Sample records for ultrasound grayscale echo

  1. ICV Echo Ultrasound Scan

    NASA Image and Video Library

    2012-12-31

    View of Integrated Cardiovascular (ICV) Echo Ultrasound Scan,in the Columbus module. ICV aims to quantify the extent,time course and clinical significance of cardiac atrophy (decrease in the size of the heart muscle) in space. Photo was taken during Expedition 34.

  2. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays

    NASA Astrophysics Data System (ADS)

    Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas

    2017-03-01

    In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.

  3. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    NASA Astrophysics Data System (ADS)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  4. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  5. Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction.

    PubMed

    Jaeger, Michael; Frenz, Martin

    2015-09-01

    Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck. Copyright © 2015. Published by Elsevier B.V.

  6. Ultrasound physics and instrumentation for pathologists.

    PubMed

    Lieu, David

    2010-10-01

    Interest in pathologist-performed ultrasound-guided fine-needle aspiration is increasing. Educational courses discuss clinical ultrasound and biopsy techniques but not ultrasound physics and instrumentation. To review modern ultrasound physics and instrumentation to help pathologists understand the basis of modern ultrasound. A review of recent literature and textbooks was performed. Ultrasound physics and instrumentation are the foundations of clinical ultrasound. The key physical principle is the piezoelectric effect. When stimulated by an electric current, certain crystals vibrate and produce ultrasound. A hand-held transducer converts electricity into ultrasound, transmits it into tissue, and listens for reflected ultrasound to return. The returning echoes are converted into electrical signals and used to create a 2-dimensional gray-scale image. Scanning at a high frequency improves axial resolution but has low tissue penetration. Electronic focusing moves the long-axis focus to depth of the object of interest and improves lateral resolution. The short-axis focus in 1-dimensional transducers is fixed, which results in poor elevational resolution away from the focal zone. Using multiple foci improves lateral resolution but degrades temporal resolution. The sonographer can adjust the dynamic range to change contrast and bring out subtle masses. Contrast resolution is limited by processing speed, monitor resolution, and gray-scale perception of the human eye. Ultrasound is an evolving field. New technologies include miniaturization, spatial compound imaging, tissue harmonics, and multidimensional transducers. Clinical cytopathologists who understand ultrasound physics, instrumentation, and clinical ultrasound are ready for the challenges of cytopathologist-performed ultrasound-guided fine-needle aspiration and core-needle biopsy in the 21st century.

  7. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity

    PubMed Central

    Seamon, Bryant A.; Teixeira, Carla; Ismail, Catheeja

    2016-01-01

    Background. Quantitative diagnostic ultrasound imaging has been proposed as a method of estimating muscle quality using measures of echogenicity. The Rectangular Marquee Tool (RMT) and the Free Hand Tool (FHT) are two types of editing features used in Photoshop and ImageJ for determining a region of interest (ROI) within an ultrasound image. The primary objective of this study is to determine the intrarater and interrater reliability of Photoshop and ImageJ for the estimate of muscle tissue echogenicity in older adults via grayscale histogram analysis. The secondary objective is to compare the mean grayscale values obtained using both the RMT and FHT methods across both image analysis platforms. Methods. This cross-sectional observational study features 18 community-dwelling men (age = 61.5 ± 2.32 years). Longitudinal views of the rectus femoris were captured using B-mode ultrasound. The ROI for each scan was selected by 2 examiners using the RMT and FHT methods from each software program. Their reliability is assessed using intraclass correlation coefficients (ICCs) and the standard error of the measurement (SEM). Measurement agreement for these values is depicted using Bland-Altman plots. A paired t-test is used to determine mean differences in echogenicity expressed as grayscale values using the RMT and FHT methods to select the post-image acquisition ROI. The degree of association among ROI selection methods and image analysis platforms is analyzed using the coefficient of determination (R2). Results. The raters demonstrated excellent intrarater and interrater reliability using the RMT and FHT methods across both platforms (lower bound 95% CI ICC = .97–.99, p < .001). Mean differences between the echogenicity estimates obtained with the RMT and FHT methods was .87 grayscale levels (95% CI [.54–1.21], p < .0001) using data obtained with both programs. The SEM for Photoshop was .97 and 1.05 grayscale levels when using the RMT and FHT ROI selection methods

  8. Echo Decorrelation Imaging of Rabbit Liver and VX2 Tumor during In Vivo Ultrasound Ablation.

    PubMed

    Fosnight, Tyler R; Hooi, Fong Ming; Keil, Ryan D; Ross, Alexander P; Subramanian, Swetha; Akinyi, Teckla G; Killin, Jakob K; Barthe, Peter G; Rudich, Steven M; Ahmad, Syed A; Rao, Marepalli B; Mast, T Douglas

    2017-01-01

    In open surgical procedures, image-ablate ultrasound arrays performed thermal ablation and imaging on rabbit liver lobes with implanted VX2 tumor. Treatments included unfocused (bulk ultrasound ablation, N = 10) and focused (high-intensity focused ultrasound ablation, N = 13) exposure conditions. Echo decorrelation and integrated backscatter images were formed from pulse-echo data recorded during rest periods after each therapy pulse. Echo decorrelation images were corrected for artifacts using decorrelation measured prior to ablation. Ablation prediction performance was assessed using receiver operating characteristic curves. Results revealed significantly increased echo decorrelation and integrated backscatter in both ablated liver and ablated tumor relative to unablated tissue, with larger differences observed in liver than in tumor. For receiver operating characteristic curves computed from all ablation exposures, both echo decorrelation and integrated backscatter predicted liver and tumor ablation with statistically significant success, and echo decorrelation was significantly better as a predictor of liver ablation. These results indicate echo decorrelation imaging is a successful predictor of local thermal ablation in both normal liver and tumor tissue, with potential for real-time therapy monitoring. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Two-dimensional grayscale ultrasound and spectral Doppler waveform evaluation of dogs with chronic enteropathies.

    PubMed

    Gaschen, Lorrie; Kircher, Patrick

    2007-08-01

    Sonography is an important diagnostic tool to examine the gastrointestinal tract of dogs with chronic diarrhea. Two-dimensional grayscale ultrasound parameters to assess for various enteropathies primarily focus on wall thickness and layering. Mild, generalized thickening of the intestinal wall with maintenance of the wall layering is common in inflammatory bowel disease. Quantitative and semi-quantitative spectral Doppler arterial waveform analysis can be utilized for various enteropathies, including inflammatory bowel disease and food allergies. Dogs with inflammatory bowel disease have inadequate hemodynamic responses during digestion of food. Dogs with food allergies have prolonged vasodilation and lower resistive and pulsatility indices after eating allergen-inducing foods.

  10. Histogram and gray level co-occurrence matrix on gray-scale ultrasound images for diagnosing lymphocytic thyroiditis.

    PubMed

    Shin, Young Gyung; Yoo, Jaeheung; Kwon, Hyeong Ju; Hong, Jung Hwa; Lee, Hye Sun; Yoon, Jung Hyun; Kim, Eun-Kyung; Moon, Hee Jung; Han, Kyunghwa; Kwak, Jin Young

    2016-08-01

    The objective of the study was to evaluate whether texture analysis using histogram and gray level co-occurrence matrix (GLCM) parameters can help clinicians diagnose lymphocytic thyroiditis (LT) and differentiate LT according to pathologic grade. The background thyroid pathology of 441 patients was classified into no evidence of LT, chronic LT (CLT), and Hashimoto's thyroiditis (HT). Histogram and GLCM parameters were extracted from the regions of interest on ultrasound. The diagnostic performances of the parameters for diagnosing and differentiating LT were calculated. Of the histogram and GLCM parameters, the mean on histogram had the highest Az (0.63) and VUS (0.303). As the degrees of LT increased, the mean decreased and the standard deviation and entropy increased. The mean on histogram from gray-scale ultrasound showed the best diagnostic performance as a single parameter in differentiating LT according to pathologic grade as well as in diagnosing LT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of carotid plaque echogenicity based on the integral of the cumulative probability distribution using gray-scale ultrasound images.

    PubMed

    Huang, Xiaowei; Zhang, Yanling; Meng, Long; Abbott, Derek; Qian, Ming; Wong, Kelvin K L; Zheng, Rongqing; Zheng, Hairong; Niu, Lili

    2017-01-01

    Carotid plaque echogenicity is associated with the risk of cardiovascular events. Gray-scale median (GSM) of the ultrasound image of carotid plaques has been widely used as an objective method for evaluation of plaque echogenicity in patients with atherosclerosis. We proposed a computer-aided method to evaluate plaque echogenicity and compared its efficiency with GSM. One hundred and twenty-five carotid plaques (43 echo-rich, 35 intermediate, 47 echolucent) were collected from 72 patients in this study. The cumulative probability distribution curves were obtained based on statistics of the pixels in the gray-level images of plaques. The area under the cumulative probability distribution curve (AUCPDC) was calculated as its integral value to evaluate plaque echogenicity. The classification accuracy for three types of plaques is 78.4% (kappa value, κ = 0.673), when the AUCPDC is used for classifier training, whereas GSM is 64.8% (κ = 0.460). The receiver operating characteristic curves were produced to test the effectiveness of AUCPDC and GSM for the identification of echolucent plaques. The area under the curve (AUC) was 0.817 when AUCPDC was used for training the classifier, which is higher than that achieved using GSM (AUC = 0.746). Compared with GSM, the AUCPDC showed a borderline association with coronary heart disease (Spearman r = 0.234, p = 0.050). Our experimental results suggest that AUCPDC analysis is a promising method for evaluation of plaque echogenicity and predicting cardiovascular events in patients with plaques.

  12. Electrolytic echo enhancement: a novel method to make needles more reflective to ultrasound.

    PubMed

    Cockburn, John F; Khosh, Stefan K

    2014-04-01

    This study examines the effect of augmenting the ultrasound reflectivity of needles using a novel electrolytic echo enhancement method. Needles were connected by a lead to the negative terminal of a 4.5 V direct current source. A grounding pad, connected to the positive terminal, was positioned on the undersurface of an ex vivo ox liver phantom. During needle insertion into the liver, electrolysis was induced creating a layer of gas on the needle electrode. Analysis of images showed a significant increase in needle brightness using electrolytic echo enhancement. Brightness was found to increase by a factor of ×3.6 compared with controls (P < 0.001). Electrolytic echo enhancement has the potential to make ultrasound-guided procedures safer and quicker for patients and increase the confidence of operators in their ability to see the whole needle including its tip. © 2014 The Royal Australian and New Zealand College of Radiologists.

  13. Ultrasound attenuation estimation using backscattered echoes from multiple sources.

    PubMed

    Bigelow, Timothy A

    2008-08-01

    The objective of this study was to devise an algorithm that can accurately estimate the attenuation along the propagation path (i.e., the total attenuation) from backscattered echoes. It was shown that the downshift in the center frequency of the backscattered ultrasound echoes compared to echoes obtained in a water bath was calculated to have the form Deltaf=mf(o)+b after normalizing with respect to the source bandwidth where m depends on the correlation length, b depends on the total attenuation, and f(o) is the center frequency of the source as measured from a reference echo. Therefore, the total attenuation can be determined independent of the scatterer correlation length by measuring the downshift in center frequency from multiple sources (i.e., different f(o)) and fitting a line to the measured shifts versus f(o). The intercept of the line gives the total attenuation along the propagation path. The calculations were verified using computer simulations of five spherically focused sources with 50% bandwidths and center frequencies of 6, 8, 10, 12, and 14 MHz. The simulated tissue had Gaussian scattering structures with effective radii of 25 mum placed at a density of 250 mm(3). The attenuation of the tissue was varied from 0.1 to 0.9 dB / cm-MHz. The error in the attenuation along the propagation path ranged from -3.5+/-14.7% for a tissue attenuation of 0.1 dB / cm-MHz to -7.0+/-3.1% for a tissue attenuation of 0.9 dB / cm-MHz demonstrating that the attenuation along the propagation path could be accurately determined using backscattered echoes from multiple sources using the derived algorithm.

  14. Pulsation Detection from Noisy Ultrasound-Echo Moving Images of Newborn Baby Head Using Fourier Transform

    NASA Astrophysics Data System (ADS)

    Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi

    1995-05-01

    In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.

  15. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    PubMed

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  16. In vitro comparative study of vibro-acoustography versus pulse-echo ultrasound in imaging permanent prostate brachytherapy seeds

    PubMed Central

    Mitri, F.G.; Davis, B.J.; Greenleaf, J.F.; Fatemi, M.

    2010-01-01

    Background Permanent prostate brachytherapy (PPB) is a common treatment for early stage prostate cancer. While the modern approach using trans-rectal ultrasound guidance has demonstrated excellent outcome, the efficacy of PPB depends on achieving complete radiation dose coverage of the prostate by obtaining a proper radiation source (seed) distribution. Currently, brachytherapy seed placement is guided by trans-rectal ultrasound imaging and fluoroscopy. A significant percentage of seeds are not detected by trans-rectal ultrasound because certain seed orientations are invisible making accurate intra-operative feedback of radiation dosimetry very difficult, if not impossible. Therefore, intra-operative correction of suboptimal seed distributions cannot easily be done with current methods. Vibro-acoustography (VA) is an imaging modality that is capable of imaging solids at any orientation, and the resulting images are speckle free. Objective and methods The purpose of this study is to compare the capabilities of VA and pulse-echo ultrasound in imaging PPB seeds at various angles and show the sensitivity of detection to seed orientation. In the VA experiment, two intersecting ultrasound beams driven at f1 = 3.00 MHz and f2 = 3.020 MHz respectively were focused on the seeds attached to a latex membrane while the amplitude of the acoustic emission produced at the difference frequency 20 kHz was detected by a low frequency hydrophone. Results Finite element simulations and results of experiments conducted under well-controlled conditions in a water tank on a series of seeds indicate that the seeds can be detected at any orientation with VA, whereas pulse-echo ultrasound is very sensitive to the seed orientation. Conclusion It is concluded that vibro-acoustography is superior to pulse-echo ultrasound for detection of PPB seeds. PMID:18538365

  17. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes.

    PubMed

    Fujikake, T; Hart, R; Nosaka, Kazunori

    2009-04-01

    This study tested the hypothesis that infiltration of inflammatory cells in muscle fibers would increase echo intensity (image brightness) of B-mode ultrasound images. Bupivacaine hydrochloride (BPVC) or saline solution (SAL) was injected to the tibialis anterior (TA) muscles of 14- to 23-wk-old male Wistar rats. Ultrasound images were taken from the muscles before and at 0, 2, 4, 6, 9, 12, 24, 48, 72, 120, 168 and 336 h after the injection and analyzed for the echo intensity (echogenicity) expressed as the mean value of image pixel value of a region-of-interest. Changes in the echo intensity were compared between BPVC-injected and control or SAL-injected muscles. In the subsequent study, rats (n = 2 per time point) were sacrificed after taking ultrasound image at 0, 2, 6, 12, 24, 48 and 168 h after BPVC injection to the right TA and SAL injection to the left TA to observe histologic changes under a light microscope and the relationship between echo intensity and inflammatory cells was assessed. No significant changes in echo intensity were observed for the control, but BPVC induced significant (p < 0.05) increases in the echo intensity peaking 0 to 24 h postinjection. SAL also increased echo intensity immediately after injection but returned to the baseline by 24 h postinjection. The time course of changes in the echo intensity did not match with the time course of increases in inflammatory cells in the muscle. It is concluded that infiltration of inflammatory cells is not a direct cause of the increased echo intensity.

  18. Overview of the physics of US.

    PubMed

    Goldstein, A

    1993-05-01

    In ultrasonography (US), high-frequency sound waves are transmitted through the body by a transducer. When a transmitted ultrasound pulse encounters a tissue target, some of its energy is deflected back to the transducer. The time of flight of this ultrasound echo is used to calculate depth of the target in the transducer beam. The pulse-echo parameters used in the formation of images include echo amplitude, target spatial position, and frequency shift between the transmitted pulse and the received echo. The first two are displayed in gray-scale images and all three in color flow images. In gray-scale US, echo amplitude is encoded into shades of gray, with the lighter shades representing higher amplitude echoes. In color flow US, velocity of moving blood is usually presented in blue for motion toward the transducer and in red for motion away from it. A Doppler spectrum depicts changing blood velocity as a function of time. US has become more clinically valuable due to its ability to demonstrate soft-tissue structures, real-time imaging capability, relative safety, portability, and cost-effectiveness.

  19. A new needle on the block: EchoTip ProCore endobronchial ultrasound needle

    PubMed Central

    Dincer, H Erhan; Andrade, Rafael; Zamora, Felix; Podgaetz, Eitan

    2016-01-01

    Endobronchial ultrasound has become the first choice standard of care procedure to diagnose benign or malignant lesions involving mediastinum and lung parenchyma adjacent to the airways owing to its characteristics of being real-time and minimally invasive. Although the incidence of lung cancer has been decreasing, it is and will be the leading cause of cancer-related mortality in the next few decades. When compared to other cancers, lung cancer kills more females than breast and colon cancers combined and more males than colon and prostate cancers combined. The type of lung cancer has changed in recent decades and adenocarcinoma has become the most frequent cell type. Prognosis of lung cancer depends upon the cell type and the staging at the time of diagnosis. The cell type and molecular characteristics of adenocarcinoma may allow individualized targeted treatment. Other malignant conditions in the mediastinum and lung (eg, metastatic lung cancers and lymphoma) can be biopsied using endobronchial ultrasound needles. Endobronchial ultrasound needle biopsies provides mostly cytology specimens due to its small sizes of needles (22 gauge or larger) which may not give enough tissue to make a definitive diagnosis in malignant (eg, lymphoma) or benign conditions (eg, sarcoidosis). EchoTip ProCore endobronchial needle released in early 2014 provides histologic biopsy material. Larger tissue biopsies may potentially provide a higher diagnostic yield and it eliminates mediastinoscopy or other surgical interventions. Here we aim to review bronchoscopic approach in the diagnosis of mediastinal lesions with emphasis of EchoTip ProCore needles. PMID:27099535

  20. Using ultrasound CBE imaging without echo shift compensation for temperature estimation.

    PubMed

    Tsui, Po-Hsiang; Chien, Yu-Ting; Liu, Hao-Li; Shu, Yu-Chen; Chen, Wen-Shiang

    2012-09-01

    Clinical trials have demonstrated that hyperthermia improves cancer treatments. Previous studies developed ultrasound temperature imaging methods, based on the changes in backscattered energy (CBE), to monitor temperature variations during hyperthermia. Echo shift, induced by increasing temperature, contaminates the CBE image, and its tracking and compensation should normally ensure that estimations of CBE at each pixel are correct. To obtain a simplified algorithm that would allow real-time computation of CBE images, this study evaluated the usefulness of CBE imaging without echo shift compensation in detecting distributions in temperature. Experiments on phantoms, using different scatterer concentrations, and porcine livers were conducted to acquire raw backscattered data at temperatures ranging from 37°C to 45°C. Tissue samples of pork tenderloin were ablated in vitro by microwave irradiation to evaluate the feasibility of using the CBE image without compensation to monitor tissue ablation. CBE image construction was based on a ratio map obtained from the envelope image divided by the reference envelope image at 37°C. The experimental results demonstrated that the CBE image obtained without echo shift compensation has the ability to estimate temperature variations induced during uniform heating or tissue ablation. The magnitude of the CBE as a function of temperature obtained without compensation is stronger than that with compensation, implying that the CBE image without compensation has a better sensitivity to detect temperature. These findings suggest that echo shift tracking and compensation may be unnecessary in practice, thus simplifying the algorithm required to implement real-time CBE imaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  2. Quantitative Evaluation for Differentiating Malignant and Benign Thyroid Nodules Using Histogram Analysis of Grayscale Sonograms.

    PubMed

    Nam, Se Jin; Yoo, Jaeheung; Lee, Hye Sun; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kwak, Jin Young

    2016-04-01

    To evaluate the diagnostic value of histogram analysis using grayscale sonograms for differentiation of malignant and benign thyroid nodules. From July 2013 through October 2013, 579 nodules in 563 patients who had undergone ultrasound-guided fine-needle aspiration were included. For the grayscale histogram analysis, pixel echogenicity values in regions of interest were measured as 0 to 255 (0, black; 255, white) with in-house software. Five parameters (mean, skewness, kurtosis, standard deviation, and entropy) were obtained for each thyroid nodule. With principal component analysis, an index was derived. Diagnostic performance rates for the 5 histogram parameters and the principal component analysis index were calculated. A total of 563 patients were included in the study (mean age ± SD, 50.3 ± 12.3 years;range, 15-79 years). Of the 579 nodules, 431 were benign, and 148 were malignant. Among the 5 parameters and the principal component analysis index, the standard deviation (75.546 ± 14.153 versus 62.761 ± 16.01; P < .001), kurtosis (3.898 ± 2.652 versus 6.251 ± 9.102; P < .001), entropy (0.16 ± 0.135 versus 0.239 ± 0.185; P < .001), and principal component analysis index (-0.386±0.774 versus 0.134 ± 0.889; P < .001) were significantly different between the malignant and benign nodules. With the calculated cutoff values, the areas under the curve were 0.681 (95% confidence interval, 0.643-0.721) for standard deviation, 0.661 (0.620-0.703) for principal component analysis index, 0.651 (0.607-0.691) for kurtosis, 0.638 (0.596-0.681) for entropy, and 0.606 (0.563-0.647) for skewness. The subjective analysis of grayscale sonograms by radiologists alone showed an area under the curve of 0.861 (0.833-0.888). Grayscale histogram analysis was feasible for differentiating malignant and benign thyroid nodules but did not show better diagnostic performance than subjective analysis performed by radiologists. Further technical advances will be needed to objectify

  3. Conventional vs  invert-grayscale X-ray for diagnosis of pneumothorax in the emergency setting.

    PubMed

    Musalar, Ekrem; Ekinci, Salih; Ünek, Orkun; Arş, Eda; Eren, Hakan Şevki; Gürses, Bengi; Aktaş, Can

    2017-09-01

    Pneumothorax is a pathologic condition in which air is accumulated between the visceral and parietal pleura. After clinical suspicion, in order to diagnose the severity of the condition, imaging is necessary. By using the help of Picture Archiving and Communication Systems (PACS) direct conventional X-rays are converted to gray-scale and this has become a preferred method among many physicians. Our study design was a case-control study with cross-over design study. Posterior-anterior chest X-rays of patients were evaluated for pneumothorax by 10 expert physicians with at least 3years of experience and who have used inverted gray-scale posterior anterior chest X-ray for diagnosing pneumothorax. The study included posterior anterior chest X-ray images of 268 patients of which 106 were diagnosed with spontaneous pneumothorax and 162 patients used as a control group. The sensitivity of Digital-conventional X-rays was found to be higher than that of inverted gray-scale images (95% CI (2,08-5,04), p<0,01). There was no statistically significant difference between the gold standard and digital-conventional images (95% CI (0,45-2,17), p=0,20), while the evaluations of the gray-scale images were found to be less sensitive for diagnosis (95% CI (3,16-5,67) p<0,01). Inverted gray-scale imaging is not a superior imaging modality over digital-conventional X-ray for the diagnosis of pneumothorax. Prospective studies should be performed where diagnostic potency of inverted gray-scale radiograms is tested against gold standard chest CT. Further research should compare inverted grayscale to lung ultrasound to assess them as alternatives prior to CT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Association between exercise intensity and renal blood flow evaluated using ultrasound echo.

    PubMed

    Kawakami, Shotaro; Yasuno, Tetsuhiko; Matsuda, Takuro; Fujimi, Kanta; Ito, Ai; Yoshimura, Saki; Uehara, Yoshinari; Tanaka, Hiroaki; Saito, Takao; Higaki, Yasuki

    2018-03-10

    High-intensity exercise reduces renal blood flow (RBF) and may transiently exacerbate renal dysfunction. RBF has previously been measured invasively by administration of an indicator material; however, non-invasive measurement is now possible with technological innovations. This study examined variations in RBF at different exercise intensities using ultrasound echo. Eight healthy men with normal renal function (eGFR cys 114 ± 19 mL/min/1.73 m 2 ) participated in this study. Using a bicycle ergometer, participants underwent an incremental exercise test using a ramp protocol (20 W/min) until exhaustion in Study 1 and the lactate acid breaking point (LaBP) was calculated. Participants underwent a multi-stage test at exercise intensities of 60, 80, 100, 120, and 140% LaBP in Study 2. RBF was measured by ultrasound echo at rest and 5 min after exercise in Study 1 and at rest and immediately after each exercise in Study 2. To determine the mechanisms behind RBF decline, a catheter was placed into the antecubital vein to study vasoconstriction dynamics. RBF after maximum exercise decreased by 51% in Study 1. In Study 2, RBF showed no significant decrease until 80% LaBP, and showed a significant decrease (31%) at 100% LaBP compared with at rest (p < 0.01). The sympathetic nervous system may be involved in this reduction in RBF. RBF showed no significant decrease until 80% LaBP, and decreased with an increase in blood lactate. Reduction in RBF with exercise above the intensity at LaBP was due to decreased cross-sectional area rather than time-averaged flow velocity.

  5. Comparison Between Various Color Spectra and Conventional Grayscale Imaging for Detection of Parenchymal Liver Lesions With B-Mode Sonography.

    PubMed

    Merkel, Daniel; Brinkmann, Eckard; Kämmer, Joerg C; Köhler, Miriam; Wiens, Daniel; Derwahl, Karl-Michael

    2015-09-01

    The electronic colorization of grayscale B-mode sonograms using various color schemes aims to enhance the adaptability and practicability of B-mode sonography in daylight conditions. The purpose of this study was to determine the diagnostic effectiveness and importance of colorized B-mode sonography. Fifty-three video sequences of sonographic examinations of the liver were digitized and subsequently colorized in 2 different color combinations (yellow-brown and blue-white). The set of 53 images consisted of 33 with isoechoic masses, 8 with obvious lesions of the liver (hypoechoic or hyperechoic), and 12 with inconspicuous reference images of the liver. The video sequences were combined in a random order and edited into half-hour video clips. Isoechoic liver lesions were successfully detected in 58% of the yellow-brown video sequences and in 57% of the grayscale video sequences (P = .74, not significant). Fifty percent of the isoechoic liver lesions were successfully detected in the blue-white video sequences, as opposed to a 55% detection rate in the corresponding grayscale video sequences (P= .11, not significant). In 2 subgroups, significantly more liver lesions were detected with grayscale sonography compared to blue-white sonography. Yellow-brown-colorized B-mode sonography appears to be similarly effective for detection of isoechoic parenchymal liver lesions as traditional grayscale sonography. Blue-white colorization in B-mode sonography is probably not as effective as grayscale sonography, although a statistically significant disadvantage was shown only in the subgroup of hyperechoic liver lesions. © 2015 by the American Institute of Ultrasound in Medicine.

  6. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.

    PubMed

    Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang

    2016-09-27

    Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.

  7. Diagnostic ultrasound imaging for lateral epicondylalgia: a case-control study.

    PubMed

    Heales, Luke James; Broadhurst, Nathan; Mellor, Rebecca; Hodges, Paul William; Vicenzino, Bill

    2014-11-01

    Lateral epicondylalgia (LE) is clinically diagnosed as pain over the lateral elbow that is provoked by gripping. Usually, LE responds well to conservative intervention; however, those who fail such treatment require further evaluation, including musculoskeletal ultrasound. Previous studies of musculoskeletal ultrasound have methodological flaws, such as lack of assessor blinding and failure to control for participant age, sex, and arm dominance. The purpose of this study was to assess the diagnostic use of blinded ultrasound imaging in people with clinically diagnosed LE compared with that in a control group matched for age, sex, and arm dominance. Participants (30 with LE and 30 controls) underwent clinical examination as the criterion standard test. Unilateral LE was defined as pain over the lateral epicondyle, which was provoked by palpation, resisted wrist and finger extension, and gripping. Controls without symptoms were matched for age, sex, and arm dominance. Ultrasound investigations were performed by two sonographers using a standardized protocol. Grayscale images were assessed for signs of tendon pathology and rated on a four-point ordinal scale. Power Doppler was used to assess neovascularity and rated on a five-point ordinal scale. The combination of grayscale and power Doppler imaging revealed an overall sensitivity of 90% and specificity of 47%. The positive and negative likelihood ratios for combined grayscale and power Doppler imaging were 1.69 and 0.21, respectively. Although ultrasound imaging helps confirm the absence of LE, when findings are negative for tendinopathic changes, the high prevalence of tendinopathic changes in pain-free controls challenges the specificity of the measure. The validity of ultrasound imaging to confirm tendon pathology in clinically diagnosed LE requires further study with strong methodology.

