clinical indices relating to NAFLD: the fatty liver index (FLI) and the hepatic steatosis index (HSI). Among the 195 participants, the NAFLD frequency was 34.4%. High body mass index, high waist circumference, diabetes and hypertriglyceridemia were associated with high hepatic attenuation and large anteroposterior diameter of the right hepatic lobe, but not with the hepatorenal index. The hepatic ultrasound score, based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe, presented the best performance for NAFLD screening at the cutoff point ≥ 1 point; sensitivity: 85.1%; specificity: 73.4%; accuracy: 79.3%; and area under the curve (AUC 0.85; 95% confidence interval, CI: 0.78-0.91)]. FLI and HSI presented lower performance (AUC 0.76; 95% CI: 0.69-0.83) than CT. The hepatic ultrasound score based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe has good reproducibility and accuracy for NAFLD screening.

  6. Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area pyroelectric sensor

    NASA Astrophysics Data System (ADS)

    Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.

    2012-06-01

    A systematic study of the application of a novel pyroelectric technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the pyroelectric properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a pyroelectric output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the pyroelectric membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power

  7. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  8. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  9. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  10. Nonlinear Effects in Ultrasound Fields of Diagnostic-type Transducers Used for Kidney Stone Propulsion: Characterization in Water

    PubMed Central

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2016-01-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711

  11. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    NASA Astrophysics Data System (ADS)

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2015-10-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  12. Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound with Gas Body Contrast Agent

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.

    2009-01-01

    Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967

  13. Abdominal ultrasound and medical education.

    PubMed

    García de Casasola Sánchez, G; Torres Macho, J; Casas Rojo, J M; Cubo Romano, P; Antón Santos, J M; Villena Garrido, V; Diez Lobato, R

    2014-04-01

    Ultrasound is a very versatile diagnostic modality that permits real-time visualization of multiple internal organs. It is of invaluable help for the physical examination of the patients. To assess if ultrasound can be incorporated into medical education and if the students can perform a basic abdominal ultrasound examination without the necessity of a long period of training. Twelve medical students were trained in basic abdominal ultrasound during a 15-h training program including a 5-h theoretical and practical course and supervised practice in 20 selected patients. Subsequently, we conducted an evaluation test that assessed the ability of students to obtain the ultrasound views and to detect various pathologies in five different patients. The students were able to correctly identify the abdominal views more than 90% of the times. This percentage was only lower (80%) in the right subcostal view to locate the gallbladder. The accuracy or global efficiency of the ultrasound for the diagnosis of relevant pathological findings of the patients was greater than 90% (91.1% gallstones, abdominal aortic aneurysm 100%; splenomegaly 98.3%, ascites 100%; dilated inferior vena cava 100%; acute urinary retention 100%). The ultrasound may be a feasible learning tool in medical education. Ultrasound can help students to improve the physical examination. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  14. Impact of antepartum diagnostic amnioinfusion on targeted ultrasound imaging of pregnancies presenting with severe oligo- and anhydramnios: An analysis of 61 cases.

    PubMed

    Vikraman, Seneesh Kumar; Chandra, Vipin; Balakrishnan, Bijoy; Batra, Meenu; Sethumadhavan, Sreeja; Patil, Swapneel Neelkanth; Nair, Sabila; Kannoly, Gopinathan

    2017-05-01

    The primary objective our study was to assess the role of diagnostic antepartum amnioinfusion on the yield from targeted ultrasounds performed in pregnancies with severe oligo- and anhydramnios. This was a retrospective and descriptive study, conducted in the fetal medicine units of two private tertiary care referral centers in south India. The details of all the cases of diagnostic amnioinfusion performed at these two centers from January 2009 to June 2016 were collected and analyzed. Inclusion criteria were pregnancies between 17 and 26 weeks of gestational age with severe oligo- or anhydramnios. Pregnancies with obvious preterm premature rupture of membranes (PPROM) were excluded. The primary outcome measure was the improvement in diagnostic information pertaining to cause of severe oligo- and anhydramnios, and the nature of such anomalies. A total of 61 cases of were identified. The median gestational age at performance of the procedure was 22 weeks [IQR, 19.5-23]. The mean volume of normal saline infused was 314±54ml. A significant increase in the single vertical pocket (SVP) was observed following the procedure (pre-procedure SVP=0.6±0.9cm, post procedure SVP=3.4±1.7; paired t test, p<0.001). In 37 cases (37/61, 60.7%), there were no pre-procedure ultrasound findings. There was significant overall detection of abnormalities post procedure (mean pre-procedure findings=0.39±0.49, mean post procedure findings=1.59±1.24; paired t test, p<0.001). The most frequent group of anomalies/abnormalities were renal (36/61, 59%), followed by PPROM (13/61, 21.3%) and finally fetal growth restriction (11/61, 18%). Antepartum amnioinfusion is a valuable ancillary technique in prenatal diagnosis as it increases the diagnostic yield from pregnancies presenting with severe oligo- and anhydramnios. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effect of blood acceleration on the ultrasound power Doppler spectrum

    NASA Astrophysics Data System (ADS)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  16. Recent advances of ultrasound imaging in dentistry--a review of the literature.

    PubMed

    Marotti, Juliana; Heger, Stefan; Tinschert, Joachim; Tortamano, Pedro; Chuembou, Fabrice; Radermacher, Klaus; Wolfart, Stefan

    2013-06-01

    Ultrasonography as an imaging modality in dentistry has been extensively explored in recent years due to several advantages that diagnostic ultrasound provides. It is a non-invasive, inexpensive, painless method and unlike X-ray, it does not cause harmful ionizing radiation. Ultrasound has a promising future as a diagnostic imaging tool in all specialties in dentistry, for both hard and soft tissue detection. The aim of this review is to provide the scientific community and clinicians with an overview of the most recent advances of ultrasound imaging in dentistry. The use of ultrasound is described and discussed in the fields of dental scanning, caries detection, dental fractures, soft tissue and periapical lesions, maxillofacial fractures, periodontal bony defects, gingival and muscle thickness, temporomandibular disorders, and implant dentistry. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Comparison of the diagnostic efficacy between ultrasound elastography and magnetic resonance imaging for breast masses

    PubMed Central

    Cheng, Rong; Li, Jing; Ji, Li; Liu, Huining; Zhu, Limin

    2018-01-01

    The present study compared the efficacy of ultrasound elastography (UE), magnetic resonance imaging (MRI) and the combination of the two methods (UE+MRI) in the differential diagnosis of benign and malignant breast tumors. In total, 86 patients with breast masses were recruited and evaluated by UE, MRI and UE+MRI. Strain ratios of UE were calculated for the breast mass and adjacent normal tissues. In addition, the receiver operating characteristic (ROC) curve was obtained, while the sensitivity and specificity were calculated to determine the optimal cut-off point for the differential diagnosis. The area under the ROC curve (AUC) was also calculated to evaluate the diagnostic performance of these methods. The results indicated that the diagnostic accuracy of UE+MRI was significantly higher compared with the UE or MRI methods in the differential diagnosis of invasive ductal, invasive lobular, intraductal papillary, medullary and mucinous carcinomas (all P<0.05). The optimal cut-off points of ROC curve of the Strain Ratio in the diagnosis of breast lesions were 2.81, 3.76 and 3.42 for UE, MRI and UE+MRI, respectively. Furthermore, the AUC values were 86.7, 79.2 and 91.4%, while the diagnostic accuracy rates were 82.5, 75.5 and 95.3%, for UE, MRI and UE+MRI, respectively. Accuracy rate differences between UE and MRI or between UE and UE+MRI were statistically significant (P<0.05), whereas no significant difference existed between MRI and UE+MRI (P>0.05). Finally, the diagnostic consistency of the UE+MRI method with the pathological diagnosis was higher compared with UE or MRI alone. In conclusion, the combination of UE and MRI is superior to the use of UE or MRI alone in the differential diagnosis of benign and malignant breast masses. PMID:29456656

  18. Ultrasound contrast agents: an overview.

    PubMed

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  19. Evaluation of Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students

    ERIC Educational Resources Information Center

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-01-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…

  20. "Anterior convergent" chest probing in rapid ultrasound transducer positioning versus formal chest ultrasonography to detect pneumothorax during the primary survey of hospital trauma patients: a diagnostic accuracy study.

    PubMed

    Ziapour, Behrad; Haji, Houman Seyedjavady

    2015-01-01

    Occult pneumothorax represents a diagnostic pitfall during the primary survey of trauma patients, particularly if these patients require early positive pressure ventilation. This study investigated the accuracy of our proposed rapid model of ultrasound transducer positioning during the primary survey of trauma patients after their arrival at the hospital. This diagnostic trial was conducted over 12 months and was based on the results of 84 ultrasound (US) exams performed on patients with severe multiple trauma. Our index test (US) was used to detect pneumothorax in four pre-defined locations on the anterior of each hemi-thorax using the "Anterior Convergent" approach, and its performance was limited to the primary survey. Consecutively, patients underwent chest-computed tomography (CT) with or without chest radiography. The diagnostic findings of both chest radiography and chest ultrasounds were compared to the gold-standard test (CT). The diagnostic sensitivity was 78 % for US and 36.4 % for chest radiography (p < 0.001); the specificity was 92 % for US and 98 % for chest radiography (not significant); the positive predictive values were 74 % for US and 80 % for chest radiography (not significant); the negative predictive values were 94 % for US and 87 % for chest radiography (not significant); the positive likelihood ratio was 10 for US and 18 for chest radiography (p = 0.007); and the negative likelihood ratio was 0.25 for US and 0.65 for chest radiography (p = 0.001). The mean required time for performing the new method was 64 ± 10 s. An absence of the expected diffused dynamic view among ultrasound images obtained from patients with pneumothorax was also observed. We designated this phenomenon "Gestalt Lung Recession." "Anterior convergent" chest US probing represents a brief but efficient model that provides clinicians a safe and accurate exam and adequate resuscitation during critical minutes of the primary survey without

  1. Ultrasound of the thyroid and parathyroid glands.

    PubMed

    Barraclough, B M; Barraclough, B H

    2000-02-01

    The superficial position of thyroid and parathyroid glands facilitates the use of diagnostic ultrasound (US) as an imaging technique. Techniques of image acquisition and interpretation are described in detail. Size and morphology of glands can be defined easily. The most important use of US guided biopsy in relation to thyroid and parathyroid glands is to increase diagnostic accuracy.

  2. Usefulness of emergency ultrasound in nontraumatic cardiac arrest.

    PubMed

    Volpicelli, Giovanni

    2011-02-01

    Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Ultrasound strain imaging using Barker code

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  4. Assessment of articular disc displacement of temporomandibular joint with ultrasound.

    PubMed

    Razek, Ahmed Abdel Khalek Abdel; Al Mahdy Al Belasy, Fouad; Ahmed, Wael Mohamed Said; Haggag, Mai Ahmed

    2015-06-01

    To assess pattern of articular disc displacement in patients with internal derangement (ID) of temporomandibular joint (TMJ) with ultrasound. Prospective study was conducted upon 40 TMJ of 20 patients (3 male, 17 female with mean age of 26.1 years) with ID of TMJ. They underwent high-resolution ultrasound and MR imaging of TMJ. The MR images were used as the gold standard for calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) of ultrasound for diagnosis of anterior or sideway displacement of the disc. The anterior displaced disc was seen in 26 joints at MR and 22 joints at ultrasound. The diagnostic efficacy of ultrasound for anterior displacement has sensitivity of 79.3 %, specificity of 72.7 %, accuracy of 77.5 %, PPV of 88.5 %, NPV of 57.1 %, PLR of 2.9 and NLR of 0.34. The sideway displacement of disc was seen in four joints at MR and three joints at ultrasound. The diagnostic efficacy of ultrasound for sideway displacement has a sensitivity of 75 %, specificity of 63.6 %, accuracy of 66.7 %, PPV of 42.8, NPV of 87.5 %, PLR of 2.06, and NLR of 0.39. We concluded that ultrasound is a non-invasive imaging modality used for assessment of anterior and sideway displacement of the articular disc in patients with ID of TMJ.

  5. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  6. Audible handheld Doppler ultrasound determines reliable and inexpensive exclusion of significant peripheral arterial disease.

    PubMed

    Alavi, Afsaneh; Sibbald, R Gary; Nabavizadeh, Reza; Valaei, Farnaz; Coutts, Pat; Mayer, Dieter

    2015-12-01

    To determine the accuracy of audible arterial foot signals with an audible handheld Doppler ultrasound for identification of significant peripheral arterial disease as a simple, quick, and readily available bedside screening tool. Two hundred consecutive patients referred to an interprofessional wound care clinic underwent audible handheld Doppler ultrasound of both legs. As a control and comparator, a formal bilateral lower leg vascular study including the calculation of Ankle Brachial Pressure Index and toe pressure (TP) was performed at the vascular lab. Diagnostic reliability of audible handheld Doppler ultrasound was calculated versus Ankle Brachial Pressure Index as the gold standard test. A sensitivity of 42.8%, a specificity of 97.5%, negative predictive value of 94.10%, positive predictive value of 65.22%, positive likelihood ratio of 17.52, and negative likelihood ratio of 0.59. The univariable logistic regression model had an area under the curve of 0.78. There was a statistically significant difference at the 5% level between univariable and multivariable area under the curves of the dorsalis pedis and posterior tibial models (p < 0.001). Audible handheld Doppler ultrasound proved to be a reliable, simple, rapid, and inexpensive bedside exclusion test of peripheral arterial disease in diabetic and nondiabetic patients. © The Author(s) 2015.

  7. High-resolution ultrasound imaging of the eye - a review.

    PubMed

    Silverman, Ronald H

    2009-01-01

    This report summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) of the eye, in which frequencies of 35 MHz and above provide over a threefold improvement in resolution compared with conventional ophthalmic ultrasound systems. UBM allows imaging of anatomy and pathology involving the anterior segment, including regions obscured by overlying optically opaque anatomic or pathologic structures. UBM provides diagnostically significant information in conditions such as glaucoma, cysts and neoplasms, trauma and foreign bodies. UBM also can provide crucial biometric information regarding anterior segment structures, including the cornea and its constituent layers and the anterior and posterior chambers. Although UBM has now been in use for over 15 years, new technologies, including transducer arrays, pulse encoding and combination of ultrasound with light, offer the potential for significant advances in high-resolution diagnostic imaging of the eye.

  8. Multicarrier airborne ultrasound transmission with piezoelectric transducers.

    PubMed

    Ens, Alexander; Reindl, Leonhard M

    2015-05-01

    In decentralized localization systems, the received signal has to be assigned to the sender. Therefore, longrange airborne ultrasound communication enables the transmission of an identifier of the sender within the ultrasound signal to the receiver. Further, in areas with high electromagnetic noise or electromagnetic free areas, ultrasound communication is an alternative. Using code division multiple access (CDMA) to transmit data is ineffective in rooms due to high echo amplitudes. Further, piezoelectric transducers generate a narrow-band ultrasound signal, which limits the data rate. This work shows the use of multiple carrier frequencies in orthogonal frequency division multiplex (OFDM) and differential quadrature phase shift keying modulation with narrowband piezoelectric devices to achieve a packet length of 2.1 ms. Moreover, the adapted channel coding increases data rate by correcting transmission errors. As a result, a 2-carrier ultrasound transmission system on an embedded system achieves a data rate of approximately 5.7 kBaud. Within the presented work, a transmission range up to 18 m with a packet error rate (PER) of 13% at 10-V supply voltage is reported. In addition, the transmission works up to 22 m with a PER of 85%. Moreover, this paper shows the accuracy of the frame synchronization over the distance. Consequently, the system achieves a standard deviation of 14 μs for ranges up to 10 m.

  9. Mitigation of bone loss with ultrasound induced dynamic mechanical signals in an OVX induced rat model of osteopenia.

    PubMed

    Ferreri, Suzanne L; Talish, Roger; Trandafir, Titi; Qin, Yi-Xian

    2011-05-01

    This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four 16-week-old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) control, OVX+5mW/cm(2) ultrasound (US), OVX+30mW/cm(2) US and OVX+100mW/cm(2) US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gel-coupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5MHz sine waves repeating at 1kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm(2), was applied 20 min/day, 5 days/week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV (+33%) compared to OVX controls for the 100mW/cm(2) treated group. SMI and Tb.N showed significant improvements compared with OVX for the 100mW/cm(2) treated group and Tb.Th was significantly improved in the 30 and 100mW/cm(2) treated groups. Improvements in bone's microstructural characteristics with 100mW/cm(2) US treatment translated into improved load bearing characteristics, including a significant 42% increase in apparent level elastic modulus compared to OVX controls. Significant improvement of trabecular mechanical strength was also observed in the treated animals, e.g., principal compressive stress (represent bone's ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm(2) US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that localized ultrasound treatment, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss. Copyright

  10. Mitigation of Bone Loss with Ultrasound Induced Dynamic Mechanical Signals in an OVX Induced Rat Model of Osteopenia

    PubMed Central

    Ferreri, Suzanne L.; Talish, Roger; Trandafir, Titi; Qin, Yi-Xian

    2011-01-01

    This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four, sixteen week old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) OVX control, OVX + 5 mW/cm2 ultrasound (US), OVX + 30 mW/cm2 US and OVX + 100 mW/cm2 US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gelcoupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5 MHz sine waves repeating at 1 kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm2, was applied 20 min/day, 5 days/week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV 33% compared to OVX controls for the 100mW/cm2 treated group. SMI, and Tb.N showed significant improvements compared with OVX for the 100mW/cm2 treated group and Tb.Th was significantly improved in the 30 and 100mW/cm2 treated groups. Improvements in bone’s microstructural characteristics with 100mW/cm2 US treatment translated into improved load bearing characteristics, including a significant, 42% increase in apparent level Elastic Modulus compared to OVX controls. Significant improvement of trabecular mechanical strength is also observed in the treated animals, e.g., principal compressive stress (represent bone’s ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm2 US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that ultrasound, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss. PMID:21241838

  11. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    PubMed

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  12. Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael

    2013-03-01

    Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.

  13. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    NASA Astrophysics Data System (ADS)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  14. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma.

    PubMed

    Stengel, Dirk; Bauwens, Kai; Rademacher, Grit; Ekkernkamp, Axel; Güthoff, Claas

    2013-07-31

    Ultrasonography is regarded as the tool of choice for early diagnostic investigations in patients with suspected blunt abdominal trauma. Although its sensitivity is too low for definite exclusion of abdominal organ injury, proponents of ultrasound argue that ultrasound-based clinical pathways enhance the speed of primary trauma assessment, reduce the number of computed tomography scans and cut costs. To assess the effects of trauma algorithms that include ultrasound examinations in patients with suspected blunt abdominal trauma. We searched the Cochrane Injuries Group's Specialised Register, CENTRAL (The Cochrane Library), MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL (EBSCO), publishers' databases, controlled trials registers and the Internet. Bibliographies of identified articles and conference abstracts were searched for further elligible studies. Trial authors were contacted for further information and individual patient data. The searches were updated in February 2013. randomised controlled trials (RCTs) and quasi-randomised trials (qRCTs). patients with blunt torso, abdominal or multiple trauma undergoing diagnostic investigations for abdominal organ injury. diagnostic algorithms comprising emergency ultrasonography (US). diagnostic algorithms without ultrasound examinations (for example, primary computed tomography [CT] or diagnostic peritoneal lavage [DPL]). mortality, use of CT and DPL, cost-effectiveness, laparotomy and negative laparotomy rates, delayed diagnoses, and quality of life. Two authors independently selected trials for inclusion, assessed methodological quality and extracted data. Where possible, data were pooled and relative risks (RRs), risk differences (RDs) and weighted mean differences, each with 95% confidence intervals (CIs), were calculated by fixed- or random-effects modelling, as appropriate. We identified four studies meeting our inclusion criteria. Overall, trials were of moderate methodological quality. Few trial authors responded to

  15. Moderately nonlinear ultrasound propagation in blood-mimicking fluid.

    PubMed

    Kharin, Nikolay A; Vince, D Geoffrey

    2004-04-01

    In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.

  16. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  17. Advances in Diagnostic Bronchoscopy

    PubMed Central

    Haas, Andrew R.; Vachani, Anil; Sterman, Daniel H.

    2010-01-01

    Diagnostic bronchoscopy has undergone two major paradigm shifts in the last 40 years. First, the advent of flexible bronchoscopy gave chest physicians improved access to the tracheobronchial tree with a rapid learning curve and greater patient comfort compared with rigid bronchoscopy. The second paradigm shift has evolved over the last 5 years with the proliferation of new technologies that have significantly enhanced the diagnostic capabilities of flexible bronchoscopy compared with traditional methods. At the forefront of these new technologies is endobronchial ultrasound. In its various forms, endobronchial ultrasound has improved diagnostic yield for pulmonary masses, nodules, intrathoracic adenopathy, and disease extent, thereby reducing the need for more invasive surgical interventions. Various navigational bronchoscopy systems have become available to increase flexible bronchoscope access to small peripheral pulmonary lesions. Furthermore, various modalities of airway assessment, including optical microscopic imaging technologies, may play significant roles in the diagnosis of a variety of pulmonary diseases in the future. Finally, the combination of new diagnostic bronchoscopy technologies and novel approaches in molecular analysis and biomarker assessment hold promise for enhanced diagnosis and personalized management of many pulmonary disorders. In this review, we provide a contemporary review of diagnostic bronchoscopy developments over the past decade. PMID:20378726

  18. Idiopathic granulomatous mastitis: a diagnostic dilemma for the breast radiologist.

    PubMed

    Sripathi, Smiti; Ayachit, Anurag; Bala, Archana; Kadavigere, Rajagopal; Kumar, Sandeep

    2016-08-01

    Idiopathic granulomatous mastitis is a chronic inflammatory disease of the breast, which is often difficult to differentiate both clinically and radiologically from infectious aetiologies such as tuberculosis, fungal infections, and also from malignancy, thus posing a diagnostic dilemma. We present a pictorial review of the commonly encountered imaging findings in idiopathic granulomatous mastitis on mammography and ultrasound. Mammographic and ultrasound findings of histopathologically proven cases of granulomatous mastitis are discussed. Idiopathic granulomatous mastitis has varied and non-specific appearances on ultrasound and mammography. Histopathology is essential to establish diagnosis. • Idiopathic granulomatous mastitis often poses a diagnostic dilemma for the radiologist by mimicking malignancy. • It has varied and non-specific appearances on mammography and ultrasound. • Histopathology is mandatory to establish the diagnosis and decide management.

  19. Fundamentals of diagnostic ultrasonography.

    PubMed

    Noce, J P

    1990-01-01

    Diagnostic ultrasonography uses acoustical waves in the frequency range of 1 to 20 MHz. These waves obey Snell's law of reflection and refraction, which are rules ordinary to wave behavior. In ultrasound, the analogy to momentum is acoustic impedance. The acoustic impedance, Z, is equal to the density, p, times velocity, v. The ultrasound transducer converts electrical energy into ultrasound energy and vice versa. The transducer usually consists of a piezoelectric crystal composed of such ceramic materials as barium titanate, lead titanate, zirconate, or lead metaniobate. Five basic ultrasonic scanning modes play the major roles in clinical applications. A-mode, or amplitude-mode, scanning measures the tissue discontinuity along the scan axis. B-mode scanning produces a two-dimensional image of the tissue under study by combining A-mode signals from various directions through mechanical transducer scanning. M-mode, or time motion scanning, is an extension of the A-mode approach in which a single stationary transducer is used. The depth of the echo is displayed on the vertical axis; the brightness of the oscilloscope display is modulated by the echo amplitude. Real-time scanning, or rapid B-scanning, techniques provide continuous data acquisition at a rate sufficient to give the impression of the instantaneous motion of moving structures. Doppler scanning relies on the presence of motion. The Doppler effect occurs when there is relative motion between the source of sound and the receiver of the sound, causing a change in the detected frequency of the sound source.

  20. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  1. Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis Algorithms for Realtime Execution of MSFC's MPP Prototype System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real

  2. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  3. Portable duplex ultrasonography: A diagnostic and decision-making tool in reconstructive microsurgery.