  8. PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology.

    PubMed

    Araki, Tadashi; Ikeda, Nobutaka; Shukla, Devarshi; Jain, Pankaj K; Londhe, Narendra D; Shrivastava, Vimal K; Banchhor, Sumit K; Saba, Luca; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S

    2016-05-01

    Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup. This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS). Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K=10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS. This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary

  9. Real-time monitoring of ultrasound imaging of clinical high intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Ter Haar, Gail; Kennedy, James; Leslie, Tom; Wu, Feng

    2005-09-01

    Currently, many clinical devices use the change in gray scale seen on a real-time ultrasound image for the assessment of the success of HIFU treatment. It has been shown previously that, for a single HIFU lesion, the presence of gray-scale change was indicative of successful ablation in 100% of cases for 1.6-MHz beams, and in 90% of cases for 0.8-MHz exposures. The absence of gray-scale change was a reliable indicator of lack of ablative damage only for 0.8-MHz exposures (80%) in 80% of exposures using 1.6-MHz beams there was a lesion even in the absence of gray-scale change. This study has been extended to more realistic clinical treatment protocols. The image appearance has been studied for the different volume ablation techniques that are used in the treatment of liver and kidney cancer. The results will be presented.

  10. Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images

    NASA Astrophysics Data System (ADS)

    Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua

    2018-04-01

    Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.

  11. Suitability of the echo-time-shift method as laboratory standard for thermal ultrasound dosimetry

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Tina; Georg, Olga; Haller, Julian; Jenderka, Klaus-Vitold

    2017-03-01

    Ultrasound therapy is a promising, non-invasive application with potential to significantly improve cancer therapies like surgery, viro- or immunotherapy. This therapy needs faster, cheaper and more easy-to-handle quality assurance tools for therapy devices as well as possibilities to verify treatment plans and for dosimetry. This limits comparability and safety of treatments. Accurate spatial and temporal temperature maps could be used to overcome these shortcomings. In this contribution first results of suitability and accuracy investigations of the echo-time-shift method for two-dimensional temperature mapping during and after sonication are presented. The analysis methods used to calculate time-shifts were a discrete frame-to-frame and a discrete frame-to-base-frame algorithm as well as a sigmoid fit for temperature calculation. In the future accuracy could be significantly enhanced by using continuous methods for time-shift calculation. Further improvements can be achieved by improving filtering algorithms and interpolation of sampled diagnostic ultrasound data. It might be a comparatively accurate, fast and affordable method for laboratory and clinical quality control.

  12. Grayscale transparent metasurface holograms

    DOE PAGES

    Wang, Lei; Kruk, Sergey; Tang, Hanzhi; ...

    2016-12-16

    In this paper, we demonstrate transparent metaholograms based on silicon metasurfaces that allow high-resolution grayscale images to be encoded. Finally, the holograms feature the highest diffraction and transmission efficiencies, and operate over a broad spectral range.

  13. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  14. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  15. Grayscale photomask fabricated by laser direct writing in metallic nano-films.

    PubMed

    Guo, Chuan Fei; Cao, Sihai; Jiang, Peng; Fang, Ying; Zhang, Jianming; Fan, Yongtao; Wang, Yongsheng; Xu, Wendong; Zhao, Zhensheng; Liu, Qian

    2009-10-26

    The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.

  16. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes.

    PubMed

    Ariyoshi, Kyoko; Okuya, Shigeru; Kunitsugu, Ichiro; Matsunaga, Kimie; Nagao, Yuko; Nomiyama, Ryuta; Takeda, Komei; Tanizawa, Yukio

    2015-01-01

    Measurements of plaque echogenicity, the gray-scale median (GSM), were shown to correlate inversely with risk factors for cerebro-cardiovascular disease (CVD). The eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio is a potential predictor of CVD risk. In the present study, we assessed the usefulness of carotid plaque GSM values and EPA/AA ratios in atherosclerotic diabetics. A total of 84 type 2 diabetics with carotid artery plaques were enrolled. On admission, platelet aggregation and lipid profiles, including EPA and AA, were examined. Using ultrasound, mean intima media thickness and plaque score were measured in carotid arteries. Plaque echogenicity was evaluated using computer-assisted quantification of GSM. The patients were then further observed for approximately 3 years. Gray-scale median was found to be a good marker of CVD events. On multivariate logistic regression analysis, GSM <32 and plaque score ≥5 were significantly associated with past history and onset of CVD during the follow-up period, the odds ratios being 7.730 (P = 0.014) and 4.601 (P = 0.046), respectively. EPA/AA showed a significant correlation with GSM (P = 0.012) and high-density lipoprotein cholesterol (P = 0.039), and an inverse correlation with platelet aggregation (P = 0.046) and triglyceride (P = 0.020). Although most patients with CVD had both low GSM and low EPA/AA values, an association of EPA/AA with CVD events could not be statistically confirmed. The present results suggest the GSM value to be useful as a reference index for CVD events in high-risk atherosclerotic diabetics. Associations of the EPA/AA ratio with known CVD risk factors warrant a larger and more extensive study to show the usefulness of this parameter.

  17. Ultrasound analysis of gray-scale median value of carotid plaques is a useful reference index for cerebro-cardiovascular events in patients with type 2 diabetes

    PubMed Central

    Ariyoshi, Kyoko; Okuya, Shigeru; Kunitsugu, Ichiro; Matsunaga, Kimie; Nagao, Yuko; Nomiyama, Ryuta; Takeda, Komei; Tanizawa, Yukio

    2015-01-01

    Aims/Introduction Measurements of plaque echogenicity, the gray-scale median (GSM), were shown to correlate inversely with risk factors for cerebro-cardiovascular disease (CVD). The eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio is a potential predictor of CVD risk. In the present study, we assessed the usefulness of carotid plaque GSM values and EPA/AA ratios in atherosclerotic diabetics. Materials and Methods A total of 84 type 2 diabetics with carotid artery plaques were enrolled. On admission, platelet aggregation and lipid profiles, including EPA and AA, were examined. Using ultrasound, mean intima media thickness and plaque score were measured in carotid arteries. Plaque echogenicity was evaluated using computer-assisted quantification of GSM. The patients were then further observed for approximately 3 years. Results Gray-scale median was found to be a good marker of CVD events. On multivariate logistic regression analysis, GSM <32 and plaque score ≥5 were significantly associated with past history and onset of CVD during the follow-up period, the odds ratios being 7.730 (P = 0.014) and 4.601 (P = 0.046), respectively. EPA/AA showed a significant correlation with GSM (P = 0.012) and high-density lipoprotein cholesterol (P = 0.039), and an inverse correlation with platelet aggregation (P = 0.046) and triglyceride (P = 0.020). Although most patients with CVD had both low GSM and low EPA/AA values, an association of EPA/AA with CVD events could not be statistically confirmed. Conclusions The present results suggest the GSM value to be useful as a reference index for CVD events in high-risk atherosclerotic diabetics. Associations of the EPA/AA ratio with known CVD risk factors warrant a larger and more extensive study to show the usefulness of this parameter. PMID:25621138

  18. Doppler color imaging. Principles and instrumentation.

    PubMed

    Kremkau, F W

    1992-01-01

    DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.

  19. Quantitative Contrast-Enhanced Ultrasound Parameters in Crohn Disease: Their Role in Disease Activity Determination With Ultrasound.

    PubMed

    Medellin-Kowalewski, Alexandra; Wilkens, Rune; Wilson, Alexandra; Ruan, Ji; Wilson, Stephanie R

    2016-01-01

    The primary objective of our study was to examine the association between contrast-enhanced ultrasound (CEUS) parameters and established gray-scale ultrasound with color Doppler imaging (CDI) for the determination of disease activity in patients with Crohn disease. Our secondary objective was to develop quantitative time-signal intensity curve thresholds for disease activity. One hundred twenty-seven patients with Crohn disease underwent ultrasound with CDI and CEUS. Reviewers graded wall thickness, inflammatory fat, and mural blood flow as showing remission or inflammation (mild, moderate, or severe). If both gray-scale ultrasound and CDI predicted equal levels of disease activity, the studies were considered concordant. If ultrasound images suggested active disease not supported by CDI findings, the ultrasound results for disease activity were indeterminate. Time-signal intensity curves from CEUS were acquired with calculation of peak enhancement (PE), and AUCs. Interobserver variation and associations between PE and ultrasound parameters were examined. Multiclass ROC analysis was used to develop CEUS thresholds for activity. Ninety-six (76%) studies were concordant, 19 of which showed severe disease, and 31 (24%) studies were indeterminate. Kappa analyses revealed good interobserver agreement on grades for CDI (κ = 0.76) and ultrasound (κ = 0.80) assessments. PE values on CEUS and wall thickness showed good association with the Spearman rank correlation coefficient for the entire population (ρ = 0.62, p < 0.01) and for the concordant group (ρ = 0.70, p < 0.01). Multiclass ROC analyses of the concordant group using wall thickness alone as the reference standard showed cutoff points of 18.2 dB for differentiating mild versus moderate activity (sensitivity, 89.0% and specificity, 87.0%) and 23.0 dB for differentiating moderate versus severe (sensitivity, 90% and specificity, 86.8%). Almost identical cutoff points were observed when using ultrasound global

  20. Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content.

    PubMed

    Zhang, Bo; Ding, Fang; Chen, Tian; Xia, Liang-Hua; Qian, Juan; Lv, Guo-Yi

    2014-12-21

    To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. A total of 170 subjects were enrolled in this study. All subjects were examined by ultrasound and (1)H-magnetic resonance spectroscopy ((1)H-MRS) on the same day. The ultrasound hepatic/renal echo-intensity ratio and ultrasound hepatic echo-intensity attenuation rate were obtained from ordinary ultrasound images using the MATLAB program. Correlation analysis revealed that the ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate were significantly correlated with (1)H-MRS liver fat content (ultrasound hepatic/renal ratio: r = 0.952, P = 0.000; hepatic echo-intensity attenuation r = 0.850, P = 0.000). The equation for predicting liver fat content by ultrasound (quantitative ultrasound model) is: liver fat content (%) = 61.519 × ultrasound hepatic/renal ratio + 167.701 × hepatic echo-intensity attenuation rate -26.736. Spearman correlation analysis revealed that the liver fat content ratio of the quantitative ultrasound model was positively correlated with serum alanine aminotransferase, aspartate aminotransferase, and triglyceride, but negatively correlated with high density lipoprotein cholesterol. Receiver operating characteristic curve analysis revealed that the optimal point for diagnosing fatty liver was 9.15% in the quantitative ultrasound model. Furthermore, in the quantitative ultrasound model, fatty liver diagnostic sensitivity and specificity were 94.7% and 100.0%, respectively, showing that the quantitative ultrasound model was better than conventional ultrasound methods or the combined ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate. If the (1)H-MRS liver fat content had a value < 15%, the sensitivity and specificity of the ultrasound quantitative model would be 81.4% and 100%, which still shows that using

  1. Origin of the anomalous decrease in the apparent density of polymer gels observed by multi-echo reflection ultrasound spectroscopy.

    PubMed

    Takeda, Kohsuke; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui

    2013-07-01

    Multi-echo reflection ultrasound spectroscopy (MERUS), which enables one to simultaneously evaluate the attenuation coefficient α, the sound velocity v and the density ρ, has been developed for measurements of elastic moduli. In the present study, the technique was further developed to analyze systems undergoing gelation where an unphysical decrease in the apparent density was previously observed after polymerization. The main reason for this problem was that the shrinkage accompanying the gelation led to a small gap between the cell wall and the sample, resulting in the superposition of the reflected signals which were not separable into individual components. By taking into account the multiply reflecting echoes at the interface of the gap, the corrected densities were systematically obtained and compared with the results for the floating test. The present technique opens a new route to simultaneously evaluate the three parameters α, v and ρ and also the sample thickness for solid thin films. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Grayscale Optical Correlator Workbench

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin

    2006-01-01

    Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.

  3. Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.

    PubMed

    Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P

    2015-01-01

    We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.

  4. A new scoring model for characterization of adnexal masses based on two-dimensional gray-scale and colour Doppler sonographic features

    PubMed Central

    Abbas, A.M.; Zahran, K.M.; Nasr, A.; Kamel, H.S.

    2014-01-01

    Objective: To determine the most discriminating two-dimensional gray-scale and colour Doppler sonographic features that allow differentiation between malignant and benign adnexal masses, and to develop a scoring model that would enable more accurate diagnosis with those features. Methods: A cross sectional prospective study was conducted on patients scheduled for surgery due to presence of adnexal masses at Woman’s Health Center, Assiut University, Egypt between October 2012 and October 2013. All patients were evaluated by 2D ultrasound for morphological features of the masses combined with colour Doppler examination of their vessels. The final diagnosis, based on histopathological analysis, was used as a gold standard. Results: One hundred forty-six patients were recruited, 104 with benign masses, 42 with malignant masses. Features that allowed statistically significant discrimination of benignity from malignancy were; volume of mass, type of mass, presence and thickness of septae, presence and length of papillary projections, location of vessels at colour Doppler and colour score. A scoring model was formulated combining these features together; Assiut Scoring Model (ASM). The cut-off level with the highest accuracy in detection of malignancy, was ≥6, had a sensitivity of 93.5% and specificity of 92.2%. Conclusion: Our Scoring Model; a multiparameter scoring using four gray-scale ultrasound and two colour Doppler features, had shown a high sensitivity and specificity for prediction of malignancy in adnexal masses compared with previous scoring systems. PMID:25009729

  5. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  6. The utility of ultrasound in patients with melanoma.

    PubMed

    Uren, Roger F; Sanki, Amira; Thompson, John F

    2007-11-01

    The highest quality gray-scale ultrasound images are obtained with high-frequency transducers; however, such high frequencies do not penetrate more than a few centimeters into body tissue. Fortunately, in patients with melanoma, the structures of interest are close to the skin surface, making them ideal targets for examination with high-resolution ultrasound. These include primary cutaneous melanomas, uveal melanomas and the regional lymph nodes draining the skin that lie in the axilla, groin, neck and other locations. Although ultrasound study of primary melanomas arising in the skin and eye has provided some insights, a major role for ultrasound has evolved recently, to provide early detection of metastatic melanoma in regional lymph nodes. Ultrasound is clearly superior to clinical palpation of the nodes during follow-up and, when combined with guided fine-needle biopsy, allows the earliest possible surgical intervention for regional nodal metastases. In the future the use of ultrasound contrast agents may improve the sensitivity of ultrasound in the detection of very small metastatic deposits.

  7. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  8. Computer model for harmonic ultrasound imaging.

    PubMed

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. Here, the authors present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  9. Does use of a PACS increase the number of images per study? A case study in ultrasound.

    PubMed

    Horii, Steven; Nisenbaum, Harvey; Farn, James; Coleman, Beverly; Rowling, Susan; Langer, Jill; Jacobs, Jill; Arger, Peter; Pinheiro, Lisa; Klein, Wendy; Reber, Michele; Iyoob, Christopher

    2002-03-01

    The purpose of this study was to determine if the use of a picture archiving and communications system (PACS) in ultrasonography increased the number of images acquired per examination. The hypothesis that such an increase does occur was based on anecdotal information; this study sought to test the hypothesis. A random sample of all ultrasound examination types was drawn from the period 1998 through 1999. The ultrasound PACS in use (ACCESS; Kodak Health Information Systems, Dallas, TX) records the number of grayscale and color images saved as part of each study. Each examination in the sample was checked in the ultrasound PACS database,.and the number of grayscale and color images was recorded. The comparison film-based sample was drawn from the period 1994 through 1995. The number of examinations of each type selected was based on the overall statistics of the section; that is, the sample was designed to represent the approximate frequency with which the various examination types are done. For film-based image counts, the jackets were retrieved, and the number of grayscale and color images were counted. The number of images obtained per examination (for most examinations) in ultrasound increased with PACS use. This was more evident with some examination types (eg, pelvis). This result, however, has to be examined for possible systematic biases because ultrasound practice has changed over the time since the authors stopped using film routinely. The use of PACS in ultrasonography was not associated with an increase in the number of images per examination based solely on the use of PACS, with the exception of neonatal head studies. Increases in the number of images per study was otherwise associated with examinations for which changes in protocols resulted in the increased image counts.

  10. Endoscopic ultrasound for the characterization and staging of rectal cancer. Current state of the method. Technological advances and perspectives.

    PubMed

    Gersak, Mariana M; Badea, Radu; Graur, Florin; Hajja, Nadim Al; Furcea, Luminita; Dudea, Sorin M

    2015-06-01

    Endoscopic ultrasound is the most accurate type of examination for the assessment of rectal tumors. Over the years, the method has advanced from gray-scale examination to intravenous contrast media administration and to different types of elastography. The multimodal approach of tumors (transrectal, transvaginal) is adapted to each case. 3D ultrasound is useful for spatial representation and precise measurement of tumor formations, using CT/MR image reconstruction; color elastography is useful for tumor characterization and staging; endoscopic ultrasound using intravenous contrast agents can help study the amount of contrast agent targeted at the level of the tumor formations and contrast wash-in/wash-out time, based on the curves displayed on the device. The transvaginal approach often allows better visualization of the tumor than the transrectal approach. Performing the procedure with the rectal ampulla distended with contrast agent may be seen as an optimization of the examination methodology. All these aspects are additional methods for gray-scale endoscopic ultrasound, capable of increasing diagnostic accuracy. This paper aims at reviewing the progress of transrectal and transvaginal ultrasound, generically called endoscopic ultrasound, for rectal tumor diagnosis and staging, with emphasis on the current state of the method and its development trends.

  11. 3D Microfabrication Using Emulsion Mask Grayscale Photolithography Technique

    NASA Astrophysics Data System (ADS)

    Lee, Tze Pin; Mohamed, Khairudin

    2016-02-01

    Recently, the rapid development of technology such as biochips, microfluidic, micro-optical devices and micro-electromechanical-systems (MEMS) demands the capability to create complex design of three-dimensional (3D) microstructures. In order to create 3D microstructures, the traditional photolithography process often requires multiple photomasks to form 3D pattern from several stacked photoresist layers. This fabrication method is extremely time consuming, low throughput, costly and complicated to conduct for high volume manufacturing scale. On the other hand, next generation lithography such as electron beam lithography (EBL), focused ion beam lithography (FIB) and extreme ultraviolet lithography (EUV) are however too costly and the machines require expertise to setup. Therefore, the purpose of this study is to develop a simplified method in producing 3D microstructures using single grayscale emulsion mask technique. By using this grayscale fabrication method, microstructures of thickness as high as 500μm and as low as 20μm are obtained in a single photolithography exposure. Finally, the fabrication of 3D microfluidic channel has been demonstrated by using this grayscale photolithographic technique.

  12. Video framerate, resolution and grayscale tradeoffs for undersea telemanipulator

    NASA Technical Reports Server (NTRS)

    Ranadive, V.; Sheridan, T. B.

    1981-01-01

    The product of Frame Rate (F) in frames per second, Resolution (R) in total pixels and grayscale in bits (G) equals the transmission band rate in bits per second. Thus for a fixed channel capacity there are tradeoffs between F, R and G in the actual sampling of the picture for a particular manual control task in the present case remote undersea manipulation. A manipulator was used in the MASTER/SLAVE mode to study these tradeoffs. Images were systematically degraded from 28 frames per second, 128 x 128 pixels and 16 levels (4 bits) grayscale, with various FRG combinations constructed from a real-time digitized (charge-injection) video camera. It was found that frame rate, resolution and grayscale could be independently reduced without preventing the operator from accomplishing his/her task. Threshold points were found beyond which degradation would prevent any successful performance. A general conclusion is that a well trained operator can perform familiar remote manipulator tasks with a considerably degrade picture, down to 50 K bits/ sec.

  13. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  14. Experimental investigation of distinguishable and non-distinguishable grayscales applicable in active-matrix organic light-emitting diodes for quality engineering

    NASA Astrophysics Data System (ADS)

    Yang, Henglong; Chang, Wen-Cheng; Lin, Yu-Hsuan; Chen, Ming-Hong

    2017-08-01

    The distinguishable and non-distinguishable 6-bit (64) grayscales of green and red organic light-emitting diode (OLED) were experimentally investigated by using high-sensitive photometric instrument. The feasibility of combining external detection system for quality engineering to compensate the grayscale loss based on preset grayscale tables was also investigated by SPICE simulation. The degradation loss of OLED deeply affects image quality as grayscales become inaccurate. The distinguishable grayscales are indicated as those brightness differences and corresponding current increments are differentiable by instrument. The grayscales of OLED in 8-bit (256) or higher may become nondistinguishable as current or voltage increments are in the same order of noise level in circuitry. The distinguishable grayscale tables for individual red, green, blue, and white colors can be experimentally established as preset reference for quality engineering (QE) in which the degradation loss is compensated by corresponding grayscale numbers shown in preset table. The degradation loss of each OLED colors is quantifiable by comparing voltage increments to those in preset grayscale table if precise voltage increments are detectable during operation. The QE of AMOLED can be accomplished by applying updated grayscale tables. Our preliminary simulation result revealed that it is feasible to quantify degradation loss in terms of grayscale numbers by using external detector circuitry.

  15. Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems.

    PubMed

    Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong

    2017-10-23

    The impact of high-voltage-high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between -13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers.

  16. Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems

    PubMed Central

    Choi, Hojong; Park, Chulwoo; Kim, Jungsuk; Jung, Hayong

    2017-01-01

    The impact of high-voltage–high-frequency (HVHF) amplifiers on echo-signal quality is greater with very-high-frequency (VHF, ≥100 MHz) ultrasound transducers than with low-frequency (LF, ≤15 MHz) ultrasound transducers. Hence, the bias voltage of an HVHF amplifier must be stabilized to ensure stable echo-signal amplitudes. We propose a bias-voltage stabilizer circuit to maintain stable DC voltages over a wide input range, thus reducing the harmonic-distortion components of the echo signals in VHF pulse-echo measurement systems. To confirm the feasibility of the bias-voltage stabilizer, we measured and compared the deviations in the gain of the HVHF amplifier with and without a bias-voltage stabilizer. Between −13 and 26 dBm, the measured gain deviations of a HVHF amplifier with a bias-voltage stabilizer are less than that of an amplifier without a bias-voltage stabilizer. In order to confirm the feasibility of the bias-voltage stabilizer, we compared the pulse-echo responses of the amplifiers, which are typically used for the evaluation of transducers or electronic components used in pulse-echo measurement systems. From the responses, we observed that the amplitudes of the echo signals of a VHF transducer triggered by the HVHF amplifier with a bias-voltage stabilizer were higher than those of the transducer triggered by the HVHF amplifier alone. The second, third, and fourth harmonic-distortion components of the HVHF amplifier with the bias-voltage stabilizer were also lower than those of the HVHF amplifier alone. Hence, the proposed scheme is a promising method for stabilizing the bias voltage of an HVHF amplifier, and improving the echo-signal quality of VHF transducers. PMID:29065526

  17. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  18. Fuzzy Matching Based on Gray-scale Difference for Quantum Images

    NASA Astrophysics Data System (ADS)

    Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia

    2018-05-01

    Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.

  19. Dance of the Light Echoes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    light echo is the largest ever seen, stretching more than 300 light-years away from Cassiopeia A. If viewed from Earth, the entire frame would take up the same amount of space as seven full moons. The supernova remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    The earliest Spitzer image shown here was taken in February 2005, and the latest one in January 2008. The image was processed to emphasize the light echo by enhancing the areas that change, which appear in color, and dimming regions that remain constant, seen in grayscale. Spurious color artifacts such as diffraction spikes around stars were removed by hand.

  20. Real-time gray-scale photolithography for fabrication of continuous microstructure

    NASA Astrophysics Data System (ADS)

    Peng, Qinjun; Guo, Yongkang; Liu, Shijie; Cui, Zheng

    2002-10-01

    A novel real-time gray-scale photolithography technique for the fabrication of continuous microstructures that uses a LCD panel as a real-time gray-scale mask is presented. The principle of design of the technique is explained, and computer simulation results based on partially coherent imaging theory are given for the patterning of a microlens array and a zigzag grating. An experiment is set up, and a microlens array and a zigzag grating on panchromatic silver halide sensitized gelatin with trypsinase etching are obtained.

  1. Improvement of gray-scale representation of horizontally scanning holographic display using error diffusion.

    PubMed

    Matsumoto, Yuji; Takaki, Yasuhiro

    2014-06-15

    Horizontally scanning holography can enlarge both screen size and viewing zone angle. A microelectromechanical-system spatial light modulator, which can generate only binary images, is used to generate hologram patterns. Thus, techniques to improve gray-scale representation in reconstructed images should be developed. In this study, the error diffusion technique was used for the binarization of holograms. When the Floyd-Steinberg error diffusion coefficients were used, gray-scale representation was improved. However, the linearity in the gray-scale representation was not satisfactory. We proposed the use of a correction table and showed that the linearity was greatly improved.

  2. Development of an ultra-portable echo device connected to USB port.

    PubMed

    Saijo, Yoshifumi; Nitta, Shin-ichi; Kobayashi, Kazuto; Arai, Hitoshi; Nemoto, Yukiko

    2004-04-01

    In practical cardiology, a stethoscope based auscultation has been used to reveal the patient's clinical status. Recently, several hand-held echo devices are going on market and they are expected to play a role as "visible" auscultation instead of stethoscope. We have developed a portable and inexpensive echo device which can be used for screening of cardiac function. Two single element transducers were attached 180 degrees apart to a rotor with 14-mm diameter. The mechanical scanner, integrated circuits for transmitting and receiving ultrasonic signals and an A/D converter were encapsulated in a 150 x 40 mm probe weighing 200 g. The scan was started and the image was displayed on a Windows based personal computer (PC) as soon as the probe was connected to USB 2.0 port of the PC. The central frequency was available between 2.5 and 7.5 MHz, the image depth was 15 cm and the frame rate was 30/s. The estimated price of this ultra-portable ultrasound is about 3000 US dollars with software. For 69 cardiac patients with informed consent, image quality was compared with those obtained with basic range diagnostic echo machines. Left ventricular ejection fraction (EF) derived from normal M-mode image of standard machines (EFm) were compared with visual EF of the ultra-portable ultrasound device (EFv). The image quality was comparable to the basic range diagnostic echo machines although short axis view of aortic root was not clearly visualized because the probe was too large for intercostal approach. EFv agreed well with EFm. The ultra-portable ultrasound may provide useful information on screening and health care.

  3. Skeletonization of gray-scale images by gray weighted distance transform

    NASA Astrophysics Data System (ADS)

    Qian, Kai; Cao, Siqi; Bhattacharya, Prabir

    1997-07-01

    In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.

  4. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Grayscale imbalance correction in real-time phase measuring profilometry

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2016-10-01

    Grayscale imbalance correction in real-time phase measuring profilometry (RPMP) is proposed. In the RPMP, the sufficient information is obtained to reconstruct the 3D shape of the measured object in one over twenty-four of a second. Only one color fringe pattern whose R, G and B channels are coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is sent to a flash memory on a specialized digital light projector (SDLP). And then the SDLP projects the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile a monochrome CCD camera captures the corresponding deformed patterns synchronously with the SDLP. Because the deformed patterns from three color channels are captured at different time, the color crosstalk is avoided completely. But due to the monochrome CCD camera's different spectral sensitivity to R, G and B tricolor, there will be grayscale imbalance among these deformed patterns captured at R, G and B channels respectively which may result in increasing measuring errors or even failing to reconstruct the 3D shape. So a new grayscale imbalance correction method based on least square method is developed. The experimental results verify the feasibility of the proposed method.

  6. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    PubMed

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  7. Pennation angle does not influence the age-related differences in echo intensity of the medial gastrocnemius.

    PubMed

    Ryan, Eric D; Rosenberg, Joseph G; Scharville, Michael J; Sobolewski, Eric J; Tweedell, Andrew J; Kleinberg, Craig R

    2015-02-01

    The reflection of an ultrasound (US) wave is strongest when the propagation direction of the wave is perpendicular to muscle fascicles. Thus, it is possible that muscle echo intensity (EI), a gray-scale US measure of muscle quality, may be influenced by the angulation of muscle fascicles. Therefore, the purpose of this study was to determine if age-related differences in muscle EI values are influenced by differences in pennation angle (PA). Medial gastrocnemius EI and PA were examined using panoramic US imaging in 24 young (19.8 ± 1.7 y) and 21 older (69.3 ± 3.3 y) men. The young men had lower EI values (young = 74.1 ± 6.3 a.u., older = 89.1 ± 8.8 a.u.) and a greater PA (young = 20.0 ± 2.9°; older = 17.2 ± 2.5°) compared with the older men (p < 0.01). In addition, there was a negative relationship (r = -0.473, p < 0.01) between PA and EI with both groups combined, but no significant relationship when the young (r = -0.334, p = 0.111) and older (r = -0.147, p = 0.525) men were examined separately. An analysis of covariance revealed that muscle EI values remained different (p < 0.01) between age groups after adjustment for differences in PA. Thus, after statistically adjusting the mean EI values for the differences in PA, there were still significant age-related differences in EI. These findings may provide further support that the age-related changes in muscle EI values reflect changes in tissue composition (i.e., increase in intramuscular fat and/or connective tissue) commonly reported in older adults. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Accuracy of ultrasound in antenatal diagnosis of placental attachment disorders.

    PubMed

    Pilloni, E; Alemanno, M G; Gaglioti, P; Sciarrone, A; Garofalo, A; Biolcati, M; Botta, G; Viora, E; Todros, T

    2016-03-01

    To evaluate the accuracy of ultrasound in the diagnosis of placenta accreta and its variants, and to assess the impact of prenatal diagnosis in our population. A total of 314 women with placenta previa were enrolled prospectively and underwent transabdominal and transvaginal ultrasound examinations. An ultrasound diagnosis (grayscale and color/power Doppler) of placental attachment disorder (PAD) was based on the detection of at least two of the following ('two-criteria system'): loss/irregularity of the retroplacental clear zone, thinning/interruption of the uterine serosa-bladder wall interface, turbulent placental lacunae with high velocity flow, myometrial thickness < 1 mm, increased vascularity of the uterine serosa-bladder wall interface, loss of vascular arch parallel to the basal plate and/or irregular intraplacental vascularization. Definitive diagnosis was made at delivery by Cesarean section. Maternal outcome in cases diagnosed antenatally was compared with that in cases diagnosed at delivery. There were 37/314 cases of PAD (29 anterior and eight posterior). The two-criteria system identified 30 cases of placenta accreta, providing a sensitivity of 81.1% and specificity of 98.9%. When anterior and posterior placentae were considered separately, the detection rates of PAD were 89.7 and 50.0%, respectIvely. Maternal outcome was better in women with prenatal diagnosis of PAD, as seen by less blood loss and shorter hospitalization. Our data confirmed that grayscale and color Doppler ultrasound have good performance in the diagnosis of PAD and that prenatal diagnosis improves maternal outcome. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  9. Ultrasound artifacts: classification, applied physics with illustrations, and imaging appearances.

    PubMed

    Prabhu, Somnath J; Kanal, Kalpana; Bhargava, Puneet; Vaidya, Sandeep; Dighe, Manjiri K

    2014-06-01

    Ultrasound has become a widely used diagnostic imaging modality in medicine because of its safety and portability. Because of rapid advances in technology, in recent years, sonographic imaging quality has significantly increased. Despite these advances, the potential to encounter artifacts while imaging remains.This article classifies both common and uncommon gray-scale and Doppler ultrasound artifacts into those resulting from physiology and those caused by hardware. A brief applied-physics explanation for each artifact is listed along with an illustrated diagram. The imaging appearance of artifacts is presented in case examples, along with strategies to minimize the artifacts in real time or use them for clinical advantage where applicable.

  10. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the

  11. Experimental Demonstration and Circuitry for a Very Compact Coil-Only Pulse Echo EMAT

    PubMed Central

    Rueter, Dirk

    2017-01-01

    This experimental study demonstrates for the first time a solid-state circuitry and design for a simple compact copper coil (without an additional bulky permanent magnet or bulky electromagnet) as a contactless electromagnetic acoustic transducer (EMAT) for pulse echo operation at MHz frequencies. A pulsed ultrasound emission into a metallic test object is electromagnetically excited by an intense MHz burst at up to 500 A through the 0.15 mm filaments of the transducer. Immediately thereafter, a smoother and quasi “DC-like” current of 100 A is applied for about 1 ms and allows an echo detection. The ultrasonic pulse echo operation for a simple, compact, non-contacting copper coil is new. Application scenarios for compact transducer techniques include very narrow and hostile environments, in which, e.g., quickly moving metal parts must be tested with only one, non-contacting ultrasound shot. The small transducer coil can be operated remotely with a cable connection, separate from the much bulkier supply circuitry. Several options for more technical and fundamental progress are discussed. PMID:28441722

  12. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  13. Grayscale/resolution trade-off for text: Model predictions and psychophysical results for letter confusion and letter discrimination

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer; Martin, Russel; Lubin, Jeffrey; Larimer, James

    1995-01-01

    In a series of papers presented in 1994, we examined the grayscale/resolution trade-off for natural images displayed on devices with discrete pixellation, such as AMLCD's. In the present paper we extend this study by examining the grayscale/resolution trade-off for text images on discrete-pixel displays. Halftoning in printing is an example of the grayscale/resolution trade-off. In printing, spatial resolution is sacrificed to produce grayscale. Another example of this trade-off is the inherent low-pass spatial filter of a CRT, caused by the point-spread function of the electron beam in the phosphor layer. On a CRT, sharp image edges are blurred by this inherent low-pass filtering, and the block noise created by spatial quantization is greatly reduced. A third example of this trade-off is text anti-aliasing, where grayscale is used to improve letter shape, size and location when rendered at a low spatial resolution. There are additional implications for display system design from the grayscale/resolution trade-off. For example, reduced grayscale can reduce system costs by requiring less complexity in the framestore, allowing the use of lower cost drivers, potentially increasing data transfer rates in the image subsystem, and simplifying the manufacturing processes that are used to construct the active matrix for AMLCD (active-matrix liquid-crystal display) or AMTFEL (active-matrix thin-film electroluminescent) devices. Therefore, the study of these trade-offs is important for display designers and manufacturing and systems engineers who wish to create the highest performance, lowest cost device possible. Our strategy for investigating this trade-off is to generate a set of simple test images, manipulate grayscale and resolution, predict discrimination performance using the ViDEOS(Sarnoff) Human Vision Model, conduct an empirical study of discrimination using psychophysical procedures, and verify the computational results using the psychophysical results.

  14. Recall of patterns using binary and gray-scale autoassociative morphological memories

    NASA Astrophysics Data System (ADS)

    Sussner, Peter

    2005-08-01

    Morphological associative memories (MAM's) belong to a class of artificial neural networks that perform the operations erosion or dilation of mathematical morphology at each node. Therefore we speak of morphological neural networks. Alternatively, the total input effect on a morphological neuron can be expressed in terms of lattice induced matrix operations in the mathematical theory of minimax algebra. Neural models of associative memories are usually concerned with the storage and the retrieval of binary or bipolar patterns. Thus far, the emphasis in research on morphological associative memory systems has been on binary models, although a number of notable features of autoassociative morphological memories (AMM's) such as optimal absolute storage capacity and one-step convergence have been shown to hold in the general, gray-scale setting. In previous papers, we gained valuable insight into the storage and recall phases of AMM's by analyzing their fixed points and basins of attraction. We have shown in particular that the fixed points of binary AMM's correspond to the lattice polynomials in the original patterns. This paper extends these results in the following ways. In the first place, we provide an exact characterization of the fixed points of gray-scale AMM's in terms of combinations of the original patterns. Secondly, we present an exact expression for the fixed point attractor that represents the output of either a binary or a gray-scale AMM upon presentation of a certain input. The results of this paper are confirmed in several experiments using binary patterns and gray-scale images.

  15. Field testing of a remote controlled robotic tele-echo system in an ambulance using broadband mobile communication technology.

    PubMed

    Takeuchi, Ryohei; Harada, Hiroshi; Masuda, Kohji; Ota, Gen-ichiro; Yokoi, Masaki; Teramura, Nobuyasu; Saito, Tomoyuki

    2008-06-01

    We report the testing of a mobile Robotic Tele-echo system that was placed in an ambulance and successfully transmitted clear real time echo imaging of a patient's abdomen to the destination hospital from where this device was being remotely operated. Two-way communication between the paramedics in this vehicle and a doctor standing by at the hospital was undertaken. The robot was equipped with an ultrasound probe which was remotely controlled by the clinician at the hospital and ultrasound images of the patient were transmitted wirelessly. The quality of the ultrasound images that were transmitted over the public mobile telephone networks and those transmitted over the Multimedia Wireless Access Network (a private networks) were compared. The transmission rate over the public networks and the private networks was approximately 256 Kbps, 3 Mbps respectively. Our results indicate that ultrasound images of far higher definition could be obtained through the private networks.

  16. Grayscale lithography-automated mask generation for complex three-dimensional topography

    NASA Astrophysics Data System (ADS)

    Loomis, James; Ratnayake, Dilan; McKenna, Curtis; Walsh, Kevin M.

    2016-01-01

    Grayscale lithography is a relatively underutilized technique that enables fabrication of three-dimensional (3-D) microstructures in photosensitive polymers (photoresists). By spatially modulating ultraviolet (UV) dosage during the writing process, one can vary the depth at which photoresist is developed. This means complex structures and bioinspired designs can readily be produced that would otherwise be cost prohibitive or too time intensive to fabricate. The main barrier to widespread grayscale implementation, however, stems from the laborious generation of mask files required to create complex surface topography. We present a process and associated software utility for automatically generating grayscale mask files from 3-D models created within industry-standard computer-aided design (CAD) suites. By shifting the microelectromechanical systems (MEMS) design onus to commonly used CAD programs ideal for complex surfacing, engineering professionals already familiar with traditional 3-D CAD software can readily utilize their pre-existing skills to make valuable contributions to the MEMS community. Our conversion process is demonstrated by prototyping several samples on a laser pattern generator-capital equipment already in use in many foundries. Finally, an empirical calibration technique is shown that compensates for nonlinear relationships between UV exposure intensity and photoresist development depth as well as a thermal reflow technique to help smooth microstructure surfaces.

  17. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  18. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  19. The treatment of tendon injury with electromagnetic fields evidenced by advanced ultrasound image processing.

    PubMed

    Parker, Richard; Markov, Marko

    2015-09-01

    This article presents a novel modality for accelerating the repair of tendon and ligament lesions by means of a specifically designed electromagnetic field in an equine model. This novel therapeutic approach employs a delivery system that induces a specific electrical signal from an external magnetic field derived from Superconductive QUantum Interference Device (SQUID) measurements of injured vs. healthy tissue. Evaluation of this therapy technique is enabled by a proposed new technology described as Predictive Analytical Imagery (PAI™). This technique examines an ultrasound grayscale image and seeks to evaluate it by means of look-ahead predictive algorithms and digital signal processing. The net result is a significant reduction in background noise and the production of a high-resolution grayscale or digital image.

  20. Improving Echo-Guided Procedures Using an Ultrasound-CT Image Fusion System.

    PubMed

    Diana, Michele; Halvax, Peter; Mertz, Damien; Legner, Andras; Brulé, Jean-Marcel; Robinet, Eric; Mutter, Didier; Pessaux, Patrick; Marescaux, Jacques

    2015-06-01

    Image fusion between ultrasound (US) and computed tomography (CT) scan or magnetic resonance can increase operator accuracy in targeting liver lesions, particularly when those are undetectable with US alone. We have developed a modular gel to simulate hepatic solid lesions for educational purposes in imaging and minimally invasive ablation techniques. We aimed to assess the impact of image fusion in targeting artificial hepatic lesions during the hands-on part of 2 courses (basic and advanced) in hepatobiliary surgery. Under US guidance, 10 fake tumors of various sizes were created in the livers of 2 pigs, by percutaneous injection of a biocompatible gel engineered to be hyperdense on CT scanning and barely detectable on US. A CT scan was obtained and a CT-US image fusion was performed using the ACUSON S3000 US system (Siemens Healthcare, Germany). A total of 12 blinded course attendants, were asked in turn to perform a 10-minute liver scan with US alone followed by a 10-minute scan using image fusion. Using US alone, the expert managed to identify all lesions successfully. The true positive rate for course attendants with US alone was 14/36 and 2/24 in the advanced and basic courses, respectively. The total number of false positives identified was 26. With image fusion, the rate of true positives significantly increased to 31/36 (P < .001) in the advanced group and 16/24 in the basic group (P < .001). The total number of false positives, considering all participants, decreased to 4 (P < .001). Image fusion significantly increases accuracy in targeting hepatic lesions and might improve echo-guided procedures. © The Author(s) 2015.

  1. Minimizing eddy currents induced in the ground plane of a large phased-array ultrasound applicator for echo-planar imaging-based MR thermometry.

    PubMed

    Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond

    2016-01-01

    The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.

  2. Using color and grayscale images to teach histology to color-deficient medical students.

    PubMed

    Rubin, Lindsay R; Lackey, Wendy L; Kennedy, Frances A; Stephenson, Robert B

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness") in the general population, it is likely that this reliance upon color differentiation poses a significant obstacle for several medical students beginning a course of study that includes examination of histologic slides. In the past, first-year medical students at Michigan State University who identified themselves as color deficient were encouraged to use color transparency overlays or tinted contact lenses to filter out problematic colors. Recently, however, we have offered such students a computer monitor adjusted to grayscale for in-lab work, as well as grayscale copies of color photomicrographs for examination purposes. Grayscale images emphasize the texture of tissues and the contrasts between tissues as the students learn histologic architecture. Using this approach, color-deficient students have quickly learned to compensate for their deficiency by focusing on cell and tissue structure rather than on color variation. Based upon our experience with color-deficient students, we believe that grayscale photomicrographs may also prove instructional for students with normal (trichromatic) color vision, by encouraging them to consider structural characteristics of cells and tissues that may otherwise be overshadowed by stain colors.

  3. Simple Multi-level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography.

    PubMed

    Lai, David; Labuz, Joseph M; Kim, Jiwon; Luker, Gary D; Shikanov, Ariella; Takayama, Shuichi

    2013-11-14

    Photolithography of multi-level channel features in microfluidics is laborious and/or costly. Grayscale photolithography is mostly used with positive photoresists and conventional front side exposure, but the grayscale masks needed are generally costly and positive photoresists are not commonly used in microfluidic rapid prototyping. Here we introduce a simple and inexpensive alternative that uses pseudo-grayscale (pGS) photomasks in combination with backside diffused light lithography (BDLL) and the commonly used negative photoresist, SU-8. BDLL can produce smooth multi-level channels of gradually changing heights without use of true grayscale masks because of the use of diffused light. Since the exposure is done through a glass slide, the photoresist is cross-linked from the substrate side up enabling well-defined and stable structures to be fabricated from even unspun photoresist layers. In addition to providing unique structures and capabilities, the method is compatible with the "garage microfluidics" concept of creating useful tools at low cost since pGS BDLL can be performed with the use of only hot plates and a UV transilluminator: equipment commonly found in biology labs. Expensive spin coaters or collimated UV aligners are not needed. To demonstrate the applicability of pGS BDLL, a variety of weir-type cell traps were constructed with a single UV exposure to separate cancer cells (MDA-MB-231, 10-15 μm in size) from red blood cells (RBCs, 2-8 μm in size) as well as follicle clusters (40-50 μm in size) from cancer cells (MDA-MB-231, 10-15 μm in size).

  4. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  5. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  6. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  7. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  8. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  9. Split-screen display system and standardized methods for ultrasound image acquisition and multi-frame data processing

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2011-01-01

    A standardized acquisition methodology assists operators to accurately replicate high resolution B-mode ultrasound images obtained over several spaced-apart examinations utilizing a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, dynamic material properties of arterial structures, such as IMT and diameter, are measured in a standard region over successive image frames. Each frame of the sequence has its echo edge boundaries automatically determined by using the immediately prior frame's true echo edge coordinates as initial boundary conditions. Computerized echo edge recognition and tracking over multiple successive image frames enhances measurement of arterial diameter and IMT and allows for improved vascular dimension measurements, including vascular stiffness and IMT determinations.

  10. Ultrasound strain imaging using Barker code

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  11. Grayscale standard display function on LCD color monitors

    NASA Astrophysics Data System (ADS)

    De Monte, Denis; Casale, Carlo; Albani, Luigi; Bonfiglio, Silvio

    2007-03-01

    Currently, as a rule, digital medical systems use monochromatic Liquid Crystal Display (LCD) monitors to ensure an accurate reproduction of the Grayscale Standard Display Function (GSDF) as specified in the Digital Imaging and Communications in Medicine (DICOM) Standard. As a drawback, special panels need to be utilized in digital medical systems, while it would be preferable to use regular color panels, which are manufactured on a wide scale and are thus available at by far lower prices. The method proposed introduces a temporal color dithering technique to accurately reproduce the GSDF on color monitors without losing monitor resolution. By exploiting the characteristics of the Human Visual System (HVS) the technique ensures that a satisfactory grayscale reproduction is achieved minimizing perceivable flickering and undesired color artifacts. The algorithm has been implemented in the monitor using a low-cost Field Programmable Gate Array (FPGA). Quantitative evaluations of luminance response on a 3 Mega-pixel color monitor have shown that the compliance with the GSDF can be achieved with the accuracy level required by medical applications. At the same time the measured color deviation is below the threshold perceivable by the human eye.

  12. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D.; Ridley, C. J.

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a singlemore » crystal of the ferromagnetic superconductor UGe{sub 2}.« less

  13. Cow's milk allergy: color Doppler ultrasound findings in infants with hematochezia.

    PubMed

    Epifanio, Matias; Spolidoro, Jose Vicente; Missima, Nathalia Guarienti; Soder, Ricardo Bernardi; Garcia, Pedro Celiny Ramos; Baldisserotto, Matteo

    2013-01-01

    ultrasound (US) has been an important diagnostic tool to identify several causes of gastrointestinal bleeding. Infants with cow's milk allergy (CMA) may present hematochezia and the confirmation of the diagnosis can be difficult. The aim of this study is to describe grayscale and color Doppler ultrasound findings in patients with CMA. we retrospectively studied 13 infants with CMA. All infants presented severe hematochezia and abdominal pain. All underwent an US study with the diagnosis of allergic colitis. This diagnosis was based on clinical findings, recovery after infant or mother exclusion diets in the case of exclusive breastfeeding and positive oral challenge test. the mean age ranged from 1 to 6 months (mean=3.53). Seven out of 13 infants (53.8%) had grayscale and color Doppler sonographic repeated after exclusion diet. Twelve out of 13 (92,3%) showed abnormalities at US and CDUS at beginning. The positive findings suggesting colitis were thickened bowel walls and increased vascularity, especially in the descending and sigmoid colon. Colonoscopy and histopathological findings were compatible with allergic colitis. After a diet change the 13 infants recovered and their oral challenge tests were positive. Doppler US may be very useful in diagnosing secondary colitis, such as CMA, and to exclude several other abdominal diseases that can emulate this disease. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. Experience With Intravascular Ultrasound Imaging Of Human Atherosclerotic Arteries

    NASA Astrophysics Data System (ADS)

    Mallery, John A.; Gessert, James M.; Maciel, Mario; Tobis, John M.; Griffith, James M.; Berns, Michael W.; Henry, Walter L.

    1989-08-01

    Normal human arteries have a well-defined structure on intravascular images. The intima appears very thin and is most likely represented by a bright reflection arising from the internal elastic lamina. The smooth muscle tunica media is echo-lucent on the ultrasound image and appears as a dark band separating the intima from the adventitia. The adventitia is a brightly reflective layer of variable thickness. The thickness of the intima, and therefore of the atherosclerotic plaque can be accurately measured from the ultrasound images and correlates well with histology. Calcification within the wall of arteries is seen as bright echo reflection with shadowing of the peripheral wall. Fibrotic regions are highly reflective but do not shadow. Necrotic liquid regions within advanced atherosclerotic plaques are seen on ultrasound images as large lucent zones surrounded by echogenic tissue. Imaging can be performed before and after interventional procedures, such as laser angioplasty, balloon angioplasty and atherectomy. Intravascular ultrasound appears to provide an imaging modality for identifying the histologic characteristics of diseased arteries and for quantifying plaque thickness. It might be possible to perform such quantification to evaluate the results of interventional procedures.

  15. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    PubMed

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  16. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2005-07-01

    dual-mode array is ing high-intensity focused ultrasound ( HIFU ) exhibit non- is used), perhaps a result of rectified diffusion. linear behavior that...applications using high-intensity focused ultrasound ( HIFU ). We tems. Once the real-time imaging capability is available for have shown that this dual-mode...INTRODUCTION two effects lead to echo time-shift that can be estimated High intensity focused ultrasound ( HIFU ) is a and have been shown to be related local

  17. Photo-Acoustic Ultrasound Imaging to Distinguish Benign from Malignant Prostate Cancer

    DTIC Science & Technology

    2016-09-01

    from the inside out. Ultrasound imaging provides a basic view of the structure of the prostate while photoacoustic contrast is predicted to enhance...University Page 2 of 13 1. INTRODUCTION: Ultrasound imaging uses sound waves at frequencies above the human hearing range to image organs within the body...An ultrasound transducer delivers a pulse of acoustic energy into the area of interest and listens for the echoes which return as the sound waves

  18. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  19. Relationships Between Quantitative Pulse-Echo Ultrasound Parameters from the Superficial Zone of the Human Articular Cartilage and Changes in Surface Roughness, Collagen Content or Collagen Orientation Caused by Early Degeneration.

    PubMed

    Kiyan, Wataru; Ito, Akira; Nakagawa, Yasuaki; Mukai, Shogo; Mori, Koji; Arai, Tatsuo; Uchino, Eiichiro; Okuno, Yasushi; Kuroki, Hiroshi

    2017-08-01

    We aimed to quantitatively investigate the relationship between amplitude-based pulse-echo ultrasound parameters and early degeneration of the knee articular cartilage. Twenty samples from six human femoral condyles judged as grade 0 or 1 according to International Cartilage Repair Society grading were assessed using a 15-MHz pulsed-ultrasound 3-D scanning system ex vivo. Surface roughness (R q ), average collagen content (A 1 ) and collagen orientation (A 12 ) in the superficial zone of the cartilage were measured via laser microscopy and Fourier transform infrared imaging spectroscopy. Multiple regression analysis with a linear mixed-effects model (LMM) revealed that a time-domain reflection coefficient at the cartilage surface (R c ) had a significant coefficient of determination with R q and A 12 (R LMMm 2 =0.79); however, R c did not correlate with A 1 . Concerning the collagen characteristic in the superficial zone, R c was found to be a sensitive indicator reflecting collagen disorganization, not collagen content, for the early degeneration samples. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    PubMed

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  1. Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images

    PubMed Central

    Lele, Ramachandra Dattatraya; Joshi, Mukund; Chowdhary, Abhay

    2014-01-01

    The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data. PMID:25332717

  2. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  3. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  4. Measuring Regional Changes in Damaged Tendon

    NASA Astrophysics Data System (ADS)

    Frisch, Catherine Kayt Vincent

    Mechanical properties of tendon predict tendon health and function, but measuring these properties in vivo is difficult. An ultrasound-based (US) analysis technique called acoustoelastography (AE) uses load-dependent changes in the reflected US signal to estimate tissue stiffness non-invasively. This thesis explores whether AE can provide information about stiffness alteration resulting from tendon tears both ex vivo and in vivo. An ex vivo ovine infraspinatus tendon model suggests that the relative load transmitted by the different tendon layers transmit different fractions of the load and that ultrasound echo intensity change during cyclic loading decreases, becoming less consistent once the tendon is torn. An in vivo human tibialis anterior tendon model using electrically stimulated twitch contractions investigated the feasibility of measuring the effect in vivo. Four of the five subjects showed the expected change and that the muscle contraction times calculated using the average grayscale echo intensity change compared favorably with the times calculated based on the force data. Finally an AE pilot study with patients who had rotator cuff tendon tears found that controlling the applied load and the US view of the system will be crucial to a successful in vivo study.

  5. Prostate ultrasound--for urologists only?

    PubMed

    Frauscher, Ferdinand; Gradl, Johann; Pallwein, Leo

    2005-11-23

    The value of ultrasound (US) in the diagnosis of prostate cancer has dramatically increased in the past decade. This is mainly related to the increasing incidence of prostate cancer, the most common cancer in men and one of the most important causes of death from cancer in men. The value of conventional gray-scale US for prostate cancer detection has been extensively investigated, and has shown a low sensitivity and specificity. Therefore conventional gray-scale US is mainly used by urologists for guiding systematic prostate biopsies. With the development of new US techniques, such as color and power Doppler US, and the introduction of US contrast agents, the role of US for prostate cancer detection has dramatically changed. Advances in US techniques were introduced to further increase the value of US contrast agents. Although most of these developments in US techniques, which use the interaction of the contrast agent with the transmitted US waves, are very sensitive for the detection of microbubbles, they are mostly unexplored, in particular for prostate applications. Early reports of contrast-enhanced US investigations of blood flow of the prostate have shown that contrast-enhanced US adds important information to the conventional gray-scale US technique. Furthermore, elastography or 'strain imaging' seems to have great potential in prostate cancer detection. Since these new advances in US are very sophisticated and need a long learning curve, radiologists, who are overall better trained with these new US techniques, will play a more important role in prostate cancer diagnosis. Current trends show that these new US techniques may allow for targeted biopsies and therefore replace the current 'gold standard' for prostate cancer detection--the systematic biopsy. Consequently the use of these new US techniques for the detection and clinical staging of prostate cancer is promising. However, future clinical trials will be needed to determine if the promise of these new

  6. Analysis of ultrasound pulse-echo images for characterization of muscle disease

    NASA Astrophysics Data System (ADS)

    Leeman, Sidney; Heckmatt, John Z.

    1996-04-01

    This study aims to extract quantifiable indices characterizing ultrasound propagation and scattering in skeletal muscle, from data acquired using a real-time linear array scanner in a paediatric muscle clinic, in order to establish early diagnosis of Duchenne muscular dystrophy in young children, as well as to chart the progressive severity of the disease. Approximately 40 patients with gait disorders, aged between 1 and 11 years, were scanned with a real-time linear array ultrasound scanner, at 5 MHz. A control group consisted of approximately 50 boys, in the same age range, with no evidence or history of muscle disease. Results show that ultrasound quantitative methods can provide a tight clustering of normal data, and also provide a basis for charting the degree of change in diseased muscle. The most significant (quantitative) parameters derive from the frequency of the attenuation and the muscle echogenicity. The approach provides a discrimination method that is more sensitive than visual assessment of the corresponding image by even an experienced observer. There are also indications that the need for traumatic muscle biopsy may be obviated in some cases.

  7. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  8. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  9. Three-dimensional intraoperative ultrasound of vascular malformations and supratentorial tumors.

    PubMed

    Woydt, Michael; Horowski, Anja; Krauss, Juergen; Krone, Andreas; Soerensen, Niels; Roosen, Klaus

    2002-01-01

    The benefits and limits of a magnetic sensor-based 3-dimensional (3D) intraoperative ultrasound technique during surgery of vascular malformations and supratentorial tumors were evaluated. Twenty patients with 11 vascular malformations and 9 supratentorial tumors undergoing microsurgical resection or clipping were investigated with an interactive magnetic sensor data acquisition system allowing freehand scanning. An ultrasound probe with a mounted sensor was used after craniotomies to localize lesions, outline tumors or malformation margins, and identify supplying vessels. A 3D data set was obtained allowing reformation of multiple slices in all 3 planes and comparison to 2-dimensional (2D) intraoperative ultrasound images. Off-line gray-scale segmentation analysis allowed differentiation between tissue with different echogenicities. Color-coded information about blood flow was extracted from the images with a reconstruction algorithm. This allowed photorealistic surface displays of perfused tissue, tumor, and surrounding vessels. Three-dimensional intraoperative ultrasound data acquisition was obtained within 5 minutes. Off-line analysis and reconstruction time depends on the type of imaging display and can take up to 30 minutes. The spatial relation between aneurysm sac and surrounding vessels or the skull base could be enhanced in 3 out of 6 aneurysms with 3D intraoperative ultrasound. Perforating arteries were visible in 3 cases only by using 3D imaging. 3D ultrasound provides a promising imaging technique, offering the neurosurgeon an intraoperative spatial orientation of the lesion and its vascular relationships. Thereby, it may improve safety of surgery and understanding of 2D ultrasound images.

  10. Ultrasound speckle tracking for radial, longitudinal and circumferential strain estimation of the carotid artery--an in vitro validation via sonomicrometry using clinical and high-frequency ultrasound.