    PubMed

    Gravvanis, Andreas; Karakitsos, Dimitrios; Dimitriou, Vasilios; Zogogiannis, Ioannis; Katsikeris, Nick; Karabinis, Andreas; Tsoutsos, Dimosthenis

    2010-07-01

    Unidirectional Doppler is a common diagnostic tool by the Reconstructive Microsurgeons; however, it may generate false signals and surely provides less imaging data as compared to duplex ultrasonography. We have reviewed the use of Portable Duplex Ultrasonography (PDU) in 16 patients who underwent complex soft-tissue/bone reconstruction, aiming to determine its role in the design and management of free tissue transfer. According to our data, there were modifications either of the surgical plan and/or of patient's management, based on PDU findings, in 10 out of 16 patients (62.5%). The use of ultrasound directed to subtle modifications in three patients (19%), but to significant changes of the surgical plan in four patients (25%). Also, the use of ultrasound improved significantly the postoperative management in three patients (19%). Thus, significant impact of PDU in patient's treatment was recorded in 44% of cases. Portable ultrasound represents generally available method for preoperative, intraoperative, and postoperative diagnosis and decision-making in free tissue transfer, hence could replace in the near future the unidirectional Doppler in the hands of Microsurgeons. (c) 2010 Wiley-Liss, Inc.

  4. Ultrasound Fracture Diagnosis in Space

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Amponsah, David; Sargsyan, Ashot E.; Garcia, Kathleen M.; Hamilton, Douglas R.; vanHolsbeeck, Marnix

    2010-01-01

    Introduction: This ground-based investigation accumulated high-level clinical evidence on the sensitivity and specificity of point of care ultrasound performed by expert and novice users for the rapid diagnosis of musculoskeletal (MSK) injuries. We developed preliminary educational methodologies to provide just-in-time training of novice users by creating multi-media training tools and imaging procedures for non expert operators and evaluated the sensitivity and specificity of non-expert performed musculoskeletal ultrasound to diagnose acute injuries in a Level 1 Trauma Center. Methods: Patients with potential MSK injuries were identified in the emergency room. A focused MSK ultrasound was performed by expert operators and compared to standard radiographs. A repeat examination was performed by non-expert operators who received a short, just-in-time multimedia education aid. The sensitivity and specificity of the expert and novice ultrasound examinations were compared to gold standard radiography. Results: Over 800 patients were enrolled in this study. The sensitivity and specificity of expert performed ultrasound exceeded 98% for MSK injuries. Novice operators achieved 97% sensitivity and 99% specificity for targeted examinations with the greatest error in fractures involving the hand and foot. Conclusion: Point of care ultrasound is a sensitive and specific diagnostic test for MSK injury when performed by experts and just-in-time trained novice operators.

  5. Musculoskeletal ultrasound: how to treat calcific tendinitis of the rotator cuff by ultrasound-guided single-needle lavage technique.

    PubMed

    Lee, Kenneth S; Rosas, Humberto G

    2010-09-01

    The purpose of this video article is to illustrate the ultrasound appearance of calcium deposition in the rotator cuff and provide a detailed step-by-step protocol for performing the ultrasound-guided single-needle lavage technique for the treatment of calcific tendinitis with emphasis on patient positioning, necessary supplies, real-time lavage technique, and steroid injection into the subacromial subdeltoid bursa. Musculoskeletal ultrasound is well established as a safe, cost-effective imaging tool in diagnosing and treating common musculoskeletal disorders. Calcific tendinitis of the rotator cuff is a common disabling cause of shoulder pain. Although most cases are self-limiting, a subset of patients is refractory to conservative therapy and requires treatment intervention. Ultrasound-guided lavage is an effective and safe minimally-invasive treatment not readily offered in the United States as an alternative to surgery, perhaps because of the limited prevalence of musculoskeletal ultrasound programs and limited training. On completion of this video article, the participant should be able to develop an appropriate diagnostic and therapeutic algorithm for the treatment of calcific tendinitis of the rotator cuff using ultrasound.

  6. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  7. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru; Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow; Cunitz, B.

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however,more » nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.« less

  8. Relationship of ultrasound signal intensity with SonoVue concentration at body temperature in vitro

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Jing; He, Xiaoling; Wu, Kaizhi; Yuan, Yun; Ding, Mingyue

    2014-04-01

    In this paper, the relationship between image intensity and ultrasound contrast agent (UCA) concentration is investigated. Experiments are conducted in water bath using a silicon tube filled with UCA (SonoVue) at different concentrations (100μl/l to 6000μl/l) at around 37 °C to simulate the temperature in human body. The mean gray-scale intensity within the region of interest (ROI) is calculated to obtain the plot of signal intensity to UCA concentration. The results show that the intensity firstly exhibits a linear increase to the peak at approximately 1500μl/l then appears a downward trend due to the multiple scattering (MS) effects.

  9. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    PubMed

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  10. Impact of new society of radiologists in ultrasound early first-trimester diagnostic criteria for nonviable pregnancy.

    PubMed

    Hu, Maowen; Poder, Liina; Filly, Roy A

    2014-09-01

    New early first-trimester diagnostic criteria for nonviable pregnancy recommended by the Society of Radiologists in Ultrasound via a multispecialty consensus panel extended the diagnostic size criteria of crown-rump length from 5 to 7 mm for embryos without a heartbeat and mean sac diameter from 16 to 25 mm for "empty" sacs. Our study assessed the potential impact of the new criteria on the number of additional follow-up sonograms these changes would engender. A retrospective study of all first-trimester sonograms in women with first trimester bleeding from 1999 to 2008 was conducted. Everyone included in the study had a visible gestational sac in the uterus. There were no pregnancies of unknown location or ectopic pregnancies included in this study cohort. Pregnancy of unknown location was used to describe cases in which there were no signs of pregnancy inside or outside the uterus on transvaginal sonography despite a positive pregnancy test result. A total of 1013 patients met the inclusion criteria. Seven hundred fifty-two patients (74%) had identifiable embryos, and 261 (26%) did not. Of those with an identifiable embryo, 286 (38%) had no detectable embryonic cardiac activity. The breakdown of crown-rump lengths in this group was as follows: 100 measuring less than 5 mm, 36 measuring 5 to 7 mm, and 150 measuring 7 mm or greater. The breakdown of mean sac diameters in those without a visible embryo was as follows: 120 measuring less than 16 mm, 90 measuring 16 to 25 mm, and 51 measuring 25 mm or greater. When diagnosing a failed pregnancy, there can be no room for error. Only 126 of 1013 early pregnancies threatening to abort (12%) fell into the more conservative zones defined by the new compared to the former size criteria (crown-rump length, 5-7 mm; mean sac diameter, 16-25 mm). Therefore, the potential impact of the new guidelines on follow-up sonograms does not appear inordinate. © 2014 by the American Institute of Ultrasound in Medicine.

  11. Ultrasound and the IRB

    ERIC Educational Resources Information Center

    Epstein, Melissa A.

    2005-01-01

    The purpose of this paper is to assist researchers in writing their research protocols and subject consent forms so that both the Institutional Review Board (IRB) and subjects are assured of the minimal risk associated with diagnostic B-scan ultrasound as it is used in speech research. There have been numerous epidemiological studies on fetal…

  12. Model-based ultrasound temperature visualization during and following HIFU exposure.

    PubMed

    Ye, Guoliang; Smith, Penny Probert; Noble, J Alison

    2010-02-01

    This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Verification and compensation of respiratory motion using an ultrasound imaging system.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Chiu, Wei-Hung; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2015-03-01

    The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effect of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81-2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the diaphragm displacement resulted in

  14. Verification and compensation of respiratory motion using an ultrasound imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Ho-Chiao, E-mail: hchuang@mail.ntut.edu.tw; Hsu, Hsiao-Yu; Chiu, Wei-Hung

    Purpose: The purpose of this study was to determine if it is feasible to use ultrasound imaging as an aid for moving the treatment couch during diagnosis and treatment procedures associated with radiation therapy, in order to offset organ displacement caused by respiratory motion. A noninvasive ultrasound system was used to replace the C-arm device during diagnosis and treatment with the aims of reducing the x-ray radiation dose on the human body while simultaneously being able to monitor organ displacements. Methods: This study used a proposed respiratory compensating system combined with an ultrasound imaging system to monitor the compensation effectmore » of respiratory motion. The accuracy of the compensation effect was verified by fluoroscopy, which means that fluoroscopy could be replaced so as to reduce unnecessary radiation dose on patients. A respiratory simulation system was used to simulate the respiratory motion of the human abdomen and a strain gauge (respiratory signal acquisition device) was used to capture the simulated respiratory signals. The target displacements could be detected by an ultrasound probe and used as a reference for adjusting the gain value of the respiratory signal used by the respiratory compensating system. This ensured that the amplitude of the respiratory compensation signal was a faithful representation of the target displacement. Results: The results show that performing respiratory compensation with the assistance of the ultrasound images reduced the compensation error of the respiratory compensating system to 0.81–2.92 mm, both for sine-wave input signals with amplitudes of 5, 10, and 15 mm, and human respiratory signals; this represented compensation of the respiratory motion by up to 92.48%. In addition, the respiratory signals of 10 patients were captured in clinical trials, while their diaphragm displacements were observed simultaneously using ultrasound. Using the respiratory compensating system to offset, the

  15. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  16. Clinical review: Bedside lung ultrasound in critical care practice

    PubMed Central

    Bouhemad, Bélaïd; Zhang, Mao; Lu, Qin; Rouby, Jean-Jacques

    2007-01-01

    Lung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate information on lung status with diagnostic and therapeutic relevance. This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury. PMID:17316468

  17. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes.

    PubMed

    Liu, Jinfeng; Chen, Yihan; Wang, Guohua; Lv, Qing; Yang, Yali; Wang, Jing; Zhang, Pingyu; Liu, Jie; Xie, Yu; Zhang, Li; Xie, Mingxing

    2018-04-01

    Clinical surveillance of acute heart transplantation rejection requires repeated invasive endomyocardial biopsies and noninvasive diagnostic techniques are desperately needed. It is acknowledged that T lymphocyte infiltration is the central process of acute rejection. We hypothesized that ultrasound molecular imaging with T lymphocyte-targeted nanobubbles could be used to detect acute rejection in heart transplantation. In this study, nanobubbles bearing anti-CD3 antibody (NB CD3 ) or isotype antibody (NB con ) were prepared and characterized. There was significant adhesion of NB CD3 to T lymphocytes compared with NB con in vitro. The signal intensity of the adherent NB CD3 was significantly higher than that of the NB con in allograft rats, but not significantly different in isograft rats. Furthermore, the signal intensity of NB CD3 in allograft rats was significantly higher than that in isograft rats, indicating more T lymphocyte infiltration in allograft rats compared with isograft rats. These results were further confirmed by immunohistochemistry examination, and the signal intensity of NB CD3 was positively correlated with the number of T lymphocytes in allograft rats. In summary, ultrasound molecular imaging with T lymphocyte-targeted nanobubbles can detect T lymphocyte infiltration in acute rejection and could be used as a noninvasive method in acute rejection detection after cardiac transplantation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Preliminary assessment of the diagnostic performances of a new rapid diagnostic test for the serodiagnosis of human cystic echinococcosis.

    PubMed

    Vola, Ambra; Tamarozzi, Francesca; Noordin, Rahmah; Yunus, Muhammad Hafiznur; Khanbabaie, Sam; De Silvestri, Annalisa; Brunetti, Enrico; Mariconti, Mara

    2018-04-14

    Rapid diagnostic tests for cystic echinococcosis (CE) are convenient to support ultrasound diagnosis in uncertain cases, especially in resource-limited settings. We found comparable diagnostic performances of the experimental Hyd Rapid Test and the commercial VIRapid HYDATIDOSIS Test, used in our diagnostic laboratory, using samples from well-characterized hepatic CE cases. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Ultrasound assisted evaluation of chest pain in the emergency department.

    PubMed

    Colony, M Deborah; Edwards, Frank; Kellogg, Dylan

    2018-04-01

    Chest pain is a commonly encountered emergency department complaint, with a broad differential including several life-threatening possible conditions. Ultrasound-assisted evaluation can potentially be used to rapidly and accurately arrive at the correct diagnosis. We propose an organized, ultrasound assisted evaluation of the patient with chest pain using a combination of ultrasound, echocardiography and clinical parameters. Basic echo techniques which can be mastered by residents in a short time are used plus standardized clinical questions and examination. Information is kept on a checklist. We hypothesize that this will result in a quicker, more accurate evaluation of chest pain in the ED leading to timely treatment and disposition of the patient, less provider anxiety, a reduction in the number of diagnostic errors, and the removal of false assumptions from the diagnostic process. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. High-resolution ultrasound imaging of the eye – a review

    PubMed Central

    Silverman, Ronald H

    2009-01-01

    This report summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) of the eye, in which frequencies of 35 MHz and above provide over a threefold improvement in resolution compared with conventional ophthalmic ultrasound systems. UBM allows imaging of anatomy and pathology involving the anterior segment, including regions obscured by overlying optically opaque anatomic or pathologic structures. UBM provides diagnostically significant information in conditions such as glaucoma, cysts and neoplasms, trauma and foreign bodies. UBM also can provide crucial biometric information regarding anterior segment structures, including the cornea and its constituent layers and the anterior and posterior chambers. Although UBM has now been in use for over 15 years, new technologies, including transducer arrays, pulse encoding and combination of ultrasound with light, offer the potential for significant advances in high-resolution diagnostic imaging of the eye. PMID:19138310

  1. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    PubMed

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P < 0.001) in enhancement between benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  2. [Polymeric drug carriers activated by ultrasounds energy].

    PubMed

    Kik, Krzysztof; Lwow, Felicja; Szmigiero, Leszek

    2007-01-01

    In the last two decades an extensive research on the employment of ultrasounds in anticancer therapy has been noticed. So far ultrasounds have been widely used in medicine for diagnostic purposes (ultrasonography), but their great therapeutic potential and the development of polymer based antineoplastic drug carriers have persuaded many investigators to start research on the employment of ultrasounds in anticancer therapy. A new therapeutic concept based on the controlled drug's molecules release from their transporting polymer carriers has been proposed. Cavitation, a phenomenon characteristic for the action of ultrasounds, is used to destroy polymeric drug carriers and for drug release in target sites. The sonodynamic therapy (SDT) which utilizes ultrasonic waves for "acoustic drug activation" leading to the enhancement of cytotoxic activity of some drugs has also been developed. Furthermore, a long standing research on ultrasounds resulted in a new concept based on hyperthermia. This method of cancer treatment does not require any chemotherapeutic agent to be applied.

  3. Short- and longtime stability of therapeutic ultrasound reference sources for dosimetry and exposimetry purposes

    NASA Astrophysics Data System (ADS)

    Haller, J.; Wilkens, V.

    2017-03-01

    The objective of this work was to create highly stable therapeutic ultrasound fields with well-known exposimetry and dosimetry parameters that are reproducible and hence predictable with well-known uncertainties. Such well- known and reproducible fields would allow validation and secondary calibrations of different measuring capabilities, which is already a widely accepted strategy for diagnostic fields. For this purpose, a reference setup was established that comprises two therapeutic ultrasound sources (one High-Intensity Therapeutic Ultrasound (HITU) source and one physiotherapy-like source), standard rf electronics for signal creation, and computer-controlled feedback to stabilize the input voltage. The short- and longtime stability of the acoustic output were evaluated - for the former, measurements over typical laboratory measurement time periods (i.e. some seconds or minutes) of the input voltage stability with and without feedback control were performed. For the latter, measurements of typical acoustical exposimetry parameters were performed bimonthly over one year. The measurement results show that the short- and the longtime stability of the reference setup are very good and that it is especially significantly improved in comparison to a setup without any feedback control.

  4. Ultrasound for diagnosing radiographically occult scaphoid fracture.

    PubMed

    Kwee, Robert M; Kwee, Thomas C

    2018-04-04

    To systematically review the literature on the performance of ultrasound in diagnosing radiographically occult scaphoid fracture. A systematic search was performed in the MEDLINE and Embase databases. Original studies investigating the performance of ultrasound in diagnosing radiographically occult scaphoid fracture in more than 10 patients were eligible for inclusion. Studies that included both radiographically apparent and occult scaphoid fractures (at initial radiography) were only included if independent data on radiographically occult fractures were reported. Methodological quality of the studies included was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Accuracy data were extracted. Sensitivity and specificity were pooled with a bivariate random-effects model. The inclusion criteria were met by 7 studies; total sample size comprised 314 patients. All studies, except 1, included cortical disruption of the scaphoid in their diagnostic criteria. The sensitivity and specificity of ultrasound in diagnosing radiographically occult scaphoid fracture ranged from 77.8% to 100% and from 71.4% to 100% respectively, with pooled estimates of 85.6% (95% CI: 73.9%, 92.6%) and 83.3% % (95% CI: 72.0%, 90.6%) respectively. Exclusion of two studies with a high risk of bias in any QUADAS-2 domain did not affect the pooled results. Ultrasound can diagnose radiographically occult scaphoid fracture with a fairly high degree of accuracy. Because of its relatively low costs and fairly high sensitivity, ultrasound seems more cost-effective than empiric cast immobilization and may be used when CT and MRI are not readily available.

  5. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focussing on the diagnostic reliability.

    PubMed

    Bruyn, George A W; Hanova, Petra; Iagnocco, Annamaria; d'Agostino, Maria-Antonietta; Möller, Ingrid; Terslev, Lene; Backhaus, Marina; Balint, Peter V; Filippucci, Emilio; Baudoin, Paul; van Vugt, Richard; Pineda, Carlos; Wakefield, Richard; Garrido, Jesus; Pecha, Ondrej; Naredo, Esperanza

    2014-11-01

    To develop the first ultrasound scoring system of tendon damage in rheumatoid arthritis (RA) and assess its intraobserver and interobserver reliability. We conducted a Delphi study on ultrasound-defined tendon damage and ultrasound scoring system of tendon damage in RA among 35 international rheumatologists with experience in musculoskeletal ultrasound. Twelve patients with RA were included and assessed twice by 12 rheumatologists-sonographers. Ultrasound examination for tendon damage in B mode of five wrist extensor compartments (extensor carpi radialis brevis and longus; extensor pollicis longus; extensor digitorum communis; extensor digiti minimi; extensor carpi ulnaris) and one ankle tendon (tibialis posterior) was performed blindly, independently and bilaterally in each patient. Intraobserver and interobserver reliability were calculated by κ coefficients. A three-grade semiquantitative scoring system was agreed for scoring tendon damage in B mode. The mean intraobserver reliability for tendon damage scoring was excellent (κ value 0.91). The mean interobserver reliability assessment showed good κ values (κ value 0.75). The most reliable were the extensor digiti minimi, the extensor carpi ulnaris, and the tibialis posterior tendons. An ultrasound reference image atlas of tenosynovitis and tendon damage was also developed. Ultrasound is a reproducible tool for evaluating tendon damage in RA. This study strongly supports a new reliable ultrasound scoring system for tendon damage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  7. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  8. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-11-04

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  9. Windowed time-reversal music technique for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.

  10. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  11. [Relevance of contrast ultrasound with microbubbles in vascular medecine].

    PubMed

    Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia

    2016-12-07

    Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.

  12. Might telesonography be a new useful diagnostic tool aboard merchant ships? A pilot study.

    PubMed

    Nikolić, Nebojsa; Mozetić, Vladimir; Modrcin, Bob; Jaksić, Slaven

    2006-01-01

    Developments of new, ultra-light diagnostic ultrasound systems (UTS) and modern satellite telecommunication networks are opening new potential applications for diagnostic sonography. One such area is maritime medicine. It is our belief that ship officers can be trained to use diagnostic ultrasound systems with the aim to generate ultrasound images of sufficient quality to be interpreted by medical professionals qualified to read sonograms. To test our thesis we included lectures and hands on scanning practice to the current maritime medicine curriculum at the Faculty of Maritime Studies at the University of Rijeka. Following the didactic and practical training all participating students examined several patients, some with pathology some without. Images obtained by students were then submitted for interpretation to a qualified physician (specialist of general surgery trained in UTS) who was unaware of the patient's pathology. In total, 37 students performed 37 examinations and made 45 ultrasound images, on 3 patients. In this paper, results on this pilot study are presented. It is possible to teach ship officers to produce diagnostically usable ultrasound pictures aboard ships at sea. But before reaching final conclusion about applicability of telesonography on board merchant ships, further studies are necessary, that would include studies of economic feasibility, and on validity of introducing such a diagnostic tool to the maritime medical practice.

  13. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-02-01

    The American Medical Society for Sports Medicine (AMSSM) developed a musculoskeletal ultrasound curriculum for sports medicine fellowships in 2010. As the use of diagnostic and interventional ultrasound in sports medicine has evolved, it became clear that the curriculum needed to be updated. Furthermore, the name 'musculoskeletal ultrasound' was changed to 'sports ultrasound' (SPORTS US) to reflect the broad range of diagnostic and interventional applications of ultrasound in sports medicine. This document was created to outline the core competencies of SPORTS US and to provide sports medicine fellowship directors and others interested in SPORTS US education with a guide to create a SPORTS US curriculum. By completing this SPORTS US curriculum, sports medicine fellows and physicians can attain proficiency in the core competencies of SPORTS US required for the practice of sports medicine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Quantitative Contrast-Enhanced Ultrasound Parameters in Crohn Disease: Their Role in Disease Activity Determination With Ultrasound.

    PubMed

    Medellin-Kowalewski, Alexandra; Wilkens, Rune; Wilson, Alexandra; Ruan, Ji; Wilson, Stephanie R

    2016-01-01

    The primary objective of our study was to examine the association between contrast-enhanced ultrasound (CEUS) parameters and established gray-scale ultrasound with color Doppler imaging (CDI) for the determination of disease activity in patients with Crohn disease. Our secondary objective was to develop quantitative time-signal intensity curve thresholds for disease activity. One hundred twenty-seven patients with Crohn disease underwent ultrasound with CDI and CEUS. Reviewers graded wall thickness, inflammatory fat, and mural blood flow as showing remission or inflammation (mild, moderate, or severe). If both gray-scale ultrasound and CDI predicted equal levels of disease activity, the studies were considered concordant. If ultrasound images suggested active disease not supported by CDI findings, the ultrasound results for disease activity were indeterminate. Time-signal intensity curves from CEUS were acquired with calculation of peak enhancement (PE), and AUCs. Interobserver variation and associations between PE and ultrasound parameters were examined. Multiclass ROC analysis was used to develop CEUS thresholds for activity. Ninety-six (76%) studies were concordant, 19 of which showed severe disease, and 31 (24%) studies were indeterminate. Kappa analyses revealed good interobserver agreement on grades for CDI (κ = 0.76) and ultrasound (κ = 0.80) assessments. PE values on CEUS and wall thickness showed good association with the Spearman rank correlation coefficient for the entire population (ρ = 0.62, p < 0.01) and for the concordant group (ρ = 0.70, p < 0.01). Multiclass ROC analyses of the concordant group using wall thickness alone as the reference standard showed cutoff points of 18.2 dB for differentiating mild versus moderate activity (sensitivity, 89.0% and specificity, 87.0%) and 23.0 dB for differentiating moderate versus severe (sensitivity, 90% and specificity, 86.8%). Almost identical cutoff points were observed when using ultrasound global

  15. Sonographic physical diagnosis 101: teaching senior medical students basic ultrasound scanning skills using a compact ultrasound system.

    PubMed

    Angtuaco, Teresita L; Hopkins, Robert H; DuBose, Terry J; Bursac, Zoran; Angtuaco, Michael J; Ferris, Ernest J

    2007-06-01

    This project was designed to test the feasibility of introducing ultrasound to senior medical students as a primary diagnostic tool in the evaluation of patients. Specifically, its aim was to determine if it is possible for medical students untrained in sonography to gain basic competence in performing abdominal ultrasound with limited didactic and hands-on instructions. Registered sonographers provided the students with hands-on instructions on the use of a compact ultrasound system. They were likewise shown how to evaluate specific organs and perform measurements. The results of the student measurements and those obtained by the sonographers were compared. There was close correlation between the results obtained by sonographers and students on both normal and abnormal findings. This supports the concept that medical students can be taught basic ultrasound skills with limited didactic and hands-on instructions with the potential of using these skills in the patient clinics as an adjunct to routine physical diagnosis.

  16. Application of Ultrasound Energy as a New Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Tachibana, Katsuro; Tachibana, Shunro

    1999-05-01

    Ultrasound has been in use for the last three decades as amodality for diagnostic imaging in medicine. Recently, there have beennumerous reports on the application of nonthermal ultrasound energyfor targeting or controlling drug release. This new concept oftherapeutic ultrasound combined with drugs has led to much excitementin various medical fields. Ultrasound energy can enhance the effectsof thrombolytic agents such as urokinase. Therapeutic ultrasoundcatheters are currently being developed for treatment ofcardiovascular diseases. Devices with ultrasound transducers implantedin transdermal drug patches are also being evaluated for possibledelivery of insulin through the skin. Chemical activation of drugs byultrasound energy for treatment of cancers is another new fieldrecently termed “Sonodynamic Therapy”. Various examples of ultrasoundapplication are under investigation which could lead to revolutionarydrug delivery systems in the future.