    PubMed

    Larsson, Matilda; Heyde, Brecht; Kremer, Florence; Brodin, Lars-Åke; D'hooge, Jan

    2015-02-01

    Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system, Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto, Canada) with linear-array transducers (12L/MS250). Radial, longitudinal and circumferential strains were estimated using an in-house speckle tracking algorithm and compared with reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the reference strain. The correlation between estimated peak strain in clinical ultrasound images and reference strain was 0.91 (p<0.001) for radial strain, 0.73 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain and for high-frequency ultrasound images 0.95 (p<0.001) for radial strain, 0.93 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain. A significant larger bias and root mean square error was found for circumferential strain estimation on clinical ultrasound images compared to high frequency ultrasound images, but no significant difference in bias and root mean square error was found for radial and longitudinal strain when comparing estimation on clinical and high-frequency ultrasound images. The agreement between sonomicrometry and speckle tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible. Copyright © 2014 The Authors. Published by Elsevier B

  11. Ultrasound Imaging Velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Poelma, Christian

    2017-01-01

    Whole-field velocity measurement techniques based on ultrasound imaging (a.k.a. `ultrasound imaging velocimetry' or `echo-PIV') have received significant attention from the fluid mechanics community in the last decade, in particular because of their ability to obtain velocity fields in flows that elude characterisation by conventional optical methods. In this review, an overview is given of the history, typical components and challenges of these techniques. The basic principles of ultrasound image formation are summarised, as well as various techniques to estimate flow velocities; the emphasis is on correlation-based techniques. Examples are given for a wide range of applications, including in vivo cardiovascular flow measurements, the characterisation of sediment transport and the characterisation of complex non-Newtonian fluids. To conclude, future opportunities are identified. These encompass not just optimisation of the accuracy and dynamic range, but also extension to other application areas.

  12. Generalized sidelobe canceler beamforming applied to medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Jiake; Chen, Xiaodong; Wang, Yi; Shi, Yifeng; Yu, Daoyin

    2017-03-01

    A generalized sidelobe canceler (GSC) approach is proposed for medical ultrasound imaging. The approach uses a set of adaptive weights instead of traditional non-adaptive weights, thus suppressing the interference and noise signal of echo data. In order to verify the validity of the proposed approach, Field II is applied to obtain the echo data of synthetic aperture (SA) for 13 scattering points and circular cysts. The performance of GSC is compared with SA using boxcar weights and Hamming weights, and is quantified by the full width at half maximum (FWHM) and peak signal-to-noise ratio (PSNR). Imaging of scattering point utilizing SA, SA (hamming), GSC provides FWHMs of 1.13411, 1.68910, 0.36195 mm and PSNRs of 60.65, 57.51, 66.72 dB, respectively. The simulation results of circular cyst also show that GSC can perform better lateral resolution than non-adaptive beamformers. Finally, an experiment is conducted on the basis of actual echo data of an ultrasound system, the imaging result after SA, SA (hamming), GSC provides PWHMs of 2.55778, 3.66776, 1.01346 mm at z = 75.6 mm, and 2.65430, 3.76428, 1.27889 mm at z = 77.3 mm, respectively.

  13. Independence of Echo-Threshold and Echo-Delay in the Barn Owl

    PubMed Central

    Nelson, Brian S.; Takahashi, Terry T.

    2008-01-01

    Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading) sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound. PMID:18974886

  14. Evaluation of nuclear chromatin using grayscale intensity and thresholded percentage area in liquid-based cervical cytology.

    PubMed

    Lee, Hyekyung; Han, Myungein; Yoo, Taejo; Jung, Chanho; Son, Hyun-Jin; Cho, Migyung

    2018-05-01

    Development of computerized image analysis techniques has opened up the possibility for the quantitative analysis of nuclear chromatin in pathology. We hypothesized that the features extracted from digital images could be used to determine specific cytomorphological findings for nuclear chromatin that may be applicable for establishing a medical diagnosis. Three parameters were evaluated from nuclear chromatin images obtained from the liquid-based cervical cytology samples of patients with biopsy-proven high-grade squamous intraepithelial lesion (HGSIL), and compared between non-neoplastic squamous epithelia and dysplastic epithelia groups: (1) standard deviation (SD) of the grayscale intensity; (2) difference between the maximum and minimum grayscale intensity (M-M); and (3) thresholded area percentage. Each parameter was evaluated at the mean, mean-1SD, and mean-2SD thresholding intensity levels. Between the mean and mean-1SD levels, the thresholded nuclear chromatin pattern was most similar to the chromatin granularity of the unthresholded grayscale images. The SD of the gray intensity and the thresholded area percentage differed significantly between the non-neoplastic squamous epithelia and dysplastic epithelia of HGSIL images at all three thresholding intensity levels (mean, mean-1SD, and mean-2SD). However, the M-M significantly differed between the two sample types for only two of the thresholding intensity levels (mean-1SD and mean-2SD). The digital parameters SD and M-M of the grayscale intensity, along with the thresholded area percentage could be useful in automated cytological evaluations. Further studies are needed to identify more valuable parameters for clinical application. © 2018 Wiley Periodicals, Inc.

  15. Computer-aided mass detection in mammography: False positive reduction via gray-scale invariant ranklet texture features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masotti, Matteo; Lanconelli, Nico; Campanini, Renato

    In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with theirmore » gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP

  16. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  17. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  18. In vivo multi-modality photoacoustic and pulse echo tracking of prostate tumor growth using a window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2010-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting how they will eventually respond to treatment. The mouse window chamber model is an excellent tool for cancer research, because it enables high resolution tumor imaging and cross-validation using multiple modalities. We describe a novel multimodality imaging system that incorporates three dimensional (3D) photoacoustics with pulse echo ultrasound for imaging the tumor microenvironment and tracking tissue growth in mice. Three mice were implanted with a dorsal skin flap window chamber. PC-3 prostate tumor cells, expressing green fluorescent protein (GFP), were injected into the skin. The ensuing tumor invasion was mapped using photoacoustic and pulse echo imaging, as well as optical and fluorescent imaging for comparison and cross validation. The photoacoustic imaging and spectroscopy system, consisting of a tunable (680-1000nm) pulsed laser and 25 MHz ultrasound transducer, revealed near infrared absorbing regions, primarily blood vessels. Pulse echo images, obtained simultaneously, provided details of the tumor microstructure and growth with 100-μm3 resolution. The tumor size in all three mice increased between three and five fold during 3+ weeks of imaging. Results were consistent with the optical and fluorescent images. Photoacoustic imaging revealed detailed maps of the tumor vasculature, whereas photoacoustic spectroscopy identified regions of oxygenated and deoxygenated blood vessels. The 3D photoacoustic and pulse echo imaging system provided complementary information to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular imaging agents in vivo. Finally, these safe and noninvasive techniques are potentially applicable for human cancer imaging.

  19. The influence of gender and age on the thickness and echo-density of skin.

    PubMed

    Firooz, A; Rajabi-Estarabadi, A; Zartab, H; Pazhohi, N; Fanian, F; Janani, L

    2017-02-01

    The more recent use of ultrasound scanning allows a direct measurement on unmodified skin, and is considered to be a reliable method for in vivo measurement of epidermal and dermal thickness. The objective of this study was to assess the influence of gender and age on the thickness and echo-density of skin measured by high frequency ultrasonography (HFUS). This study was carried out on 30 healthy volunteers (17 female, 13 male) with age range of 24-61 years old. The thickness and echo-density of dermis as well as epidermal entrance echo thickness in five anatomic sites (cheek, neck, palm, dorsal foot, and sole) were measured using two different types of B mode HFUS, 22 and 50 MHz frequencies. The epidermal entrance echo thickness and thickness of dermis in males were higher than females, which was statistically significant on neck and dorsum of foot. The echo-density of dermis was higher in females on all sites, but was only statistically significant on neck. The epidermal entrance echo thickness and thickness of dermis in young age group was statistically higher than old group on sole and dorsal of the foot respectively. Overall, the skin thickness decreased with age. High frequency ultrasonography method provides a simple non-invasive method for evaluating the skin thickness and echo-density. Gender and age have significant effect on these parameters. Differences in study method, population, and body site likely account for different results previously reported. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Echo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Dustin Yewell

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and amore » first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.« less

  1. Spatial Resolution, Grayscale, and Error Diffusion Trade-offs: Impact on Display System Design

    NASA Technical Reports Server (NTRS)

    Gille, Jennifer L. (Principal Investigator)

    1996-01-01

    We examine technology trade-offs related to grayscale resolution, spatial resolution, and error diffusion for tessellated display systems. We present new empirical results from our psychophysical study of these trade-offs and compare them to the predictions of a model of human vision.

  2. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    PubMed Central

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  3. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  4. Endoscopic ultrasound-guided biliary drainage

    PubMed Central

    Chavalitdhamrong, Disaya; Draganov, Peter V

    2012-01-01

    Endoscopic ultrasound (EUS)-guided biliary drainage has emerged as a minimally invasive alternative to percutaneous and surgical interventions for patients with biliary obstruction who had failed endoscopic retrograde cholangiopancreatography (ERCP). EUS-guided biliary drainage has become feasible due to the development of large channel curvilinear therapeutic echo-endoscopes and the use of real-time ultrasound and fluoroscopy imaging in addition to standard ERCP devices and techniques. EUS-guided biliary drainage is an attractive option because of its minimally invasive, single step procedure which provides internal biliary decompression. Multiple investigators have reported high success and low complication rates. Unfortunately, high quality prospective data are still lacking. We provide detailed review of the use of EUS for biliary drainage from the perspective of practicing endoscopists with specific focus on the technical aspects of the procedure. PMID:22363114

  5. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    DOE PAGES

    Grossman, John; Suslov, Alexey V.; Yong, Grace; ...

    2016-04-07

    Progress in microelectronic technology has allowed us to design and develop a simple but, professional quality instrument for ultrasonic pulse-echo probing of the elastic properties of materials. The heart of this interfer- ometer lies in the AD8302 microchip, a gain and phase detector from Analog Devices, Inc. The interferometer was tested by measuring the temperature dependences of the ultrasound speed and attenuation in a ferro- electric KTa 0.92 Nb 0.08O 3 (KTN) crystal at a frequency of about 40 MHz. These tests demonstrated that our instrument is capable of detecting the relative changes in the sound speed v on themore » level of Δv/v ~ 10 –7. In addition, the ultrasound attenuation revealed new features in the development of the low-temperature structure of the ferroelectric KTN crystal.« less

  6. ECHO Gov Login | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics

    PubMed Central

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics. PMID:26681985

  8. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of

  9. Multi-echo acquisition

    PubMed Central

    Posse, Stefan

    2011-01-01

    The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458

  10. Feasibility study of high intensity focused ultrasound (HIFU) for the treatment of hydatid cysts of the liver.

    PubMed

    Imankulov, S B; Fedotovskikh, G V; Shaimardanova, G M; Yerlan, M; Zhampeisov, N K

    2015-11-01

    This study evaluates the feasibility of using high intensity focused ultrasound (HIFU) for the treatment of hydatid cysts of the liver. HIFU ablation was carried out in 62 patients with echinococcosis of the liver. The mean age of patients was 40.76±14.84 (range: 17-72 years). The effectiveness of the treatment was monitored in real-time by changes in the gray-scale, and by morphological studies, computed tomography, magnetic resonance imaging, and ultrasound. Criteria for evaluating the effectiveness of treatment in real time were outlines. Cytomorphological picture of destructive changes of parasitic elements was presented as well. Loss of embryonic elements of the parasite was observed at the subcellular level after HIFU-ablation and underlines the effectiveness of HIFU. Copyright © 2015. Published by Elsevier B.V.

  11. Comparative analysis of renal flow using contrast power Doppler and gray-scale ultrasound

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Arger, Peter H.; Bovee, Kenneth C.; Pugh, Charles; Kirchhofer, Justin I.

    1997-05-01

    Our previous studies have shown that renal perfusion can be visualized by imaging the transit of a contrast agent through the parenchyma of the organ using gray scale (GS) and power Doppler (PD) ultrasound.However, the relative merits and the sensitivities of the two imaging methods are not known. This study compares the effectiveness of the two modes in visualizing kidney perfusion at the clinical dose of contrast agents. GS and PD images of the dog kidneys were recorded using a clinical ultrasound scanner at 4-7 MHz. A fixed longitudinal plane of the kidney was imaged by mounting the transducer on the animal with a specially designed holder. A dose of 0.1 m1/kg of Echogen was injected intravenously and GS and PD images were recorded simultaneously on two separate time-encoded video tapes during the passage of the contrast agent through the kidneys. The enhancement of GS and PD images was assessed qualitatively by three radiologists. The quantitative assessment was made by measuring the regional and global enhancements of digitized B-scan and PS images. Regional measurements were made by comparing brightness of the post contrast images with that of a pre-contrast reference image pixel by pixel. Student t-test was used to determine the statistical significance of the change. The regions representing statistically significant differences were encoded on the image in color with brightness proportional to the magnitude of change. The regions with no significant change were represented in GS. This generated a series of new images, referred to as StatMap, with color representing regions of perfusion. Changes in power Doppler images were visually detectable with high confidence in all five dogs by al three radiologists. There was no perceptible changes in B-scans. Computer analysis of PD images yielded characteristic indicator dilution curves in all five dogs with an initial rise time of 2-5 sec and a peak at 7-20 sec. The enhancement in PD lasted for 97-400 seconds. The

  12. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  13. A simple method for MR elastography: a gradient-echo type multi-echo sequence.

    PubMed

    Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro

    2015-01-01

    To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Quantitative Ultrasound: Transition from the Laboratory to the Clinic

    NASA Astrophysics Data System (ADS)

    Hall, Timothy

    2014-03-01

    There is a long history of development and testing of quantitative methods in medical ultrasound. From the initial attempts to scan breasts with ultrasound in the early 1950's, there was a simultaneous attempt to classify tissue as benign or malignant based on the appearance of the echo signal on an oscilloscope. Since that time, there has been substantial improvement in the ultrasound systems used, the models to describe wave propagation in random media, the methods of signal detection theory, and the combination of those models and methods into parameter estimation techniques. One particularly useful measure in ultrasonics is the acoustic differential scattering cross section per unit volume in the special case of the 180° (as occurs in pulse-echo ultrasound imaging) which is known as the backscatter coefficient. The backscatter coefficient, and parameters derived from it, can be used to objectively measure quantities that are used clinically to subjectively describe ultrasound images. For example, the ``echogenicity'' (relative ultrasound image brightness) of the renal cortex is commonly compared to that of the liver. Investigating the possibility of liver disease, it is assumed the renal cortex echogenicity is normal. Investigating the kidney, it is assumed the liver echogenicity is normal. Objective measures of backscatter remove these assumptions. There is a 30-year history of accurate estimates of acoustic backscatter coefficients with laboratory systems. Twenty years ago that ability was extended to clinical imaging systems with array transducers. Recent studies involving multiple laboratories and a variety of clinical imaging systems has demonstrated system-independent estimates of acoustic backscatter coefficients in well-characterized media (agreement within about 1.5dB over about a 1-decade frequency range). Advancements that made this possible, transition of this and similar capabilities into medical practice and the prospects for quantitative image

  15. Can hand-carried ultrasound devices be extended for use by the noncardiology medical community?

    PubMed

    Duvall, W Lane; Croft, Lori B; Goldman, Martin E

    2003-07-01

    Echocardiography (echo) is a powerful, noninvasive, inexpensive diagnostic imaging technique that provides important information in a variety of cardiovascular diseases. Echo provides rapid information regarding ventricular and valvular function in the clinical management of patients. Smaller, relatively inexpensive hand-carried cardiac ultrasound (HCU) devices have become commercially available, which can be used for diagnostic cardiac imaging. Because of their relative ease of use, portability, and affordable cost, these new hand-held systems have made point-of-care (bedside) echocardiography available to all medical personnel. The rate-limiting step to the widespread use of this technology is the lack of personnel with echo training at the immediate contact point with patients. Although extensive training and experience are needed to acquire and interpret a complete echo, training medical personnel to perform and interpret a limited echo (defined as a brief, diagnosis focused exam) may fully exploit the potential of echo as a point-of-care diagnostic tool and may be accomplished in a short period of time. Presently there are guidelines for independent competency in echocardiography and HCU echo established by several professional organizations and as a result of these rigorous guidelines, other noncardiology medical professionals who could practically derive the greatest benefit are discouraged and virtually precluded from utilizing echo during the initial encounter with the patient. However, there is now a growing body of literature in a diverse group of noncardiology medical personnel that demonstrates that it is possible to quickly and effectively train them to perform and interpret limited echocardiograms. Medical students, medical residents, cardiology fellows with limited experience, emergency department physicians, and surgical intensive care unit staff have all been evaluated after only brief, focused training periods, and investigators found that HCU

  16. Quantitative diagnostic method for biceps long head tendinitis by using ultrasound.

    PubMed

    Huang, Shih-Wei; Wang, Wei-Te

    2013-01-01

    To investigate the feasibility of grayscale quantitative diagnostic method for biceps tendinitis and determine the cut-off points of a quantitative biceps ultrasound (US) method to diagnose biceps tendinitis. Design. Prospective cross-sectional case controlled study. Outpatient rehabilitation service. A total of 336 shoulder pain patients with suspected biceps tendinitis were recruited in this prospective observational study. The grayscale pixel data of the range of interest (ROI) were obtained for both the transverse and longitudinal views of the biceps US. A total of 136 patients were classified with biceps tendinitis, and 200 patients were classified as not having biceps tendinitis based on the diagnostic criteria. Based on the Youden index, the cut-off points were determined as 26.85 for the transverse view and 21.25 for the longitudinal view of the standard deviation (StdDev) of the ROI values, respectively. When the ROI evaluation of the US surpassed the cut-off point, the sensitivity was 68% and the specificity was 90% in the StdDev of the transverse view, and the sensitivity was 81% and the specificity was 73% in the StdDev of the longitudinal view to diagnose biceps tendinitis. For equivocal cases or inexperienced sonographers, our study provides a more objective method for diagnosing biceps tendinitis in shoulder pain patients.

  17. High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation.

    PubMed

    Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X

    2012-08-01

    The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.

  18. Twinkling artifact on color Doppler ultrasound: an advantage or a pitfall?

    PubMed

    Ozan, Ebru; Atac, Gokce Kaan; Gundogdu, Sadi

    2016-07-01

    The twinkling artifact (TA) or color comet-tail artifact is characterized by a rapidly changing mixture of red and blue color Doppler signals. Even though many diseases and clinical conditions have been shown to produce this artifact, its source is not clearly understood yet. The TA may provide additional information to gray-scale ultrasound findings in several clinical situations. However, there may be pitfalls to keep in mind. We must first be aware of the TA to benefit from the advantages and avoid the pitfalls. In this review, we aim to give practicing radiologists an overview of the mechanisms and clinical applications of the TA by illustrating sample cases we have encountered.

  19. Pulse-echo sound speed estimation using second order speckle statistics

    NASA Astrophysics Data System (ADS)

    Rosado-Mendez, Ivan M.; Nam, Kibo; Madsen, Ernest L.; Hall, Timothy J.; Zagzebski, James A.

    2012-10-01

    This work presents a phantom-based evaluation of a method for estimating soft-tissue speeds of sound using pulse-echo data. The method is based on the improvement of image sharpness as the sound speed value assumed during beamforming is systematically matched to the tissue sound speed. The novelty of this work is the quantitative assessment of image sharpness by measuring the resolution cell size from the autocovariance matrix for echo signals from a random distribution of scatterers thus eliminating the need of strong reflectors. Envelope data were obtained from a fatty-tissue mimicking (FTM) phantom (sound speed = 1452 m/s) and a nonfatty-tissue mimicking (NFTM) phantom (1544 m/s) scanned with a linear array transducer on a clinical ultrasound system. Dependence on pulse characteristics was tested by varying the pulse frequency and amplitude. On average, sound speed estimation errors were -0.7% for the FTM phantom and -1.1% for the NFTM phantom. In general, no significant difference was found among errors from different pulse frequencies and amplitudes. The method is currently being optimized for the differentiation of diffuse liver diseases.

  20. Ultrasound in medical education: listening to the echoes of the past to shape a vision for the future.

    PubMed

    Lane, N; Lahham, S; Joseph, L; Bahner, D P; Fox, J C

    2015-10-01

    Ultrasound in medical education has seen a tremendous growth over the last 10-20 years but ultrasound technology has been around for hundreds of years and sound has an even longer scientific history. The development of using sound and ultrasound to understand our body and our surroundings has been a rich part of human history. From the development of materials to produce piezoelectric conductors, ultrasound has been used and improved in many industries and medical specialties. As diagnostic medical ultrasound has improved its resolution and become more portable, various specialties from radiology, cardiology, obstetrics and more recently emergency, critical care and proceduralists have found the added benefits of using ultrasound to safely help patients. The past advancements in technology have established the scaffold for the possibilities of diagnostic ultrasound's use in the present and future. A few medical educators have integrated ultrasound into medical school while a wealth of content exists online for learning ultrasound. Twenty-first century learners prefer blended learning where material can be reviewed online and personalize the education on their own time frame. This material combined with hands-on experience and mentorship can be used to develop learners' aptitude in ultrasound. As educators embrace this ultrasound technology and integrate it throughout the medical education journey, collaboration across specialties will synthesize a clear path forward when needs and resources are paired with vision and a strategic plan.

  1. ECHO Quick Start Guide | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Contact Us about ECHO | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Ultrasound elastomicroscopy for articular cartilage: from static to transient and 1D to 2D

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Bridal, Sharon L.; Shi, Jun; Saied, Amena; Lu, Minghua; Jaffre, Britta; Mak, Arthur F. T.; Laugier, Pascal; Qin, Ling

    2003-05-01

    Articular cartilage (AC) is a biological weight-bearing tissue covering the ends of articulating bones within synovial joints. Its function very much depends on the unique multi-layered structure and the depth-dependent material properties, which have not been well invetigated nondestructively. In this study, transient depth-dependent material properties of bovine patella cartilage were measured using ultrasound elastomicroscopy methods. A 50 MHz focused ultrasound transducer was used to collect A-mode ultrasound echoes from the articular cartilage during the compression and subsequent force-relaxation. The transient displacements of the cartilage tissues at different depths were calculated from the ultrasound echoes using a cross-correlation technique. It was observed that the strains in the superficial zone were much larger than those in the middle and deep zones as the equilibrium state was approached. The tissues inside the AC layer continued to move during the force-relaxation phase after the compression was completed. This process has been predicted by a biphasic theory. In this study, it has been verified experimentally. It was also observed that the tissue deformations at different depths of AC were much more evenly distributed before force-relaxation. AC specimens were also investigated using a 2D ultrasound elastomicroscopy system that included a 3D translating system for moving the ultrasound transducer over the specimens. B-mode RF ultrasound signals were collected from the specimens under different loading levels applied with a specially designed compressor. Preliminary results demonstrated that the scanning was repeatable with high correlation of radio frequency signals obtained from the same site during different scans when compression level was unchanged (R2 > 0.97). Strains of the AC specimens were mapped using data collected with this ultrasound elastomicroscope. This system can also be potentially used for the assessment of other biological

  4. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.

    PubMed

    Gao, Jing; Perlman, Alan; Kalache, Safa; Berman, Nathaniel; Seshan, Surya; Salvatore, Steven; Smith, Lindsey; Wehrli, Natasha; Waldron, Levi; Kodali, Hanish; Chevalier, James

    2017-11-01

    To evaluate the value of multiparametric quantitative ultrasound imaging in assessing chronic kidney disease (CKD) using kidney biopsy pathologic findings as reference standards. We prospectively measured multiparametric quantitative ultrasound markers with grayscale, spectral Doppler, and acoustic radiation force impulse imaging in 25 patients with CKD before kidney biopsy and 10 healthy volunteers. Based on all pathologic (glomerulosclerosis, interstitial fibrosis/tubular atrophy, arteriosclerosis, and edema) scores, the patients with CKD were classified into mild (no grade 3 and <2 of grade 2) and moderate to severe (at least 2 of grade 2 or 1 of grade 3) CKD groups. Multiparametric quantitative ultrasound parameters included kidney length, cortical thickness, pixel intensity, parenchymal shear wave velocity, intrarenal artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index. We tested the difference in quantitative ultrasound parameters among mild CKD, moderate to severe CKD, and healthy controls using analysis of variance, analyzed correlations of quantitative ultrasound parameters with pathologic scores and the estimated glomerular filtration rate (GFR) using Pearson correlation coefficients, and examined the diagnostic performance of quantitative ultrasound parameters in determining moderate CKD and an estimated GFR of less than 60 mL/min/1.73 m 2 using receiver operating characteristic curve analysis. There were significant differences in cortical thickness, pixel intensity, PSV, and EDV among the 3 groups (all P < .01). Among quantitative ultrasound parameters, the top areas under the receiver operating characteristic curves for PSV and EDV were 0.88 and 0.97, respectively, for determining pathologic moderate to severe CKD, and 0.76 and 0.86 for estimated GFR of less than 60 mL/min/1.73 m 2 . Moderate to good correlations were found for PSV, EDV, and pixel intensity with pathologic scores and estimated GFR. The

  5. Monitoring of tissue ablation using time series of ultrasound RF data.

    PubMed

    Imani, Farhad; Wu, Mark Z; Lasso, Andras; Burdette, Everett C; Daoud, Mohammad; Fitchinger, Gabor; Abolmaesumi, Purang; Mousavi, Parvin

    2011-01-01

    This paper is the first report on the monitoring of tissue ablation using ultrasound RF echo time series. We calcuate frequency and time domain features of time series of RF echoes from stationary tissue and transducer, and correlate them with ablated and non-ablated tissue properties. We combine these features in a nonlinear classification framework and demonstrate up to 99% classification accuracy in distinguishing ablated and non-ablated regions of tissue, in areas as small as 12mm2 in size. We also demonstrate significant improvement of ablated tissue classification using RF time series compared to the conventional approach of using single RF scan lines. The results of this study suggest RF echo time series as a promising approach for monitoring ablation, and capturing the changes in the tissue microstructure as a result of heat-induced necrosis.

  6. Lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2014-01-09

    ), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing.

  7. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  8. Imaging in gynecological disease (9): clinical and ultrasound characteristics of tubal cancer.

    PubMed

    Ludovisi, M; De Blasis, I; Virgilio, B; Fischerova, D; Franchi, D; Pascual, M A; Savelli, L; Epstein, E; Van Holsbeke, C; Guerriero, S; Czekierdowski, A; Zannoni, G; Scambia, G; Jurkovic, D; Rossi, A; Timmerman, D; Valentin, L; Testa, A C

    2014-03-01

    To describe clinical history and ultrasound findings in patients with tubal carcinoma. Patients with a histological diagnosis of tubal cancer who had undergone preoperative ultrasound examination were identified from the databases of 13 ultrasound centers. The tumors were described by the principal investigator at each contributing center on the basis of ultrasound images, ultrasound reports and research protocols (when applicable) using the terms and definitions of the International Ovarian Tumor Analysis (IOTA) group. In addition, three authors reviewed together all available digital ultrasound images and described them using subjective evaluation of gray-scale and color Doppler ultrasound findings. We identified 79 women with a histological diagnosis of primary tubal cancer, 70 of whom (89%) had serous carcinomas and 46 (58%) of whom presented at FIGO stage III. Forty-nine (62%) women were asymptomatic (incidental finding), whilst the remaining 30 complained of abdominal bloating or pain. Fifty-three (67%) tumors were described as solid at ultrasound examination, 14 (18%) as multilocular solid, 10 (13%) as unilocular solid and two (3%) as unilocular. No tumor was described as a multilocular mass. Most tumors (70/79, 89%) were moderately or very well vascularized on color or power Doppler ultrasound. Normal ovarian tissue was identified adjacent to the tumor in 51% (39/77) of cases. Three types of ultrasound appearance were identified as being typical of tubal carcinoma using pattern recognition: a sausage-shaped cystic structure with solid tissue protruding into it like a papillary projection (11/62, 18%); a sausage-shaped cystic structure with a large solid component filling part of the cyst cavity (13/62, 21%); an ovoid or oblong completely solid mass (36/62, 58%). A well vascularized ovoid or sausage-shaped structure, either completely solid or with large solid component(s) in the pelvis, should raise the suspicion of tubal cancer, especially if normal

  9. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  10. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography

    PubMed Central

    Liu, Mei-Juan; Men, Yan-Ming; Zhang, Yong-Lin; Zhang, Yu-Xi; Liu, Hao

    2017-01-01

    We aimed to evaluate the diagnostic values of conventional ultrasound (US), ultrasound contrast (UC) and ultrasound elastography (UE) in distinguishing the benign and malignant thyroid nodules. A total of 100 patients with thyroid nodules receiving operative treatment were selected; they underwent the conventional US, UE and UC examinations before operation, respectively. The nodules received pathological examination after operation to distinguish benign from malignant lesions. The sensitivity, specificity and diagnostic accordance rate of each diagnostic method was evaluated by receiver operating characteristic (ROC) curve, and the area under the curve (AUC) of ROC was calculated. The manifestations of malignant thyroid nodules in conventional US examination were mostly the hypoecho, heterogeneous echo, irregular shape, unclear boundary, aspect ratio <1, microcalcification and irregular peripheral echo halo, and there were statistically significant differences compared with the benign nodules (P<0.05). UE showed that the differences between benign and malignant nodules in 2, 3 and 4 points were statistically significant (P<0.05). The manifestations of malignant nodules in UC were mostly the irregular shape, obscure boundary, no obvious enhancement, heterogeneous enhancement and visible perfusion defects, and there were statistically significant differences compared with the benign nodules (P<0.05). ROC curve showed that both sensitivity and specificity of UE and UC were superior to those of conventional US. AUC was the largest (AUC = 0.908) and the diagnostic value was the highest in the conventional US combined with UE and UC. Conventional US combined with elastography and UC can significantly improve the sensitivity, specificity and accuracy of diagnosis of benign and malignant thyroid nodules. PMID:28693244

  11. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography.

    PubMed

    Liu, Mei-Juan; Men, Yan-Ming; Zhang, Yong-Lin; Zhang, Yu-Xi; Liu, Hao

    2017-07-01

    We aimed to evaluate the diagnostic values of conventional ultrasound (US), ultrasound contrast (UC) and ultrasound elastography (UE) in distinguishing the benign and malignant thyroid nodules. A total of 100 patients with thyroid nodules receiving operative treatment were selected; they underwent the conventional US, UE and UC examinations before operation, respectively. The nodules received pathological examination after operation to distinguish benign from malignant lesions. The sensitivity, specificity and diagnostic accordance rate of each diagnostic method was evaluated by receiver operating characteristic (ROC) curve, and the area under the curve (AUC) of ROC was calculated. The manifestations of malignant thyroid nodules in conventional US examination were mostly the hypoecho, heterogeneous echo, irregular shape, unclear boundary, aspect ratio <1, microcalcification and irregular peripheral echo halo, and there were statistically significant differences compared with the benign nodules (P<0.05). UE showed that the differences between benign and malignant nodules in 2, 3 and 4 points were statistically significant (P<0.05). The manifestations of malignant nodules in UC were mostly the irregular shape, obscure boundary, no obvious enhancement, heterogeneous enhancement and visible perfusion defects, and there were statistically significant differences compared with the benign nodules (P<0.05). ROC curve showed that both sensitivity and specificity of UE and UC were superior to those of conventional US. AUC was the largest (AUC = 0.908) and the diagnostic value was the highest in the conventional US combined with UE and UC. Conventional US combined with elastography and UC can significantly improve the sensitivity, specificity and accuracy of diagnosis of benign and malignant thyroid nodules.

  12. Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.

    PubMed

    Benoit, Robert R; Jordan, Delaney M; Smith, Gabriel L; Polcawich, Ronald G; Bedair, Sarah S; Potrepka, Daniel M

    2018-05-01

    Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO 2 elastic layer, a base electrode of Pt/TiO 2 , and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO 2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.

  13. Relationship of ultrasound signal intensity with SonoVue concentration at body temperature in vitro

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Jing; He, Xiaoling; Wu, Kaizhi; Yuan, Yun; Ding, Mingyue

    2014-04-01

    In this paper, the relationship between image intensity and ultrasound contrast agent (UCA) concentration is investigated. Experiments are conducted in water bath using a silicon tube filled with UCA (SonoVue) at different concentrations (100μl/l to 6000μl/l) at around 37 °C to simulate the temperature in human body. The mean gray-scale intensity within the region of interest (ROI) is calculated to obtain the plot of signal intensity to UCA concentration. The results show that the intensity firstly exhibits a linear increase to the peak at approximately 1500μl/l then appears a downward trend due to the multiple scattering (MS) effects.

  14. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone.

    PubMed

    Park, Young Mi; Fornage, Bruno D; Benveniste, Ana Paula; Fox, Patricia S; Bassett, Roland L; Yang, Wei Tse

    2014-12-01

    The purpose of this study was to determine the diagnostic value of strain elastography (SE) alone and in combination with gray-scale ultrasound in the diagnosis of benign versus metastatic disease for abnormal axillary lymph nodes in breast cancer patients. Patients with breast cancer and axillary lymph nodes suspicious for metastatic disease on conventional ultrasound who underwent SE of the suspicious node before ultrasound-guided fine-needle aspiration biopsy (FNAB) were included in this study. On conventional ultrasound, the long- and short-axis diameters, long-axis-to-short-axis ratio, cortical echogenicity, thickness, and evenness were documented. The nodal vascularity was assessed on power Doppler imaging. Elastograms were evaluated for the percentage of black (hard) areas in the lymph node, and the SE-ultrasound size ratio was calculated. Two readers assessed the images independently and then in consensus in cases of disagreement. ROC AUCs were calculated for conventional ultrasound, SE, and both methods combined. Interreader reliability was assessed using kappa statistics. A total of 101 patients with 104 nodes were examined; 35 nodes were benign, and 69 had metastases. SE alone showed a significantly lower AUC (62%) than did conventional ultrasound (92%) (p<0.001). There was no difference between the AUC of conventional ultrasound and the AUC of the combination of conventional ultrasound and SE (93%) (p=0.16). Interreader reliability was moderate for all variables (κ≥0.60) except the SE-ultrasound size ratio (κ=0.35). Added SE does not improve the diagnostic ability of conventional ultrasound when evaluating abnormal axillary lymph nodes.

  15. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon

  16. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  17. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which

  18. Contrast enhancement of bite mark images using the grayscale mixer in ACR in Photoshop®.

    PubMed

    Evans, Sam; Noorbhai, Suzanne; Lawson, Zoe; Stacey-Jones, Seren; Carabott, Romina

    2013-05-01

    Enhanced images may improve bite mark edge definition, assisting forensic analysis. Current contrast enhancement involves color extraction, viewing layered images by channel. A novel technique, producing a single enhanced image using the grayscale mix panel within Adobe Camera Raw®, has been developed and assessed here, allowing adjustments of multiple color channels simultaneously. Stage 1 measured RGB values in 72 versions of a color chart image; eight sliders in Photoshop® were adjusted at 25% intervals, all corresponding colors affected. Stage 2 used a bite mark image, and found only red, orange, and yellow sliders had discernable effects. Stage 3 assessed modality preference between color, grayscale, and enhanced images; on average, the 22 survey participants chose the enhanced image as better defined for nine out of 10 bite marks. The study has shown potential benefits for this new technique. However, further research is needed before use in the analysis of bite marks. © 2013 American Academy of Forensic Sciences.

  19. Assessing the activity of perianal Crohn's disease: comparison of clinical indices and computer-assisted anal ultrasound.

    PubMed

    Losco, Alessandra; Viganò, Chiara; Conte, Dario; Cesana, Bruno Mario; Basilisco, Guido

    2009-05-01

    Assessing perianal disease activity is important for the treatment and prognosis of Crohn's disease (CD) patients, but the diagnostic accuracy of the activity indices has not yet been established. The aim of this study was to determine the accuracy and agreement of the Fistula Drainage Assessment (FDA), Perianal Disease Activity Index (PDAI), and computer-assisted anal ultrasound imaging (AUS). Sixty-two consecutive patients with CD and perianal fistulae underwent clinical, FDA, PDAI, and AUS evaluation. Perianal disease was considered active in the presence of visible fistula drainage and/or signs of local inflammation (induration and pain at digital compression) upon clinical examination. The AUS images were analyzed by calculating the mean gray-scale tone of the lesion. The PDAI and gray-scale tone values discriminating active and inactive perianal disease were defined using receiver operating characteristics statistics. Perianal disease was active in 46 patients. The accuracy of the FDA was 87% (confidence interval [CI]: 76%-94%). A PDAI of >4 and a mean gray-scale tone value of 117 maximized sensitivity and specificity; their diagnostic accuracy was, respectively, 87% (CI: 76%-94%) and 81% (CI: 69%-90%). The agreement of the 3 evaluations was fair to moderate. The addition of AUS to the PDAI or FDA increased their diagnostic accuracy to respectively 95% and 98%. The diagnostic accuracy of the FDA, PDAI, and computer-assisted AUS imaging was good in assessing perianal disease activity in patients with CD. The agreement between the techniques was fair to moderate. Overall accuracy can be increased by combining the FDA or PDAI with AUS.

  20. Help Content for ECHO Reports | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Is there subclinical enthesitis in early psoriatic arthritis? A clinical comparison with power doppler ultrasound.

    PubMed

    Freeston, J E; Coates, L C; Helliwell, P S; Hensor, E M A; Wakefield, R J; Emery, P; Conaghan, P G

    2012-10-01

    Enthesitis is a recognized feature of spondylarthritides (SpA), including psoriatic arthritis (PsA). Previously, ultrasound imaging has highlighted the presence of subclinical enthesitis in established SpA, but there are little data on ultrasound findings in early PsA. The aim of our study was to compare ultrasound and clinical examination (CE) for the detection of entheseal abnormalities in an early PsA cohort. Forty-two patients with new-onset PsA and 10 control subjects underwent CE of entheses for tenderness and swelling, as well as gray-scale (GS) and power Doppler (PD) ultrasound of a standard set of entheses. Bilateral elbow lateral epicondyles, Achilles tendons, and plantar fascia were assessed by both CE and ultrasound, the latter scored using a semiquantitative (SQ) scale. Inferior patellar tendons were assessed by ultrasound alone. A GS SQ score of >1 and/or a PD score of >0 was used to describe significant ultrasound entheseal abnormality. A total of 24 (57.1%) of 42 patients in the PsA group and 0 (0%) of 10 controls had clinical evidence of at least 1 tender enthesis. In the PsA group, for sites assessed by both CE and ultrasound, 4% (7 of 177) of nontender entheses had a GS score >1 and/or a PD score >0 compared to 24% (9 of 37) of tender entheses. CE overestimated activity in 28 (13%) of 214 of entheses. All the nontender ultrasound-abnormal entheses were in the lower extremity. The prevalence of subclinical enthesitis in this early PsA cohort was low. CE may overestimate active enthesitis. The few subclinically inflamed entheses were in the lower extremity, where mechanical stress is likely to be more significant. Copyright © 2012 by the American College of Rheumatology.

  2. Ultrasound assisted evaluation of chest pain in the emergency department.

    PubMed

    Colony, M Deborah; Edwards, Frank; Kellogg, Dylan

    2018-04-01

    Chest pain is a commonly encountered emergency department complaint, with a broad differential including several life-threatening possible conditions. Ultrasound-assisted evaluation can potentially be used to rapidly and accurately arrive at the correct diagnosis. We propose an organized, ultrasound assisted evaluation of the patient with chest pain using a combination of ultrasound, echocardiography and clinical parameters. Basic echo techniques which can be mastered by residents in a short time are used plus standardized clinical questions and examination. Information is kept on a checklist. We hypothesize that this will result in a quicker, more accurate evaluation of chest pain in the ED leading to timely treatment and disposition of the patient, less provider anxiety, a reduction in the number of diagnostic errors, and the removal of false assumptions from the diagnostic process. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  4. Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi

    2001-05-01

    To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.

  5. Multicarrier airborne ultrasound transmission with piezoelectric transducers.

    PubMed

    Ens, Alexander; Reindl, Leonhard M

    2015-05-01

    In decentralized localization systems, the received signal has to be assigned to the sender. Therefore, longrange airborne ultrasound communication enables the transmission of an identifier of the sender within the ultrasound signal to the receiver. Further, in areas with high electromagnetic noise or electromagnetic free areas, ultrasound communication is an alternative. Using code division multiple access (CDMA) to transmit data is ineffective in rooms due to high echo amplitudes. Further, piezoelectric transducers generate a narrow-band ultrasound signal, which limits the data rate. This work shows the use of multiple carrier frequencies in orthogonal frequency division multiplex (OFDM) and differential quadrature phase shift keying modulation with narrowband piezoelectric devices to achieve a packet length of 2.1 ms. Moreover, the adapted channel coding increases data rate by correcting transmission errors. As a result, a 2-carrier ultrasound transmission system on an embedded system achieves a data rate of approximately 5.7 kBaud. Within the presented work, a transmission range up to 18 m with a packet error rate (PER) of 13% at 10-V supply voltage is reported. In addition, the transmission works up to 22 m with a PER of 85%. Moreover, this paper shows the accuracy of the frame synchronization over the distance. Consequently, the system achieves a standard deviation of 14 μs for ranges up to 10 m.

  6. Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-11-01

    The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.

  7. How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes

    PubMed Central

    Yovel, Yossi; Au, Whitlow W. L.

    2010-01-01

    Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification. PMID:21124908

  8. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    PubMed

    Yovel, Yossi; Au, Whitlow W L

    2010-11-19

    Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  9. Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.

    PubMed

    McAleavey, Stephen

    2011-01-01

    We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.

  10. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    PubMed

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Reliability of ultrasound grading traditional score and new global OMERACT-EULAR score system (GLOESS): results from an inter- and intra-reading exercise by rheumatologists.

    PubMed

    Ventura-Ríos, Lucio; Hernández-Díaz, Cristina; Ferrusquia-Toríz, Diana; Cruz-Arenas, Esteban; Rodríguez-Henríquez, Pedro; Alvarez Del Castillo, Ana Laura; Campaña-Parra, Alfredo; Canul, Efrén; Guerrero Yeo, Gerardo; Mendoza-Ruiz, Juan Jorge; Pérez Cristóbal, Mario; Sicsik, Sandra; Silva Luna, Karina

    2017-12-01

    This study aims to test the reliability of ultrasound to graduate synovitis in static and video images, evaluating separately grayscale and power Doppler (PD), and combined. Thirteen trained rheumatologist ultrasonographers participated in two separate rounds reading 42 images, 15 static and 27 videos, of the 7-joint count [wrist, 2nd and 3rd metacarpophalangeal (MCP), 2nd and 3rd interphalangeal (IPP), 2nd and 5th metatarsophalangeal (MTP) joints]. The images were from six patients with rheumatoid arthritis, performed by one ultrasonographer. Synovitis definition was according to OMERACT. Scoring system in grayscale, PD separately, and combined (GLOESS-Global OMERACT-EULAR Score System) were reviewed before exercise. Reliability intra- and inter-reading was calculated with Cohen's kappa weighted, according to Landis and Koch. Kappa values for inter-reading were good to excellent. The minor kappa was for GLOESS in static images, and the highest was for the same scoring in videos (k 0.59 and 0.85, respectively). Excellent values were obtained for static PD in 5th MTP joint and for PD video in 2nd MTP joint. Results for GLOESS in general were good to moderate. Poor agreement was observed in 3rd MCP and 3rd IPP in all kinds of images. Intra-reading agreement were greater in grayscale and GLOESS in static images than in videos (k 0.86 vs. 0.77 and k 0.86 vs. 0.71, respectively), but PD was greater in videos than in static images (k 1.0 vs. 0.79). The reliability of the synovitis scoring through static images and videos is in general good to moderate when using grayscale and PD separately or combined.

  12. On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.

    PubMed

    Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S

    2007-03-01

    Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.

  13. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.

    PubMed

    Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François

    2015-05-01

    Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p < 10(-4)). The difference between the single-pixel peak temperature rise and the surrounding-pixel mean, which reflects the sharpness of the

  14. Lung ultrasound in the critically ill

    PubMed Central

    2014-01-01

    in adults), many disciplines (pulmonology, cardiology…), austere countries, and a help in any procedure (thoracentesis). A 1992, cost-effective gray-scale unit, without Doppler, and a microconvex probe are efficient. Lung ultrasound is a holistic discipline for many reasons (e.g., one probe, perfect for the lung, is able to scan the whole-body). Its integration can provide a new definition of priorities. The BLUE-protocol and FALLS-protocol allow simplification of expert echocardiography, a clear advantage when correct cardiac windows are missing. PMID:24401163

  15. Real-time two-dimensional temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2009-01-01

    We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.

  16. Guide to Regulated Facilities in ECHO | ECHO | US EPA

    EPA Pesticide Factsheets

    There are multiple ways ECHO can be used to search compliance data. By default, ECHO searches focus on larger, more regulated facilities. Each search page allows users to search a more comprehensive group of facilities by electing to search for minor or smaller facilities. Information is presented that explains the types and approximate numbers of facilities that are included in searches when the default and custom options are used.

  17. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  18. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  19. Cumulative phase delay between second harmonic and fundamental components--a marker for ultrasound contrast agents.

    PubMed

    Demi, Libertario; Wijkstra, Hessel; Mischi, Massimo

    2014-12-01

    Several imaging techniques aimed at detecting ultrasound contrast agents (UCAs) echo signals, while suppressing signals coming from the surrounding tissue, have been developed. These techniques are especially relevant for blood flow, perfusion, or contrast dispersion quantification. However, despite several approaches being presented, improving the understanding of the ultrasound/UCAs interaction may support further development of imaging techniques. In this paper, the physical phenomena behind the formation of harmonic components in tissue and UCAs, respectively, are addressed as a possible way to recognize the origin of the echo signals. Simulations based on a modified Rayleigh, Plesset, Noltingk, Neppiras, and Poritsky equation and transmission and backscattering measurements of ultrasound propagating through UCAs performed with a single element transducer and a submergible hydrophone, are presented. Both numerical and in vitro results show the occurrence of a cumulative time delay between the second harmonic and fundamental component which increases with UCA concentration and propagation path length through UCAs, and that was clearly observable at frequencies ( f0 = 2.5 MHz) and pressure regimes (mechanical index = 0.1) of interest for imaging. Most importantly, this delay is not observed in the absence of UCAs. In conclusion, the reported phenomenon represents a marker for UCAs with potential application for imaging.

  20. A survey of quality measures for gray-scale image compression

    NASA Technical Reports Server (NTRS)

    Eskicioglu, Ahmet M.; Fisher, Paul S.

    1993-01-01

    Although a variety of techniques are available today for gray-scale image compression, a complete evaluation of these techniques cannot be made as there is no single reliable objective criterion for measuring the error in compressed images. The traditional subjective criteria are burdensome, and usually inaccurate or inconsistent. On the other hand, being the most common objective criterion, the mean square error (MSE) does not have a good correlation with the viewer's response. It is now understood that in order to have a reliable quality measure, a representative model of the complex human visual system is required. In this paper, we survey and give a classification of the criteria for the evaluation of monochrome image quality.

  1. Thermal Imaging of Convecting Opaque Fluids using Ultrasound

    NASA Technical Reports Server (NTRS)

    Xu, Hongzhou; Fife, Sean; Andereck, C. David

    2002-01-01

    An ultrasound technique has been developed to non-intrusively image temperature fields in small-scale systems of opaque fluids undergoing convection. Fluids such as molten metals, semiconductors, and polymers are central to many industrial processes, and are often found in situations where natural convection occurs, or where thermal gradients are otherwise important. However, typical thermal and velocimetric diagnostic techniques rely upon transparency of the fluid and container, or require the addition of seed particles, or require mounting probes inside the fluid, all of which either fail altogether in opaque fluids, or necessitate significant invasion of the flow and/or modification of the walls of the container to allow access to the fluid. The idea behind our work is to use the temperature dependence of sound velocity, and the ease of propagation of ultrasound through fluids and solids, to probe the thermal fields of convecting opaque fluids non-intrusively and without the use of seed particles. The technique involves the timing of the return echoes from ultrasound pulses, a variation on an approach used previously in large-scale systems.

  2. Real-Time 3D Ultrasound for Physiological Monitoring 22258.

    DTIC Science & Technology

    1999-10-01

    their software to acquire positioning information using a high precision mechanical arm ( MicroScribe arm from Immersion Corp., San Jose, CA) instead of...mechanical arm (Immersion MicroScribe ™) for 3D data acquisition, also adopted by EchoTech for 3D FreeScan. • Medical quality video capture by a...MHz Dell Dimen- sion XPS computer9 (under desk), MUSTPAC-2 Vir- tual Ultrasound Probe based on the Microscribe 3D articulated arm10 (on table

  3. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    PubMed

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  4. Nonlinear theory of transverse beam echoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Tanaji; Li, Yuan Shen

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less

  5. Nonlinear theory of transverse beam echoes

    DOE PAGES

    Sen, Tanaji; Li, Yuan Shen

    2018-02-23

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less

  6. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  7. A New Quantum Gray-Scale Image Encoding Scheme

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza

    2018-02-01

    In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN

  8. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  9. Accreta placentation: a systematic review of prenatal ultrasound imaging and grading of villous invasiveness.

    PubMed

    Jauniaux, Eric; Collins, Sally L; Jurkovic, Davor; Burton, Graham J

    2016-12-01

    Determining the depth of villous invasiveness before delivery is pivotal in planning individual management of placenta accreta. We have evaluated the value of various ultrasound signs proposed in the international literature for the prenatal diagnosis of accreta placentation and assessment of the depth of villous invasiveness. We undertook a PubMed and MEDLINE search of the relevant studies published from the first prenatal ultrasound description of placenta accreta in 1982 through March 30, 2016, using key words "placenta accreta," "placenta increta," "placenta percreta," "abnormally invasive placenta," "morbidly adherent placenta," and "placenta adhesive disorder" as related to "sonography," "ultrasound diagnosis," "prenatal diagnosis," "gray-scale imaging," "3-dimensional ultrasound", and "color Doppler imaging." The primary eligibility criteria were articles that correlated prenatal ultrasound imaging with pregnancy outcome. A total of 84 studies, including 31 case reports describing 38 cases of placenta accreta and 53 series describing 1078 cases were analyzed. Placenta accreta was subdivided into placenta creta to describe superficially adherent placentation and placenta increta and placenta percreta to describe invasive placentation. Of the 53 study series, 23 did not provide data on the depth of villous myometrial invasion on ultrasound imaging or at delivery. Detailed correlations between ultrasound findings and placenta accreta grading were found in 72 cases. A loss of clear zone (62.1%) and the presence of bridging vessels (71.4%) were the most common ultrasound signs in cases of placenta creta. In placenta increta, a loss of clear zone (84.6%) and subplacental hypervascularity (60%) were the most common ultrasound signs, whereas placental lacunae (82.4%) and subplacental hypervascularity (54.5%) were the most common ultrasound signs in placenta percreta. No ultrasound sign or a combination of ultrasound signs were specific of the depth of accreta

  10. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  11. Echo's Legacy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Echo 1 Satellite is simply a very large balloon, the diameter of a 10 story building. Metallized Products, Inc. developed a special material for NASA used for the balloons's skin. For "bouncing signals," material had to be reflective, lightweight, and thin enough to be folded into a beach ball size canister for delivery into orbit, where it would automatically inflate. Material selected was mylar polyester, with a reflective layer of tiny aluminum particles so fine that Echo's skin had a thickness half that of cellophane on a cigarette package.

  12. Effect of ultrasound radiation force on the choroid.

    PubMed

    Silverman, Ronald H; Urs, Raksha; Lloyd, Harriet O

    2013-01-10

    While visualization of the retina and choroid has made great progress, functional imaging techniques have been lacking. Our aim was to utilize acoustic radiation force impulse (ARFI) response to probe functional properties of these tissues. A single element 18-MHz ultrasound transducer was focused upon the retina of the rabbit eye. The procedure was performed with the eye proptosed and with the eye seated normally in the orbit. The transducer was excited to emit ARFI over a 10-ms period with a 25% duty cycle. Phase resolved pulse/echo data were acquired before, during, and following ARFI. In the proptosed eye, ARFI exposure produced tissue displacements ranging from 0 to 10 μm, and an immediate increase in choroidal echo amplitude to over 6 dB, decaying to baseline after about 1 second. In the normally seated eye, ultrasound phase shifts consistent with flow were observed in the choroid, but enhanced backscatter following ARFI rarely occurred. ARFI-induced displacements of about 10 μm were observed at the choroidal margins. Larger displacements occurred within the choroid and in orbital tissues. We hypothesize that elevated intraocular pressure occurring during proptosis induced choroidal ischemia and that acoustic radiation force produced a transient local decompression and reperfusion. With the eye normally seated, choroidal flow was observed and little alteration in backscatter resulted from exposure. Clinical application of this technique may provide new insights into diseases characterized by altered choroidal hemodynamics, including maculopathies, diabetic retinopathy, and glaucoma.

  13. Utilization of bedside urogenital ultrasound in an austere combat setting: enterovesicular fistula case report.

    PubMed

    Lunceford, Nicole; Scherl, Robert J; Elliot, Jonathan; Bechtel, Brett F; Auten, Jonathan

    2013-03-01

    The role of bedside ultrasound by physicians with advanced ultrasound training, such as emergency medicine providers, has been clearly established in the austere setting of combat medicine. This highly mobile, noninvasive, and versatile imaging modality has a role in evaluating battle- and nonbattle-related presentations. This case report describes a U.S. Marine reporting to an austere medical facility with the chief complaint of abdominal pain. An ultrasound of the patient's urinary tract revealed abnormalities that suggested right bladder wall thickening and an echo dense layer of sediment as the potential source of his discomfort. These findings supported patient transfer to a higher echelon of care. Further diagnostic testing revealed Crohn's disease with an associated enterovesicular fistula. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  14. A-scan ultrasound system for real-time puncture safety assessment during percutaneous nephrolithotomy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.

    2015-03-01

    Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.

  15. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    PubMed

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  16. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging.

    PubMed

    Kirkinen, P; Partanen, K; Ryynänen, M; Ordén, M R

    1997-08-01

    To describe the magnetic resonance imaging (MRI) findings associated with fetal intracranial hemorrhage and to compare them with ultrasound findings. In four pregnancies complicated by fetal intracranial hemorrhage, fetal imaging was carried out using T2-weighted fast spin echo sequences and T1-weighted fast low angle shot imaging sequences and by transabdominal ultrasonography. An antepartum diagnosis of hemorrhage was made by ultrasound in one case and by MRI in two. Retrospectively, the hemorrhagic area could be identified from the MRI images in an additional two cases and from the ultrasound images in one case. In the cases of intraventricular hemorrhage, the MRI signal intensity in the T1-weighted images was increased in the hemorrhagic area as compared to the contralateral ventricle and brain parenchyma. In a case with subdural hemorrhage, T2-weighted MRI signals from the hemorrhagic area changed from low-to high-intensity signals during four weeks of follow-up. Better imaging of the intracranial anatomy was possible by MRI than by transabdominal ultrasonography. MRI can be used for imaging and dating fetal intracranial hemorrhages. Variable ultrasound and MRI findings are associated with this complication, depending on the age and location of the hemorrhage.

  17. Consensus-based identification of factors related to false-positives in ultrasound scanning of synovitis and tenosynovitis.

    PubMed

    Ikeda, Kei; Narita, Akihiro; Ogasawara, Michihiro; Ohno, Shigeru; Kawahito, Yutaka; Kawakami, Atsushi; Ito, Hiromu; Matsushita, Isao; Suzuki, Takeshi; Misaki, Kenta; Ogura, Takehisa; Kamishima, Tamotsu; Seto, Yohei; Nakahara, Ryuichi; Kaneko, Atsushi; Nakamura, Takayuki; Henmi, Mihoko; Fukae, Jun; Nishida, Keiichiro; Sumida, Takayuki; Koike, Takao

    2016-01-01

    We aimed to identify causes of false-positives in ultrasound scanning of synovial/tenosynovial/bursal inflammation and provide corresponding imaging examples. We first performed systematic literature review to identify previously reported causes of false-positives. We next determined causes of false-positives and corresponding example images for educational material through Delphi exercises and discussion by 15 experts who were an instructor and/or a lecturer in the 2013 advanced course for musculoskeletal ultrasound organized by Japan College of Rheumatology Committee for the Standardization of Musculoskeletal Ultrasonography. Systematic literature review identified 11 articles relevant to sonographic false-positives of synovial/tenosynovial inflammation. Based on these studies, 21 candidate causes of false-positives were identified in the consensus meeting. Of these items, 11 achieved a predefined consensus (≥ 80%) in Delphi exercise and were classified as follows: (I) Gray-scale assessment [(A) non-specific synovial findings and (B) normal anatomical structures which can mimic synovial lesions due to either their low echogenicity or anisotropy]; (II) Doppler assessment [(A) Intra-articular normal vessels and (B) reverberation)]. Twenty-four corresponding examples with 49 still and 23 video images also achieved consensus. Our study provides a set of representative images that can help sonographers to understand false-positives in ultrasound scanning of synovitis and tenosynovitis.