  17. Diagnostic Performance and Confidence of Contrast-Enhanced Ultrasound in the Differential Diagnosis of Cystic and Cysticlike Liver Lesions.

    PubMed

    Corvino, Antonio; Catalano, Orlando; Corvino, Fabio; Sandomenico, Fabio; Petrillo, Antonella

    2017-09-01

    The aims of this study were to assess the diagnostic performance of contrast-enhanced ultrasound (CEUS) in the characterization of atypical cystic and cysticlike focal liver lesions in comparison with conventional US and to determine whether the use of CEUS can reduce the need for further diagnostic workup. In a 3-year period 48 patients with 50 atypical cystic and cysticlike lesions found at conventional US underwent CEUS. Diagnostic confirmation was obtained in cytohistopathologic examinations, with other imaging modalities, and in follow-up. Overall, there were 24 cystic lesions and 26 cysticlike solid lesions, specifically 32 benign and 18 malignant lesions. The conventional US and CEUS images and cine loops were reviewed by two blinded readers independently. Sensitivity, specificity, area under the ROC curve (A z ), and interobserver agreement were calculated. Diagnostic performance improved after review of CEUS examinations by both readers (conventional US A z = 0.781 vs 0.972; CEUS A z = 0.734 vs 0.957). Interreader agreement increased, although slightly (conventional US weighted κ = 0.894; CEUS weighted κ = 0.953). In terms of differential diagnosis, the occurrence of correctly characterized lesions increased after CEUS for both readers (reader 1, 62% to 98%; reader 2, 56% to 96%). The development of low-acoustic-power CEUS has made it possible to identify several imaging features of cystic and cysticlike focal liver lesions that, in association with history and clinical findings, may help to correctly characterize them. Our data indicate the usefulness of CEUS in the evaluation of patients with these lesions.

  18. Endoscopic ultrasound-guided transesophageal thoracentesis for minimal pleural effusion.

    PubMed

    Rana, Surinder Singh; Sharma, Ravi; Gupta, Rajesh

    2018-06-19

    Pleural effusion is a common finding both in patients with benign and malignant diseases of pleura and lung with diagnostic thoracentesis establishing the diagnosis in the majority of cases. The diagnostic thoracentesis can be done either blindly or under the guidance of ultrasound or computed tomography. However, minimal pleural effusion is difficult to sample even under image guidance. Endoscopic ultrasound (EUS) is known to detect smaller volume of pleural effusion and, thus, can help in guiding thoracentesis. To analyze the safety and efficacy of EUS-guided diagnostic thoracentesis in patients with undiagnosed minimal pleural effusion retrospectively. Retrospective analysis of the data of patients with minimal pleural effusion, who underwent EUS-guided transesophageal diagnostic thoracentesis over last 2 years, was performed. Thirteen patients (11 male; mean age 46.7 ± 16.2 years) with undiagnosed minimal pleural effusion underwent successful EUS-guided transesophageal diagnostic thoracentesis using a 22-G needle. Seven (53%) patients had fever on presentation whereas two presented with cough and loss of appetite. Eight to 54 mL fluid was aspirated with an attempt to completely empty the pleural cavity. There were no complications of the procedure. EUS-guided diagnostic thoracentesis is a safe and effective alternative for evaluating patients with minimal pleural effusion.

  19. An open access thyroid ultrasound image database

    NASA Astrophysics Data System (ADS)

    Pedraza, Lina; Vargas, Carlos; Narváez, Fabián.; Durán, Oscar; Muñoz, Emma; Romero, Eduardo

    2015-01-01

    Computer aided diagnosis systems (CAD) have been developed to assist radiologists in the detection and diagnosis of abnormalities and a large number of pattern recognition techniques have been proposed to obtain a second opinion. Most of these strategies have been evaluated using different datasets making their performance incomparable. In this work, an open access database of thyroid ultrasound images is presented. The dataset consists of a set of B-mode Ultrasound images, including a complete annotation and diagnostic description of suspicious thyroid lesions by expert radiologists. Several types of lesions as thyroiditis, cystic nodules, adenomas and thyroid cancers were included while an accurate lesion delineation is provided in XML format. The diagnostic description of malignant lesions was confirmed by biopsy. The proposed new database is expected to be a resource for the community to assess different CAD systems.

  20. Ultrasound physics and instrumentation for pathologists.

    PubMed

    Lieu, David

    2010-10-01

    Interest in pathologist-performed ultrasound-guided fine-needle aspiration is increasing. Educational courses discuss clinical ultrasound and biopsy techniques but not ultrasound physics and instrumentation. To review modern ultrasound physics and instrumentation to help pathologists understand the basis of modern ultrasound. A review of recent literature and textbooks was performed. Ultrasound physics and instrumentation are the foundations of clinical ultrasound. The key physical principle is the piezoelectric effect. When stimulated by an electric current, certain crystals vibrate and produce ultrasound. A hand-held transducer converts electricity into ultrasound, transmits it into tissue, and listens for reflected ultrasound to return. The returning echoes are converted into electrical signals and used to create a 2-dimensional gray-scale image. Scanning at a high frequency improves axial resolution but has low tissue penetration. Electronic focusing moves the long-axis focus to depth of the object of interest and improves lateral resolution. The short-axis focus in 1-dimensional transducers is fixed, which results in poor elevational resolution away from the focal zone. Using multiple foci improves lateral resolution but degrades temporal resolution. The sonographer can adjust the dynamic range to change contrast and bring out subtle masses. Contrast resolution is limited by processing speed, monitor resolution, and gray-scale perception of the human eye. Ultrasound is an evolving field. New technologies include miniaturization, spatial compound imaging, tissue harmonics, and multidimensional transducers. Clinical cytopathologists who understand ultrasound physics, instrumentation, and clinical ultrasound are ready for the challenges of cytopathologist-performed ultrasound-guided fine-needle aspiration and core-needle biopsy in the 21st century.

  1. Peripheral nerve ultrasound scoring systems: benchmarking and comparative analysis.

    PubMed

    Grimm, Alexander; Rattay, Tim W; Winter, Natalie; Axer, Hubertus

    2017-02-01

    Ultrasound of the nerves is an additive diagnostic tool to evaluate polyneuropathy. Recently, the need for standardized scoring systems has widely been discussed; different scores are described so far. Therefore, 327 patients with polyneuropathy were analyzed by ultrasound in our laboratory. Consequently, several ultrasound scoring tools were applied, i.e., the nerve pattern classification according to Padua et al. in all patients with CIDP and variants, the Bochum ultrasound score (BUS) and the neuritis ultrasound protocol in immune-mediated neuritis, the ultrasound pattern sum score, the homogeneity score, and the nerve enlargement distribution score in all neuropathies if possible. For all scores good accuracy was found. Most patients with CIDP revealed hypoechoic enlarged nerves (Class 1), the BUS/NUP was useful to identify GBS (sensitivity >85%), MMN (100%) and CIDP (>70%), while the UPSS showed high sensitivity and positive/negative predictive values (N/PPV) in the diagnosis of GBS (>70%), CIDP (>85%) and axonal non-inflammatory neuropathies (>90%). Homogeneous nerves were found in most CMT1 patients (66.7%), while immune-mediated neuropathies mostly show regional nerve enlargement. The HS was suitable to identify CMT patients with an HS ≥5 points. All scores were easily applicable with high accuracy. The former-reported results could be similarly confirmed. However, all sores have some incompleteness concerning unselected polyneuropathy population, particularly rare and focal types. Scoring systems are useful and easily applicable. They show high accuracy in certain neuropathies, but also offer some gaps and can, therefore, only be used in addition to standard diagnostic routines such as electrophysiology.

  2. Quantitative Evaluation of Atherosclerotic Plaque Using Ultrasound Tissue Characterization.

    NASA Astrophysics Data System (ADS)

    Yigiter, Ersin

    Evaluation of therapeutic methods directed toward interrupting and/or delaying atherogenesis is impeded by the lack of a reliable, non-invasive means for monitoring progression or regression of disease. The ability to characterize the predominant component of plaque may be very valuable in the study of this disease's natural history. The earlier the lesion, the more likely is lipid to be the predominant component. Progression of plaque is usually by way of overgrowth of fibrous tissues around the fatty pool. Calcification is usually a feature of the older or complicated lesion. To explore the feasibility of using ultrasound to characterize plaque we have conducted measurements of the acoustical properties of various atherosclerotic lesions found in freshly excised samples of human abdominal aorta. Our objective has been to determine whether or not the acoustical properties of plaque correlate with the type and/or chemical composition of plaque and, if so, to define a measurement scheme which could be done in-vivo and non-invasively. Our current data base consists of individual tissue samples from some 200 different aortas. Since each aorta yields between 10 to 30 tissue samples for study, we have data on some 4,468 different lesions or samples. Measurements of the acoustical properties of plaque were found to correlate well with the chemical composition of plaque. In short, measurements of impedance and attenuation seem sufficient to classify plaque as to type and to composition. Based on the in-vitro studies, the parameter of attenuation was selected as a means of classifying the plaque. For these measurements, an intravascular ultrasound scanner was modified according to our specifications. Signal processing algorithms were developed which would analyze the complex ultrasound waveforms and estimate tissue properties such as attenuation. Various methods were tried to estimate the attenuation from the pulse-echo backscattered signal. Best results were obtained by

  3. Ultrasound imaging in the management of bleeding and pain in early pregnancy.

    PubMed

    Knez, Jure; Day, Andrea; Jurkovic, Davor

    2014-07-01

    Bleeding and pain are experienced by 20% of women during the first trimester of pregnancy. Although most pregnancies complicated by pain and bleeding tend to progress normally, these symptoms are distressing for woman, and they are also associated with an increased risk of miscarriage and ectopic pregnancy. Ultrasound is the first and often the only diagnostic modality that is used to determine location of early pregnancy and to assess its health. Ultrasound is an accurate, safe, painless and relatively inexpensive diagnostic tool, which all contributed to its widespread use in early pregnancy. Pain and bleeding in early pregnancy are sometimes caused by concomitant gynaecological, gastrointestinal, and urological problems, which could also be detected on ultrasound scan. In women with suspected intra-abdominal bleeding, ultrasound scan can be used to detect the presence of blood and provide information about the extent of bleeding. In this chapter, we comprehensively review the use of ultrasound in the diagnosis and management of early pregnancy complications. We include information about the diagnosis of gynaecological and other pelvic abnormalities, which could cause pain or bleeding in pregnancy. We also provide a summary of the current views on the safety of ultrasound in early pregnancy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. How ultrasound first came to new England.

    PubMed Central

    Kohorn, Ernest I.

    2003-01-01

    Diagnostic ultrasound came to Yale in the 1960s and was first developed in Glasgow and London. This story tells us that ultrasound was well-established in the Department of Obstetrics and Gynecology at Yale University School of Medicine in the Yale-New Haven Hospital by 1970. By then it had caught up with the pioneers in New York, Denver, and even Glasgow. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:15482653

  5. Diagnostic Imaging of the Hepatobiliary System: An Update.

    PubMed

    Marolf, Angela J

    2017-05-01

    Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    PubMed

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  7. Ultrasound for fetal assessment in early pregnancy

    PubMed Central

    Whitworth, Melissa; Bricker, Leanne; Neilson, James P; Dowswell, Therese

    2014-01-01

    Background Diagnostic ultrasound is a sophisticated electronic technology, which utilises pulses of high frequency sound to produce an image. Diagnostic ultrasound examination may be employed in a variety of specific circumstances during pregnancy such as after clinical complications, or where there are concerns about fetal growth. Because adverse outcomes may also occur in pregnancies without clear risk factors, assumptions have been made that routine ultrasound in all pregnancies will prove beneficial by enabling earlier detection and improved management of pregnancy complications. Routine screening may be planned for early pregnancy, late gestation, or both. The focus of this review is routine early pregnancy ultrasound. Objectives To assess whether routine early pregnancy ultrasound for fetal assessment (i.e. its use as a screening technique) influences the diagnosis of fetal malformations, multiple pregnancies, the rate of clinical interventions, and the incidence of adverse fetal outcome when compared with the selective use of early pregnancy ultrasound (for specific indications). Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (September 2009). Selection criteria Published, unpublished, and ongoing randomised controlled trials that compared outcomes in women who experienced routine versus selective early pregnancy ultrasound (i.e. less than 24 weeks’ gestation). We have included quasi-randomised trials. Data collection and analysis Two review authors independently extracted data for each included study. We used the Review Manager software to enter and analyse data. Main results Routine/revealed ultrasound versus selective ultrasound/concealed: 11 trials including 37505 women. Ultrasound for fetal assessment in early pregnancy reduces the failure to detect multiple pregnancy by 24 weeks’ gestation (risk ratio (RR) 0.07, 95% confidence interval (CI) 0.03 to 0.17). Routine scan is associated with a reduction in

  8. Visualization of the diaphragm muscle with ultrasound improves diagnostic accuracy of phrenic nerve conduction studies.

    PubMed

    Johnson, Nicholas E; Utz, Michael; Patrick, Erica; Rheinwald, Nicole; Downs, Marlene; Dilek, Nuran; Dogra, Vikram; Logigian, Eric L

    2014-05-01

    Evaluation of phrenic neuropathy (PN) with phrenic nerve conduction studies (PNCS) is associated with false negatives. Visualization of diaphragmatic muscle twitch with diaphragm ultrasound (DUS) when performing PNCS may help to solve this problem. We performed bilateral, simultaneous DUS-PNCS in 10 healthy adults and 12 patients with PN. The amplitude of the diaphragm compound muscle action potential (CMAP) (on PNCS) and twitch (on DUS) was calculated. Control subjects had <38% side-to-side asymmetry in twitch amplitude (on DUS) and 53% asymmetry in phrenic CMAP (on PCNS). In the 12 patients with PN, 12 phrenic neuropathies were detected. Three of these patients had either significant side-to-side asymmetry or absolute reduction in diaphragm movement that was not detected with PNCS. There were no cases in which the PNCS showed an abnormality but the DUS did not. The addition of DUS to PNCS enhances diagnostic accuracy in PN. Copyright © 2013 Wiley Periodicals, Inc.

  9. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    1998-09-01

    ultrasound imaging in discriminating benign from malignant known masses . Preliminary data analyses were completed on new trials and contributions were made...specificity of ultrasound imaging in discriminating benign from malignant known masses . Increasingly we and others will look toward expanded roles in...evaluate which Doppler signals might provide discrimination of breast cancer from benign masses and to compare 2D and 3D ultrasound display modes.

  10. [Novel dianostics and therapeutics with ultrasound technologies and nanotechnologies].

    PubMed

    Suzuki, Ryo; Oda, Yusuke; Omata, Daiki; Sawaguchi, Yoshikazu; Negishi, Yoichi; Maruyama, Kazuo

    2013-01-01

    Ultrasound is a good tool for theranostics due to have multi-potency both of diagnostics with sonography and therapeutics with high intensity focused ultrasound (HIFU). In addition, microbubbles and nanobubbles are utilized as not only contrast imaging agent but also enhancer of drug and gene delivery by combination of ultrasound. Recently, we developed novel liposomal nanobubbles (Bubble liposomes) which were containing perfluoropropane. Bubble liposomes induced jet stream by low intensity ultrasound exposure and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. On the other hand, the combination of Bubble liposomes and high intensity ultrasound induces strong jet stream and increase temperature. This condition can directly damage to tumor cells, we are applying this for cancer therapy. Therefore, their combination has potency for various cancer therapies such as gene therapy, immunotherapy and hyperthermia. In this review, we discuss about cancer therapy by the combination of Bubble liposomes and ultrasound.

  11. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    PubMed

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  12. Recent advances in the imaging of hepatocellular carcinoma. From ultrasound to positron emission tomography scan.

    PubMed

    Camaggi, Valeria; Piscaglia, Fabio; Bolondi, Luigi

    2007-07-01

    Recent advances in imaging techniques for hepatocellular carcinoma (HCC) offer the possibility of investigating contrast perfusion of liver nodules in cirrhosis. It is now accepted that a non-invasive diagnosis of HCC can be established based on the vascular pattern obtained with pure blood pool contrast agents. The diagnostic pattern consists of contrast enhancement in the arterial phase, indicative of arterial hypervascularization, followed by contrast wash out in the portal and late phases, which leads the nodule to show the same, or, more specifically, a lower contrast signal than the surrounding parenchyma. Such patterns can be obtained by CT, MRI and, more recently, by real time Contrast Enhanced Ultrasonography with second-generation ultrasound contrast agents. A typical vascular pattern in a nodule perceptible also without contrast is highly specific for HCC, so that non-invasive diagnostic algorithms have been developed and recently updated.

  13. Neonatal Cranial Ultrasound: Are Current Safety Guidelines Appropriate?

    PubMed

    Lalzad, Assema; Wong, Flora; Schneider, Michal

    2017-03-01

    Ultrasound can lead to thermal and mechanical effects in interrogated tissues. We reviewed the literature to explore the evidence on ultrasound heating on fetal and neonatal neural tissue. The results of animal studies have suggested that ultrasound exposure of the fetal or neonatal brain may lead to a significant temperature elevation at the bone-brain interface above current recommended safety thresholds. Temperature increases between 4.3 and 5.6°C have been recorded. Such temperature elevations can potentially affect neuronal structure and function and may also affect behavioral and cognitive function, such as memory and learning. However, the majority of these studies were carried out more than 25 y ago using non-diagnostic equipment with power outputs much lower than those of modern machines. New studies to address the safety issues of cranial ultrasound are imperative to provide current clinical guidelines and safety recommendations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Enabling the mission through trans-atlantic remote mentored musculoskeletal ultrasound: case report of a portable hand-carried tele-ultrasound system for medical relief missions.

    PubMed

    Kirkpatrick, Andrew W; Blaivas, Michael; Sargsyan, Ashot E; McBeth, Paul B; Patel, Chirag; Xiao, Zhengwen; Pian, Linping; Panebianco, Nova; Hamilton, Douglas R; Ball, Chad G; Dulchavsky, Scott A

    2013-07-01

    Modern medical practice has become extremely dependent upon diagnostic imaging technologies to confirm the results of clinical examination and to guide the response to therapies. Of the various diagnostic imaging techniques, ultrasound is the most portable modality and one that is repeatable, dynamic, relatively cheap, and safe as long as the imaging provided is accurately interpreted. It is, however, the most user-dependent, a characteristic that has prompted the development of remote guidance techniques, wherein remote experts guide distant users through the use of information technologies. Medical mission work often brings specialist physicians to less developed locations, where they wish to provide the highest levels of care but are often bereft of diagnostic imaging resources on which they depend. Furthermore, if these personnel become ill or injured, their own care received may not be to the standard they have left at home. We herein report the utilization of a compact hand-carried remote tele-ultrasound system that allowed real-time diagnosis and follow-up of an acutely torn adductor muscle by a team of ultrasonographers, surgeons, and physicians. The patient was one of the mission surgeons who was guided to self-image. The virtual network of supporting experts was located across North America, whereas the patient was in Lome, Togo, West Africa. The system consisted of a hand-carried ultrasound, the output of which was digitized and streamed to the experts within standard voice-over-Internet-protocol software with an embedded simultaneous videocamera image of the ultrasonographer's hands using a customized graphical user interface. The practical concept of a virtual tele-ultrasound support network was illustrated through the clinical guidance of multiple physicians, including National Aeronautics and Space Administration Medical Operations remote guiders, Olympic team-associated surgeons, and ultrasound-focused emergentologists.

  15. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  16. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  17. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    PubMed

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p <0.005 and <0.001, respectively). The detection rate of standard plus contrast or vardenafil enhanced power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological

  18. Development of the Fetal Vermis: New Biometry Reference Data and Comparison of 3 Diagnostic Modalities-3D Ultrasound, 2D Ultrasound, and MR Imaging.

    PubMed

    Katorza, E; Bertucci, E; Perlman, S; Taschini, S; Ber, R; Gilboa, Y; Mazza, V; Achiron, R

    2016-07-01

    Normal biometry of the fetal posterior fossa rules out most major anomalies of the cerebellum and vermis. Our aim was to provide new reference data of the fetal vermis in 4 biometric parameters by using 3 imaging modalities, 2D ultrasound, 3D ultrasound, and MR imaging, and to assess the relation among these modalities. A retrospective study was conducted between June 2011 and June 2013. Three different imaging modalities were used to measure vermis biometry: 2D ultrasound, 3D ultrasound, and MR imaging. The vermian parameters evaluated were the maximum superoinferior diameter, maximum anteroposterior diameter, the perimeter, and the surface area. Statistical analysis was performed to calculate centiles for gestational age and to assess the agreement among the 3 imaging modalities. The number of fetuses in the study group was 193, 172, and 151 for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. The mean and median gestational ages were 29.1 weeks, 29.5 weeks (range, 21-35 weeks); 28.2 weeks, 29.05 weeks (range, 21-35 weeks); and 32.1 weeks, 32.6 weeks (range, 27-35 weeks) for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. In all 3 modalities, the biometric measurements of the vermis have shown a linear growth with gestational age. For all 4 biometric parameters, the lowest results were those measured by MR imaging, while the highest results were measured by 3D ultrasound. The inter- and intraobserver agreement was excellent for all measures and all imaging modalities. Limits of agreement were considered acceptable for clinical purposes for all parameters, with excellent or substantial agreement defined by the intraclass correlation coefficient. Imaging technique-specific reference data should be used for the assessment of the fetal vermis in pregnancy. © 2016 by American Journal of Neuroradiology.

  19. The potential of ultrasound in cardiac pacing and rhythm modulation.

    PubMed

    Kohut, Andrew R; Vecchio, Christopher; Adam, Dan; Lewin, Peter A

    2016-09-01

    This review examines the potential for ultrasound to induce or otherwise influence cardiac pacing and rhythm modulation. Of particular interest is the possibility of developing new, truly non-invasive, nonpharmacological, acute and chronic, ultrasound-based arrhythmia treatments. Such approaches would not depend upon implanted or indwelling devices of any kind and would use ultrasound at diagnostic exposure levels (so as not to harm the heart or surrounding tissues). It is known that ultrasound can cause cardiomyocyte depolarization and a variety of underlying mechanisms have been proposed. Expert commentary: Questions still remain regarding the effect of exposure parameters and work will also be necessary to identify the optimal target regions within the heart if ultrasound energy is to be used to induce safe and reliable pacing in a clinical setting.

  20. Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Köhler, Martin J; Scharenberg, Rüdiger; Kaatz, Martin

    2010-12-01

    The first-ever application of high-frequency ultrasound combined with multiphoton tomography (MPT) and dermoscopy in a clinical trial is reported. 47 patients with different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond laser multiphoton tomograph and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface with a magnification up to 70 x. Depending on the ultrasonic frequencies from 7.5 MHz to 100 MHz, the signal depth varies from about 1 mm to 80 mm. Vertical ultrasound wide-field images provide fast information on depth and volume of the lesion. The 100 MHz ultrasound allows imaging with resolutions down to 16 μm (axial) and 32 μm (lateral). Multiphoton tomography provides 0.36 x 0.36 x 0.001 mm³ horizontal optical sections of a particular region of interest with submicron resolution down to 200 μm tissue depth. The autofluorescence of mitochondrial coenzymes, keratin, melanin, and elastin as well as the network of collagen structures can be imaged. The combination of ultrasound and MPT opens novel synergistic possibilities in diagnostics of skin diseases with a special focus on the early detection of skin cancer as well as the evaluation of treatments. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A New Era in Diagnostic Ultrasound, Superb Microvascular Imaging: Preliminary Results in Pediatric Hepato-Gastrointestinal Disorders.

    PubMed

    Ohno, Yasuharu; Fujimoto, Tamotsu; Shibata, Yukari

    2017-02-01

    Introduction  Superb microvascular imaging is a new ultrasound image processing technique that uses advanced clutter suppression to extract flow signals from vessels and which helps us visualize very small vascular structures that were not previously visible without the use of a contrast agent. We herein analyzed the usefulness of superb microvascular imaging in the diagnosis of hepato-gastrointestinal disorders in pediatric patients. Materials and Methods  Fifty-six pediatric patients who underwent a total of 81 superb microvascular imaging examinations with an Aplio 300 ultrasound system (Toshiba Medical Systems, Tokyo, Japan) were enrolled in this study. The subjects underwent conventional ultrasound examinations, including Doppler imaging followed by superb microvascular imaging. The superb microvascular imaging findings and standard imaging were compared. All of the examinations were performed without sedation. Results  The average age of the patients (male, n  = 38; female, n  = 18) was 4 years. The clinical diagnoses included hepatobiliary disorders ( n  = 29), acute appendicitis ( n  = 10), and other intestinal disorders ( n  = 17). The target organs for superb microvascular imaging were the liver, appendix, rectum, intestine, gallbladder, and lymph node. In most of the patients, superb microvascular imaging achieved the excellent visualization of microvascular structures, revealing abnormal vasculature in 21 out of 46 (45.7%) examinations of the liver, 9/9 (100%) examinations of the appendix, 0/11 (0%) examinations of the rectum, 9/11 (81.8%) examinations of the intestine, 0/1 (0%) examinations of the gallbladder, and 3/3 (100%) examinations of the lymph nodes. Superb microvascular imaging was superior to Doppler imaging for depicting the microvascular structures. Conclusions  Superb microvascular imaging is especially useful for depicting the microvascular flow and can aid in the diagnosis and treatment planning for pediatric

  2. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Funke, Arik; Tanter, Mickaël; Aubry, Jean-François; Bossy, Emmanuel

    2012-06-01

    Photoacoustics has recently been proposed as a potential method to guide and/or monitor therapy based on high-intensity focused ultrasound (HIFU). We experimentally demonstrate the creation of a HIFU lesion at the location of an optical absorber, by use of photoacoustic signals emitted by the absorber detected on a dual mode transducer array. To do so, a dedicated ultrasound array intended to both detect photoacoustic waves and emit HIFU with the same elements was used. Such a dual-mode array provides automatically coregistered reference frames for photoacoustic detection and HIFU emission, a highly desired feature for methods involving guidance or monitoring of HIFU by use of photoacoustics. The prototype is first characterized in terms of both photoacoustic and HIFU performances. The probe is then used to perform an idealized scenario of photoacoustic-guided therapy, where photoacoustic signals generated by an absorbing thread embedded in a piece of chicken breast are used to automatically refocus a HIFU beam with a time-reversal mirror and necrose the tissue at the location of the absorber.

  3. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    PubMed

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  4. Standardized ultrasound templates for diagnosing appendicitis reduce annual imaging costs.

    PubMed

    Nordin, Andrew B; Sales, Stephen; Nielsen, Jason W; Adler, Brent; Bates, David Gregory; Kenney, Brian

    2018-01-01

    Ultrasound is preferred over computed tomography (CT) for diagnosing appendicitis in children to avoid undue radiation exposure. We previously reported our experience in instituting a standardized appendicitis ultrasound template, which decreased CT rates by 67.3%. In this analysis, we demonstrate the ongoing cost savings associated with using this template. Retrospective chart review for the time period preceding template implementation (June 2012-September 2012) was combined with prospective review through December 2015 for all patients in the emergency department receiving diagnostic imaging for appendicitis. The type of imaging was recorded, and imaging rates and ultrasound test statistics were calculated. Estimated annual imaging costs based on pretemplate ultrasound and CT utilization rates were compared with post-template annual costs to calculate annual and cumulative savings. In the pretemplate period, ultrasound and CT rates were 80.2% and 44.3%, respectively, resulting in a combined annual cost of $300,527.70. Similar calculations were performed for each succeeding year, accounting for changes in patient volume. Using pretemplate rates, our projected 2015 imaging cost was $371,402.86; however, our ultrasound rate had increased to 98.3%, whereas the CT rate declined to 9.6%, yielding an annual estimated cost of $224,853.00 and a savings of $146,549.86. Since implementation, annual savings have steadily increased for a cumulative cost savings of $336,683.83. Standardizing ultrasound reports for appendicitis not only reduces the use of CT scans and the associated radiation exposure but also decreases annual imaging costs despite increased numbers of imaging studies. Continued cost reduction may be possible by using diagnostic algorithms. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].

    PubMed

    Abramowicz, J S; Kremkau, F W; Merz, E

    2012-06-01

    with distance (attenuation). In completely homogeneous materials, the signal amplitude is reduced only by beam divergence and absorption (conversion of sound to heat). However, biologic tissues are non-homogeneous and further weakening occurs due to scattering. The issue of temperature increase in the amniotic fluid is based on the fact that the energy of the ultrasound waves is partially converted to heat in the tissue traversed by the waves. Tissues with a high absorption coefficient (such as bone) will produce a high conversion rate while the conversion will be lower in tissues with low absorption. Fluids have very low absorption characteristics and, therefore, the risk of temperature elevation in the amniotic fluid is minimal. The only available study on the topic did not demonstrate any increase in temperature in the amniotic fluid when performing diagnostic ultrasound, both in grayscale anatomic imaging (sonography) and Doppler ultrasound 24. ConclusionWhile ultrasound is a sound wave which can produce mechanical effects and temperature elevation in tissues that it traverses, the risk to human fetuses when using diagnostic ultrasound appears to be minimal if certain rules are followed, such as performing a scan when medically indicated, and observing the ALARA principle (using the lowest output power consistent with acquiring the necessary diagnostic information and keeping the exposure time as low as possible for accurate diagnosis). © Georg Thieme Verlag KG Stuttgart · New York.

  6. Secondary Signs May Improve the Diagnostic Accuracy of Equivocal Ultrasounds for Suspected Appendicitis in Children

    PubMed Central

    Partain, Kristin N.; Patel, Adarsh; Travers, Curtis; McCracken, Courtney; Loewen, Jonathan; Braithwaite, Kiery; Heiss, Kurt F.; Raval, Mehul V.

    2016-01-01

    Introduction Ultrasound (US) is the preferred imaging modality for evaluating appendicitis. Our purpose was to determine if including secondary signs (SS) improves diagnostic accuracy in equivocal US studies. Methods Retrospective review identified 825 children presenting with concern for appendicitis and with a right lower quadrant (RLQ) US. Regression models identified which SS were associated with appendicitis. Test characteristics were demonstrated. Results 530 patients (64%) had equivocal US reports. Of 114 (22%) patients with equivocal US undergoing CT, those with SS were more likely to have appendicitis (48.6% vs 14.6%, p<0.001). Of 172 (32%) patients with equivocal US admitted for observation, those with SS were more likely to have appendicitis (61.0% vs 33.6%, p<0.001). SS associated with appendicitis included fluid collection (adjusted odds ratio (OR) 13.3, 95% Confidence Interval (CI) 2.1–82.8), hyperemia (OR=2.0, 95%CI 1.5–95.5), free fluid (OR=9.8, 95%CI 3.8–25.4), and appendicolith (OR=7.9, 95%CI 1.7–37.2). Wall thickness, bowel peristalsis, and echogenic fat were not associated with appendicitis. Equivocal US that included hyperemia, a fluid collection, or an appendicolith had 96% specificity and 88% accuracy. Conclusion Use of SS in RLQ US assists in the diagnostic accuracy of appendicitis. SS may guide clinicians and reduce unnecessary CT and admissions. PMID:27039121

  7. Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media

    PubMed Central

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2018-01-01

    In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB. PMID:29675309

  8. Ultrasound applications in mass casualties and extreme environments.

    PubMed

    Ma, O John; Norvell, Jeffrey G; Subramanian, Srikala

    2007-05-01

    A mass-casualty incident is one in which the number of patients with injuries exceeds the available medical resources to care for them in a timely manner. In such a situation, the numerous advantages of ultrasonography make it an ideal triage tool for helping clinicians rapidly screen patients. Experiences during the 1988 Armenian earthquake and the 1999 Turkish earthquake demonstrated the proficiency of ultrasound in providing rapid clinical data to the physicians caring for the mass-casualty patients. Wireless and satellite transmission of ultrasound images also has been shown to be feasible and may be applied to mass-casualty situations. In addition, ultrasound applications have been demonstrated to aid in the diagnosis of various conditions, including pneumothorax, in the International Space Station. Ultrasound's portability, reproducibility, accuracy, and ease of use will make it an important diagnostic instrument for future space missions.

  9. Ultrasound in the investigation of posterior compartment vaginal prolapse and obstructed defecation.

    PubMed

    Dietz, H P; Beer-Gabel, M

    2012-07-01

    Recent developments in diagnostic imaging have made gynecologists, colorectal surgeons and gastroenterologists realize as never before that they share a common interest in anorectal and pelvic floor dysfunction. While we often may be using different words to describe the same phenomenon (e.g. anismus/vaginismus) or attributing different meanings to the same words (e.g. rectocele), we look after patients with problems that transcend the borders of our respective specialties. Like no other diagnostic modality, imaging helps us understand each other and provides new insights into conditions we all need to learn to investigate better in order to improve clinical management. In this review we attempt to show what modern ultrasound imaging can contribute to the diagnostic work-up of patients with posterior vaginal wall prolapse, obstructed defecation and rectal intussusception/prolapse. In summary, it is evident that translabial/perineal ultrasound can serve as a first-line diagnostic tool in women with such complaints, replacing defecation proctography and MR proctography in a large proportion of female patients. This is advantageous for the women themselves because ultrasound is much better tolerated, as well as for healthcare systems since sonographic imaging is much less expensive. However, there is a substantial need for education, which currently remains unmet. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  10. Contrast-enhanced ultrasound in diagnosis of gallbladder adenoma.

    PubMed

    Yuan, Hai-Xia; Cao, Jia-Ying; Kong, Wen-Tao; Xia, Han-Sheng; Wang, Xi; Wang, Wen-Ping

    2015-04-01

    Gallbladder adenoma is a pre-cancerous neoplasm and needs surgical resection. It is difficult to differentiate adenoma from other gallbladder polyps using imaging examinations. The study aimed to illustrate characteristics of contrast-enhanced ultrasound (CEUS) and its diagnostic value in gallbladder adenoma. Thirty-seven patients with 39 gallbladder adenomatoid lesions (maximal diameter ≥10 mm and without metastasis) were enrolled in this study. Lesion appearances in conventional ultrasound and CEUS were documented. The imaging features were compared individually among gallbladder cholesterol polyp, gallbladder adenoma and malignant lesion. Adenoma lesions showed iso-echogenicity in ultrasound, and an eccentric enhancement pattern, "fast-in and synchronous-out" contrast enhancement pattern and homogeneous at peak-time enhancement in CEUS. The homogenicity at peak-time enhancement showed the highest diagnostic ability in differentiating gallbladder adenoma from cholesterol polyps. The sensitivity, specificity, positive predictive value, negative predictive value, accuracy and Youden index were 100%, 90.9%, 92.9%, 100%, 95.8% and 0.91, respectively. The characteristic of continuous gallbladder wall shown by CEUS had the highest diagnostic ability in differentiating adenoma from malignant lesion (100%, 86.7%, 86.7%, 100%, 92.9% and 0.87, respectively). The characteristic of the eccentric enhancement pattern had the highest diagnostic ability in differentiating adenoma from cholesterol polyp and malignant lesion, with corresponding indices of 69.2%, 88.5%, 75.0%, 85.2%, 82.1% and 0.58, respectively. CEUS is valuable in differentiating gallbladder adenoma from other gallbladder polyps (≥10 mm in diameter). Homogeneous echogenicity on peak-time enhancement, a continuous gallbladder wall, and the eccentric enhancement pattern are important indicators of gallbladder adenoma on CEUS.

  11. Value of mammography and breast ultrasound in male patients with nipple discharge.

    PubMed

    Muñoz Carrasco, Rafaela; Álvarez Benito, Marina; Rivin del Campo, Eleonor

    2013-03-01

    To assess the contribution of mammography and ultrasound in men with nipple discharge. All men with nipple discharge who underwent mammography and/or ultrasound between 1993 and 2011 in our hospital were retrospectively evaluated. Radiological findings were classified according to BI-RADS lexicon. The final diagnosis was made based on histopathological results or clinical-radiological follow-up. The diagnostic performance of physical examination, mammography and ultrasound was calculated and compared. 26 men with 21 mammograms and 19 ultrasounds were reviewed. The final diagnoses were: 6 carcinomas (23.1%), 10 gynaecomastias, 2 pseudogynaecomastias and 8 normal breast tissues. Mammograms and ultrasounds performed on all five patients with infiltrating carcinoma showed a mass (categories 4 and 5). In all these patients except one, a breast mass was also noted and the physical examination was positive or suspected malignancy. In the patient with carcinoma in situ, the only conspicuous clinical sign was bloody nipple discharge and the mammography showed calcifications (category 4) that were not visible on ultrasound. Radiological findings of all patients without malignancy were classified as categories 1 and 2. The diagnostic performance of physical examination was lower than mammography and ultrasound (P>0.05). Mammography was more sensitive than ultrasound (100% vs. 83.3%). Both techniques showed the same specificity (100%). Men with nipple discharge have a high incidence of breast carcinoma. Nipple discharge may be the only clinical sign of carcinoma in situ. Mammography and ultrasound are useful in the evaluation of men with nipple discharge, diagnosing carcinoma in initial stages, avoiding unnecessary biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Four-dimensional ultrasound current source density imaging of a dipole field

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.

    2011-09-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.

  13. [Differential diagnostic value of real-time tissue elastography and three dimensional ultrasound imaging in breast lumps].

    PubMed

    Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q

    2016-05-24

    To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.

  14. Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging

    PubMed Central

    Matsunaga, Terry O.; Sheeran, Paul S.; Luois, Samantha; Streeter, Jason E.; Mullin, Lee B.; Banerjee, Bhaskar; Dayton, Paul A.

    2012-01-01

    Recent efforts using perfluorocarbon (PFC) nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs) from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C) and octafluoropropane (OFP, bp =-37 °C ) for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs. PMID:23382775

  15. Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2014-03-01

    Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.

  16. Detecting stripe artifacts in ultrasound images.

    PubMed

    Maciak, Adam; Kier, Christian; Seidel, Günter; Meyer-Wiethe, Karsten; Hofmann, Ulrich G

    2009-10-01

    Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

  17. Intrauterine photoacoustic and ultrasound imaging probe

    NASA Astrophysics Data System (ADS)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  18. Value of stress ultrasound for the diagnosis of chronic ankle instability compared to manual anterior drawer test, stress radiography, magnetic resonance imaging, and arthroscopy.

    PubMed

    Cho, Jae Ho; Lee, Doo Hyung; Song, Hyung Keun; Bang, Joon Young; Lee, Kyung Tai; Park, Young Uk

    2016-04-01

    Clinicians frequently diagnose chronic ankle instability using the manual anterior drawer test and stress radiography. However, both examinations can yield incorrect results and do not reveal the extent of ankle instability. Stress ultrasound has been reported to be a new diagnostic tool for the diagnosis of chronic ankle instability. The purpose of this study was to assess the diagnostic value of stress ultrasound for chronic ankle instability compared to the manual anterior drawer test, stress radiography, magnetic resonance imaging (MRI), and arthroscopy. Twenty-eight consecutive patients who underwent ankle arthroscopy and subsequent modified Broström repair for treatment of chronic ankle instability were included. The arthroscopic findings were used as the reference standard. A standardized physical examination (manual anterior drawer test), stress radiography, MRI, and stress ultrasound were performed to assess the anterior talofibular ligament (ATFL) prior to operation. Ultrasound images were taken in the resting position and the maximal anterior drawer position. Grade 3 lateral instability was verified arthroscopically in all 28 cases with a clinical diagnosis (100%). Twenty-two cases showed grade III instability on the manual anterior drawer test (78.6%). Twenty-four cases displayed anterior translation exceeding 5 mm on stress radiography (86%), and talar tilt angle exceeded 15° in three cases (11 %). Nineteen cases displayed a partial chronic tear (change in thickness or signal intensity), and nine cases displayed complete tear on MRI (100%). Lax and wavy ATFL was evident on stress ultrasound in all cases (100 %). The mean value of the ATFL length was 2.8 ± 0.3 cm for the stressed condition and 2.1 ± 0.2 cm for the resting condition (p < 0.001). Stress ultrasound may be useful for the diagnosis of chronic ankle instability in addition to the manual anterior drawer test and stress radiography. III.

  19. Ultrasound imaging diagnostics: healthcare risks for urologists.

    PubMed

    Martino, Tilde; Massaro, Tommaso; Martino, Paolo; Martino, Pasquale

    2010-12-01

    The objectives of this study are: 1) assessing if Ultrasound (US) used during US scans can represent a risk for the healthcare of urologists; 2) verifying the frequency of Carpal Tunnel Syndrome (CTS) symptoms and musculoskeletal disorders (MSD), trying to assess the possible correlation with job load and US scanning procedures; 3) assessing the role of individual factors like age, gender and physical activity in determining such disorders. A group of 35 voluntary urologists carrying out ultrasound scans were selected: 13 were working for the 1 degrees Teaching Hospital Urology, 11 for the 2 degrees Teaching Hospital Urology, 2 for the Hospitalization Urology of the Policlinico of Bari and 9 for Urology of Public Corporation Di Venere of Bari. A questionnaire, divided in two parts, was administered to the sample: the first aimed at collecting demographic data and at describing the operators' workload and the second focused on the possible presence of CTS and MSD symptoms. 32 urologists over 35 performed more than 5 scans per week and more than 5 scans per day. On average the specialists were carrying out this activity since 18 years wheras for post-graduate students, this time was about 4 years. Twenty-six subjects (74%) showed no symptoms, 8 subjects (23%) showed from 1 to 4 symptoms which can be associated to the presence of CTS; only one subject presents more than 5 symptoms. As regards MSD, 6 urologists (17%) did not present disorders, 24 subjects (69%) showed from 1 to 4 symptoms and 5 subjects (14%) presented more than 5 symptoms. The use of US scan examination is completely safe both for the healthcare of the patients and the operator. For what concerns healthcare risks, it is highly recommended to adopt a correct posture when performing the examination and to use the provided chair.

  20. Ultrasound findings of diffuse metastasis of gastric signet-ring-cell carcinoma to the thyroid gland.

    PubMed

    Morita, Koji; Sakamoto, Takahiko; Ota, Shuji; Masugi, Hideo; Chikuta, Ikumi; Mashimo, Yamato; Edo, Naoki; Tokairin, Takuo; Seki, Nobuhiko; Ishikawa, Toshio

    2017-01-01

    It has been shown that metastases to the thyroid from extrathyroidal malignancies occur as solitary or multiple nodules, or may involve the whole thyroid gland diffusely. However, diffuse metastasis of gastric cancer to the thyroid is extremely rare. Here, we report a case of a 74-year-old woman with diffuse infiltration of gastric adenocarcinoma (signet-ring-cell carcinoma/poorly differentiated adenocarcinoma) cells in the thyroid. The pathological diagnosis was made based on upper gastrointestinal endoscopy with biopsy and fine-needle aspiration cytology of the thyroid. An 18F-FDG PET/CT revealed multiple lesions with increased uptake, including the bilateral thyroid gland. On thyroid ultrasound examination, diffuse enlargement with internal heterogeneity and hypoechoic reticular lines was observed. On color Doppler imaging, a blood-flow signal was not detected in these hypoechoic lines. These findings were similar to those of diffuse metastases caused by other primary cancers, such as lung cancer, as reported earlier. Therefore, the presence of hypoechoic reticular lines without blood-flow signals is probably common to diffuse thyroid metastasis from any origin and an important diagnostic finding. This is the first report to show detailed ultrasound findings of diffuse gastric cancer metastasis to the thyroid gland using color Doppler.

  1. [Achilles tendon xanthoma imaging on ultrasound and magnetic resonance imaging].

    PubMed

    Fernandes, Eloy de Ávila; Santos, Eduardo Henrique Sena; Tucunduva, Tatiana Cardoso de Mello; Ferrari, Antonio J L; Fernandes, Artur da Rocha Correa

    2015-01-01

    The Achilles tendon xanthoma is a rare disease and has a high association with primary hyperlipidemia. An early diagnosis is essential to start treatment and change the disease course. Imaging exams can enhance diagnosis. This study reports the case of a 60-year-old man having painless nodules on his elbows and Achilles tendons without typical gout crisis, followed in the microcrystalline disease clinic of Unifesp for diagnostic workup. Laboratory tests obtained showed dyslipidemia. The ultrasound (US) showed a diffuse Achilles tendon thickening with hypoechoic areas. Magnetic resonance imaging (MRI) showed a diffuse tendon thickening with intermediate signal areas, and a reticulate pattern within. Imaging studies showed relevant aspects to diagnose a xanthoma, thus helping in the differential diagnosis. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  2. Localized Harmonic Motion Imaging for Focused Ultrasound Surgery Targeting

    PubMed Central

    Curiel, Laura; Hynynen, Kullervo

    2011-01-01

    Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired RF signal. Silicon phantom studies were performed in order to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions as compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude. PMID:21683514

  3. Point-of-Care Ultrasound: A Trend in Health Care.

    PubMed

    Buerger, Anita M; Clark, Kevin R

    2017-11-01

    To discuss the current and growing use of point-of-care (POC) ultrasound in the management and care of patients. Several electronic research databases were searched to find articles that emphasized the use of POC ultrasound by health care providers who manage and treat critically ill or injured patients. Thirty-five relevant peer-reviewed journal articles were selected for this literature review. Common themes identified in the literature included the use of POC ultrasound in emergency medicine, military medicine, and remote care; comparison of POC ultrasound to other medical imaging modalities; investigation of the education and training required for nonimaging health care professionals who perform POC ultrasound in their practices; and discussion of the financial implications and limitations of POC ultrasound. POC ultrasound provides clinicians with real-time information to better manage and treat critically ill or injured patients in emergency medicine, military medicine, and remote care. In addition to providing immediate bedside diagnostic information, use of POC ultrasound has increased because of concerns regarding radiation protection. Finally, the expansion of POC ultrasound to other specialty areas requires nonimaging health care professionals to perform bedside ultrasound examinations and interpret the resulting images. Because POC ultrasound is user-dependent, adequate training is essential for all who perform and interpret the examinations. Research involving POC ultrasound will continue as innovations and confidence in ultrasound applications advance. Future research should continue to examine the broad use of POC ultrasound in patient care and management. ©2017 American Society of Radiologic Technologists.

  4. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    PubMed

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  5. The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon.

    PubMed

    Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar

    2018-01-01

    To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.

  6. Diagnostic utility of abdominal ultrasonography in dogs with chronic diarrhea.

    PubMed

    Leib, M S; Larson, M M; Grant, D C; Monroe, W E; Troy, G C; Panciera, D L; Rossmeisl, J H; Werre, S R

    2012-01-01

    Chronic diarrhea is common in dogs and has many causes. Ultrasonographic descriptions of many gastrointestinal diseases have been published, but the diagnostic utility of ultrasonography in dogs with chronic diarrhea has not been investigated. Diagnostic utility of abdominal ultrasound will be highest in dogs with GI neoplasia and lowest in those with inflammatory disorders. 87 pet dogs with chronic diarrhea. Prospective study in which medical records were reviewed and contribution of abdominal ultrasound toward making diagnosis was scored. In 57/87 (66%) of dogs, the same diagnosis would have been reached without ultrasonography. In 13/87 (15%) of dogs, the ultrasound examination was vital or beneficial to making the diagnosis. Univariable analysis identified that increased diagnostic utility was associated with weight loss (P = .0086), palpation of an abdominal or rectal mass (P = .0031), diseases that commonly have mass lesions visible on ultrasound examination (P < .0001), and a final diagnosis of GI neoplasia. Multivariable regression indicated that utility of abdominal ultrasonography would be 30 times more likely to be high in dogs in which an abdominal or rectal mass was palpated (odds ratio 30.5, 95% CI 5.5-169.6) (P < .0001) versus dogs without a palpable mass. In 15/87 (17%) of dogs, additional benefits of ultrasonography to case management, independent of the contribution to the diagnosis of diarrhea, were identified. Overall, the diagnostic utility of abdominal ultrasonography was low in dogs with chronic diarrhea. Identification of factors associated with high diagnostic utility is an indication to perform abdominal ultrasonography in dogs with chronic diarrhea. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  7. Ultrasound determination of rotator cuff tear repairability

    PubMed Central

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p < 0.0001) and a specificity of 67% (p < 0.0001). The strongest predictors of rotator cuff repairability were tear size (p < 0.001) and age (p = 0.004). Sonographic assessments of tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  8. Model based inversion of ultrasound data in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of ultrasound interaction with defects in composites, to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of defect properties from analysis of measured ultrasound signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, in laminates displaying irregular surface geometry (roughness), as well as internal elastic heterogeneity (varying fiber density, porosity). Inversion of ultrasound data is demonstrated showing the quantitative extraction of delamination geometry and surface transmissivity. Additionally, data inversion is demonstrated for determination of surface roughness and internal heterogeneity, and the influence of these features on delamination characterization is examined. Estimation of porosity volume fraction is demonstrated when internal heterogeneity is attributed to porosity.