  18. Improved Contrast-Enhanced Ultrasound Imaging With Multiplane-Wave Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2018-02-01

    Contrast-enhanced ultrasound (CEUS) imaging has great potential for use in new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, contrast agents (i.e., microbubbles) are used to improve contrast between blood and tissue because of their high nonlinearity under low ultrasound pressure. However, the quality of CEUS imaging sometimes suffers from a low signal-to-noise ratio (SNR) in deeper imaging regions when a low mechanical index (MI) is used to avoid microbubble disruption, especially for imaging at off-resonance transmit frequencies. In this paper, we propose a new strategy of combining CEUS sequences with the recently proposed multiplane-wave (MW) compounding method to improve the SNR of CEUS in deeper imaging regions without increasing MI or sacrificing frame rate. The MW-CEUS method emits multiple Hadamard-coded CEUS pulses in each transmission event (i.e., pulse-echo event). The received echo signals first undergo fundamental bandpass filtering (i.e., the filter is centered on the transmit frequency) to eliminate the microbubble's second-harmonic signals because they cannot be encoded by pulse inversion. The filtered signals are then Hadamard decoded and realigned in fast time to recover the signals as they would have been obtained using classic CEUS pulses, followed by designed recombination to cancel the linear tissue responses. The MW-CEUS method significantly improved contrast-to-tissue ratio and SNR of CEUS imaging by transmitting longer coded pulses. The image resolution was also preserved. The microbubble disruption ratio and motion artifacts in MW-CEUS were similar to those of classic CEUS imaging. In addition, the MW-CEUS sequence can be adapted to other transmission coding formats. These properties of MW-CEUS can potentially facilitate CEUS imaging for many clinical applications, especially assessing deep abdominal organs or the heart.

  19. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  20. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  1. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  2. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr

  3. Measurement of thrombus resolution using three-dimensional ultrasound assessment of deep vein thrombosis volume.

    PubMed

    Zhao, Limin; Prior, Steven J; Kampmann, Meghan; Sorkin, John D; Caldwell, Kevin; Braganza, Melita; McEvoy, Sue; Lal, Brajesh K

    2014-04-01

    Current imaging techniques are limited in their ability to quantify thrombus burden, progression, resolution, and organization over time in patients with acute deep vein thrombosis (DVT). These assessments are critical measures of therapeutic success when thrombolytic or thrombectomy treatment protocols are utilized for DVT. We evaluated the reliability of a new, commercially available method of acquiring and analyzing three-dimensional (3D) ultrasound images of DVTs that measures thrombus volume and echogenicity. We studied 25 consecutive hospital in-patients (18 male, seven female; age range, 37-87 years) with a first episode of acute DVT. Treatment decisions were not influenced by the study protocol. Scanning was performed independently by two sonographers, then the first sonographer repeated the scan. A combination of routine imaging in grayscale, color-flow, and power-Doppler modes (2D transducer) along with volumetric imaging (3D transducer) was performed. Patients underwent imaging at baseline and on one or more follow-up days 7, 14, 21 and 30. Image-processing software loaded on the ultrasound machine was used to obtain thrombus volume and echogenicity measurements. Thrombus volume was reliably determined by our protocol. The median volume of thrombus at baseline was 0.4 cm(3). Mean inter- and intraobserver differences in volume measurements were 0.006 ± 0.26 cm(3) and -0.12 ± 0.29 cm(3) (mean ± standard deviation). Thrombus resolved over time at a rate of -0.042 ± 0.01 cm(3)/day (P < .003). The median echogenicity of thrombus at baseline expressed as the grayscale median value was 59. There was a trend for thrombus organization (measured as echogenicity) to increase with time, +0.36 ± 0.23 grayscale median units/day (P < .13). Adjustment for the use of anticoagulation, gender of subject, or location of DVT in the upper vs lower extremity did not alter the relationship between time and volume or time and echogenicity. We describe a 3D

  4. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups.

    PubMed

    Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao

    2017-12-01

    The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of a novel 7-joint ultrasound score in daily rheumatologic practice: a pilot project.

    PubMed

    Backhaus, M; Ohrndorf, S; Kellner, H; Strunk, J; Backhaus, T M; Hartung, W; Sattler, H; Albrecht, K; Kaufmann, J; Becker, K; Sörensen, H; Meier, L; Burmester, G R; Schmidt, W A

    2009-09-15

    To introduce a new standardized ultrasound score based on 7 joints of the clinically dominant hand and foot (German US7 score) implemented in daily rheumatologic practice. The ultrasound score included the following joints of the clinically dominant hand and foot: wrist, second and third metacarpophalangeal and proximal interphalangeal, and second and fifth metatarsophalangeal joints. Synovitis and synovial/tenosynovial vascularity were scored semiquantitatively (grade 0-3) by gray-scale (GS) and power Doppler (PD) ultrasound. Tenosynovitis and erosions were scored for presence. The scoring range was 0-27 for GS synovitis, 0-39 for PD synovitis, 0-7 for GS tenosynovitis, 0-21 for PD tenosynovitis, and 0-14 for erosions. Patients with arthritis were examined at baseline and after the start or change of disease-modifying antirheumatic drug (DMARD) and/or tumor necrosis factor alpha (TNFalpha) inhibitor therapy 3 and 6 months later. C-reactive protein level, erythrocyte sedimentation rate, rheumatoid factor, anti-cyclic citrullinated peptide, Disease Activity Score in 28 joints (DAS28), and radiographs of the hands and feet were performed. One hundred twenty patients (76% women) with rheumatoid arthritis (91%) and psoriatic arthritis (9%) were enrolled. In 52 cases (43%), erosions were seen in radiography at baseline. Patients received DMARDs (41%), DMARDs plus TNFalpha inhibitors (41%), or TNFalpha inhibitor monotherapy (18%). At baseline, the mean DAS28 was 5.0 and the synovitis scores were 8.1 in GS ultrasound and 3.3 in PD ultrasound. After 6 months of therapy, the DAS28 significantly decreased to 3.6 (Delta = 1.4), and the GS and PD ultrasound scores significantly decreased to 5.5 (-32%) and 2.0 (-39%), respectively. The German US7 score is a viable tool for examining patients with arthritis in daily rheumatologic practice because it significantly reflects therapeutic response.

  6. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images.

    PubMed

    Cheng, Phillip M; Malhi, Harshawn S

    2017-04-01

    The purpose of this study is to evaluate transfer learning with deep convolutional neural networks for the classification of abdominal ultrasound images. Grayscale images from 185 consecutive clinical abdominal ultrasound studies were categorized into 11 categories based on the text annotation specified by the technologist for the image. Cropped images were rescaled to 256 × 256 resolution and randomized, with 4094 images from 136 studies constituting the training set, and 1423 images from 49 studies constituting the test set. The fully connected layers of two convolutional neural networks based on CaffeNet and VGGNet, previously trained on the 2012 Large Scale Visual Recognition Challenge data set, were retrained on the training set. Weights in the convolutional layers of each network were frozen to serve as fixed feature extractors. Accuracy on the test set was evaluated for each network. A radiologist experienced in abdominal ultrasound also independently classified the images in the test set into the same 11 categories. The CaffeNet network classified 77.3% of the test set images accurately (1100/1423 images), with a top-2 accuracy of 90.4% (1287/1423 images). The larger VGGNet network classified 77.9% of the test set accurately (1109/1423 images), with a top-2 accuracy of VGGNet was 89.7% (1276/1423 images). The radiologist classified 71.7% of the test set images correctly (1020/1423 images). The differences in classification accuracies between both neural networks and the radiologist were statistically significant (p < 0.001). The results demonstrate that transfer learning with convolutional neural networks may be used to construct effective classifiers for abdominal ultrasound images.

  7. The acoustics of the echo cornet

    NASA Astrophysics Data System (ADS)

    Pyle, Robert W., Jr.; Klaus, Sabine K.

    2002-11-01

    The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.

  8. A radar-echo model for Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.

  9. A controlled ac Stark echo for quantum memories.

    PubMed

    Ham, Byoung S

    2017-08-09

    A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.

  10. [Evidence of lacrimal plugs via high resolution ultrasound].

    PubMed

    Tost, Frank H W; Darman, Jacques

    2003-07-01

    The practical value of high-frequency ultrasound (transducer frequency of 20 MHz) for studying lacrimal plugs positioned into canaliculi was proved. Twelve patients with twenty intracanalicular plugs and two punctum plugs were examined via high-frequency B-scan ultrasonography using 20 MHz transducer (model I3 Sacramento, USA). Detection and localisation of the intracanalicular plugs was made by a 20 MHz sector scanner. The ultrasound examinations were performed 1 - 24 month after the placement of lacrimal plugs. After patient's head positioning, the high-frequency ultrasound investigation was done via immersion fluid (2 % methylcellulose). All patients with dry eye treated by lacrimal plug implant showed echographic structure in the lacrimal canaliculus. In transversal echograms it was possible to image both canaliculi together when the lids were half-closed. Contrary to the normal state, it was not necessary to inject viscous fluid into the canaliculus. High-resolution ultrasound was able to differentiate the normal canaliculus from the findings after plug placement. The echograms can vary from one plug type to another. Highly reflective structures were found after the placement of silicone intracanalicular plugs, e. g. HERRICK-Plug. In contrast, the ultrasonic image taken through acrylic polymer intracanalicular plugs showed homogeneous small reflective inner structure, e. g. SMART-Plug. However, smooth and flat acoustic interface between acrylic polymer plug and the lacrimal canaliculus produced strong echoes. 20 MHz ultrasound seems to be well suited for the detection and localisation of intracanalicular plugs. By use of 20 MHz ultrasound scans it is possible to get high-quality images of the intracanalicular plug and around lacrimal canaliculus. Compared with UBM, the depth of penetration is much higher with negligible resolution. On the whole, we believe that 20 MHz ultrasound can become a useful tool for evaluating the placement of intracanalicular plugs

  11. Low-cost high-resolution fast spin-echo MR of acoustic schwannoma: an alternative to enhanced conventional spin-echo MR?

    PubMed

    Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D

    1996-08-01

    To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.

  12. Protection circuits for very high frequency ultrasound systems.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-04-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (-1.0 dB), THD (-69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications.

  13. Protection Circuits for Very High Frequency Ultrasound Systems

    PubMed Central

    Shung, K. Kirk

    2014-01-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (−1.0 dB), THD (−69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications. PMID:24682684

  14. A New Ultrasound Pulser Technique for Wide Range Measurements

    NASA Astrophysics Data System (ADS)

    Salim, M. S.; Abd Malek, M. F.; Noaman, N. M.; Sabri, Naseer; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The objective of this research was to design and implement a new ultrasonic pulse-power-decay technique that transmits multiple ultrasound pulses through slurry to determine the lowest concentration that can provide an accurate attenuation measurement. A wide measurement range is obtained using the pulsed-power-decay transmission technique, and regardless of the material used to construct the container. A signal in the receiver transducer provides the attenuation measurements, for each echo, a fast Fourier transform (FFT) of the appropriate signal was obtained and compared with the water signals to yield the attenuation as a function of frequency. The data show the feasibility of measuring a kaolin concentration of 5% wt. When using a commercial pulser with the same device setting, no detectable echo was observed. Therefore, new technique measurements may prove useful in detecting solid content in liquid. This study demonstrated that the proposed pulsed-power transmission technique is promising for evaluating low concentrations of solids in fluids and for measuring sedimentation in solid-liquid systems.

  15. Psycho-echo-biofeedback: a novel treatment for anismus--results of a prospective controlled study.

    PubMed

    Del Popolo, F; Cioli, V M; Plevi, T; Pescatori, M

    2014-10-01

    Anismus or non-relaxing puborectalis muscle (PRM), detectable with anal/vaginal ultrasound (US), is a cause of obstructed defecation (OD) and may be treated with biofeedback (BFB). Many patients with anismus are anxious and/or depressed. The aim of this prospective study was to evaluate the outcome of the novel procedure psycho-echo-BFB in patients with anismus and psychological disorders. Patients presenting at our unit with anismus and psychological disorders between January 2009 and December 2013, and not responding to conventional conservative treatment, were enrolled in the study. All underwent four sessions of psycho-echo-BFB, carried out by two psychologists and a coloproctologist, consisting of guided imagery, relaxation techniques and anal/vaginal US-assisted BFB. A validated score for OD was used, and PRM relaxation on straining measured before and after the treatment. PRM relaxation was also measured in a control group of 7 patients with normal bowel habits. Ten patients (8 females, median age 47 years, range 26-72 years) underwent psycho-echo-BFB. The OD score, evaluated prior to and at a median of 25 months (range 1-52 months) after the treatment, improved in 7 out of 10 patients, from 13.5 ± 1.2 to 9.6 ± 2.2 (mean ± standard error of the mean (SEM)), p = 0.06. At the end of the last session, PRM relaxed on straining in all cases, from 0 to 7.1 ± 1.1 mm, i.e., physiological values, not statistically different from those of controls (6.6 ± 1.5 mm). Two patients reported were cured, 3 improved and 5, all of whom had undergone prior anorectal surgery, unchanged. No side effects were reported. Psycho-echo-BFB is safe and inexpensive and allows all patients with anismus to relax PRM on straining. Previous anorectal surgery may be a negative predictor.

  16. Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index.

    PubMed

    Retz, K; Kotopoulis, S; Kiserud, T; Matre, K; Eide, G E; Sande, R

    2017-08-01

    To investigate if the thermal index for bone (TIB) displayed on screen is an adequate predictor for the derated spatial-peak temporal-average (I SPTA .3 ) and spatial-peak pulse-average (I SPPA .3 ) acoustic intensities in a selection of clinical diagnostic ultrasound machines and transducers. We calibrated five clinical diagnostic ultrasound scanners and 10 transducers, using two-dimensional grayscale, color Doppler and pulsed-wave Doppler, both close to and far from the transducer, with a TIB between 0.1 and 4.0, recording 103 unique measurements. Acoustic measurements were performed in a bespoke three-axis computer-controlled scanning tank, using a 200-μm-diameter calibrated needle hydrophone. There was significant but poor correlation between the acoustic intensities and the on-screen TIB. At a TIB of 0.1, the I SPTA .3 range was 0.51-50.49 mW/cm 2 and the I SPPA .3 range was 0.01-207.29 W/cm 2 . At a TIB of 1.1, the I SPTA .3 range was 19.02-309.44 mW/cm 2 and the I SPPA .3 range was 3.87-51.89 W/cm 2 . TIB is a poor predictor for I SPTA .3 and I SPPA .3 and for the potential bioeffects of clinical diagnostic ultrasound scanners. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  17. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  18. Italian chapter of the International Society of cardiovascular ultrasound expert consensus document on training requirements for noncardiologists using hand-carried ultrasound devices.

    PubMed

    Pelliccia, Francesco; Palmiero, Pasquale; Maiello, Maria; Losi, Maria-Angela

    2012-07-01

    Hand-carried ultrasound devices (HCDs), also named personal use echo, are pocket-size, compact, and battery-equipped echocardiographic systems. They have limited technical capabilities but offer some advantages compared with standard echocardiographic devices due to their simplicity of use, immediate availability at the patient's bedside, transportability, and relatively low cost. Current HCDs are considered as screening tools and are used to complement the physical examination by cardiologists. Many noncardiologic subspecialists, however, have adopted this technologic advancement rapidly raising the concern of an inappropriate use of HCD by health professionals who do not have any specific training. In keeping with the mission of the International Society of Cardiovascular Ultrasound to advance the science and art of cardiovascular ultrasound and encourage the knowledge of this subject, the purpose of this Expert Consensus document is to focus on the training for all health care professionals considering the use of HCD. Accordingly, this paper summarizes general aspects of HCD, such as technical characteristics and clinical indications, and then details the specific training requirements for noncardiologists (i.e., training program, minimum case load, duration, and certification of competence). © 2012, Wiley Periodicals, Inc.

  19. Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Kok, Maarten; Segers, Tim

    2014-11-01

    An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

  20. Ultrasound disease activity of bilateral wrist and finger joints at three months reflects the clinical response at six months of patients with rheumatoid arthritis treated with biologic disease-modifying anti-rheumatic drugs.

    PubMed

    Kawashiri, Shin-Ya; Nishino, Ayako; Shimizu, Toshimasa; Umeda, Masataka; Fukui, Shoichi; Nakashima, Yoshikazu; Suzuki, Takahisa; Koga, Tomohiro; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Origuchi, Tomoki; Aoyagi, Kiyoshi; Kawakami, Atsushi

    2017-03-01

    We evaluated whether the early responsiveness of ultrasound synovitis can predict the clinical response in rheumatoid arthritis (RA) patients treated with biologic disease-modifying anti-rheumatic drugs (bDMARDs). Articular synovitis was assessed by ultrasound at 22 bilateral wrist and finger joints in 39 RA patients treated with bDMARDs. Each joint was assigned a gray-scale (GS) and power Doppler (PD) score from 0 to 3, and the sum of the GS or PD scores was considered to represent the ultrasound disease activity. We investigated the correlation of the change in ultrasound disease activity at three months with the EULAR response criteria at six months. GS and PD scores were significantly decreased at three months (p < 0.0001). The % changes of the GS and PD scores at three months were significantly higher at six months in moderate and good responders compared with non-responders (p < 0.05). These tendencies were numerically more prominent if clinical response was set as good responder or Disease Activity Score 28 remission. Poor improvement of ultrasound synovitis scores had good predictive value for non-responders at six months. The responsiveness of ultrasound disease activity is considered to predict further clinical response in RA patients treated with bDMARDs.

  1. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  2. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  3. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Poduval, Radhika K.; Noimark, Sacha; Colchester, Richard J.; Macdonald, Thomas J.; Parkin, Ivan P.; Desjardins, Adrien E.; Papakonstantinou, Ioannis

    2017-05-01

    All-optical ultrasound transducers are promising for imaging applications in minimally invasive surgery. In these devices, ultrasound is transmitted and received through laser modulation, and they can be readily miniaturized using optical fibers for light delivery. Here, we report optical ultrasound transmitters fabricated by electrospinning an absorbing polymer composite directly onto the end-face of optical fibers. The composite coating consisting of an aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) in polyvinyl alcohol was directly electrospun onto the cleaved surface of a multimode optical fiber and subsequently dip-coated with polydimethylsiloxane (PDMS). This formed a uniform nanofibrous absorbing mesh over the optical fiber end-face wherein the constituent MWCNTs were aligned preferentially along individual nanofibers. Infiltration of the PDMS through this nanofibrous mesh onto the underlying substrate was observed and the resulting composites exhibited high optical absorption (>97%). Thickness control from 2.3 μm to 41.4 μm was obtained by varying the electrospinning time. Under laser excitation with 11 μJ pulse energy, ultrasound pressures of 1.59 MPa were achieved at 1.5 mm from the coatings. On comparing the electrospun ultrasound transmitters with a dip-coated reference fabricated using the same constituent materials and possessing identical optical absorption, a five-fold increase in the generated pressure and wider bandwidth was observed. The electrospun transmitters exhibited high optical absorption, good elastomer infiltration, and ultrasound generation capability in the range of pressures used for clinical pulse-echo imaging. All-optical ultrasound probes with such transmitters fabricated by electrospinning could be well-suited for incorporation into catheters and needles for diagnostics and therapeutic applications.

  4. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    PubMed

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. On the reliability of hook echoes as tornado indicators

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1981-01-01

    A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.

  6. Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view

    NASA Astrophysics Data System (ADS)

    Cao, Tam P.; Deng, Guang; Elton, Darrell

    2009-02-01

    In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.

  7. First clinical use of the EchoTrack guidance approach for radiofrequency ablation of thyroid gland nodules.

    PubMed

    Franz, Alfred Michael; Seitel, Alexander; Bopp, Nasrin; Erbelding, Christian; Cheray, Dominique; Delorme, Stefan; Grünwald, Frank; Korkusuz, Hüdayi; Maier-Hein, Lena

    2017-06-01

    Percutaneous radiofrequency ablation (RFA) of thyroid nodules is an alternative to surgical resection that offers the benefits of minimal scars for the patient, lower complication rates, and shorter treatment times. Ultrasound (US) is the preferred modality for guiding these procedures. The needle is usually kept within the US scanning plane to ensure needle visibility. However, this restricts flexibility in both transducer and needle movement and renders the procedure difficult, especially for inexperienced users. Existing navigation solutions often involve electromagnetic (EM) tracking, which requires placement of an external field generator (FG) in close proximity of the intervention site in order to avoid distortion of the EM field. This complicates the clinical workflow as placing the FG while ensuring that it neither restricts the physician's workspace nor affects tracking accuracy is awkward and time-consuming. The EchoTrack concept overcomes these issues by combining the US probe and the EM FG in one modality, simultaneously providing both real-time US and tracking data without requiring the placement of an external FG for tracking. We propose a system and workflow to use EchoTrack for RFA of thyroid nodules. According to our results, the overall error of the EchoTrack system resulting from errors related to tracking and calibration is below 2 mm. Navigated thyroid RFA with the proposed concept is clinically feasible. Motion of internal critical structures relative to external markers can be up to several millimeters in extreme cases. The EchoTrack concept with its simple setup, flexibility, improved needle visualization, and additional guidance information has high potential to be clinically used for thyroid RFA.

  8. FPGA-based architecture for real-time data reduction of ultrasound signals.

    PubMed

    Soto-Cajiga, J A; Pedraza-Ortega, J C; Rubio-Gonzalez, C; Bandala-Sanchez, M; Romero-Troncoso, R de J

    2012-02-01

    This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    PubMed

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  10. The Future of ECHO: Evaluating Open Source Possibilities

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.

    2012-12-01

    NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.

  11. Post-dive ultrasound detection of gas in the liver of rats and scuba divers.

    PubMed

    L'abbate, Antonio; Marabotti, Claudio; Kusmic, Claudia; Pagliazzo, Antonino; Navari, Alessandro; Positano, Vincenzo; Palermo, Mario; Benassi, Antonio; Bedini, Remo

    2011-09-01

    In a previous study, we obtained histologic documentation of liver gas embolism in the rat model of rapid decompression. The aim of the study was to assess in the same model occurrence and time course of liver embolism using 2-D ultrasound imaging, and to explore by this means putative liver gas embolism in recreational scuba divers. Following 42 min compression at 7 ATA breathing air and 12 min decompression, eight surviving female rats were anesthetized and the liver imaged by ultrasound at 20 min intervals up to 120 min. A significant enhancement of echo signal was recorded from 60 to 120 min as compared to earlier post-decompression times. Enzymatic markers of liver damage (AST, ALT, and GGT) increased significantly at 24 h upon decompression. Twelve healthy experienced divers were studied basally and at 15-min intervals up to 60 min following a 30-min scuba dive at 30 msw depth. At 30 min upon surfacing echo images showed significant signal enhancement that progressed and reached plateau at 45 and 60 min. Total bilirubin at 24 h increased significantly (p = 0.02) with respect to basal values although within the reference range. In conclusion, 2-D ultrasound liver imaging allowed detection of gas embolism in the rat and defined the time course of gas accumulation. Its application to scuba divers revealed liver gas accumulation in all subjects in the absence of clear-cut evidence of liver damage or of any symptom. The clinical significance of our findings remains to be investigated.

  12. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design

  13. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2015-06-01

    This review article describes two protocols adapted from lung ultrasound: the bedside lung ultrasound in emergency (BLUE)-protocol for the immediate diagnosis of acute respiratory failure and the fluid administration limited by lung sonography (FALLS)-protocol for the management of acute circulatory failure. These applications require the mastery of 10 signs indicating normal lung surface (bat sign, lung sliding, A-lines), pleural effusions (quad and sinusoid sign), lung consolidations (fractal and tissue-like sign), interstitial syndrome (lung rockets), and pneumothorax (stratosphere sign and the lung point). These signs have been assessed in adults, with diagnostic accuracies ranging from 90% to 100%, allowing consideration of ultrasound as a reasonable bedside gold standard. In the BLUE-protocol, profiles have been designed for the main diseases (pneumonia, congestive heart failure, COPD, asthma, pulmonary embolism, pneumothorax), with an accuracy > 90%. In the FALLS-protocol, the change from A-lines to lung rockets appears at a threshold of 18 mm Hg of pulmonary artery occlusion pressure, providing a direct biomarker of clinical volemia. The FALLS-protocol sequentially rules out obstructive, then cardiogenic, then hypovolemic shock for expediting the diagnosis of distributive (usually septic) shock. These applications can be done using simple grayscale machines and one microconvex probe suitable for the whole body. Lung ultrasound is a multifaceted tool also useful for decreasing radiation doses (of interest in neonates where the lung signatures are similar to those in adults), from ARDS to trauma management, and from ICUs to points of care. If done in suitable centers, training is the least of the limitations for making use of this kind of visual medicine.

  14. Stellar Echo Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  15. Beam echoes in the presence of coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Axel

    2017-10-03

    Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence timemore » of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.« less

  16. Vastus lateralis and rectus femoris echo intensity fail to reflect knee extensor specific tension in middle-school boys.

    PubMed

    Mota, Jacob A; Stock, Matt S; Thompson, Brennan J

    2017-07-26

    The potential dissociation between muscle strength and size has led to interest in the ability to assess muscle quality across the lifespan. We examined the association between echo intensity and specific tension in middle-school boys. Twenty-five boys participated in this study. Sixteen (mean  ±  SD age  =  12  ±  1 years) engaged in a 16-week after-school strength and conditioning program. Nine boys (12  ±  1 years) served as controls. The program involved two 90 min sessions per week of lower-body speed, power, and resistance training. Before and after the intervention, ultrasound imaging was used to quantify vastus lateralis and rectus femoris echo intensity. Specific tension was calculated as voluntary isometric peak torque divided by dual energy x-ray absorptiometry-derived thigh lean mass (Nm kg -1 ). The pretest echo intensity and specific tension data were not significantly correlated (r  =  0.040, p  =  0.850). Training resulted in a small mean increase in specific tension (change  =  1.93 Nm kg -1 ; d  =  0.42). The echo intensity values were not affected by training or maturation (training change  =  -1.13 arbitrary units (A.U.); control  =  0.00 A.U.). Both variables showed no interaction and no group or time main effects. The echo intensity and specific tension change scores were not correlated for all subjects (r  =  -0.080, p  =  0.705) or groups (training r  =  -0.095, p  =  0.727; control r  =  -0.004, p  =  0.992). In middle-school boys, a relationship between echo intensity and the ratio of muscle strength relative to lean mass does not exist.

  17. Single Echo MRI

    PubMed Central

    Galiana, Gigi; Constable, R. Todd

    2014-01-01

    Purpose Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout. The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve stimulation limits, yielding an image from a single 4 ms echo. Theory and Methods This sequence was inspired by considering the code of each voxel, i.e. the phase accumulation that a voxel follows through the readout, an approach connected to traditional encoding theory. We present simulations for the initial sequence, a low slew rate analog, and higher resolution reconstructions. Results Extremely fast acquisitions are achievable, though as one would expect, SNR is reduced relative to the slower Cartesian sampling schemes because of the high gradient strengths. Conclusions The prospect that nonlinear gradients can acquire images in a single <10 ms echo makes this a novel and interesting approach to image encoding. PMID:24465837

  18. Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow

    NASA Astrophysics Data System (ADS)

    Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.

    2005-04-01

    Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.

  19. The relationship between fireballs and HRO Long Echos

    NASA Astrophysics Data System (ADS)

    Yanagida, E.; Amikura, S.

    Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.

  20. Reports | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Neovascularity in patellar tendinopathy and the response to eccentric training: a case report using Power Doppler ultrasound.

    PubMed

    McCreesh, Karen M; Riley, Sara J; Crotty, James M

    2013-12-01

    This report describes the case of an amateur soccer player with chronic patellar tendinopathy who underwent ultrasound imaging before and after engaging in an 8-week programme of eccentric exercise. On initial assessment, greyscale ultrasound imaging demonstrated tendon thickening and reduced echogenicity, while Power Doppler imaging demonstrated a large amount of neovascularity. After 8 weeks of an eccentric loading programme, the patient reported significantly improved symptoms and functional scores, while follow-up imaging demonstrated improvement in the echo appearance of the tendon and complete resolution of the neovascularity. The association between neovascularity and symptoms in tendinopathy research is conflicting, with a paucity of research in the area of patellar tendinopathy. While further research is needed to clarify the significance of greyscale and Power Doppler ultrasound changes in relation to symptoms in patellar tendinopathy, ultrasound imaging was shown to be a useful adjunct to diagnosis and outcome assessment in this case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Echo simulator with novel training and competency testing tools.

    PubMed

    Sheehan, Florence H; Otto, Catherine M; Freeman, Rosario V

    2013-01-01

    We developed and validated an echo simulator with three novel tools that facilitate training and enable quantitative and objective measurement of psychomotor as well as cognitive skill. First, the trainee can see original patient images - not synthetic or simulated images - that morph in real time as the mock transducer is manipulated on the mannequin. Second, augmented reality is used for Visual Guidance, a tool that assists the trainee in scanning by displaying the target organ in 3-dimensions (3D) together with the location of the current view plane and the plane of the anatomically correct view. Third, we introduce Image Matching, a tool that leverages the aptitude of the human brain for recognizing similarities and differences to help trainees learn to perform visual assessment of ultrasound images. Psychomotor competence is measured in terms of the view plane angle error. The construct validity of the simulator for competency testing was established by demonstrating its ability to discriminate novices vs. experts.

  3. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  4. ASSOCIATIONS BETWEEN ULTRASOUND AND CLINICAL FINDINGS IN 87 CATS WITH URETHRAL OBSTRUCTION.

    PubMed

    Nevins, Jonathan R; Mai, Wilfried; Thomas, Emily

    2015-01-01

    Urethral obstruction is a life-threatening form of feline lower urinary tract disease. Ultrasonographic risk factors for reobstruction have not been previously reported. Purposes of this retrospective cross-sectional study were to describe urinary tract ultrasound findings in cats following acute urethral obstruction and determine whether ultrasound findings were associated with reobstruction. Inclusion criteria were a physical examination and history consistent with urethral obstruction, an abdominal ultrasound including a full evaluation of the urinary system within 24 h of hospitalization, and no cystocentesis prior to ultrasound examination. Medical records for included cats were reviewed and presence of azotemia, hyperkalemia, positive urine culture, and duration of hospitalization were recorded. For medically treated cats with available outcome data, presence of reobstruction was also recorded. Ultrasound images were reviewed and urinary tract characteristics were recorded. A total of 87 cats met inclusion criteria. Common ultrasound findings for the bladder included echogenic urine sediment, bladder wall thickening, pericystic effusion, hyperechoic pericystic fat, and increased urinary echoes; and for the kidneys/ureters included pyelectasia, renomegaly, perirenal effusion, hyperechoic perirenal fat, and ureteral dilation. Six-month postdischarge outcomes were available for 61 medically treated cats and 21 of these cats had reobstruction. No findings were associated with an increased risk of reobstruction. Ultrasonographic perirenal effusion was associated with severe hyperkalemia (P = 0.009, relative risk 5.75, 95% confidence interval [1.54-21.51]). Findings supported the use of ultrasound as an adjunct for treatment planning in cats presented with urethral obstruction but not as a method for predicting risk of reobstruction. © 2015 American College of Veterinary Radiology.

  5. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images.

    PubMed

    Katouzian, Amin; Angelini, Elsa D; Carlier, Stéphane G; Suri, Jasjit S; Navab, Nassir; Laine, Andrew F

    2012-09-01

    Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.

  6. Quantitative muscle ultrasound in Duchenne muscular dystrophy: a comparison of techniques.

    PubMed

    Shklyar, Irina; Geisbush, Tom R; Mijialovic, Aleksandar S; Pasternak, Amy; Darras, Basil T; Wu, Jim S; Rutkove, Seward B; Zaidman, Craig M

    2015-02-01

    Muscle pathology in Duchenne muscular dystrophy (DMD) can be quantified using ultrasound by measuring either the amplitudes of sound-waves scattered back from the tissue [quantitative backscatter analysis (QBA)] or by measuring these backscattered amplitudes after compression into grayscale levels (GSL) obtained from the images. We measured and compared QBA and GSL from 6 muscles of 25 boys with DMD and 25 healthy subjects, aged 2-14 years, with age and, in DMD, with function (North Star Ambulatory Assessment). Both QBA and GSL were measured reliably (intraclass correlation ≥ 0.87) and were higher in DMD than controls (P < 0.0001). In DMD, average QBA and GSL measured from superficial regions of muscle increased (rho ≥ 0.47, P < 0.05) with both higher age and worse function; in contrast, GSL measured from whole regions of muscle did not. QBA and GSL measured from superficial regions of muscle can similarly quantify muscle pathology in DMD. © 2014 Wiley Periodicals, Inc.

  7. Diffusion measurement from observed transverse beam echoes

    DOE PAGES

    Sen, Tanaji; Fischer, Wolfram

    2017-01-09

    For this research, we study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in RHIC and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.

  8. Imaging of sound speed using reflection ultrasound tomography.

    PubMed

    Nebeker, Jakob; Nelson, Thomas R

    2012-09-01

    The goal of this work was to obtain and evaluate measurements of tissue sound speed in the breast, particularly dense breasts, using backscatter ultrasound tomography. An automated volumetric breast ultrasound scanner was constructed for imaging the prone patient. A 5- to 7-MHz linear array transducer acquired 17,920 radiofrequency pulse echo A-lines from the breast, and a back-wall reflector rotated over 360° in 25 seconds. Sound speed images used reflector echoes that after preprocessing were uploaded into a graphics processing unit for filtered back-projection reconstruction. A velocimeter also was constructed to measure the sound speed and attenuation for comparison to scanner performance. Measurements were made using the following: (1) deionized water from 22°C to 90°C; (2) various fluids with sound speeds from 1240 to 1904 m/s; (3) acrylamide gel test objects with features from 1 to 15 mm in diameter; and (4) healthy volunteers. The mean error ± SD between sound speed reference and image data was -0.48% ± 9.1%, and the error between reference and velocimeter measurements was -1.78% ± 6.50%. Sound speed image and velocimeter measurements showed a difference of 0.10% ± 4.04%. Temperature data showed a difference between theory and imaging performance of -0.28% ± 0.22%. Images of polyacrylamide test objects showed detectability of an approximately 1% sound speed difference in a 2.4-mm cylindrical inclusion with a contrast to noise ratio of 7.9 dB. An automated breast scanner offers the potential to make consistent automated tomographic images of breast backscatter, sound speed, and attenuation, potentially improving diagnosis, particularly in dense breasts.

  9. Human placental vasculature imaging using an LED-based photoacoustic/ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Maneas, Efthymios; Xia, Wenfeng; Kuniyil Ajith Singh, Mithun; Sato, Naoto; Agano, Toshitaka; Ourselin, Sebastien; West, Simeon J.; David, Anna L.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-02-01

    Minimally invasive fetal interventions, such as those used for therapy of twin-to-twin transfusion syndrome (TTTS), require accurate image guidance to optimise patient outcomes. Currently, TTTS can be treated fetoscopically by identifying anastomosing vessels on the chorionic (fetal) placental surface, and then performing photocoagulation. Incomplete photocoagulation increases the risk of procedure failure. Photoacoustic imaging can provide contrast for both haemoglobin concentration and oxygenation, and in this study, it was hypothesised that it can resolve chorionic placental vessels. We imaged a term human placenta that was collected after caesarean section delivery using a photoacoustic/ultrasound system (AcousticX) that included light emitting diode (LED) arrays for excitation light and a linear-array ultrasound imaging probe. Two-dimensional (2D) co-registered photoacoustic and B-mode pulse-echo ultrasound images were acquired and displayed in real-time. Translation of the imaging probe enabled 3D imaging. This feasibility study demonstrated that photoacoustic imaging can be used to visualise chorionic placental vasculature, and that it has strong potential to guide minimally invasive fetal interventions.

  10. Simple Echoes and Subtle Reverberations

    ERIC Educational Resources Information Center

    Keeports, David

    2010-01-01

    Reverberation within an enclosed space can be viewed as a superposition of a large number of simple echoes. The echoes that make up the sound of reverberation fall neatly into two categories, relatively loud and sparse early reflections, and relatively soft and dense late reflections. Ways in which readily available music production software can…

  11. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  12. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  13. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  14. Wigner-Ville distribution and Gabor transform in Doppler ultrasound signal processing.

    PubMed

    Ghofrani, S; Ayatollahi, A; Shamsollahi, M B

    2003-01-01

    Time-frequency distributions have been used extensively for nonstationary signal analysis, they describe how the frequency content of a signal is changing in time. The Wigner-Ville distribution (WVD) is the best known. The draw back of WVD is cross-term artifacts. An alternative to the WVD is Gabor transform (GT), a signal decomposition method, which displays the time-frequency energy of a signal on a joint t-f plane without generating considerable cross-terms. In this paper the WVD and GT of ultrasound echo signals are computed analytically.

  15. A Coaxial Dual-element Focused Ultrasound Probe for Guidance of Epidural Catheterization: An Experimental Study.

    PubMed

    Dong, Guo-Chung; Chiu, Li-Chen; Ting, Chien-Kun; Hsu, Jia-Ruei; Huang, Chih-Chung; Chang, Yin; Chen, Gin-Shin

    2017-09-01

    Ultrasound guidance for epidural block has improved clinical blind-trial problems but the design of present ultrasonic probes poses operating difficulty of ultrasound-guided catheterization, increasing the failure rate. The purpose of this study was to develop a novel ultrasonic probe to avoid needle contact with vertebral bone during epidural catheterization. The probe has a central circular passage for needle insertion. Two focused annular transducers are deployed around the passage for on-axis guidance. A 17-gauge insulated Tuohy needle containing the self-developed fiber-optic-modified stylet was inserted into the back of the anesthetized pig, in the lumbar region under the guidance of our ultrasonic probe. The inner transducer of the probe detected the shallow echo signals of the peak-peak amplitude of 2.8 V over L3 at the depth of 2.4 cm, and the amplitude was decreased to 0.8 V directly over the L3 to L4 interspace. The outer transducer could detect the echoes from the deeper bone at the depth of 4.5 cm, which did not appear for the inner transducer. The operator tilted the probe slightly in left-right and cranial-caudal directions until the echoes at the depth of 4.5 cm disappeared, and the epidural needle was inserted through the central passage of the probe. The needle was advanced and stopped when the epidural space was identified by optical technique. The needle passed without bone contact. Designs of the hollow probe for needle pass and dual transducers with different focal lengths for detection of shallow and deep vertebrae may benefit operation, bone/nonbone identification, and cost.

  16. Monitoring evolution of HIFU-induced lesions with backscattered ultrasound

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.

    2003-04-01

    Backscattered radio frequency (rf) data from a modified commercial ultrasound scanner were collected in a series of in vitro experiments in which high intensity focused ultrasound (HIFU) was used to create lesions in freshly excised bovine liver tissue. Two signal processing approaches were used to visualize the temporal evolution of lesion formation. First, apparent tissue motion due to temperature rise was detected using cross-correlation techniques. Results indicate that differential processing of travel time can provide temperature change information throughout the therapy delivery phase and after HIFU has been turned off, over a relatively large spatial region. Second, changes in the frequency spectrum of rf echoes due to changes in the scattering properties of the heated region were observed well before the appearance of hyper-echogenic spots in the focal zone. Furthermore, the increase in attenuation in the lesion zone changes the measured backscatter spectrum from regions distal to it along the imaging beam. Both effects were visualized using spectral processing and display techniques that provide a color spatial map of these features for the clinician. Our results demonstrate potential for these ultrasound-based techniques in targeting and monitoring of HIFU therapy, and perhaps post-treatment visualization of HIFU-induced lesions.

  17. Ultrashort Echo Time and Zero Echo Time MRI at 7T

    PubMed Central

    Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.

    2016-01-01

    Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940

  18. Fast REDOR with CPMG multiple-echo acquisition

    NASA Astrophysics Data System (ADS)

    Hung, Ivan; Gan, Zhehong

    2014-01-01

    Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.

  19. Anatomy of the lactating human breast redefined with ultrasound imaging

    PubMed Central

    Ramsay, DT; Kent, JC; Hartmann, RA; Hartman, PE

    2005-01-01

    The aim of this study was to use ultrasound imaging to re-investigate the anatomy of the lactating breast. The breasts of 21 fully lactating women (1–6 months post partum) were scanned using an ACUSON XP10 (5–10 MHz linear array probe). The number of main ducts was measured, ductal morphology was determined, and the distribution of glandular and adipose tissue was recorded. Milk ducts appeared as hypoechoic tubular structures with echogenic walls that often contained echoes. Ducts were easily compressed and did not display typical sinuses. All ducts branched within the areolar radius, the first branch occurring 8.0 ± 5.5 mm from the nipple. Duct diameter was 1.9 ± 0.6 mm, 2.0 ± 90.7 mm and the number of main ducts was 9.6 ± 2.9, 9.2 ± 2.9, for left and right breast, respectively. Milk ducts are superficial, easily compressible and echoes within the duct represent fat globules in breastmilk. The low number and size of the ducts, the rapid branching under the areola and the absence of sinuses suggest that ducts transport breastmilk, rather than store it. The distribution of adipose and glandular tissue showed wide variation between women but not between breasts within women. The proportion of glandular and fat tissue and the number and size of ducts were not related to milk production. This study highlights inconsistencies in anatomical literature that impact on breast physiology, breastfeeding management and ultrasound assessment. PMID:15960763

  20. Gravitational wave sources: reflections and echoes

    NASA Astrophysics Data System (ADS)

    Price, Richard H.; Khanna, Gaurav

    2017-11-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.

  1. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  2. Mock ECHO: A Simulation-Based Medical Education Method.

    PubMed

    Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev

    2018-04-16

    This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.

  3. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  4. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams.

    PubMed

    Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred

    2016-10-27

    Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical "default mode" that allows selectively focusing on close obstacle even without active attention from the animals.

  5. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams

    PubMed Central

    Beetz, M. Jerome; Hechavarría, Julio C.; Kössl, Manfred

    2016-01-01

    Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical “default mode” that allows selectively focusing on close obstacle even without active attention from the animals. PMID:27786252

  6. Novel power MOSFET-based expander for high frequency ultrasound systems.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-01-01

    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Novel Power MOSFET-Based Expander for High Frequency Ultrasound Systems

    PubMed Central

    Choi, Hojong; Shung, K. Kirk

    2014-01-01

    The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (-0.3 dB) and THD (-62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (-1.4 dB), THD (-56.0 dB) and RT (119 ns)) at 70 MHz. The -6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4 % and 240 % compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption. PMID:23835308

  8. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    PubMed Central

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.

    2015-01-01

    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more

  9. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia.

    PubMed

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R; Harris-Love, Michael O

    2015-01-01

    Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht(2)), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m(2) determined participant assignment into the Normal LBM and Low LBM subgroups. The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht(2) (adj. R (2) = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R (2) = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R (2) = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht(2) in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with

  10. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Molinari, Filippo; Zieleźnik, Witold; Bardales, Ricardo H; Witkowska, Agnieszka; Suri, Jasjit S

    2014-02-01

    Computer-aided diagnostic (CAD) techniques aid physicians in better diagnosis of diseases by extracting objective and accurate diagnostic information from medical data. Hashimoto thyroiditis is the most common type of inflammation of the thyroid gland. The inflammation changes the structure of the thyroid tissue, and these changes are reflected as echogenic changes on ultrasound images. In this work, we propose a novel CAD system (a class of systems called ThyroScan) that extracts textural features from a thyroid sonogram and uses them to aid in the detection of Hashimoto thyroiditis. In this paradigm, we extracted grayscale features based on stationary wavelet transform from 232 normal and 294 Hashimoto thyroiditis-affected thyroid ultrasound images obtained from a Polish population. Significant features were selected using a Student t test. The resulting feature vectors were used to build and evaluate the following 4 classifiers using a 10-fold stratified cross-validation technique: support vector machine, decision tree, fuzzy classifier, and K-nearest neighbor. Using 7 significant features that characterized the textural changes in the images, the fuzzy classifier had the highest classification accuracy of 84.6%, sensitivity of 82.8%, specificity of 87.0%, and a positive predictive value of 88.9%. The proposed ThyroScan CAD system uses novel features to noninvasively detect the presence of Hashimoto thyroiditis on ultrasound images. Compared to manual interpretations of ultrasound images, the CAD system offers a more objective interpretation of the nature of the thyroid. The preliminary results presented in this work indicate the possibility of using such a CAD system in a clinical setting after evaluating it with larger databases in multicenter clinical trials.

  11. Dual-echo EPI for non-equilibrium fMRI - implications of different echo combinations and masking procedures.

    PubMed

    Beissner, Florian; Baudrexel, Simon; Volz, Steffen; Deichmann, Ralf

    2010-08-15

    Dual-echo EPI is based on the acquisition of two images with different echo times per excitation, thus allowing for the calculation of purely T2(*) weighted data. The technique can be used for the measurement of functional activation whenever the prerequisite of constant equilibrium magnetization cannot be fulfilled due to variable inter-volume delays. The latter is the case when image acquisition is triggered by physiological parameters (e.g. cardiac gating) or by the subject's response. Despite its frequent application, there is currently no standardized way of combining the information obtained from the two acquired echoes. The goal of this study was to quantify the implication of different echo combination methods (quotients of echoes and quantification of T(2)(*)) and calculation modalities, either pre-smoothing data before combination or subjecting unsmoothed combined data to masking (no masking, volume-wise masking, joint masking), on the theoretically predicted signal-to-noise ratio (SNR) of the BOLD response and on activation results of two fMRI experiments using finger tapping and visual stimulation in one group (n=5) and different motor paradigms to activate motor areas in the cortex and the brainstem in another group (n=21). A significant impact of echo combination and masking procedure was found for both SNR and activation results. The recommended choice is a direct calculation of T(2)(*) values, either using joint masking on unsmoothed data, or pre-smoothing images prior to T(2)(*) calculation. This method was most beneficial in areas close to the surface of the brain or adjacent to the ventricles and may be especially relevant to brainstem fMRI. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Speed of sound in biodiesel produced by low power ultrasound

    NASA Astrophysics Data System (ADS)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2018-03-01

    The quality control of the biodiesel produced is an important issue to be addressed for every manufacturer or retailer. The speed of sound is a property that has an influence on the quality of the produced fuel. This work presents the evaluation about the speed of sound in biodiesel produced with the aid of low power ultrasound in the frequencies of 1 MHz and 3 MHz. The speed of sound was measured by pulse-echo technique. The ultrasonic frequency used during reaction affects the speed of sound in biodiesel. The larger expanded uncertainty for adjusted curve was 4.9 m.s-1.

  13. Accurate Ultrasonic Measurement of Surface Profile Using Phase Shift of Echo and Inverse Filtering

    NASA Astrophysics Data System (ADS)

    Arihara, Chihiro; Hasegawa, Hideyuki; Kanai, Hiroshi

    2006-05-01

    Atherosclerosis is the main cause of circulatory diseases such as myocardial infarction and cerebral infarction, and it is very important to diagnose atherosclerosis in its early stage. In the early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough because of the injury of the endothelium [R. Ross: New Engl. J. Med. 340 (2004) 115]. Conventional ultrasonic diagnostic equipments cannot detect such roughness on the order of micrometer because of their low resolution of approximately 0.1 mm. In this study, for the accurate detection of surface roughness, an ultrasonic beam was scanned in the direction that is parallel to the surface of an object. When there is a gap on the surface, the phase of the echo from the surface changes because the distance between the probe and the surface changes during the scanning. Therefore, surface roughness can be assessed by estimating the phase shift of echoes obtained during the beam scanning. Furthermore, lateral resolution, which is deteriorated by a finite diameter of the ultrasound beam, was improved by an inverse filter. By using the proposed method, the surface profile of a phantom, which had surface roughness on the micrometer order, was detected, and the estimated surface profiles became more precise by applying the inverse filter.

  14. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.

    PubMed

    Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C

    2017-09-01

    To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    NASA Astrophysics Data System (ADS)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  16. Relationship between tornadoes and hook echoes on April 3, 1974

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1975-01-01

    Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.

  17. Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar

    PubMed Central

    Bates, Mary E.; Simmons, James A.

    2011-01-01

    Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198

  18. Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.

    PubMed

    Bates, Mary E; Simmons, James A

    2011-02-01

    Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.

  19. VEGFR2-Targeted Ultrasound Imaging Agent Enhances the Detection of Ovarian Tumors at Early Stage in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-07-01

    Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.

  20. Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems.

    PubMed

    Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk

    2014-03-01

    High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (-7.7 dB), THD (-74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the -6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Initial Experience Using a Telerobotic Ultrasound System for Adult Abdominal Sonography.

    PubMed

    Adams, Scott J; Burbridge, Brent E; Badea, Andreea; Langford, Leanne; Vergara, Vincent; Bryce, Rhonda; Bustamante, Luis; Mendez, Ivar M; Babyn, Paul S

    2017-08-01

    The study sought to assess the feasibility of performing adult abdominal examinations using a telerobotic ultrasound system in which radiologists or sonographers can control fine movements of a transducer and all ultrasound settings from a remote location. Eighteen patients prospectively underwent a conventional sonography examination (using EPIQ 5 [Philips] or LOGIQ E9 [GE Healthcare]) followed by a telerobotic sonography examination (using the MELODY System [AdEchoTech] and SonixTablet [BK Ultrasound]) according to a standardized abdominal imaging protocol. For telerobotic examinations, patients were scanned remotely by a sonographer 2.75 km away. Conventional examinations were read independently from telerobotic examinations. Image quality and acceptability to patients and sonographers was assessed. Ninety-two percent of organs visualized on conventional examinations were sufficiently visualized on telerobotic examinations. Five pathological findings were identified on both telerobotic and conventional examinations, 3 findings were identified using only conventional sonography, and 2 findings were identified using only telerobotic sonography. A paired sample t test showed no significant difference between the 2 modalities in measurements of the liver, spleen, and diameter of the proximal aorta; however, telerobotic assessments overestimated distal aorta and common bile duct diameters and underestimated kidney lengths (P values < .05). All patients responded that they would be willing to have another telerobotic examination. A telerobotic ultrasound system is feasible for performing abdominal ultrasound examinations at a distant location with minimal training and setup requirements and a moderate learning curve. Telerobotic sonography (robotic telesonography) may open up the possibility of remote ultrasound clinics for communities that lack skilled sonographers and radiologists, thereby improving access to care. Copyright © 2016 Canadian Association of

  2. Pre- and post-treatment ultrasonography in hypothyroid dogs.

    PubMed

    Taeymans, Olivier; Daminet, Sylvie; Duchateau, Luc; Saunders, Jimmy H

    2007-01-01

    Primary hypothyroidism is a frequent endocrine disorder in the adult dog. However, false-positive diagnoses are common because of the relatively low accuracy of most commonly used biochemical tests. The purpose of this study was to describe the ultrasonographic features of the thyroid gland in hypothyroid dogs, to calculate the diagnostic sensitivity of gray-scale ultrasound using a combination of clinical symptoms and biochemical thyroid tests as gold standard, and to investigate the evolution of the ultrasonographic features after treatment of hypothyroidism. Eighteen dogs were studied prospectively. All dogs underwent an ultrasound examination at first presentation and 13 underwent one or two additional ultrasound examinations over time. At first presentation, a sensitivity of 76.5% (95% CI [50.0-93.0% 1) for decreased echogenicity, 64.7% (95% CI [38.385.8% 1) for inhomogeneity, 70.6% (95% CI 144.0-89.7%]) for irregular capsule delineation, 64.7% (95% CI [38.3-85.8%]) for abnormal lobe shape and 47.1% (95% CI 123.0-72.2%]) for decreased relative thyroid volume was obtained. Combining these five parameters together resulted in an overall sensitivity of 94.1% (95% CI [71.3-99.9%]) for gray-scale ultrasound in the detection of acquired hypothyroidism at first presentation. A continuous decrease of thyroid volume was seen over time after treatment, while the other investigated parameters did not change significantly during the follow-up period. None of the thyroid glands were considered normal at the last presentation. Grayscale ultrasound is a sensitive and quick test for the diagnosis of primary hypothyroidism in dogs.

  3. Functional anatomy and ultrasound examination of the canine penis.

    PubMed

    Goericke-Pesch, Sandra; Hölscher, Catharina; Failing, Klaus; Wehrend, Axel

    2013-07-01

    The aim of this study was to identify the functional-anatomical structures of the canine penis during and after erection to demonstrate the respective changes to provide a basis for further examinations of pathological conditions like priapism. Additionally, a gray-scale analysis was performed to quantify results from the ultrasound examination. In total, 80 dogs were examined. In group (Gr.) A, 44 intact or castrated dogs were examined, and in Gr. B, 36 dogs were examined during erection and after complete detumescence of the penis. The following parameters were assessed: (1) using physical measurements: length of the Pars longa glandis [Plg] and length of the Bulbus glandis [Bg]; and (2) using ultrasound: total penile diameter, width of the erectile tissue of the Plg, diameter of the Corpus spongiosum [Cs] including the penile bone and urethra, vertical diameter, circumference of the penis, cross-sectional area, and area of the Cs including the urethra. The mentioned parameters could be assessed in all dogs of Gr. A and Gr. B with the only exception being the urethra that could be visualized using ultrasound in some dogs only and predominantly in the erected penis (Gr. B). Concomitantly, the erectile tissue of the Plg and the Cs was more heterogenous and hypo- to anechoic during erection compared with dogs in Gr. A and Gr. B after detumescence. Comparing the results in Gr. B, the length of the Plg and the Bg were decreased approximately 40.6% and 38.0%, the total width of the penis 40.5%, the total width of the erectile tissue of the Plg 48.0%, and the width of the Cs 15.6% during detumescence compared with erection. Comparing the decrease in size at the different locations (apex penis, middle of Plg, middle of Bg) for vertical diameter, total circumference, and cross-section area, it was largest at the Bg. B-mode ultrasound is a suitable tool to investigate not only the morpho-functional structures of the resting canine penis, but also of the erected and

  4. Contrast-enhanced harmonic endoscopic ultrasound in solid lesions of the pancreas: results of a pilot study.

    PubMed

    Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T

    2010-07-01

    Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.

  5. Psychoacoustic influences of the echoing environments of prehistoric art

    NASA Astrophysics Data System (ADS)

    Waller, Steven J.

    2002-11-01

    Cave paintings and ancient petroglyphs around the world are typically found in echo rich locations such as caves, canyons, and rocky cliff faces. Analysis of field data shows that echo decibel levels at a large number of prehistoric art sites are higher than those at nondecorated locations. The selection of these echoing environments by the artists appears not to be a mere coincidence. This paper considers the perception of an echoed sound as a psychoacoustic event that would have been inexplicable to ancient humans. A variety of ancient legends from cultures on several continents attribute the phenomenon of echoes to supernatural beings. These legends, together with the quantitative data, strongly implicate echoing as relevant to the artists of the past. The notion that the echoes were caused by spirits within the rock would explain not only the unusual locations of prehistoric art, but also the perplexing subject matter. For example, the common theme of hoofed animal imagery could have been inspired by echoes of percussion noises perceived as hoof beats. Further systematic acoustical studies of prehistoric art sites is warranted. Conservation of the natural acoustic properties of rock art environments--a previously unrecognized need--is urged.

  6. Noncontrast Peripheral MRA with Spiral Echo Train Imaging

    PubMed Central

    Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.

    2015-01-01

    Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164

  7. Noncontrast peripheral MRA with spiral echo train imaging.

    PubMed

    Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H

    2015-03-01

    To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.

  8. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de; Faculty of Medicine, Technische Universität München, Munich

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an opticalmore » absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.« less

  9. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    NASA Astrophysics Data System (ADS)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-10-01

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  10. Software-based approach toward vendor independent real-time photoacoustic imaging using ultrasound beamformed data

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Huang, Howard; Lei, Chen; Kim, Younsu; Boctor, Emad M.

    2017-03-01

    Photoacoustic (PA) imaging has shown its potential for many clinical applications, but current research and usage of PA imaging are constrained by additional hardware costs to collect channel data, as the PA signals are incorrectly processed in existing clinical ultrasound systems. This problem arises from the fact that ultrasound systems beamform the PA signals as echoes from the ultrasound transducer instead of directly from illuminated sources. Consequently, conventional implementations of PA imaging rely on parallel channel acquisition from research platforms, which are not only slow and expensive, but are also mostly not approved by the FDA for clinical use. In previous studies, we have proposed the synthetic-aperture based photoacoustic re-beamformer (SPARE) that uses ultrasound beamformed radio frequency (RF) data as the input, which is readily available in clinical ultrasound scanners. The goal of this work is to implement the SPARE beamformer in a clinical ultrasound system, and to experimentally demonstrate its real-time visualization. Assuming a high pulsed repetition frequency (PRF) laser is used, a PZT-based pseudo PA source transmission was synchronized with the ultrasound line trigger. As a result, the frame-rate increases when limiting the image field-of-view (FOV), with 50 to 20 frames per second achieved for FOVs from 35 mm to 70 mm depth, respectively. Although in reality the maximum PRF of laser firing limits the PA image frame rate, this result indicates that the developed software is capable of displaying PA images with the maximum possible frame-rate for certain laser system without acquiring channel data.