  9. Diagnostic utility of abdominal ultrasonography in dogs with chronic vomiting.

    PubMed

    Leib, M S; Larson, M M; Panciera, D L; Troy, G C; Monroe, W E; Rossmeisl, J H; Forrester, S D; Herring, E S

    2010-01-01

    Chronic vomiting is a common problem in dogs that has many causes. Ultrasonographic descriptions of many gastrointestinal (GI) diseases have been published. However, diagnostic utility of ultrasonography in dogs with chronic vomiting has not been investigated. Diagnostic utility of abdominal ultrasound will be highest in dogs with GI neoplasia and lowest in those with inflammatory disorders. Eighty-nine pet dogs with chronic vomiting. Medical records were reviewed and the contribution of abdominal ultrasound to the clinical diagnosis was subjectively scored. In 68.5% of dogs, the reviewers thought that the same diagnosis would have been reached without performing ultrasonography. In 22.5% of dogs, the ultrasound examination was considered to be vital or beneficial to the diagnosis. Univariable analysis identified that increased diagnostic utility was associated with increasing age, a greater number of vomiting episodes per week, presence of weight loss, a greater percentage of lost body weight, and a final diagnosis of GI lymphoma or gastric adenocarcinoma. However, multivariate analysis only identified increasing age and a final diagnosis of gastric adenocarcinoma or GI lymphoma to be associated with increased diagnostic utility. In 12.4% of dogs, additional benefits of ultrasonography to case management, excluding the contribution to the vomiting problem, were identified. The diagnostic utility of abdominal ultrasonography was high in 27% of dogs. The presence of factors that are associated with high diagnostic utility is an indication to perform abdominal ultrasonography in dogs with chronic vomiting.

  10. A PILOT STUDY OF DIAGNOSTIC NEUROMUSCULAR ULTRASOUND IN BELL'S PALSY

    PubMed Central

    TAWFIK, EMAN A.; WALKER, FRANCIS O.; CARTWRIGHT, MICHAEL S.

    2015-01-01

    Background and purpose Neuromuscular ultrasound of the cranial nerves is an emerging field which may help in the assessment of cranial neuropathies. The aim of this study was to evaluate the role of neuromuscular ultrasound in Bell's palsy. A second objective was to assess the possibility of any associated vagus nerve abnormality. Methods Twenty healthy controls and 12 Bell's palsy patients were recruited. The bilateral facial nerves, vagus nerves, and frontalis muscles were scanned using an 18 MHz linear array transducer. Facial nerve diameter, vagus nerve cross-sectional area, and frontalis thickness were measured. Results Mean facial nerve diameter was 0.8 ± 0.2 mm in controls and 1.1 ± 0.3 mm in patients group. The facial nerve diameter was significantly larger in patients than controls (p = 0.006, 95% CI for the difference between groups of 0.12-0.48), with a significant side-to-side difference in patients as well (p = 0.004, 95% CI for side-to-side difference of 0.08-0.52). ROC curve analysis of the absolute facial nerve diameter revealed a sensitivity of 75 % and a specificity of 70 %. No significant differences in vagus nerve cross-sectional area or frontalis thickness were detected between patients and controls. Conclusions Ultrasound can detect facial nerve enlargement in Bell's palsy and may have a role in assessment, or follow-up, of Bell's palsy and other facial nerve disorders. The low sensitivity of the current technique precludes its routine use for diagnosis, however, this study demonstrates its validity and potential for future research. PMID:26076910

  11. Wavelet decomposition of transmitted ultrasound wave through a 1-D muscle-bone system.

    PubMed

    Buchanan, James L; Gilbert, Robert P; Ou, Miao-jung Y

    2011-01-11

    In the attempt for using ultrasound as a diagnostic device for osteoporosis, several authors have described the result of the in vitro experiment in which ultrasound is passed through a cancellous bone specimen placed in a water tank. However, in the in vivo setting, a patient's cancellous bone is surrounded by cortical and muscle layers. This paper considers in the one-dimensional case (1) what effect the cortical bone segments surrounding the cancellous segment would have on the received signal and (2) what the received signal would be when a source and receiver are placed on opposite sides of a structure consisting of a cancellous segment surrounded by cortical and muscle layers. Mathematically this is accomplished by representing the received signal as a sum of wavelets which go through different reflection-transmission histories at the muscle-cortical bone and cortical-cancellous bone interfaces. The muscle and cortical bone are modeled as elastic materials and the cancellous bone as a poroelastic material described by the Biot-Johnson-Koplik-Dashen model. The approach presented here permits the assessment of which possible paths of transmission and reflection through the cortical-cancellous or muscle-cortical-cancellous complex will result in significant contributions to the received waveform. This piece of information can be useful for solving the inverse problem of non-destructive assessment of material properties of bone. Our methodology can be generalized to three-dimensional parallelly layered structure by first applying Fourier transform in the directions perpendicular to the transverse direction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. CUQI: cardiac ultrasound video quality index

    PubMed Central

    Razaak, Manzoor; Martini, Maria G.

    2016-01-01

    Abstract. Medical images and videos are now increasingly part of modern telecommunication applications, including telemedicinal applications, favored by advancements in video compression and communication technologies. Medical video quality evaluation is essential for modern applications since compression and transmission processes often compromise the video quality. Several state-of-the-art video quality metrics used for quality evaluation assess the perceptual quality of the video. For a medical video, assessing quality in terms of “diagnostic” value rather than “perceptual” quality is more important. We present a diagnostic-quality–oriented video quality metric for quality evaluation of cardiac ultrasound videos. Cardiac ultrasound videos are characterized by rapid repetitive cardiac motions and distinct structural information characteristics that are explored by the proposed metric. Cardiac ultrasound video quality index, the proposed metric, is a full reference metric and uses the motion and edge information of the cardiac ultrasound video to evaluate the video quality. The metric was evaluated for its performance in approximating the quality of cardiac ultrasound videos by testing its correlation with the subjective scores of medical experts. The results of our tests showed that the metric has high correlation with medical expert opinions and in several cases outperforms the state-of-the-art video quality metrics considered in our tests. PMID:27014715

  13. Ultrasound-enhanced drug delivery for cancer.

    PubMed

    Mo, Steven; Coussios, Constantin-C; Seymour, Len; Carlisle, Robert

    2012-12-01

    Ultrasound, which has traditionally been used as a diagnostic tool, is increasingly being used in non-invasive therapy and drug delivery. Of particular interest to this review is the rapidly accumulating evidence that ultrasound may have a key role to play both in improving the targeting and the efficacy of drug delivery for cancer. Currently available ultrasound-triggerable vehicles are first described, with particular reference to the ultrasonic mechanism that can activate release and the suitability of the size range of the vehicle used for drug delivery. Further mechanical and thermal effects of ultrasound that can enhance extravasation and drug distribution following release are then critically reviewed. Acoustic cavitation is found to play a potentially key role both in achieving targeted drug release and enhanced extravasation at modest pressure amplitudes and acoustic energies, whilst simultaneously enabling real-time monitoring of the drug delivery process. The next challenge in ultrasound-enhanced drug delivery will thus be to develop a new generation of drug-carrying nanoparticles which are of the right size range for delivery to tumours, yet still capable of achieving initiation of cavitation activity and drug release at modest acoustic pressures and energies that have no safety implications for the patient.

  14. Auscultation versus Point-of-care Ultrasound to Determine Endotracheal versus Bronchial Intubation: A Diagnostic Accuracy Study.

    PubMed

    Ramsingh, Davinder; Frank, Ethan; Haughton, Robert; Schilling, John; Gimenez, Kimberly M; Banh, Esther; Rinehart, Joseph; Cannesson, Maxime

    2016-05-01

    Unrecognized malposition of the endotracheal tube (ETT) can lead to severe complications in patients under general anesthesia. The focus of this double-blinded randomized study was to assess the accuracy of point-of-care ultrasound in verifying the correct position of the ETT and to compare it with the accuracy of auscultation. Forty-two adult patients requiring general anesthesia with ETT were consented. Patients were randomized to right main bronchus, left main bronchus, or tracheal intubation. After randomization, the ETT was placed via fiber-optic visualization. Next, the location of the ETT was assessed using auscultation by a separate blinded anesthesiologist, followed by an ultrasound performed by a third blinded anesthesiologist. Ultrasound examination included assessment of tracheal dilation via cuff inflation with air and evaluation of pleural lung sliding. Statistical analysis included sensitivity, specificity, positive predictive value, negative predictive value, and interobserver agreement for the ultrasound examination (95% CI). In differentiating tracheal versus bronchial intubations, auscultation showed a sensitivity of 66% (0.39 to 0.87) and a specificity of 59% (0.39 to 0.77), whereas ultrasound showed a sensitivity of 93% (0.66 to 0.99) and specificity of 96% (0.79 to 1). Identification of tracheal versus bronchial intubation was 62% (26 of 42) in the auscultation group and 95% (40 of 42) in the ultrasound group (P = 0.0005) (CI for difference, 0.15 to 0.52), and the McNemar comparison showed statistically significant improvement with ultrasound (P < 0.0001). Interobserver agreement of ultrasound findings was 100%. Assessment of trachea and pleura via point-of-care ultrasound is superior to auscultation in determining the location of ETT.

  15. Registration of surface structures using airborne focused ultrasound.

    PubMed

    Sundström, N; Börjesson, P O; Holmer, N G; Olsson, L; Persson, H W

    1991-01-01

    A low-cost measuring system, based on a personal computer combined with standard equipment for complex measurements and signal processing, has been assembled. Such a system increases the possibilities for small hospitals and clinics to finance advanced measuring equipment. A description of equipment developed for airborne ultrasound together with a personal computer-based system for fast data acquisition and processing is given. Two air-adapted ultrasound transducers with high lateral resolution have been developed. Furthermore, a few results for fast and accurate estimation of signal arrival time are presented. The theoretical estimation models developed are applied to skin surface profile registrations.

  16. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    PubMed

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  17. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    PubMed Central

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  18. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    PubMed Central

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  19. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging.

    PubMed

    Kirkinen, P; Partanen, K; Ryynänen, M; Ordén, M R

    1997-08-01

    To describe the magnetic resonance imaging (MRI) findings associated with fetal intracranial hemorrhage and to compare them with ultrasound findings. In four pregnancies complicated by fetal intracranial hemorrhage, fetal imaging was carried out using T2-weighted fast spin echo sequences and T1-weighted fast low angle shot imaging sequences and by transabdominal ultrasonography. An antepartum diagnosis of hemorrhage was made by ultrasound in one case and by MRI in two. Retrospectively, the hemorrhagic area could be identified from the MRI images in an additional two cases and from the ultrasound images in one case. In the cases of intraventricular hemorrhage, the MRI signal intensity in the T1-weighted images was increased in the hemorrhagic area as compared to the contralateral ventricle and brain parenchyma. In a case with subdural hemorrhage, T2-weighted MRI signals from the hemorrhagic area changed from low-to high-intensity signals during four weeks of follow-up. Better imaging of the intracranial anatomy was possible by MRI than by transabdominal ultrasonography. MRI can be used for imaging and dating fetal intracranial hemorrhages. Variable ultrasound and MRI findings are associated with this complication, depending on the age and location of the hemorrhage.

  20. Obstetric and Gynecologic Resident Ultrasound Education Project: Is the Current Level of Gynecologic Ultrasound Training in Canada Meeting the Needs of Residents and Faculty?

    PubMed

    Green, Jessica; Kahan, Meldon; Wong, Suzanne

    2015-09-01

    Ultrasound is a critical diagnostic imaging tool in obstetrics and gynecology (Ob/Gyn). Obstetric ultrasound is taught during residency, but we suspected a gap in Gyn ultrasound education. Proficiency in Gyn ultrasound allows real-time interpretation and management of pelvic disease and facilitates technical skill development for trainees learning blinded procedures. This study sought to evaluate ultrasound education in Canada's Ob/Gyn residency programs and assess whether residents and physicians perceived a need for a formalized Gyn ultrasound curriculum. We distributed a needs assessment survey to residents enrolled in Canadian Ob/Gyn residency programs and to all obstetrician/gynecologists registered as members of the Society of Obstetricians and Gynaecologists of Canada. Residents were asked to specify their current training in ultrasound and to rate the adequacy of their curriculum. All respondents rated the importance of proficiency in pelvic ultrasound for practicing obstetrician/gynecologists as well as the perceived need for formalized ultrasound training in Ob/Gyn residency programs. Eighty-two residents and 233 physicians completed the survey. Extents and types of ultrasound training varied across residency programs. Most residents reported inadequate exposure to Gyn ultrasound, and most residents and physicians agreed that it is important for obstetrician/gynecologists to be proficient in Gyn ultrasound and that the development of a standardized Gyn ultrasound curriculum for residency programs is important. Current ultrasound education in Ob/Gyn varies across Canadian residency programs. Training in Gyn ultrasound is lacking, and both trainees and physicians confirmed the need for a standardized Gyn ultrasound curriculum for residency programs in Canada. © 2015 by the American Institute of Ultrasound in Medicine.

  1. Has 4D transperineal ultrasound additional value over 2D transperineal ultrasound for diagnosing obstructed defaecation syndrome?

    PubMed

    van Gruting, I M A; Kluivers, K; Sultan, A H; De Bin, R; Stankiewicz, A; Blake, H; Thakar, R

    2018-06-08

    To establish the diagnostic test accuracy of both two-dimensional (2D) and four-dimensional (4D) transperineal ultrasound, to assess if 4D ultrasound imaging provides additional value in the diagnosis of posterior pelvic floor disorders in women with obstructed defaecation syndrome. In this prospective cohort study, 121 consecutive women with obstructed defaecation syndrome were recruited. Symptoms of obstructed defaecation and signs of pelvic organ prolapse were assessed using validated methods. All women underwent both 2D transperineal ultrasound (Pro-focus, 8802 transducer, BK-medical) and 4D transperineal ultrasound (Voluson i, RAB4-8-RS transducer, GE). Imaging analysis was performed by two blinded observers. Pelvic floor disorders were dichotomised into presence or absence according pre-defined cut-off values. In the absence of a reference standard a composite reference standard was created from a combination of results of evacuation proctogram, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D and 4D transperineal ultrasound for diagnosis or rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two techniques and correlation of signs and symptoms to imaging findings. For diagnosis of all four posterior pelvic floor disorders there was no difference in sensitivity and specificity between 2D and 4D TPUS (p= 0.131 - 1.000). A good agreement between 2D and 4D TPUS was found for the diagnosis of rectocele (ĸ 0.675) and a moderate agreement for diagnosis of enterocele, intussusception and anismus (ĸ 0.465 - 0.545). There was no difference in rectocele depth measurements between both TPUS techniques (19.9 mm vs 19.0 mm, p=0.802). Inter-observer agreement was comparable for both techniques, however 2D TPUS had an excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements. Diagnosis

  2. Survey of the prevalence and methodology of quality assurance for B-mode ultrasound image quality among veterinary sonographers.

    PubMed

    Hoscheit, Larry P; Heng, Hock Gan; Lim, Chee Kin; Weng, Hsin-Yi

    2018-05-01

    Image quality in B-mode ultrasound is important as it reflects the diagnostic accuracy and diagnostic information provided during clinical scanning. Quality assurance programs for B-mode ultrasound systems/components are comprised of initial quality acceptance testing and subsequent regularly scheduled quality control testing. The importance of quality assurance programs for B-mode ultrasound image quality using ultrasound phantoms is well documented in the human medical and medical physics literature. The purpose of this prospective, cross-sectional, survey study was to determine the prevalence and methodology of quality acceptance testing and quality control testing of image quality for ultrasound system/components among veterinary sonographers. An online electronic survey was sent to 1497 members of veterinary imaging organizations: the American College of Veterinary Radiology, the Veterinary Ultrasound Society, and the European Association of Veterinary Diagnostic Imaging, and a total of 167 responses were received. The results showed that the percentages of veterinary sonographers performing quality acceptance testing and quality control testing are 42% (64/151; 95% confidence interval 34-52%) and 26% (40/156: 95% confidence interval 19-33%) respectively. Of the respondents who claimed to have quality acceptance testing or quality control testing of image quality in place for their ultrasound system/components, 0% have performed quality acceptance testing or quality control testing correctly (quality acceptance testing 95% confidence interval: 0-6%, quality control testing 95% confidence interval: 0-11%). Further education and guidelines are recommended for veterinary sonographers in the area of quality acceptance testing and quality control testing for B-mode ultrasound equipment/components. © 2018 American College of Veterinary Radiology.

  3. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon

  4. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    PubMed

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  5. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    NASA Astrophysics Data System (ADS)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  6. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging.

    PubMed

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-26

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents--inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  7. Ultrasound in medical education: listening to the echoes of the past to shape a vision for the future.

    PubMed

    Lane, N; Lahham, S; Joseph, L; Bahner, D P; Fox, J C

    2015-10-01

    Ultrasound in medical education has seen a tremendous growth over the last 10-20 years but ultrasound technology has been around for hundreds of years and sound has an even longer scientific history. The development of using sound and ultrasound to understand our body and our surroundings has been a rich part of human history. From the development of materials to produce piezoelectric conductors, ultrasound has been used and improved in many industries and medical specialties. As diagnostic medical ultrasound has improved its resolution and become more portable, various specialties from radiology, cardiology, obstetrics and more recently emergency, critical care and proceduralists have found the added benefits of using ultrasound to safely help patients. The past advancements in technology have established the scaffold for the possibilities of diagnostic ultrasound's use in the present and future. A few medical educators have integrated ultrasound into medical school while a wealth of content exists online for learning ultrasound. Twenty-first century learners prefer blended learning where material can be reviewed online and personalize the education on their own time frame. This material combined with hands-on experience and mentorship can be used to develop learners' aptitude in ultrasound. As educators embrace this ultrasound technology and integrate it throughout the medical education journey, collaboration across specialties will synthesize a clear path forward when needs and resources are paired with vision and a strategic plan.

  8. Comparison of high intensity focused ultrasound (HIFU) exposures using empirical and backscatter attenuation estimation methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff

    2005-09-01

    Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.

  9. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses?

    PubMed

    Lee, Eun Jung; Jung, Hae Kyoung; Ko, Kyung Hee; Lee, Jong Tae; Yoon, Jung Hyun

    2013-07-01

    To evaluate which shear wave elastography (SWE) parameter proves most accurate in the differential diagnosis of solid breast masses. One hundred and fifty-six breast lesions in 139 consecutive women (mean age: 43.54 ± 9.94 years, range 21-88 years), who had been scheduled for ultrasound-guided breast biopsy, were included. Conventional ultrasound and SWE were performed in all women before biopsy procedures. Ultrasound BI-RADS final assessment and SWE parameters were recorded. Diagnostic performance of each SWE parameter was calculated and compared with those obtained when applying cut-off values of previously published data. Performance of conventional ultrasound and ultrasound combined with each parameter was also compared. Of the 156 breast masses, 120 (76.9 %) were benign and 36 (23.1 %) malignant. Maximum stiffness (Emax) with a cut-off of 82.3 kPa had the highest area under the receiver operating characteristics curve (Az) value compared with other SWE parameters, 0.860 (sensitivity 88.9 %, specificity 77.5 %, accuracy 80.1 %). Az values of conventional ultrasound combined with each SWE parameter showed lower (but not significantly) values than with conventional ultrasound alone. Maximum stiffness (82.3 kPa) provided the best diagnostic performance. However the overall diagnostic performance of ultrasound plus SWE was not significantly better than that of conventional ultrasound alone. • SWE offers new information over and above conventional breast ultrasound • Various SWE parameters were explored regarding distinction between benign and malignant lesions • An elasticity of 82.3 kPa appears optimal in differentiating solid breast masses • However, ultrasound plus SWE was not significantly better than conventional ultrasound alone.

  10. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice.

    PubMed

    Metzger, Katja; Vogel, Sebastian; Chatterjee, Madhumita; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Geisler, Tobias; Lang, Florian; Langer, Harald; Rheinlaender, Johannes; Schäffer, Tilman E; Gawaz, Meinrad

    2015-01-01

    Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Diagnostic accuracy of 22/25-gauge core needle in endoscopic ultrasound-guided sampling: systematic review and meta-analysis.

    PubMed

    Oh, Hyoung-Chul; Kang, Hyun; Lee, Jae Young; Choi, Geun Joo; Choi, Jung Sik

    2016-11-01

    To compare the diagnostic accuracy of endoscopic ultrasound-guided core needle aspiration with that of standard fine-needle aspiration by systematic review and meta-analysis. Studies using 22/25-gauge core needles, irrespective of comparison with standard fine needles, were comprehensively reviewed. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver operating characteristic curves for the diagnosis of malignancy were used to estimate the overall diagnostic efficiency. The pooled sensitivity, specificity, and DOR of the core needle for the diagnosis of malignancy were 0.88 (95% confidence interval [CI], 0.84 to 0.90), 0.99 (95% CI, 0.96 to 1), and 167.37 (95% CI, 65.77 to 425.91), respectively. The pooled sensitivity, specificity, and DOR of the standard needle were 0.84 (95% CI, 0.79 to 0.88), 1 (95% CI, 0.97 to 1), and 130.14 (95% CI, 34.00 to 495.35), respectively. The area under the curve of core and standard needle in the diagnosis of malignancy was 0.974 and 0.955, respectively. The core and standard needle were comparable in terms of pancreatic malignancy diagnosis. There was no significant difference in procurement of optimal histologic cores between core and standard needles (risk ratio [RR], 0.545; 95% CI, 0.187 to 1.589). The number of needle passes for diagnosis was significantly lower with the core needle (standardized mean difference, -0.72; 95% CI, -1.02 to -0.41). There were no significant differences in overall complications (RR, 1.26; 95% CI, 0.34 to 4.62) and technical failure (RR, 5.07; 95% CI, 0.68 to 37.64). Core and standard needles were comparable in terms of diagnostic accuracy, technical performance, and safety profile.

  12. Ultrasound-guided synovial Tru-cut biopsy: indications, technique, and outcome in 111 cases.

    PubMed

    Sitt, Jacqueline C M; Griffith, James F; Lai, Fernand M; Hui, Mamie; Chiu, K H; Lee, Ryan K L; Ng, Alex W H; Leung, Jason

    2017-05-01

    To investigate the diagnostic performance of ultrasound-guided synovial biopsy. Clinical notes, pathology and microbiology reports, ultrasound and other imaging studies of 100 patients who underwent 111 ultrasound-guided synovial biopsies were reviewed. Biopsies were compared with the final clinical diagnosis established after synovectomy (n = 43) or clinical/imaging follow-up (n = 57) (mean 30 months). Other than a single vasovagal episode, no complication of synovial biopsy was encountered. One hundred and seven (96 %) of the 111 biopsies yielded synovium histologically. Pathology ± microbiology findings for these 107 conclusive biopsies comprised synovial tumour (n = 30, 28 %), synovial infection (n = 18, 17 %), synovial inflammation (n = 45, 42 %), including gouty arthritis (n = 3), and no abnormality (n = 14, 13 %). The accuracy, sensitivity, and specificity of synovial biopsy was 99 %, 97 %, and 100 % for synovial tumour; 100 %, 100 %, and 100 % for native joint infection; and 78 %, 45 %, and 100 % for prosthetic joint infection. False-negative synovial biopsy did not seem to be related to antibiotic therapy. Ultrasound-guided Tru-cut synovial biopsy is a safe and reliable technique with a high diagnostic yield for diagnosing synovial tumour and also, most likely, for joint infection. Regarding joint infection, synovial biopsy of native joints seems to have a higher diagnostic yield than that for infected prosthetic joints. • Ultrasound-guided Tru-cut synovial biopsy has high accuracy (99 %) for diagnosing synovial tumour. • It has good accuracy, sensitivity, and high specificity for diagnosis of joint infection. • Synovial biopsy of native joints works better than biopsy of prosthetic joints. • A negative synovial biopsy culture from a native joint largely excludes septic arthritis. • Ultrasound-guided Tru-cut synovial biopsy is a safe and well-tolerated procedure.

  13. Medical ultrasound - From inner space to outer space

    NASA Technical Reports Server (NTRS)

    Rooney, J. A.

    1984-01-01

    During the last decade, medical ultrasound has rapidly become a widely accepted imaging modality used in many medical specialties. It has the advantages that it is noninvasive, does not use ionizing radiation, is relatively inexpensive and is easy to use. Future trends in ultrasound include expanded areas of use, advanced signal processing and digital image analysis including tissue characterization and three-dimensional reconstructions.

  14. Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.

    PubMed

    Greis, C

    2014-01-01

    Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.

  15. Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound

    PubMed Central

    Mehić, Edin; Xu, Julia M.; Caler, Connor J.; Coulson, Nathaniel K.; Moritz, Chet T.; Mourad, Pierre D.

    2014-01-01

    Transcranial ultrasound can alter brain function transiently and nondestructively, offering a new tool to study brain function now and inform future therapies. Previous research on neuromodulation implemented pulsed low-frequency (250–700 kHz) ultrasound with spatial peak temporal average intensities (ISPTA) of 0.1–10 W/cm2. That work used transducers that either insonified relatively large volumes of mouse brain (several mL) with relatively low-frequency ultrasound and produced bilateral motor responses, or relatively small volumes of brain (on the order of 0.06 mL) with relatively high-frequency ultrasound that produced unilateral motor responses. This study seeks to increase anatomical specificity to neuromodulation with modulated focused ultrasound (mFU). Here, ‘modulated’ means modifying a focused 2-MHz carrier signal dynamically with a 500-kHz signal as in vibro-acoustography, thereby creating a low-frequency but small volume (approximately 0.015 mL) source of neuromodulation. Application of transcranial mFU to lightly anesthetized mice produced various motor movements with high spatial selectivity (on the order of 1 mm) that scaled with the temporal average ultrasound intensity. Alone, mFU and focused ultrasound (FUS) each induced motor activity, including unilateral motions, though anatomical location and type of motion varied. Future work should include larger animal models to determine the relative efficacy of mFU versus FUS. Other studies should determine the biophysical processes through which they act. Also of interest is exploration of the potential research and clinical applications for targeted, transcranial neuromodulation created by modulated focused ultrasound, especially mFU’s ability to produce compact sources of ultrasound at the very low frequencies (10–100s of Hertz) that are commensurate with the natural frequencies of the brain. PMID:24504255

  16. Time reversal and phase coherent music techniques for super-resolution ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Labyed, Yassin

    Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements. A modified TR-MUSIC imaging algorithm is used to account for ultrasound scattering from both density and compressibility contrasts. The phase response of ultrasound transducer elements is accounted for in a PC-MUSIC system.

  17. Ocular examination for trauma; clinical ultrasound aboard the International Space Station.

    PubMed

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E; Melton, Shannon; Hamilton, Douglas R; McFarlin, Kellie; Dulchavsky, Scott A

    2005-05-01

    Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using

  18. Ocular examination for trauma; clinical ultrasound aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager

  19. [Ultrasound biomicroscopy of conjunctival lesions].

    PubMed

    Buchwald, Hans-Jürgen; Müller, Andreas; Spraul, Christoph W; Lang, Gerhard K

    2003-01-01

    The value of ultrasound biomicroscopy in the diagnosis of conjunctival lesions is not well established. For the examination of conjunctival lesions, we used an ultrasound biomicroscope (Humphrey, Zeiss, Oberkochen) with a high frequency transducer (30 MHz). Between January 2000 and August 2001, 28 patients (16 female, 12-male) with conjunctival lesions, aged 9 to 81 years, were available for this study. Histological examination of the excised tissue displayed the presence of a compound naevus (8/28), cysts (6/28), inflammatory processes (3/28), granulomatous processes (2/28), lymphomas (2/28), foreign bodies (2/28), a pterygium (2/28), a malignant melanoma (1/28), a primary acquired melanosis (1/28), and a conjunctival amyloidosis (1/28). Using ultrasound biomicroscopy we were able to demonstrate a cystic tumour in the six patients (21 %) with a cyst of the conjunctiva. In patients suffering from solid tumours of the conjunctiva the definite diagnosis could not be made with ultrasound biomicroscopy alone. The eight patients with compound naevus displayed a somewhat heterogeneous sonographic structure within the tumour. In the patient with a foreign body we were able to demonstrate posterior shadowing of the underlying tissue. For evaluation of conjunctival lesions caused by a cyst or a solid tumour, ultrasound biomicroscopy may be an additional diagnostic tool, e. g. for assessing the margins of the tumour. However, up to now it is not possible to differentiate between different lesions solely by means of ultrasonography.

  20. Simultaneous ultrasound and photoacoustics based flow cytometry

    NASA Astrophysics Data System (ADS)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  1. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ultrasound Use in Urinary Stones: Adapting Old Technology for a Modern-Day Disease.

    PubMed

    Tzou, David T; Usawachintachit, Manint; Taguchi, Kazumi; Chi, Thomas

    2017-04-01

    Ultrasound has become a mainstay tool in urologists' armamentarium for the diagnosis and management of nephrolithiasis. From starting as a rudimentary form of imaging, it has come to play a more prominent role over time, paralleling evolution in ultrasound technology. Throughout the medical community there is a growing emphasis on reducing the amount of ionizing radiation delivered to patients during routine imaging. As such there has been a resurgence of interest in ultrasound given its lack of associated radiation exposure and proven effectiveness as a diagnostic and therapeutic imaging modality. Herein, we provide a review of the history of ultrasound, how the use of ultrasound is expanding in both diagnosis and treatment of urinary stone disease, and finally how promising applications of ultrasound are shaping the future of kidney stone management.

  3. Ultrasound Use in Urinary Stones: Adapting Old Technology for a Modern-Day Disease

    PubMed Central

    Tzou, David T.; Usawachintachit, Manint; Taguchi, Kazumi

    2017-01-01

    Abstract Ultrasound has become a mainstay tool in urologists' armamentarium for the diagnosis and management of nephrolithiasis. From starting as a rudimentary form of imaging, it has come to play a more prominent role over time, paralleling evolution in ultrasound technology. Throughout the medical community there is a growing emphasis on reducing the amount of ionizing radiation delivered to patients during routine imaging. As such there has been a resurgence of interest in ultrasound given its lack of associated radiation exposure and proven effectiveness as a diagnostic and therapeutic imaging modality. Herein, we provide a review of the history of ultrasound, how the use of ultrasound is expanding in both diagnosis and treatment of urinary stone disease, and finally how promising applications of ultrasound are shaping the future of kidney stone management. PMID:27733052

  4. The feasibility of non-contact ultrasound for medical imaging.

    PubMed

    Clement, G T; Nomura, H; Adachi, H; Kamakura, T

    2013-09-21

    High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration.

  5. [Ultrasound diagnosis of aneurysm of the vein of Galen in children].

    PubMed

    Gazikalović, S; Kosutić, J; Komar, P; Vukomanović, V; Mogić, M

    2001-01-01

    Aneurysm of the vein of Galen is rare and complex vascular disorder that develops during embriogenesis and provokes significant haemodynamic changes. Boys are more frequently involved. During the foetal period Ballantyne syndrome may develop, and postnatal clinical presentation vary with ages. Serious haemodynamic changes are followed by congestive heart failure and, if not treated, with lethal exitus. Fast and correct diagnosis is very important. Ultrasound examination of central nervous system supported with Duplex-Doppler and Colour-Doppler examination of the head and heart enables the diagnosis. This text comments ultrasound presentation of the malformation and ultrasound diagnostic possibilities.

  6. Development of ultrasound focusing discrete array for air-coupled ultrasound generation

    NASA Astrophysics Data System (ADS)

    Korobov, Alexander I.; Izosimova, Maria Y.; Toschov, Sergey A.

    2010-01-01

    The technique and results of synthesis of ultrasound focusing discrete arrays for air-coupled ultrasound generation are presented. One of the arrays is an antenna 22 cm in diameter. It consists of 60 transmitters of Murata Company. The resonant frequency of each transmitter is 40 kHz, diameter is 16 mm. The transmitters were placed in first four Fresnel zones. Each of the zones was emitting with anti-phases. Position data and pressure field in focus were calculated using Rayleigh integral. Parameters of made array were measured using method of air-coupled vibrometry with laser scanning vibrometer. Measured parameters (operating frequency is 40 ± 1 kHz, focal distance is 308 mm, size of focal spot is 16.3 mm, and pressure in focus is about 150 dB) are in good agreement with calculated data. The examples of use of designed arrays for noncontact non-destructive diagnostics of some structural materials are reported. Work supported by RFBR.

  7. Computer-Aided Diagnosis of Different Rotator Cuff Lesions Using Shoulder Musculoskeletal Ultrasound.

    PubMed

    Chang, Ruey-Feng; Lee, Chung-Chien; Lo, Chung-Ming

    2016-09-01

    The lifetime prevalence of shoulder pain approaches 70%, which is mostly attributable to rotator cuff lesions such as inflammation, calcific tendinitis and tears. On clinical examination, shoulder ultrasound is recommended for the detection of lesions. However, there exists inter-operator variability in diagnostic accuracy because of differences in the experience and expertise of operators. In this study, a computer-aided diagnosis (CAD) system was developed to assist ultrasound operators in diagnosing rotator cuff lesions and to improve the practicality of ultrasound examination. The collected cases included 43 cases of inflammation, 30 cases of calcific tendinitis and 26 tears. For each case, the lesion area and texture features were extracted from the entire lesions and combined in a multinomial logistic regression classifier for lesion classification. The proposed CAD achieved an accuracy of 87.9%. The individual accuracy of this CAD system was 88.4% for inflammation, 83.3% for calcific tendinitis and 92.3% for tears. Cohen's k was 0.798. On the basis of its diagnostic performance, clinical use of this CAD technique has promise. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Towards deep brain monitoring with superficial EEG sensors plus neuromodulatory focused ultrasound

    PubMed Central

    Darvas, F; Mehić, E; Caler, CJ; Ojemann, JG; Mourad, PD

    2017-01-01

    Noninvasive recordings of electrophysiological activity have limited anatomical specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalogram (EEG) signal induced by pulsed focused ultrasound (pFU) could overcome those limitations. As a first step towards testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200 microsecond-long pulses applied at 1050 Hz for one second at a spatial peak temporal average intensity of 1.4 W/cm2) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050 Hz electrophysiological signal only when ultrasound was applied to living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pFU as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution. PMID:27181686

  9. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results.

    PubMed

    King, Daniel A; O'Brien, William D

    2011-01-01

    Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.

  10. Combined use of late phase dimercapto-succinic acid renal scintigraphy and ultrasound as first line screening after urinary tract infection in children.

    PubMed

    Quirino, Isabel G; Silva, Jose Maria P; Diniz, Jose S; Lima, Eleonora M; Rocha, Ana Cristina S; Simões e Silva, Ana Cristina; Oliveira, Eduardo A

    2011-01-01

    The aim of this study was to evaluate the diagnostic accuracy of dimercapto-succinic acid renal scintigraphy and renal ultrasound in identifying high grade vesicoureteral reflux in children after a first episode of urinary tract infection. A total of 533 children following a first urinary tract infection were included in the analysis. Patients were assessed by 3 diagnostic imaging studies, renal ultrasound, dimercapto-succinic acid scan and voiding cystourethrography. The main event of interest was the presence of high grade (III to V) vesicoureteral reflux. The combined and separate diagnostic accuracy of screening methods was assessed by calculation of diagnostic OR, sensitivity, specificity, positive predictive value, negative predictive value and likelihood ratio. A total of 246 patients had reflux, of whom 144 (27%) had high grade (III to V) disease. Sensitivity, negative predictive value and diagnostic OR of ultrasound for high grade reflux were 83.3%, 90.8% and 7.9, respectively. Dimercapto-succinic acid scan had the same sensitivity as ultrasound but a higher negative predictive value (91.7%) and diagnostic OR (10.9). If both tests were analyzed in parallel by using the OR rule, ie a negative diagnosis was established only when both test results were normal, sensitivity increased to 97%, negative predictive value to 97% and diagnostic OR to 25.3. Only 9 children (6.3%) with dilating reflux had an absence of alterations in both tests. Our findings support the idea that ultrasound and dimercapto-succinic acid scan used in combination are reliable predictors of dilating vesicoureteral reflux. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Misuse of ultrasound for palpable undescended testis by primary care providers: A prospective study

    PubMed Central

    Wong, Nathan C.; Bansal, Rahul K.; Lorenzo, Armando J.; DeMaria, Jorge; Braga, Luis H.

    2015-01-01

    Introduction: Although previous evidence has shown that ultrasound is unreliable to diagnose undescended testis, many primary care providers (PCP) continue to misuse it. We assessed the performance of ultrasound as a diagnostic tool for palpable undescended testis, as well as the diagnostic agreement between PCP and pediatric urologists. Methods: We performed a prospective observational cohort study between 2011 and 2013 for consecutive boys referred with a diagnosis of undescended testis to our tertiary pediatric hospital. Patients referred without an ultrasound and those with non-palpable testes were excluded. Data on referring diagnosis, pediatric urology examination and ultrasound reports were analyzed. Results: Our study consisted of 339 boys. Of these, patients without an ultrasound (n = 132) and those with non-palpable testes (n = 38) were excluded. In the end, there were 169 pateints in this study. Ultrasound was performed in 50% of referred boys showing 256 undescended testis. The mean age at time of referral was 45 months. When ultrasound was compared to physical examination by the pediatric urologist, agreement was only 34%. The performance of ultrasound for palpable undescended testis was: sensitivity = 100%; specificity = 16%; positive predictive value = 34%; negative predictive value = 100%; positive likelihood ratio = 1.2; and negative likelihood ratio = 0. Diagnosis of undescended testis by PCP was confirmed by physical examination in 30% of cases, with 70% re-diagnosed with normal or retractile testes. Conclusion: Ultrasound performed poorly to assess for palpable undescended testis in boys and should not be used. Although the study has important limitations, there is an increasing need for education and evidence-based guidelines for PCP in the management of undescended testis. PMID:26788226

  12. Interactive multimedia for prenatal ultrasound training.

    PubMed

    Lee, W; Ault, H; Kirk, J S; Comstock, C H

    1995-01-01

    This demonstration project examines the utility of interactive multimedia for prenatal ultrasound training. A laser-disc library was linked to a three-dimensional (3-D) heart model and other computer-based training materials through interactive multimedia. A testing module presented ultrasound anomalies and related questions to house-staff physicians through the image library. Users were asked to evaluate these training materials on the basis of perceived instructional value, question content, subjects covered, graphics interface, and ease of use; users were also asked for their comments. House-staff physicians indicated that they consider interactive multimedia to be a helpful adjunct to their core fetal imaging rotation. During a 9-month period, 16 house-staff physicians correctly diagnosed 78 +/- 4% of unknown cases presented through the testing module. The 3-D heart model was also perceived to be a useful teaching aid for spatial orientation skills. Our findings suggest that interactive multimedia and volume visualization models can be used to supplement traditional prenatal ultrasound training. The system provides a broad exposure to ultrasound anomalies, increases opportunities for postnatal correlation, emphasizes motion video for ultrasound training, encourages development of independent diagnostic ability, and helps physicians understand anatomic orientation. We hypothesize that interactive multimedia-based tutorials provide a better overall training experience for house-staff physicians. However, these supplementary methods will require formal evaluation of effectiveness to better understand their potential educational impact.

  13. Performance of a web-based, realtime, tele-ultrasound consultation system over high-speed commercial telecommunication lines.

    PubMed

    Yoo, Sun K; Kim, D K; Jung, S M; Kim, E-K; Lim, J S; Kim, J H

    2004-01-01

    A Web-based, realtime, tele-ultrasound consultation system was designed. The system employed ActiveX control, MPEG-4 coding of full-resolution ultrasound video (640 x 480 pixels at 30 frames/s) and H.320 videoconferencing. It could be used via a Web browser. The system was evaluated over three types of commercial line: a cable connection, ADSL and VDSL. Three radiologists assessed the quality of compressed and uncompressed ultrasound video-sequences from 16 cases (10 abnormal livers, four abnormal kidneys and two abnormal gallbladders). The radiologists' scores showed that, at a given frame rate, increasing the bit rate was associated with increasing quality; however, at a certain threshold bit rate the quality did not increase significantly. The peak signal to noise ratio (PSNR) was also measured between the compressed and uncompressed images. In most cases, the PSNR increased as the bit rate increased, and increased as the number of dropped frames increased. There was a threshold bit rate, at a given frame rate, at which the PSNR did not improve significantly. Taking into account both sets of threshold values, a bit rate of more than 0.6 Mbit/s, at 30 frames/s, is suggested as the threshold for the maintenance of diagnostic image quality.

  14. Ergonomic design and evaluation of a diagnostic ultrasound transducer holder.

    PubMed

    Ghasemi, Mohamad Sadegh; Hosseinzadeh, Payam; Zamani, Farhad; Ahmadpoor, Hossein; Dehghan, Naser

    2017-12-01

    Work-related musculoskeletal disorders (WMSDs) are injuries and disorders that affect the body's movement and musculoskeletal system. Awkward postures represent one of the major ergonomic risk factors that cause WMSDs among sonographers while working with an ultrasound transducer. This study aimed to design and evaluate a new holder for the ultrasound transducer. In the first phase a new holder was designed for the transducer, considering design principles. Evaluation of the new holder was then carried out by electrogoniometry and a locally perceived discomfort (LPD) scale. The application of design principles to the new holder resulted in an improvement of wrist posture and comfort. Wrist angles in extension, flexion, radial deviation and ulnar deviation were lower with utilization of the new holder. The severity of discomfort based on the LPD method in the two modes of work with and without the new holder was reported with values of 1.3 and 1.8, respectively (p < 0.05). Overall, this study indicated that applying ergonomics design principles was effective in minimizing wrist deviation and increasing comfort while working with the new holder.

  15. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    PubMed

    Kimura, Bruce J

    2017-07-01

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Does the Use of Diagnostic Technology Reduce Fetal Mortality?

    PubMed

    Grytten, Jostein; Skau, Irene; Sørensen, Rune; Eskild, Anne

    2018-01-19

    To examine the effect that the introduction of new diagnostic technology in obstetric care has had on fetal death. The Medical Birth Registry of Norway provided detailed medical information for approximately 1.2 million deliveries from 1967 to 1995. Information about diagnostic technology was collected directly from the maternity units, using a questionnaire. The data were analyzed using a hospital fixed-effects regression with fetal mortality as the outcome measure. The key independent variables were the introduction of ultrasound and electronic fetal monitoring at each maternity ward. Hospital-specific trends and risk factors of the mother were included as control variables. The richness of the data allowed us to perform several robustness tests. The introduction of ultrasound caused a significant drop in fetal mortality rate, while the introduction of electronic fetal monitoring had no effect on the rate. In the population as a whole, ultrasound contributed to a reduction in fetal deaths of nearly 20 percent. For post-term deliveries, the reduction was well over 50 percent. The introduction of ultrasound made a major contribution to the decline in fetal mortality at the end of the last century. © Health Research and Educational Trust.

  17. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.

    PubMed

    Stride, E P; Coussios, C C

    2010-01-01

    Microbubbles and cavitation are playing an increasingly significant role in both diagnostic and therapeutic applications of ultrasound. Microbubble ultrasound contrast agents have been in clinical use now for more than two decades, stimulating the development of a range of new contrast-specific imaging techniques which offer substantial benefits in echocardiography, microcirculatory imaging, and more recently, quantitative and molecular imaging. In drug delivery and gene therapy, microbubbles are being investigated/developed as vehicles which can be loaded with the required therapeutic agent, traced to the target site using diagnostic ultrasound, and then destroyed with ultrasound of higher intensity energy burst to release the material locally, thus avoiding side effects associated with systemic administration, e.g. of toxic chemotherapy. It has moreover been shown that the motion of the microbubbles increases the permeability of both individual cell membranes and the endothelium, thus enhancing therapeutic uptake, and can locally increase the activity of drugs by enhancing their transport across biologically inaccessible interfaces such as blood clots or solid tumours. In high-intensity focused ultrasound (HIFU) surgery and lithotripsy, controlled cavitation is being investigated as a means of increasing the speed and efficacy of the treatment. The aim of this paper is both to describe the key features of the physical behaviour of acoustically driven bubbles which underlie their effectiveness in biomedical applications and to review the current state of the art.

  18. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: a new method to increase the diagnostic performance.

    PubMed

    Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Bo, Xiao-Wan; Li, Xiao-Long; Wu, Rong; Xu, Jun-Mei; Zhang, Yi-Feng; Zhang, Kun

    2016-09-01

    To evaluate the diagnostic performance of a new method of combined two-dimensional shear wave elastography (i.e. virtual touch imaging quantification, VTIQ) and ultrasound (US) Breast Imaging Reporting and Data System (BI-RADS) in the differential diagnosis of breast lesions. From September 2014 to December 2014, 276 patients with 296 pathologically proven breast lesions were enrolled in this study. The conventional US images were interpreted by two independent readers. The diagnosis performances of BI-RADS and combined BI-RADS and VTIQ were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. Observer consistency was also evaluated. Pathologically, 212 breast lesions were benign and 84 were malignant. Compared with BI-RADS alone, the AUROCs and specificities of the combined method for both readers increased significantly (AUROC: 0.862 vs. 0.693 in reader 1, 0.861 vs. 0.730 in reader 2; specificity: 91.5 % vs. 38.7 % in reader 1, 94.8 % vs. 47.2 % in reader 2; all P < .05). The Kappa value between the two readers for BI-RADS assessment was 0.614, and 0.796 for the combined method. The combined VTIQ and BI-RADS had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone. • Combination of conventional ultrasound and elastography distinguishes breast cancers more effectively. • Combination of conventional ultrasound and elastography increases observer consistency. • BI-RADS weights more than the 2D-SWE with an increase in malignancy probability.

  19. Dual-frequency ultrasound for detecting and sizing bubbles.

    PubMed

    Buckey, Jay C; Knaus, Darin A; Alvarenga, Donna L; Kenton, Marc A; Magari, Patrick J

    2005-01-01

    ISS construction and Mars exploration require extensive extravehicular activity (EVA), exposing crewmembers to increased decompression sickness risk. Improved bubble detection technologies could help increase EVA efficiency and safety. Creare Inc. has developed a bubble detection and sizing instrument using dual-frequency ultrasound. The device emits "pump" and "image" signals at two frequencies. The low-frequency pump signal causes an appropriately-sized bubble to resonate. When the image frequency hits a resonating bubble, mixing signals are returned at the sum and difference of the two frequencies. To test the feasibility of transcutaneous intravascular detection, intravascular bubbles in anesthetized swine were produced using agitated saline and decompression stress. Ultrasonic transducers on the chest provided the two frequencies. Mixing signals were detected transthoracically in the right atrium using both methods. A histogram of estimated bubble sizes could be constructed. Bubbles can be detected and sized transthoracically in the right atrium using dual-frequency ultrasound. c2005 Elsevier Ltd. All rights reserved.

  20. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom.

    PubMed

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-07-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

  1. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Marques De Carvalho, Enio Garcia

    2012-08-15

    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid onmore » the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to

  2. Neonatal respiratory distress syndrome: Chest X-ray or lung ultrasound? A systematic review

    PubMed Central

    Culpan, Anne-Marie; Watts, Catriona; Munyombwe, Theresa; Wolstenhulme, Stephen

    2017-01-01

    Background and aim Neonatal respiratory distress syndrome is a leading cause of morbidity in preterm new-born babies (<37 weeks gestation age). The current diagnostic reference standard includes clinical testing and chest radiography with associated exposure to ionising radiation. The aim of this review was to compare the diagnostic accuracy of lung ultrasound against the reference standard in symptomatic neonates of ≤42 weeks gestation age. Methods A systematic search of literature published between 1990 and 2016 identified 803 potentially relevant studies. Six studies met the review inclusion criteria and were retrieved for analysis. Quality assessment was performed before data extraction and meta-analysis. Results Four prospective cohort studies and two case control studies included 480 neonates. All studies were of moderate methodological quality although heterogeneity was evident across the studies. The pooled sensitivity and specificity of lung ultrasound were 97% (95% confidence interval [CI] 94–99%) and 91% (CI: 86–95%) respectively. False positive diagnoses were made in 16 cases due to pneumonia (n = 8), transient tachypnoea (n = 3), pneumothorax (n = 1) and meconium aspiration syndrome (n = 1); the diagnoses of the remaining three false positive results were not specified. False negatives diagnoses occurred in nine cases, only two were specified as air-leak syndromes. Conclusions Lung ultrasound was highly sensitive for the detection of neonatal respiratory distress syndrome although there is potential to miss co-morbid air-leak syndromes. Further research into lung ultrasound diagnostic accuracy for neonatal air-leak syndrome and economic modelling for service integration is required before lung ultrasound can replace chest radiography as the imaging component of the reference standard. PMID:28567102

  3. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  4. Optical fiber extrinsic Fabry-Perot interferometer sensors for ultrasound detection

    NASA Astrophysics Data System (ADS)

    Sun, Qingguo; Chen, Na; Ding, Yuetong; Chen, Zhenyi; Wang, Tingyun

    2009-11-01

    In this paper, a new method is proposed to fabricate an optical fiber extrinsic Fabry-Perot interferometer (EFPI) as an ultrasonic sensor. An acoustic emission detecting system is constructed based on multiple EFPI sensors and demodulation circuit. Ultrasound detection experiments were done from both traditional piezoelectric transducer (PZT) and high voltage discharge. In the experiments, strong ultrasound signals were detected in both cases. The signal attenuation related to the distance and the angle between the acoustic emission source and the FP sensor are obtained. The results indicate that the receiving angle of the FP sensor is nearly 90° and the maximum detection distance in the air is more than 200cm. Furthermore, four sensors are used to locate the position of the ultrasound source produced by high voltage discharge.

  5. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050

  6. A Single Center Evaluation of the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging against Transperineal Prostate Mapping Biopsy: An Analysis of Men with Benign Histology and Insignificant Cancer following Transrectal Ultrasound Biopsy.

    PubMed

    Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J

    2018-03-01

    In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more

  7. Portable bedside ultrasound: the visual stethoscope of the 21st century

    PubMed Central

    2012-01-01

    Over the past decade technological advances in the realm of ultrasound have allowed what was once a cumbersome and large machine to become essentially hand-held. This coupled with a greater understanding of lung sonography has revolutionized our bedside assessment of patients. Using ultrasound not as a diagnostic test, but instead as a component of the physical exam, may allow it to become the stethoscope of the 21st century. PMID:22400903

  8. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  9. MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Townsend, Kelly A.; King, Randy L.; Zaharchuk, Greg; Pauly, Kim Butts

    2011-09-01

    Therapeutic ultrasound with microbubbles can temporarily disrupt the blood-brain barrier (BBB) for drug delivery. Contrast-enhanced MRI (CE-MRI) can visualize gadolinium passage into the brain, indicating BBB opening. Previous studies used focused ultrasound, which is appropriate for the targeted delivery of drugs. The purpose of this study was to investigate unfocused ultrasound for BBB opening across the whole brain. In 10 rats, gadolinium-based MR contrast agent (Gd; 0.25 ml) was administered concurrent with ultrasound microbubbles (Optison, 0.25 ml) and circulated for 20 sec before sonication. A 753 kHz planar PZT transducer, diameter 1.8 cm, sonicated each rat brain with supplied voltage of 300, 400, or 500 mVpp for 10 sec in continuous wave mode, or at 500 mVpp at 20% duty cycle at 10 Hz for 30-300 sec. After sonication, coronal T1-weighted FSE CE-MRI images were acquired with a 3in surface coil. The imaging protocol was repeated 3-5 times after treatment. One control animal was given Gd and microbubbles, but not sonicated, and the other was given Gd and sonicated without microbubbles. Signal change in ROIs over the muscle, mesencephalon/ventricles, and the cortex/striatum were measured at 3-5 time points up to 36 min after sonication. Signal intensity was converted to % signal change compared to the initial image. In the controls, CE-MRI showed brightening of surrounding structures, but not the brain. In the continuous wave subjects, cortex/striatum signal did not increase, but ventricle/mesenchephalon signal did. Those that received pulsed sonications showed signal increases in both the cortex/striatum and ventricles/mesenchephalon. In conclusion, after pulsed unfocused ultrasound sonication, the BBB is disrupted across the whole brain, including cortex and deep grey matter, while continuous wave sonication affects only the ventricles and possibly deeper structures, without opening the cortex BBB. As time passes, the timeline of Gd passage into the brain

  10. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight

    NASA Technical Reports Server (NTRS)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2010-01-01

    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for

  11. [Contemporary methods for preterm labor diagnostics].

    PubMed

    Kolev, N; Kovachev, E; Ivanov, S; Kornovski, Y; Tsvetkov, K; Angelova, M; Tsonev, A; Ismail, E

    2013-01-01

    Authors track current trends in preterm labor diagnostics. The emphasis is laid on biochemical tests for examination of fibronectin (fFN) and insulin-like growth factor-binding protein (IGFBP-1) in cervical and vaginal secretions, as well as ultrasound assessment of cervical length.

  12. Endoscopic ultrasound: state-of-the-art GI tumor staging

    NASA Astrophysics Data System (ADS)

    Trowers, Eugene A.

    1999-06-01

    Videoendoscopy has truly enlarged the scope of diagnostic and therapeutic gastroenterology. However, videoendoscopic examinations are limited to the mucosal surface. Endoscopic ultrasound allows the endoscopist a view beyond the intestinal wall which opens the door to a variety of new gastroenterologic techniques. The evaluation of plain images in combination with contrast-enhanced imags has been found to be helpful when applied to CT and MRI. A similar advantage may be found for endoscopic ultrasound (EUS) studies. The efficacy of EUS with and without contrast enhancement is critically reviewed.

  13. Predicting need for additional CT scan in children with a non-diagnostic ultrasound for appendicitis in the emergency department.

    PubMed

    Nishizawa, Takuya; Maeda, Shigenobu; Goldman, Ran D; Hayashi, Hiroyuki

    2018-01-01

    This study aimed to determine which children with suspected appendicitis should be considered for a computerized tomography (CT) scan after a non-diagnostic ultrasound (US) in the Emergency Department (ED). We retrospectively reviewed patients 0-18year old, who presented to the ED with complaints of abdominal pain, during 2011-2015 and while in the hospital had both US and CT. We recorded demographic and clinical data and outcomes, and used univariate and multivariate methods for comparing patients who did and didn't have appendicitis on CT after non-diagnostic US. Multivariate analysis was performed using logistic regression to determine what variables were independently associated with appendicitis. A total of 328 patients were enrolled, 257 with non-diagnostic US (CT: 82 had appendicitis, 175 no-appendicitis). Younger children and those who reported vomiting or had right lower abdominal quadrant (RLQ) tenderness, peritoneal signs or White Blood Cell (WBC) count >10,000 in mm 3 were more likely to have appendicitis on CT. RLQ tenderness (Odds Ratio: 2.84, 95%CI: 1.07-7.53), peritoneal signs (Odds Ratio: 11.37, 95%CI: 5.08-25.47) and WBC count >10,000 in mm 3 (Odds Ratio: 21.88, 95%CI: 7.95-60.21) remained significant after multivariate analysis. Considering CT with 2 or 3 of these predictors would have resulted in sensitivity of 94%, specificity of 67%, positive predictive value of 57% and negative predictive value of 96% for appendicitis. Ordering CT should be considered after non-diagnostic US for appendicitis only when children meet at least 2 predictors of RLQ tenderness, peritoneal signs and WBC>10,000 in mm 3 . Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular imaging with targeted contrast ultrasound.

    PubMed

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  15. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    NASA Astrophysics Data System (ADS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J.

    2017-03-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold-Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis.

  16. Ultrasound capsule endoscopy: sounding out the future

    PubMed Central

    Stewart, Fraser; Lay, Holly; Cummins, Gerard; Newton, Ian P.; Desmulliez, Marc P. Y.; Steele, Robert J. C.; Näthke, Inke; Cochran, Sandy

    2017-01-01

    Video capsule endoscopy (VCE) has been of immense benefit in the diagnosis and management of gastrointestinal (GI) disorders since its introduction in 2001. However, it suffers from a number of well recognized deficiencies. Amongst these is the limited capability of white light imaging, which is restricted to analysis of the mucosal surface. Current capsule endoscopes are dependent on visual manifestation of disease and limited in regards to transmural imaging and detection of deeper pathology. Ultrasound capsule endoscopy (USCE) has the potential to overcome surface only imaging and provide transmural scans of the GI tract. The integration of high frequency microultrasound (µUS) into capsule endoscopy would allow high resolution transmural images and provide a means of both qualitative and quantitative assessment of the bowel wall. Quantitative ultrasound (QUS) can provide data in an objective and measurable manner, potentially reducing lengthy interpretation times by incorporation into an automated diagnostic process. The research described here is focused on the development of USCE and other complementary diagnostic and therapeutic modalities. Presently investigations have entered a preclinical phase with laboratory investigations running concurrently. PMID:28567381

  17. PVT Degradation Studies: Acoustic Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Tucker, Brian J.; Kouzes, Richard T.

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regionsmore » with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.« less

  18. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    Executive Summary Objective The aim of this review was to assess the clinical utility of portable bladder ultrasound. Clinical Need: Target Population and Condition Data from the National Population Health Survey indicate prevalence rates of urinary incontinence are 2.5% in women and 1.4 % in men in the general population. Prevalence of urinary incontinence is higher in women than men and prevalence increases with age. Identified risk factors for urinary incontinence include female gender, increasing age, urinary tract infections (UTI), poor mobility, dementia, smoking, obesity, consuming alcohol and caffeine beverages, physical activity, pregnancy, childbirth, forceps and vacuum-assisted births, episiotomy, abdominal resection for colorectal cancer, and hormone replacement therapy. For the purposes of this review, incontinence populations will be stratified into the following; the elderly, urology patients, postoperative patients, rehabilitation settings, and neurogenic bladder populations. Urinary incontinence is defined as any involuntary leakage of urine. Incontinence can be classified into diagnostic clinical types that are useful in planning evaluation and treatment. The major types of incontinence are stress (physical exertion), urge (overactive bladder), mixed (combined urge and stress urinary incontinence), reflex (neurological impairment of the central nervous system), overflow (leakage due to full bladder), continuous (urinary tract abnormalities), congenital incontinence, and transient incontinence (temporary incontinence). Postvoid residual (PVR) urine volume, which is the amount of urine in the bladder immediately after urination, represents an important component in continence assessment and bladder management to provide quantitative feedback to the patient and continence care team regarding the effectiveness of the voiding technique. Although there is no standardized definition of normal PVR urine volume, measurements greater than 100 mL to 150 m

  19. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  20. Diagnostic Efficacy of Cell Block Immunohistochemistry, Smear Cytology, and Liquid-Based Cytology in Endoscopic Ultrasound-Guided Fine-Needle Aspiration of Pancreatic Lesions: A Single-Institution Experience

    PubMed Central

    Qin, Shan-yu; Zhou, You; Li, Ping; Jiang, Hai-xing

    2014-01-01

    Background The diagnostic efficiency of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) cytology varies widely depending on the treatment method of the specimens. The present study aimed to evaluate the diagnostic efficacy of cell block (CB) immunohistochemistry, smear cytology (SC), and liquid-based cytology (LBC) in patients with pancreatic lesions without consulting an on-site cytopathologist. Methods This study prospectively enrolled 72 patients with pancreatic lesions. The EUS-FNA specimens were examined by SC, LBC, and CB immunohistochemistry. The diagnostic efficacy of the 3 methods was then compared. Patients’ final diagnosis was confirmed by surgical resection specimens, diagnostic imaging, and clinical follow-up. Results Our results included 60 malignant and 12 benign pancreatic lesions. The diagnostic sensitivity (90%), negative predictive value (66.7%), and accuracy (91.7%) of CB immunohistochemistry were significantly higher than those of SC (70.0%, 30.0%, and 75.0%, respectively) and LBC (73.3%, 31.6%, and 77.8%, respectively) (all P<0.05). The combination of CB and SC, or CB and LBC, did not significantly increase the efficacy compared to CB immunohistochemistry alone. Conclusion Our findings suggest that in the absence of an on-site cytopathologist, CB immunohistochemistry on EUS-FNA specimens offers a higher diagnostic efficacy in patients with pancreatic lesions than does SC and LBC. PMID:25259861

  1. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    studying convective fluid flow in crystal growth, because particle seeding is unacceptable and flow velocities are typically too low to be resolved, and may be even lower in microgravity conditions where buoyancy forces are negligible. We will investigate a different use of ultrasound to probe the flows of opaque fluids non-intrusively and without the use of seed particles: our goal is to ultrasonically visualize the thermal field of opaque fluids with relatively high spatial resolution. The proposed technique relies upon the variation of sound speed with temperature of the fluid. A high frequency ultra-sound pulse passing through a fluid-filled chamber will traverse the chamber in a time determined by the relevant chamber dimension and the temperature of the fluid through which the pulse passes. With high time-resolution instrumentation that compares the excitation signal with the received pulse we can detect the influence of the fluid temperature on the pulse travel time. This is effectively an interferometric system, which in its optical form is an extremely sensitive approach to measuring thermal fields in fluids. Moreover, the temperature dependence of sound velocity in liquid metals is comparable to the temperature dependence of the speed of light required for accurate interferometric thermal images in transparent fluids. With an array of transducers scanned electronically a map of the thermal field over the chamber could be produced. An alternative approach would be to use the ultrasound analog of the shadowgraph technique. In the optical version, collimated light passes through the fluid, where it is focused or defocused locally by temperature field induced variations of the index of refraction. The resulting image reveals the thermal field through the spatial pattern of light intensity variations. By analogy, an ultrasound plane wave traversing an opaque fluid sample would be also locally focused or defocused depending on the speed of sound variations, giving rise

  2. Low-frequency quantitative ultrasound imaging of cell death in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicatedmore » significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant

  3. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  4. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  5. Application of Ultrasound-Guided Core Biopsy to Minimal-Invasively Diagnose Supraclavicular Fossa Tumors and Minimize the Requirement of Invasive Diagnostic Surgery

    PubMed Central

    Chen, Chun-Nan; Lin, Che-Yi; Chi, Fan-Hsiang; Chou, Chen-Han; Hsu, Ya-Ching; Kuo, Yen-Lin; Lin, Chih-Feng; Chen, Tseng-Cheng; Wang, Cheng-Ping; Lou, Pei-Jen; Ko, Jenq-Yuh; Hsiao, Tzu-Yu; Yang, Tsung-Lin

    2016-01-01

    Abstract Tumors of the supraclavicular fossa (SC) is clinically challenging because of anatomical complexity and tumor pathological diversity. Because of varied diseases entities and treatment choices of SC tumors, making the accurate decision among numerous differential diagnoses is imperative. Sampling by open biopsy (OB) remains the standard procedure for pathological confirmation. However, complicated anatomical structures of SC always render surgical intervention difficult to perform. Ultrasound-guided core biopsy (USCB) is a minimally invasive and office-based procedure for tissue sampling widely applied in many diseases of head and neck. This study aims to evaluate the clinical efficacy and utility of using USCB as the sampling method of SC tumors. From 2009 to 2014, consecutive patients who presented clinical symptoms and signs of supraclavicular tumors and were scheduled to receive sampling procedures for diagnostic confirmation were recruited. The patients received USCB or OB respectively in the initial tissue sampling. The accurate diagnostic rate based on pathological results was 90.2% for USCB, and 93.6% for OB. No significant difference was noted between USCB and OB groups in terms of diagnostic accuracy and the percentage of inadequate specimens. All cases in the USCB group had the sampling procedure completed within 10 minutes, but not in the OB group. No scars larger than 1 cm were found in USCB. Only patients in the OB groups had the need to receive general anesthesia and hospitalization and had scars postoperatively. Accordingly, USCB can serve as the first-line sampling tool for SC tumors with high diagnostic accuracy, minimal invasiveness, and low medical cost. PMID:26825877

  6. Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones.

    PubMed

    Ge, Linfei; Zhang, Jin; Wei, Jing

    2018-01-01

    Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios.

  7. Feasibility of dynamic cardiac ultrasound transmission via mobile phone for basic emergency teleconsultation.

    PubMed

    Lim, Tae Ho; Choi, Hyuk Joong; Kang, Bo Seung

    2010-01-01

    We assessed the feasibility of using a camcorder mobile phone for teleconsulting about cardiac echocardiography. The diagnostic performance of evaluating left ventricle (LV) systolic function was measured by three emergency medicine physicians. A total of 138 short echocardiography video sequences (from 70 subjects) was selected from previous emergency room ultrasound examinations. The measurement of LV ejection fraction based on the transmitted video displayed on a mobile phone was compared with the original video displayed on the LCD monitor of the ultrasound machine. The image quality was evaluated using the double stimulation impairment scale (DSIS). All observers showed high sensitivity. There was an improvement in specificity with the observer's increasing experience of cardiac ultrasound. Although the image quality of video on the mobile phone was lower than that of the original, a receiver operating characteristic (ROC) analysis indicated that there was no significant difference in diagnostic performance. Immediate basic teleconsulting of echocardiography movies is possible using current commercially-available mobile phone systems.

  8. Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography.

    PubMed

    Häberle, Lothar; Fasching, Peter A; Brehm, Barbara; Heusinger, Katharina; Jud, Sebastian M; Loehberg, Christian R; Hack, Carolin C; Preuss, Caroline; Lux, Michael P; Hartmann, Arndt; Vachon, Celine M; Meier-Meitinger, Martina; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger

    2016-11-01

    Although mammography screening programs do not include ultrasound examinations, some diagnostic units do provide women with both mammography and ultrasonography. This article is concerned with estimating the risk of a breast cancer patient diagnosed in a hospital-based mammography unit having a tumor that is visible on ultrasound but not on mammography. A total of 1,399 women with invasive breast cancer from a hospital-based diagnostic mammography unit were included in this retrospective study. For inclusion, mammograms from the time of the primary diagnosis had to be available for computer-assisted assessment of percentage mammographic density (PMD), as well as Breast Imaging Reporting and Data System (BIRADS) assessment of mammography. In addition, ultrasound findings were available for the complete cohort as part of routine diagnostic procedures, regardless of any patient or imaging characteristics. Logistic regression analyses were conducted to identify predictors of mammography failure, defined as BIRADS assessment 1 or 2. The probability that the visibility of a tumor might be masked at diagnosis was estimated using a regression model with the identified predictors. Tumors were only visible on ultrasound in 107 cases (7.6%). PMD was the strongest predictor for mammography failure, but age, body mass index and previous breast surgery also influenced the risk, independently of the PMD. Risk probabilities ranged from 1% for a defined low-risk group up to 40% for a high-risk group. These findings might help identify women who should be offered ultrasound examinations in addition to mammography. © 2016 UICC.

  9. Ultrasound transducer modeling-received voltage signals and the use of half-wavelength window layers with acoustic coupling layers.

    PubMed

    Willatzen, M

    1999-01-01

    A general set of modeling equations for lossless one-dimensional multilayer ultrasound transducers is presented based on first principles. In particular, a direct relationship between ultrasound transducer results and the underlying physical principles of electroacoustics is given. As such, the model may provide better physical understanding for designers not fully versed in electrical circuits theory or in linear system analyses. The model is suitable for time-domain analysis and monofrequency design. Special attention is given to the determination of the time-dependent voltage across the receiver electrodes subject to a general voltage input, but information on any (dynamic) variable of interest is provided. The basic equations governing the dynamics of the multilayer structure acting as transmitter as well as receiver are solved by Fourier analysis and by imposing continuity of velocity and pressure between layers. Sound transmission between the two piezoelectric circuits is assumed to take place in a water bath such that the Rayleigh equation can be used to obtain the incoming pressure at the receiver aperture from the acceleration of the opposing transmitter aperture. Comparison with experimental results is possible by allowing coupling to external electric impedances. A numerical test case using a multilayered 1-MHz transducer for flow meter applications was considered and good agreement with experiments was obtained in terms of voltage signals. The transducer contains a half-wavelength stainless steel layer needed to resist corrosion, the ability to operate at temperatures in a wide range from 20 to 150 degrees Celsius, resistance to impact from flowing particles in the medium, high pressure or vacuum, and pH values up to 10 in some locations. The influence of epoxy glue and grease acoustic coupling layers-between the piezoceramics and the stainless steel layer-in the range from 1 to 70 mum was examined. It was shown that, for the same layer thickness, epoxy

  10. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    PubMed

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  11. Random Sequence for Optimal Low-Power Laser Generated Ultrasound

    NASA Astrophysics Data System (ADS)

    Vangi, D.; Virga, A.; Gulino, M. S.

    2017-08-01

    Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.

  12. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging.

    PubMed

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L; Leung, Ben Y C; Goertz, David E; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  13. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  14. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  15. Real-time implementation of a dual-mode ultrasound array system: in vivo results.

    PubMed

    Casper, Andrew J; Liu, Dalong; Ballard, John R; Ebbini, Emad S

    2013-10-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.

  16. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  17. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    PubMed Central

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201

  18. Evaluating Thin Compression Paddles for Mammographically Compatible Ultrasound

    PubMed Central

    Booi, Rebecca C.; Krücker, Jochen F.; Goodsitt, Mitchell M.; O’Donnell, Matthew; Kapur, Ajay; LeCarpentier, Gerald L.; Roubidoux, Marilyn A.; Fowlkes, J. Brian; Carson, Paul L.

    2007-01-01

    We are developing a combined digital mammography/3D ultrasound system to improve detection and/or characterization of breast lesions. Ultrasound scanning through a mammographic paddle could significantly reduce signal level, degrade beam focusing, and create reverberations. Thus, appropriate paddle choice is essential for accurate sonographic lesion detection and assessment with this system. In this study, we characterized ultrasound image quality through paddles of varying materials (lexan, polyurethane, TPX, mylar) and thicknesses (0.25–2.5 mm). Analytical experiments focused on lexan and TPX, which preliminary results demonstrated were most competitive. Spatial and contrast resolution, sidelobe and range lobe levels, contrast and signal strength were compared with no-paddle images. When the beamforming of the system was corrected to account for imaging through the paddle, the TPX 2.5 mm paddle performed the best. Test objects imaged through this paddle demonstrated ≤ 15% reduction in spatial resolution, ≤ 7.5 dB signal loss, ≤ 3 dB contrast loss, and range lobe levels ≥ 35 dB below signal maximum over 4 cm. TPX paddles < 2.5 mm could also be used with this system, depending on imaging goals. In 10 human subjects with cysts, small CNR losses were observed but were determined to be statistically insignificant. Radiologists concluded that 75% of cysts in through-paddle scans were at least as detectable as in their corresponding direct-contact scans. (Email: rbooi@umich.edu) PMID:17280765

  19. Incidental Fetal Ultrasound Findings: Interpretation and Management.

    PubMed

    Kaplan, Rebekah; Adams, Sharon

    2018-05-01

    Ultrasonography is a common component of prenatal care worldwide and is often used in early pregnancy to determine gestational age, number of fetuses, fetal cardiac activity, and placental location. Patients and their families may also consider ultrasonography a social event, as it provides confirmation and reassurance of a normal pregnancy. Ultrasound screening is typically scheduled in the second trimester to visualize fetal anatomy and confirm gestational age. Most ultrasound examinations are reassuring, but some incidentally identify structural anomalies and soft markers for aneuploidy, making it necessary for health care providers to correctly interpret these findings. The health care provider's ability to prepare patients prior to the ultrasound and deliver the necessary information needed to make informed decisions regarding any follow-up screening or diagnostic testing is critical to reducing parental anxiety. Preparation for the anatomic survey should include counseling for normal and abnormal findings. The ethical concepts of patient autonomy and shared decision making are used as a guide in providing this critical information and enabling informed choices during follow-up for incidental ultrasound findings. © 2018 by the American College of Nurse-Midwives.

  20. The value of the first trimester ultrasound in the era of cell free DNA screening.

    PubMed

    Rao, Rashmi R; Valderramos, Stephanie G; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2016-12-01

    To describe the clinically relevant findings detected by the first trimester ultrasound (FTU) and to determine the additional value of the FTU compared to cell free DNA (cfDNA) alone. Retrospective cohort study of patients undergoing a FTU at a maternal-fetal medicine referral practice. Fetal, gynecologic, and placental findings detected by ultrasound were analyzed with available cfDNA and diagnostic testing results. A subgroup analysis of positive ultrasound findings and cfDNA results was performed to assess the additional benefit of ultrasound evaluation in FT prenatal screening. There were 1906 FTU between 1 October 2013 and 1 October 2014. CfDNA results were available for 959 (50%) patients. FTU detected: 42 fetal (2.2%), 286 gynecologic (15.0%), and 317 placental (16.6%) findings. CfDNA results were discordant with invasive testing results in 8/61 cases (13%) and with ultrasound findings in 18/42 (42%) cases. There were six false positive and two false negative cfDNA results confirmed by diagnostic testing. Subgroup analysis revealed that cfDNA as the sole method of prenatal screening in the FT would miss 95% of the fetal findings detected with ultrasound. The comprehensive FTU provides valuable clinical information about fetal and maternal anatomy that cannot be detected with cfDNA alone. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  1. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  2. Diagnostic imaging of posterior fossa anomalies in the fetus.

    PubMed

    Robinson, Ashley James; Ederies, M Ashraf

    2016-10-01

    Ultrasound and magnetic resonance imaging are the two imaging modalities used in the assessment of the fetus. Ultrasound is the primary imaging modality, whereas magnetic resonance is used in cases of diagnostic uncertainty. Both techniques have advantages and disadvantages and therefore they are complementary. Standard axial ultrasound views of the posterior fossa are used for routine scanning for fetal anomalies, with additional orthogonal views directly and indirectly obtainable using three-dimensional ultrasound techniques. Magnetic resonance imaging allows not only direct orthogonal imaging planes, but also tissue characterization, for example to search for blood breakdown products. We review the nomenclature of several posterior fossa anomalies using standardized criteria, and we review cerebellar abnormalities based on an etiologic classification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sonothrombolysis of Intra-Catheter Aged Venous Thrombi Using Microbubble Enhancement and Guided Three Dimensional Ultrasound Pulses

    PubMed Central

    Kutty, Shelby; Xie, Feng; Gao, Shunji; Drvol, Lucas K; Lof, John; Fletcher, Scott E; Radio, Stanley J; Danford, David A; Hammel, James M; Porter, Thomas R

    2010-01-01

    Central venous and arterial catheters are a major source of thrombo-embolic disease in children. We hypothesized that guided high mechanical index (MI) impulses from diagnostic three-dimensional (3D) ultrasound during an intravenous microbubble infusion could dissolve these thrombi. An in vitro system simulating intra-catheter thrombi was created and then treated with guided high MI impulses from 3D ultrasound, utilizing low MI microbubble sensitive imaging pulse sequence schemes to detect the microbubbles (Perflutren Lipid Microsphere, Definity®, Lantheus). Ten aged thrombi over 24 hours old were tested using 3D ultrasound coupled with a continuous diluted microbubble infusion (Group A), and ten with 3D ultrasound alone (Group B). Mean thrombus age was 28.6 hours (range 26.6–30.3). Groups A exhibited a 55 ± 19 % reduction in venous thrombus size, compared to 31±10 % for Group B (p=0.008). Feasibility testing was performed in 4 pigs, establishing a model to further investigate the efficacy. Sonothrombolysis of aged intra-catheter venous thrombi can be achieved with commercially available microbubbles and guided high MI ultrasound from a diagnostic 3D transducer. PMID:20696549

  4. Applications of ultrasound in dentistry.

    PubMed

    Walmsley, A D

    1988-01-01

    An ultrasonic descaler working at kHz frequencies is used in dentistry to remove attached deposits from the teeth. Such devices offer many advantages over conventional hand instruments by reducing both the work and time involved in the clinical descaling process. Although it is a recognised clinical instrument, there has been little attempt to standardise its acoustic power output. A parameter which may characterise adequately the acoustic emission from these instruments is the displacement amplitude of the probe tip. Modification of the ultrasonic descaler generator has led to the further use of the instrument in other dental areas. Diagnostic applications of MHz ultrasound is limited by the structure and arrangement of the dental tissues. Therapeutic ultrasound has been used to treat a variety of dentally related ailments, and ultrasonic cleaning baths are used to clean both dental instruments and materials.

  5. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.

    PubMed

    Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob

    2017-12-11

    We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).

  6. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy

    PubMed Central

    El Kaffas, Ahmed; Gangeh, Mehrdad J.; Farhat, Golnaz; Tran, William Tyler; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

    2018-01-01

    High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to

  7. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  8. Laser Sources for Generation of Ultrasound

    NASA Technical Reports Server (NTRS)

    Wagner, James W.

    1996-01-01

    Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.

  9. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    NASA Astrophysics Data System (ADS)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  10. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple pregnancy - ultrasound; ...

  11. Ultrasound elastography in diagnosis and follow-up for patients with chronic recurrent parotitis.

    PubMed

    Zengel, Pamela; Reichel, Christoph Andreas; Vincek, Teresa; Clevert, Dirk André

    2017-01-01

    Chronic recurrent parotitis (CRP) is a non-obstructive disease with episodes characterized by painful swelling of the parotid gland. It presents in both a juvenile and an adult form, with no clear information on its actual origin. Diagnosis is based on patient medical history and ultrasound examination but is frequently not correctly identified. Acoustic Radiation Force Impulse Imaging (ARFI) is a novel ultrasound elastography technology that has recently been implemented in the diagnostic work-up of patients with malignancies. This study aimed to answer whether ARFI can reasonably be employed in the initial examination and follow-up during therapy in patients with CRP. Mechanical tissue properties of the salivary glands were analyzed by ARFI in 37 parotid glands of patients with CRP. Having integrated ARFI into our diagnostic protocol for CRP, affected parotid glands were found to exhibit lower tissue elasticity compared to both healthy contralateral glands in the same individuals as well as those of healthy individuals. Most importantly, this method enabled us to quantitatively assess the patient benefit of therapy regarding the recovery of the glands' diseased parenchyma. ARFI provides a quick, easy, and reliable diagnostic tool for the assessment of disease severity and progression in patients with CRP that can be seamlessly implemented into preexisting ultrasound protocols.

  12. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    NASA Astrophysics Data System (ADS)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  13. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    PubMed Central

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-01-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608

  14. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    NASA Astrophysics Data System (ADS)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  15. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound.

    PubMed

    Webb, Sara Jane; Garrison, Michelle M; Bernier, Raphael; McClintic, Abbi M; King, Bryan H; Mourad, Pierre D

    2017-03-01

    Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Polarization of Narrowband VLF Transmitter Signals as an Ionospheric Diagnostic

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M. B.; Said, R. K.; Gołkowski, M.

    2018-01-01

    Very low frequency (VLF, 3-30 kHz) transmitter remote sensing has long been used as a simple yet useful diagnostic for the D region ionosphere (60-90 km). All it requires is a VLF radio receiver that records the amplitude and/or phase of a beacon signal as a function of time. During both ambient and disturbed conditions, the received signal can be compared to predictions from a theoretical model to infer ionospheric waveguide properties like electron density. Amplitude and phase have in most cases been analyzed each as individual data streams, often only the amplitude is used. Scattered field formulation combines amplitude and phase effectively, but does not address how to combine two magnetic field components. We present polarization ellipse analysis of VLF transmitter signals using two horizontal components of the magnetic field. The shape of the polarization ellipse is unchanged as the source phase varies, which circumvents a significant problem where VLF transmitters have an unknown source phase. A synchronized two-channel MSK demodulation algorithm is introduced to mitigate 90° ambiguity in the phase difference between the horizontal magnetic field components. Additionally, the synchronized demodulation improves phase measurements during low-SNR conditions. Using the polarization ellipse formulation, we take a new look at diurnal VLF transmitter variations, ambient conditions, and ionospheric disturbances from solar flares, lightning-ionospheric heating, and lightning-induced electron precipitation, and find differing signatures in the polarization ellipse.

  17. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble

  18. Point-of-care ultrasound diagnosis and treatment of posterior shoulder dislocation.

    PubMed

    Beck, Sierra; Chilstrom, Mikaela

    2013-02-01

    Acute traumatic posterior shoulder dislocations are rare. The diagnosis is often missed or delayed, as radiologic abnormalities can be subtle. We report a case of a 37-year-old man who presented to the emergency department with severe right shoulder pain and inability to move his arm after a motor vehicle collision. Based on examination, he was initially thought to have an anterior dislocation; however, point-of-care (POC) ultrasound clearly demonstrated a posterior shoulder dislocation. Real-time ultrasound-guided intra-articular local anesthetic injection facilitated closed reduction in the emergency department without procedural sedation, and POC ultrasound confirmed successful reduction at the bedside after the procedure. This case demonstrates that POC ultrasound can be a useful diagnostic tool in the rapid assessment and treatment for patients with suspected posterior shoulder dislocation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bowel Thickening in Crohn's Disease: Fibrosis or Inflammation? Diagnostic Ultrasound Imaging Tools.

    PubMed

    Coelho, Rosa; Ribeiro, Helena; Maconi, Giovanni

    2017-01-01

    The high frequency of intestinal strictures in patients with Crohn's disease and the different treatment approaches specific for each type of stenosis make the differentiation between fibrotic and inflammatory strictures crucial in management of the disease. However, there is no standardized approach to evaluate and discriminate intestinal strictures, and until now, there was no established cross-sectional imaging modality to detect fibrosis. New techniques, such as contrast-enhanced ultrasound and sonoelastography allow the assessment of vascularization and mechanical properties of stenotic bowel tissue, respectively. These techniques have shown great potential to characterize strictures in Crohn's disease. The aim of this review is to sum up the current knowledge on bowel ultrasound tools to discriminate inflammatory from fibrotic stenosis in Crohn's disease considering the most recent published studies in the field.

  20. Standards of the Polish Ultrasound Society - update. Ultrasound examination of the kidneys, ureters and urinary bladder.

    PubMed

    Tyloch, Janusz F; Woźniak, Magdalena Maria; Wieczorek, Andrzej Paweł

    2013-09-01

    The paper presents the principles of performing proper ultrasound examinations of the urinary tract. The following are discussed: preparation of patients, type of optimal apparatus, technique of examination and conditions which its description should fulfill. Urinary track examination in adults and in children constitutes an integral part of each abdominal examination. Such examinations should be performed with fasting patients or several hours after the last meal, with filled urinary bladder. Ultrasound examinations in children and infants are performed using transducers with the frequency of 5.0-9.0 MHz and in adults - with the frequency of 2.0-6.0 MHz. Doppler options are desirable since they improve diagnostic capacity of sonography in terms of differentiation between renal focal lesions. Renal examinations are performed with the patients in the supine position. The right kidney is examined in the right hypochondriac region using the liver as the ultrasound "window." The left kidney is examined in the left hypochondriac region, preferably in the posterior axillary line. Ultrasound examinations of the upper segment of the ureters are performed after renal examination when the pelvicalyceal system is dilated. A condition necessary for a proper examination of the perivesical portion of the ureter is full urinary bladder. The scans of the urinary bladder are performed in transverse, longitudinal and oblique planes when the bladder is filled. The description should include patient's personal details, details of the referring unit, of the unit in which the examination is performed, examining physician's details, type of ultrasound apparatus and transducers as well as the description proper.

  1. Diagnostic Accuracy of Ultrasound, Contrast-enhanced CT, and Conventional MRI for Differentiating Leiomyoma From Leiomyosarcoma.

    PubMed

    Gaetke-Udager, Kara; McLean, Karen; Sciallis, Andrew P; Alves, Timothy; Maturen, Katherine E; Mervak, Benjamin M; Moore, Andreea G; Wasnik, Ashish P; Erba, Jake; Davenport, Matthew S

    2016-10-01

    This study aimed to determine whether uterine leiomyoma can be distinguished from uterine leiomyosarcoma on ultrasound (US), computed tomography (CT), and/or magnetic resonance imaging (MRI) without diffusion-weighted imaging. Institutional review board approval was obtained and informed consent was waived for this Health Insurance Portability and Accountability Act-compliant retrospective case-control diagnostic accuracy study. All subjects with resected uterine leiomyosarcoma diagnosed over a 17-year period (1998-2014) at a single institution for whom pre-resection US (n = 10), CT (n = 11), or MRI (n = 7) was available were matched by tumor size and imaging modality with 28 subjects with resected uterine leiomyoma. Six blinded radiologists (three attendings, three residents) assigned 5-point Likert scores for the following features: (1) margins, (2) necrosis, (3) hemorrhage, (4) vascularity, (5) calcifications, (6) heterogeneity, and (7) likelihood of malignancy (primary end point). Mean suspicion scores were calculated and receiver operating characteristic curves were generated. The ability of individual morphologic features to predict malignancy was assessed with logistic regression. Mean suspicion scores were 2.5 ± 1.2 (attendings) and 2.4 ± 1.3 (residents) for leiomyoma, and 2.7 ± 1.3 (attendings) and 2.7 ± 1.4 (residents) for leiomyosarcoma. The areas under the receiver operating characteristic curves (range: 0.330-0.685) were not significantly different from chance, either overall (P = .36-.88) or by any modality (P = .28-.96), for any reader. Reader experience had no effect on diagnostic accuracy. No morphologic parameter was significantly predictive of malignancy (P = .10-.97). Uterine leiomyoma cannot be differentiated accurately from leiomyosarcoma on US, CT, or MRI without diffusion-weighted imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones

    PubMed Central

    Wei, Jing

    2018-01-01

    Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios. PMID:29853985

  3. Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging.

    PubMed

    Hooley, Regina J; Andrejeva, Liva; Scoutt, Leslie M

    2011-03-01

    Although mammography is the mainstay of early breast cancer detection, it has known limitations, particularly in women with dense breasts. As a result, additional imaging modalities, including ultrasound and contrast-enhanced magnetic resonance imaging, are also being used to supplement mammography in the early detection of occult breast cancer. This article reviews the indications and efficacy of mammography, ultrasound, and magnetic resonance imaging as both screening and diagnostic tools.

  4. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    NASA Astrophysics Data System (ADS)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  5. Transvaginal ultrasound

    MedlinePlus

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  6. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  7. Diagnostic accuracy of contrast enhanced ultrasound in patients with blunt abdominal trauma presenting to the emergency department: a systematic review and meta-analysis.

    PubMed

    Zhang, Zhongheng; Hong, Yucai; Liu, Ning; Chen, Yuhao

    2017-06-30

    We aimed to investigate the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) in evaluating blunt abdominal trauma for patients presenting to the emergency department. Electronic search of Scopus and Pubmed was performed from inception to September 2016. Human studies investigating the diagnostic accuracy of CEUS in identifying abdominal solid organ injuries were included. Risk of bias was assessed using the QUADAS tool. A total of 10 studies were included in the study and 9 of them were included for meta-analysis. The log(DOR) values ranged from 3.80 (95% CI: 2.81-4.79) to 8.52 (95% CI: 4.58-12.47) in component studies. The combined log(DOR) was 6.56 (95% CI: 5.66-7.45). The Cochran's Q was 11.265 (p = 0.793 with 16 degrees of freedom), and the Higgins' I 2 was 0%. The CEUS had a sensitivity of 0.981 (95% CI: 0.868-0.950) and a false positive rate of 0.018 (95% CI: 0.010-0.032) for identifying parenchymal injuries, with an AUC of 0.984. CEUS performed at emergency department had good diagnostic accuracy in identifying abdominal solid organ injuries. CEUS can be recommended in monitoring solid organ injuries, especially for patients managed with non-operative strategy.

  8. Using redundancy of round-trip ultrasound signal for non-continuous arrays: Application to gap and blockage compensation.

    PubMed

    Robert, Jean-Luc; Erkamp, Ramon; Korukonda, Sanghamithra; Vignon, François; Radulescu, Emil

    2015-11-01

    In ultrasound imaging, an array of elements is used to image a medium. If part of the array is blocked by an obstacle, or if the array is made from several sub-arrays separated by a gap, grating lobes appear and the image is degraded. The grating lobes are caused by missing spatial frequencies, corresponding to the blocked or non-existing elements. However, in an active imaging system, where elements are used both for transmitting and receiving, the round trip signal is redundant: different pairs of transmit and receive elements carry similar information. It is shown here that, if the gaps are smaller than the active sub-apertures, this redundancy can be used to compensate for the missing signals and recover full resolution. Three algorithms are proposed: one is based on a synthetic aperture method, a second one uses dual-apodization beamforming, and the third one is a radio frequency (RF) data based deconvolution. The algorithms are evaluated on simulated and experimental data sets. An application could be imaging through ribs with a large aperture.

  9. Comparison of barium swallow and ultrasound in diagnosis of gastro-oesophageal reflux in children.

    PubMed Central

    Naik, D R; Bolia, A; Moore, D J

    1985-01-01

    Fifty one infants and older children with suspected gastro-oesophageal reflux entered a study comparing the diagnostic accuracy of a standard barium swallow examination with that of ultrasound scanning. All children were examined by both techniques. In 40 cases there was unequivocal agreement between the examinations. Of the remaining patients, four had definite reflux by ultrasonic criteria but showed no evidence of reflux on barium swallow examination, four had positive findings on ultrasound but showed only minimal reflux on barium swallow, and one showed minimal reflux on ultrasound but had a negative barium meal result. In two children the ultrasound study was inconclusive. Ultrasound has an important role in the diagnosis and follow up of patients under the age of 5 years with gastro-oesophageal reflux. Images FIG 1 FIG 2 PMID:3924317

  10. Lumbar ultrasound: useful gadget or time-consuming gimmick?

    PubMed

    Gambling, D R

    2011-10-01

    Despite widespread enthusiasm for using lumbar ultrasound in obstetrics, there are some who believe it is expensive and time-consuming, with undetermined risks and uncertain benefits. For decades, anesthesiologists have striven to perfect the identification and cannulation of the epidural space using skills learned during training and early clinical practice. These skills include knowledge of the relevant anatomy and detection of subtle tactile clues that aid successful placement of an epidural catheter. Indeed, obstetric anesthesiologists have managed to do this with great success without using imaging techniques. There is a long learning curve associated with lumbar ultrasound and it is unclear from the literature if the success rates associated with its use are superior to clinical skill alone. Is it only a matter of time before regulators insist that lumbar ultrasound is used before inserting an epidural? Indeed, this has already happened for central vein catheters. The United States spent $2.2 trillion on health care in 2007, nearly twice the average of other developed nations. If rapid health cost growth persists, one out of every four dollars in the US national economy will be tied up in the health system by 2025. Do obstetric anesthesiologists want to add to these costs by using unnecessary and expensive equipment? Although many feel that diagnostic ultrasound in obstetrics is safe, some argue that we have yet to perform an appropriate risk analysis for lumbar ultrasound during pregnancy. The issue of ultrasound bio-safety needs to be considered before we all jump on the ultrasound bandwagon. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. [Ultrasound in complex of radiological studies in diagnosis of ankle joint medial aspect pathologies].

    PubMed

    Gurgenidze, T; Mizandari, M

    2011-10-01

    The aim of the research is to study sonosemiotics of ankle joint pathology by means of ultrasound in order to optimize the diagnostic process and improve the treatment. 130 patients (age ranges from 5 to 70 years) underwent the radiological study of ankle joint medial aspect. Pathology types: degenerative-dystrophic diseases - 39 (30%), inflammatory pathology - 21 (16.2%), traumatic injuries - 20 (15.2%), vascular pathologies - 26 (20%), neurogenic problems -7 (5.4%), soft tissue neoplasms - 5 (3.8%), congenital anomalies - 7 (5.4%) and vertebral pathology - 5 (4.0%). The diagnostic studies include: a) Ultrasound, performed on digital ultrasound system using high frequency (7.5-12.0 MHz) linear probe with Doppler capability (all patients); b) X-Ray filming in antero-posterior and lateral projections (6 patients- 4.5%); c) MRI - T1 and T2 weighted images in saggital and transverse planes 10 patients (10.0%) and d) CT - 2 patients (1.5%); To 2 (1.5%) patient biopsy has been performed. This study showed that ultrasound was successful in ankle joint medial aspect pathology diagnosis in 108 cases (84.0%); It was ineffective in osseous pathology definition. In final diagnosis of impingment syndrom MRI was required in 4 (3.6%) cases. It is concluded that ultrasound should be used as a Gold Standard in diagnosis of localized pain and swelling in the ankle joint.

  12. Ultrasound contrast agent fabricated from microbubbles containing instant adhesives, and its ultrasound imaging ability

    NASA Astrophysics Data System (ADS)

    Makuta, T.; Tamakawa, Y.

    2012-04-01

    Non-invasive surgery techniques and drug delivery system with acoustic characteristics of ultrasound contrast agent have been studied intensively in recent years. Ultrasound contrast agent collapses easily under the blood circulating and the ultrasound irradiating because it is just a stabilized bubble without solid-shell by surface adsorption of surfactant or lipid. For improving the imaging stability, we proposed the fabrication method of the hollow microcapsule with polymer shell, which can be fabricated just blowing vapor of commonly-used instant adhesive (Cyanoacrylate monomer) into water as microbubbles. Therefore, the cyanoacrylate vapor contained inside microbubble initiates polymerization on the gasliquid interface soon after microbubbles are generated in water. Consequently, hollow microspheres coated by cyanoacrylate thin film are generated. In this report, we revealed that diameter distributions of microbubbles and microcapsules were approximately same and most of them were less than 10 μm, that is, smaller than blood capillary. In addition, we also revealed that hollow microcapsules enhanced the acoustic signal especially in the harmonic contrast imaging and were broken or agglomerated under the ultrasound field. As for the yield of hollow microcapsules, we revealed that sodium dodecyl sulfate addition to water phase instead of deoxycolic acid made the fabrication yield increased.

  13. Ultrasound versus liver function tests for diagnosis of common bile duct stones.

    PubMed

    Gurusamy, Kurinchi Selvan; Giljaca, Vanja; Takwoingi, Yemisi; Higgie, David; Poropat, Goran; Štimac, Davor; Davidson, Brian R

    2015-02-26

    Ultrasound and liver function tests (serum bilirubin and serum alkaline phosphatase) are used as screening tests for the diagnosis of common bile duct stones in people suspected of having common bile duct stones. There has been no systematic review of the diagnostic accuracy of ultrasound and liver function tests. To determine and compare the accuracy of ultrasound versus liver function tests for the diagnosis of common bile duct stones. We searched MEDLINE, EMBASE, Science Citation Index Expanded, BIOSIS, and Clinicaltrials.gov to September 2012. We searched the references of included studies to identify further studies and systematic reviews identified from various databases (Database of Abstracts of Reviews of Effects, Health Technology Assessment, Medion, and ARIF (Aggressive Research Intelligence Facility)). We did not restrict studies based on language or publication status, or whether data were collected prospectively or retrospectively. We included studies that provided the number of true positives, false positives, false negatives, and true negatives for ultrasound, serum bilirubin, or serum alkaline phosphatase. We only accepted studies that confirmed the presence of common bile duct stones by extraction of the stones (irrespective of whether this was done by surgical or endoscopic methods) for a positive test result, and absence of common bile duct stones by surgical or endoscopic negative exploration of the common bile duct, or symptom-free follow-up for at least six months for a negative test result as the reference standard in people suspected of having common bile duct stones. We included participants with or without prior diagnosis of cholelithiasis; with or without symptoms and complications of common bile duct stones, with or without prior treatment for common bile duct stones; and before or after cholecystectomy. At least two authors screened abstracts and selected studies for inclusion independently. Two authors independently collected data from

  14. Ultrasound

    MedlinePlus

    ... community Home > Pregnancy > Prenatal care > Ultrasound during pregnancy Ultrasound during pregnancy E-mail to a friend Please ... you. What are some reasons for having an ultrasound? Your provider uses ultrasound to do several things, ...

  15. Protection circuits for very high frequency ultrasound systems.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-04-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (-1.0 dB), THD (-69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications.

  16. Protection Circuits for Very High Frequency Ultrasound Systems

    PubMed Central

    Shung, K. Kirk

    2014-01-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (−1.0 dB), THD (−69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications. PMID:24682684

  17. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  18. Unusual Applications of Ultrasound in Industry

    NASA Astrophysics Data System (ADS)

    Keilman, George

    The application of physical acoustics in industry has been accelerated by increased understanding of the physics of industrial processes, coupled with rapid advancements in transducers, microelectronics, data acquisition, signal processing, and related software fields. This has led to some unusual applications of ultrasound to improve industrial processes.

  19. Diagnostic imaging features of normal anal sacs in dogs and cats.

    PubMed

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo; Lee, Kichang

    2016-09-30

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions.

  20. Diagnostic imaging features of normal anal sacs in dogs and cats

    PubMed Central

    Jung, Yechan; Jeong, Eunseok; Park, Sangjun; Jeong, Jimo; Choi, Ul Soo; Kim, Min-Su; Kim, Namsoo

    2016-01-01

    This study was conducted to provide normal reference features for canine and feline anal sacs using ultrasound, low-field magnetic resonance imaging (MRI) and radiograph contrast as diagnostic imaging tools. A total of ten clinically normal beagle dogs and eight clinically normally cats were included. General radiography with contrast, ultrasonography and low-field MRI scans were performed. The visualization of anal sacs, which are located at distinct sites in dogs and cats, is possible with a contrast study on radiography. Most surfaces of the anal sacs tissue, occasionally appearing as a hyperechoic thin line, were surrounded by the hypoechoic external sphincter muscle on ultrasonography. The normal anal sac contents of dogs and cats had variable echogenicity. Signals of anal sac contents on low-field MRI varied in cats and dogs, and contrast medium using T1-weighted images enhanced the anal sac walls more obviously than that on ultrasonography. In conclusion, this study provides the normal features of anal sacs from dogs and cats on diagnostic imaging. Further studies including anal sac evaluation are expected to investigate disease conditions. PMID:26645338