  11. Watershed Statistics | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Custom Search | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Combining Ultrasound Pulse-Echo and Transmission Computed Tomography for Quantitative Imaging the Cortical Shell of Long Bone Replicas

    NASA Astrophysics Data System (ADS)

    Shortell, Matthew P.; Althomali, Marwan A. M.; Wille, Marie-Luise; Langton, Christian M.

    2017-11-01

    We demonstrate a simple technique for quantitative ultrasound imaging of the cortical shell of long bone replicas. Traditional ultrasound computed tomography instruments use the transmitted or reflected waves for separate reconstructions but suffer from strong refraction artefacts in highly heterogenous samples such as bones in soft tissue. The technique described here simplifies the long bone to a two-component composite and uses both the transmitted and reflected waves for reconstructions, allowing the speed of sound and thickness of the cortical shell to be calculated accurately. The technique is simple to implement, computationally inexpensive and sample positioning errors are minimal.

  14. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  15. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    PubMed Central

    Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W

    2010-01-01

    Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096

  16. Neural time course of visually enhanced echo suppression.

    PubMed

    Bishop, Christopher W; London, Sam; Miller, Lee M

    2012-10-01

    Auditory spatial perception plays a critical role in day-to-day communication. For instance, listeners utilize acoustic spatial information to segregate individual talkers into distinct auditory "streams" to improve speech intelligibility. However, spatial localization is an exceedingly difficult task in everyday listening environments with numerous distracting echoes from nearby surfaces, such as walls. Listeners' brains overcome this unique challenge by relying on acoustic timing and, quite surprisingly, visual spatial information to suppress short-latency (1-10 ms) echoes through a process known as "the precedence effect" or "echo suppression." In the present study, we employed electroencephalography (EEG) to investigate the neural time course of echo suppression both with and without the aid of coincident visual stimulation in human listeners. We find that echo suppression is a multistage process initialized during the auditory N1 (70-100 ms) and followed by space-specific suppression mechanisms from 150 to 250 ms. Additionally, we find a robust correlate of listeners' spatial perception (i.e., suppressing or not suppressing the echo) over central electrode sites from 300 to 500 ms. Contrary to our hypothesis, vision's powerful contribution to echo suppression occurs late in processing (250-400 ms), suggesting that vision contributes primarily during late sensory or decision making processes. Together, our findings support growing evidence that echo suppression is a slow, progressive mechanism modifiable by visual influences during late sensory and decision making stages. Furthermore, our findings suggest that audiovisual interactions are not limited to early, sensory-level modulations but extend well into late stages of cortical processing.

  17. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  18. Superharmonic microbubble Doppler effect in ultrasound therapy

    PubMed Central

    Pouliopoulos, Antonios N; Choi, James J

    2016-01-01

    Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to

  19. Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.

    PubMed

    Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang

    2017-07-01

    It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.

  20. Theory and optical design of x-ray echo spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvyd'ko, Yuri

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  1. Theory and optical design of x-ray echo spectrometers

    DOE PAGES

    Shvyd'ko, Yuri

    2017-08-02

    X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less

  2. Light Echoes from Recent Supernovae

    NASA Astrophysics Data System (ADS)

    Sugerman, Ben; SEEDS Collaboration

    2009-01-01

    Since the launch of the Spitzer Space Telescope, we have been carrying out a sensitive mid-IR Survey for Evolution of Emission from Dust in SNe (SEEDS, P.I. Mike Barlow), to address the extent to which SNe produce dust, and whether they are a primary source of dust in the Universe. During the course of our survey, we have followed the lightcurves of many nearby supernovae past a few hundred days (which is when most people lose interest in them). As a result, we have found (or others have hypothesized) optical light echoes at late times. Here, we present an update on echoes from SNe 2002hh, 2003gd and 2004et, and discuss the extent to which these echoes affect the optical and mid-IR light curves, and hence the formation of dust within the ejecta.

  3. The diagnostic validity of musculoskeletal ultrasound in lateral epicondylalgia: a systematic review.

    PubMed

    Dones, Valentin C; Grimmer, Karen; Thoirs, Kerry; Suarez, Consuelo G; Luker, Julie

    2014-03-03

    Ultrasonogrophy, Real-time Sonoelastography and sonographic probe-induced tenderness in diagnosing LE. The use of Gray-scale Ultrasonography is recommended in objectively diagnosing lateral epicondylalgia. The presence of hypoechogenicity and bone changes indicates presence of a stressed common extensor origin-lateral epicondyle complex in elbows with lateral epicondylalgia. In addition to diagnosis, detection of these abnormal ultrasound findings allows localization of pathologies to tendon or bone that would assist in designing an appropriate treatment suited to patient's condition.

  4. TOPICAL REVIEW: Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.

    2009-03-01

    Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.

  5. Ultrasound diagnosis of uterine myomas and complications in pregnancy.

    PubMed

    Exacoustòs, C; Rosati, P

    1993-07-01

    To evaluate myomas for ultrasound-documented size, location, position, and relation to the placenta, and to relate these findings to complications during pregnancy, at delivery, and in the puerperium. Among 12,708 pregnant patients who had ultrasound scans, 492 had uterine myomas. Single myomas were found in 88% of cases and multiple myomas in 12%. The myomas were evaluated for size, number, position, location, relationship to the placenta, and echogenic structure, and the outcome of pregnancy was compared to that of patients in the control group. A statistically significant increased incidence of threatened abortion, threatened preterm delivery, abruptio placentae, and pelvic pain was observed in patients with uterine myomas (P < .001). Abruptio placentae was particularly evident in women with myoma volumes greater than 200 cm3, submucosal location, or superimposition of the placenta. Pelvic pain was related to myoma volume greater than 200 cm3 and ultrasound findings of heterogeneous echo patterns and cystic areas. Mode of delivery, abortion, preterm birth, premature rupture of membranes, and fetal growth did not seem to be affected by the presence of myomas. Thirty-two women with uterine myomas were managed surgically. Thirteen underwent myomectomy during pregnancy. Of these, eight delivered at term and five delivered preterm after the 32nd week of gestation. None of the deliveries were associated with neonatal death. The other 19 patients had surgery at delivery. Nine myomectomies were performed at cesarean delivery. Of these, three were complicated by severe hemorrhage necessitating hysterectomy. Another nine hysterectomies were performed during cesarean and one after vaginal delivery. In addition to myoma size, the ultrasound evaluation of pregnant women with myomas should include position, location, relationship to the placenta, and echogenic structure. These ultrasound findings make it possible to identify women at risk for myoma-related complications and

  6. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  7. Characteristics of C-band meteorological radar echoes at Petrolina, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    da Silva Aragão, Maria Regina; Correia, Magaly De Fatima; Alves de Araújo, Heráclio

    2000-03-01

    A unique set of C-band meteorological radar echoes is analyzed. The data were obtained in Petrolina (9°24S, 40°30W), located in the semi-arid region of Northeast Brazil, from January to June 1985. The characteristics analyzed are echo areas, types and patterns.As in other tropical areas of the world, echoes with an area100 km2 dominated, making up 53% of the total number of echoes while echoes with 100 km2echoes, the remaining 11%. A linear correlation analysis between the parcel convective energy and the number of echoes within different classes of horizontal area resulted in a positive correlation for echoes with areas≤400 km2 only. The largest precipitation areas found in this study were shapeless, extensive, long-lasting stratiform rain areas covering about 35 000 km2. Satellite images and daily maxima surface rainfall rates give evidence that they are associated with mesoscale convective systems formed in the presence of an upper tropospheric high amplitude trough or cyclonic vortex. The echoes were classified following two criteria. The first classification is based on lifetimes and horizontal reflectivity gradients obtained from the Plan Position Indicator (PPI) and Range, Height Indicator (RHI) images, which allowed the identification of convective, stratiform and stratiform with embedded convection echoes, the last one being an intermediary class assigned to intense precipitation cells embedded within stratiform rain areas. The second classification is based on the apparent degree of organization observed on the PPI images, which allowed identification of five distinct patterns: scattered echoes, zone of echoes, line of echoes, strip of echoes and band of echoes. Results show convective echoes to account for 98.78% of the total number of echoes. They occurred throughout the period of study, being more frequent in the southeast quadrant of the radar coverage. A relatively high frequency of stratiform echoes

  8. Facility Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides powerful search capabilities offering more than 100 search criteria to target your results. Use the ECHO to search compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide.

  9. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  10. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  11. ECHO Data Partners Join Forces to Federate Access to Resources

    NASA Astrophysics Data System (ADS)

    Kendall, J.; Macie, M.

    2003-12-01

    During the past year the NASA's Earth Science Data and Information System (ESDIS) project has been collaborating with various Earth science data and client providers to design and implement the EOS Clearinghouse (ECHO). ECHO is an open, interoperable metadata clearinghouse and order broker system. ECHO functions as a repository of information intended to streamline access to digital data and services provided by NASA's Earth Science Enterprise and the extended Earth science community. In a unique partnership, ECHO data providers are working to extend their services in the digital era, to reflect current trends in scientific and educational communications. The multi-organization, inter-disciplinary content of ECHO provides a valuable new service to a growing number of Earth science applications and interdisciplinary research efforts. As such, ECHO is expected to attract a wide audience. In this poster, we highlight the contributions of current ECHO data partners and provide information for prospective data partners on how the project supports the incorporation of new collections and effective long-term asset management that is directly under the control of the organizations who contribute resources to ECHO.

  12. Data Downloads | ECHO | US EPA

    EPA Pesticide Factsheets

    The ECHO website with its facility search features is designed to provide easy access to EPA's compliance and enforcement data with customizable onscreen display and download. For those with larger data needs, ECHO has several types of data sets available. These large data sets may be of particular use to developers, programmers, academics, and analysts. The data available here can be downloaded and used for many different functions and are certain to meet all data retrieval needs.

  13. Investigation of optimal method for inducing harmonic motion in tissue using a linear ultrasound phased array--a simulation study.

    PubMed

    Heikkilä, Janne; Hynynen, Kullervo

    2006-04-01

    Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.

  14. Removing the echoes from terahertz pulse reflection system and sample

    NASA Astrophysics Data System (ADS)

    Liu, Haishun; Zhang, Zhenwei; Zhang, Cunlin

    2018-01-01

    Due to the echoes both from terahertz (THz) pulse reflection system and sample, the THz primary pulse will be distorted. The system echoes include two types. One preceding the main peak probably is caused by ultrafast laser pulse and the other at the back of the primary pulse is caused by the Fabry-Perot (F-P) etalon effect of detector. We attempt to remove the corresponding echoes by using two kinds of deconvolution. A Si wafer of 400μm was selected as the tested sample. Firstly, the method of double Gaussian filter (DGF) decnvolution was used to remove the systematic echoes, and then another deconvolution technique was employed to eliminate the two obvious echoes of the sample. The ultimate results indicated: although the combination of two deconvolution techniques could not entirely remove the echoes of sample and system, the echoes were largely reduced.

  15. Echolocation versus echo suppression in humans

    PubMed Central

    Wallmeier, Ludwig; Geßele, Nikodemus; Wiegrebe, Lutz

    2013-01-01

    Several studies have shown that blind humans can gather spatial information through echolocation. However, when localizing sound sources, the precedence effect suppresses spatial information of echoes, and thereby conflicts with effective echolocation. This study investigates the interaction of echolocation and echo suppression in terms of discrimination suppression in virtual acoustic space. In the ‘Listening’ experiment, sighted subjects discriminated between positions of a single sound source, the leading or the lagging of two sources, respectively. In the ‘Echolocation’ experiment, the sources were replaced by reflectors. Here, the same subjects evaluated echoes generated in real time from self-produced vocalizations and thereby discriminated between positions of a single reflector, the leading or the lagging of two reflectors, respectively. Two key results were observed. First, sighted subjects can learn to discriminate positions of reflective surfaces echo-acoustically with accuracy comparable to sound source discrimination. Second, in the Listening experiment, the presence of the leading source affected discrimination of lagging sources much more than vice versa. In the Echolocation experiment, however, the presence of both the lead and the lag strongly affected discrimination. These data show that the classically described asymmetry in the perception of leading and lagging sounds is strongly diminished in an echolocation task. Additional control experiments showed that the effect is owing to both the direct sound of the vocalization that precedes the echoes and owing to the fact that the subjects actively vocalize in the echolocation task. PMID:23986105

  16. Self-motion facilitates echo-acoustic orientation in humans

    PubMed Central

    Wallmeier, Ludwig; Wiegrebe, Lutz

    2014-01-01

    The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory–motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556

  17. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasoundmore » scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.« less

  18. Crosstalk Reduction for High-Frequency Linear-Array Ultrasound Transducers Using 1–3 Piezocomposites With Pseudo-Random Pillars

    PubMed Central

    Yang, Hao-Chung; Cannata, Jonathan; Williams, Jay; Shung, K. Kirk

    2013-01-01

    The goal of this research was to develop a novel diced 1–3 piezocomposite geometry to reduce pulse–echo ring down and acoustic crosstalk between high-frequency ultrasonic array elements. Two PZT-5H-based 1–3 composites (10 and 15 MHz) of different pillar geometries [square (SQ), 45° triangle (TR), and pseudo-random (PR)] were fabricated and then made into single-element ultrasound transducers. The measured pulse–echo waveforms and their envelopes indicate that the PR composites had the shortest −20-dB pulse length and highest sensitivity among the composites evaluated. Using these composites, 15-MHz array subapertures with a 0.95λ pitch were fabricated to assess the acoustic crosstalk between array elements. The combined electrical and acoustical crosstalk between the nearest array elements of the PR array sub-apertures (−31.8 dB at 15 MHz) was 6.5 and 2.2 dB lower than those of the SQ and the TR array subapertures, respectively. These results demonstrate that the 1–3 piezocomposite with the pseudo-random pillars may be a better choice for fabricating enhanced high-frequency linear-array ultrasound transducers; especially when mechanical dicing is used. PMID:23143580

  19. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    PubMed Central

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  20. A 1500-year record of climatic and environmental change in Elk Lake, Minnesota I: Varve thickness and gray-scale density

    USGS Publications Warehouse

    Dean, W.; Anderson, R.; Platt, Bradbury J.; Anderson, D.

    2002-01-01

    The deepest part (29.5 m) of Elk Lake, Clearwater County, northwestern Minnesota, contains a complete Holocene section that is continuously varved. The varve components are predominantly autochthonous (CaCO3, organic matter, biogenic silica, and several iron and manganese minerals), but the varves do contain a minor detrital-clastic (aluminosilicate) component that is predominantly wind-borne (eolian) and provides an important record of atmospheric conditions. Singular spectrum analysis (SSA) and wavelet analysis of varve thickness recognized significant periodicities in the multicentennial and multidecadal bands that varied in power (i.e., variable significance) and position (i.e., variable period) within the periodic bands. Persistent periodicities of about 10, 22, 40, and 90 years, and, in particular, multicentennial periodicities in varve thickness and other proxy variables are similar to those in spectra of radiocarbon production, a proxy for past solar activity. This suggests that there may be a solar control, perhaps through geomagnetic effects on atmospheric circulation. Multicentennial and multidecadal periodicities also occur in wavelet spectra of relative gray-scale density. However, gray-scale density does not appear to correlate with any of the measured proxy variables, and at this point we do not know what controlled gray scale.

  1. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Perspective: Echoes in 2D-Raman-THz spectroscopy.

    PubMed

    Hamm, Peter; Shalit, Andrey

    2017-04-07

    Recently, various spectroscopic techniques have been developed, which can measure the 2D response of the inter-molecular degrees of freedom of liquids in the THz regime. By employing hybrid Raman-THz pulse sequences, the inherent experimental problems of 2D-Raman spectroscopy are circumvented completely, culminating in the recent measurement of the 2D-Raman-THz responses of water and aqueous salt solutions. This review article focuses on the possibility to observe echoes in such experiments, which would directly reveal the inhomogeneity of the typically extremely blurred THz bands of liquids, and hence the heterogeneity of local structures that are transiently formed, in particular, in a hydrogen-bonding liquid such as water. The generation mechanisms of echoes in 2D-Raman-THz spectroscopy are explained, which differ from those in "conventional" 2D-IR spectroscopy in a subtle but important manner. Subsequently, the circumstances are discussed, under which echoes are expected, revealing a physical picture of the information content of an echo. That is, the echo decay reflects the lifetime of local structures in the liquid on a length scale that equals the delocalization length of the intermolecular modes. Finally, recent experimental results are reviewed from an echo perspective.

  3. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.

  4. Intensive training program for ultrasound diagnosis of adnexal masses: protocol and preliminary results.

    PubMed

    Alcázar, J L; Díaz, L; Flórez, P; Guerriero, S; Jurado, M

    2013-08-01

    To assess the feasibility of a specific training program for ultrasound diagnosis of adnexal masses. A 2-month intensive training program was developed. The program protocol consisted of a 1-day intensive theoretical course focused on clinical and sonographic issues related to adnexal masses and ovarian cancer, followed by a 4-week real-time ultrasound training program in a tertiary center (25-30 adnexal masses evaluated per month) and a final 4-week period for offline assessment of three-dimensional (3D) volumes from adnexal masses. In this final period, each trainee evaluated five sets of 100 3D volumes. 3D volumes contained gray-scale and power Doppler information, and the trainee was provided with clinical data for each case (patient age, menopausal status and reported symptoms). 3D volumes were obtained from surgically removed masses that had undergone histological diagnosis or from masses that had been followed up until resolution. After assessment of each set, the trainee's diagnostic performance was calculated (sensitivity and specificity) and each incorrectly classified mass was evaluated with the trainer. The objective was to achieve a sensitivity of > 95% and a specificity of > 90%. Learning curve cumulative summation (LC-CUSUM) graphs were plotted to assess the learning curve for the trainees. One trainer and two trainees with little experience in gynecological ultrasound (one gynecologist and one radiologist) participated in this study. LC-CUSUM graphs showed that competence was achieved after 170 or 185 examinations. The objectives for diagnostic performance were achieved after assessment of the second set of 3D volumes (200 cases) for each trainee. The proposed training program appears to be feasible. High diagnostic performance can be achieved after analysis of 200 cases and maintained thereafter. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  5. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    PubMed

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  6. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography

    PubMed Central

    Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao

    2017-01-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and

  7. Introducing nuclei scatterer patterns into histology based intravascular ultrasound simulation framework

    NASA Astrophysics Data System (ADS)

    Kraft, Silvan; Karamalis, Athanasios; Sheet, Debdoot; Drecoll, Enken; Rummeny, Ernst J.; Navab, Nassir; Noël, Peter B.; Katouzian, Amin

    2013-03-01

    Medical ultrasonic grayscale images are formed from acoustic waves following their interactions with distributed scatterers within tissues media. For accurate simulation of acoustic wave propagation, a reliable model describing unknown parameters associated with tissues scatterers such as distribution, size and acoustic properties is essential. In this work, we introduce a novel approach defining ultrasonic scatterers by incorporating a distribution of cellular nuclei patterns in biological tissues to simulate ultrasonic response of atherosclerotic tissues in intravascular ultrasound (IVUS). For this reason, a virtual phantom is generated through manual labeling of different tissue types (fibrotic, lipidic and calcified) on histology sections. Acoustic properties of each tissue type are defined by assuming that the ultrasound signal is primarily backscattered by the nuclei of the organic cells within the intima and media of the vessel wall. This resulting virtual phantom is subsequently used to simulate ultrasonic wave propagation through the tissue medium computed using finite difference estimation. Subsequently B-mode images for a specific histological section are processed from the simulated radiofrequency (RF) data and compared with the original IVUS of the same tissue section. Real IVUS RF signals for these histological sections were obtained using a single-element mechanically rotating 40MHz transducer. Evaluation is performed by trained reviewers subjectively assessing both simulated and real B-mode IVUS images. Our simulation platform provides a high image quality with a very promising correlation to the original IVUS images. This will facilitate to better understand progression of such a chronic disease from micro-level and its integration into cardiovascular disease-specific models.

  8. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.

    PubMed

    Maleke, C; Konofagou, E E

    2008-03-21

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 degrees C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 microm degrees C(-1)(r=0.93, p<.005). After sustained heating, the tissue became irreversibly stiffer, followed by an associated decrease in the HMI displacement (-0.79 microm degrees C(-1), r=-0.92, p<0.001). Repeated

  9. State Review Framework Tracker Recommendations | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. Facility Search Results | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Facility Search - Water | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Air Pollutant Report | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Facility Search - Air | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Denuncie violaciones ambientales | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Corporate Compliance Screener | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Custom Search Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Resources - General Information | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Mobile Bay.pdf | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. About the Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. Detailed Facility Report | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Enforcement Case Search | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Water Pollution Search | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Report Environmental Violations | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Watershed Statistics Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Saved by focused echo evaluation in resuscitation

    PubMed Central

    Hollister, N; Bond, R; Donovan, A; Nicholls, B

    2011-01-01

    A 74-year-old woman received thrombolysis for pericarditis. She subsequently developed shock and cardiac arrest. The case report describes the events of how a simple immediate bedside focused echo proved to be a life saving assessment. Current availability and training issues in focused transthoracic echo are discussed. PMID:22707666

  6. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  7. The role of T2*-weighted gradient echo in the diagnosis of tumefactive intrahepatic extramedullary hematopoiesis in myelodysplastic syndrome and diffuse hepatic iron overload: a case report and review of the literature.

    PubMed

    Belay, Abel A; Bellizzi, Andrew M; Stolpen, Alan H

    2018-01-15

    Extramedullary hematopoiesis is the proliferation of hematopoietic cells outside bone marrow secondary to marrow hematopoiesis failure. Extramedullary hematopoiesis rarely presents as a mass-forming hepatic lesion; in this case, imaging-based differentiation from primary and metastatic hepatic neoplasms is difficult, often leading to biopsy for definitive diagnosis. We report a case of tumefactive hepatic extramedullary hematopoiesis in the setting of myelodysplastic syndrome with concurrent hepatic iron overload, and the role of T2*-weighted gradient-echo magnetic resonance imaging in differentiating extramedullary hematopoiesis from primary and metastatic hepatic lesions. To the best of our knowledge, T2*-weighted gradient-echo evaluation of extramedullary hematopoiesis in the setting of diffuse hepatic hemochromatosis has not been previously described. A 52-year-old white man with myelodysplastic syndrome and marrow fibrosis was found to have a 4 cm hepatic lesion on ultrasound during workup for bone marrow transplantation. Magnetic resonance imaging revealed diffuse hepatic iron overload and non-visualization of the lesion on T2* gradient-echo sequence suggesting the presence of iron deposition within the lesion similar to that in background hepatic parenchyma. Subsequent ultrasound-guided biopsy of the lesion revealed extramedullary hematopoiesis. Six months later, while still being evaluated for bone marrow transplant, our patient was found to have poor pulmonary function tests. Follow-up computed tomography angiogram showed a mass within his right main pulmonary artery. Bronchoscopic biopsy of this mass once again revealed extramedullary hematopoiesis. He received radiation therapy to his chest. However, 2 weeks later, he developed mediastinal hematoma and died shortly afterward, secondary to respiratory arrest. Mass-forming extramedullary hematopoiesis is rare; however, our report emphasizes that it needs to be considered in the initial differential

  8. Echo and BNP serial assessment in ambulatory heart failure care: Data on loop diuretic use and renal function.

    PubMed

    Dini, Frank Lloyd; Simioniuc, Anca; Carluccio, Erberto; Ghio, Stefano; Rossi, Andrea; Biagioli, Paolo; Reboldi, Gianpaolo; Galeotti, Gian Giacomo; Lu, Fei; Zara, Cornelia; Whalley, Gillian; Temporelli, Pier Luigi

    2016-12-01

    We compared the follow-up data on loop diuretic use and renal function, as assessed by serum creatinine levels, and the estimated glomerular filtration rate (eGFR), of two groups of consecutive ambulatory HF patients: 1) the clinically-guided group, in which management was clinically driven based on the institutional protocol of the HF Unit of the Cardiovascular and Thoracic Department of Pisa (standard of care) and 2) the echo and B-type natriuretic peptide (BNP) guided group (patients conforming to the protocol of the Network Labs Ultrasound (NEBULA) in HF Study Group: Pisa, Perugia, Pavia; Verona, Auckland, and Veruno), in which therapy was delivered according to the serial assessment of BNP and echocardiography. Patients whose follow-up was based on standard of care had a significant higher prevalence of worsening renal function, that was likely related to higher diuretic dosages, whilst, a better management of renal function was observed in the echo-BNP-guided group. The data is related to "Echo and natriuretic peptide guided therapy improves outcome and reduces worsening renal function in systolic heart failure: An observational study of 1137 outpatients" (A. Simioniuc, E. Carluccio, S. Ghio, A. Rossi, P. Biagioli, G. Reboldi, G.G. Galeotti, F. Lu, C. Zara, G. Whalley, P.G. Temporelli, F.L. Dini, 2016; K.J. Harjai, H.K. Dinshaw, E. Nunez, M. Shah, H. Thompson, T. Turgut, H.O. Ventura, 1999; A. Ahmed, A. Husain, T.E. Love, G. Gambassi, L.J. Dell׳Italia, G.S. Francis, M. Gheorghiade, R.M. Allman, S. Meleth, R.C. Bourge, 2006) [1], [2], [3].

  9. Looking for Dust-Scattering Light Echoes

    NASA Astrophysics Data System (ADS)

    Mills, Brianna; Heinz, Sebastian; Corrales, Lia

    2018-01-01

    Galactic X-ray transient sources such as neutron stars or black holes sometimes undergo an outburst in X-rays. Ring structures have been observed around three such sources, produced by the X-ray photons being scattered by interstellar dust grains along our line of sight. These dust-scattering light echoes have proven to be a useful tool for measuring and constraining Galactic distances, mapping the dust structure of the Milky Way, and determining the dust composition in the clouds producing the echo. Detectable light echoes require a sufficient quantity of dust along our line of sight, as well as bright, short-lived Galactic X-ray flares. Using data from the Monitor of All-Sky X-ray Image (MAXI) on-board the International Space Station, we ran a peak finding algorithm in Python to look for characteristic flare events. Each flare was characterized by its fluence, the integrated flux of the flare over time. We measured the distribution of flare fluences to show how many observably bright flares were recorded by MAXI. This work provides a parent set for dust echo searches in archival X-ray data and will inform observing strategies with current and future X-ray missions such as Athena and Lynx.

  10. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  11. Ejection of small droplet from microplate using focused ultrasound

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Mizuno, Yosuke; Nakamura, Kentaro

    2017-08-01

    We discussed an ultrasonic system for single-droplet ejection from a microplate, which is one of the basic and important procedures in the noncontact handling of droplets in air. In this system, a 1.5 MHz concave transducer located below the microplate is used for chasing the liquid surface through a pulse echo method, and also for the ejection of a 1 µL single droplet by the burst of focused ultrasound. We investigated the relationship between the droplet ejection characteristics, the distance from the transducer to the surface of liquid, the material property, and the excitation condition of the focused ultrasonic transducer. It was verified that the optimal position of the transducer was off the focal point of sound pressure by ±1 mm, because the sound intensity had to be controlled to eject a single droplet. Subsequently, we confirmed experimentally that the ejected droplet volume linearly depended on the surface tension of the liquid, and that the droplet volume and ejection velocity were determined by the Webber number, Reynolds number, and Ohnesolge number. In addition, by optimizing the duration of the burst ultrasound, the droplet volume and ejection velocity were controlled.

  12. One-step endosonography-guided drainage of a pancreatic pseudocyst: a new technique of stent delivery through the echo endoscope.

    PubMed

    Vilmann, P; Hancke, S; Pless, T; Schell-Hincke, J D; Henriksen, F W

    1998-10-01

    We report here the first case of a one-step endosonography(EUS)-guided pseudocyst drainage. A prototype large channel curved array echo endoscope (Pentax FG-38 UX) and a prototype delivery system for placement of an endoprosthesis was used for the procedure. The delivery system (GIP MedicinTechnik GmbH/Medi-Globe Corporation) consists of a handle part with a piston, a metal ring sheath, a plastic catheter with a diathermy needle and a double pigtail endoprosthesis (8.5 Fr). When mounted on the endoscope the endoprosthesis can be advanced out of the distal end of the endoscope. The introduction of the stent as well as the stent release can be monitored entirely by ultrasound. The procedure was tested in a 76-year-old woman with a pseudocyst measuring 60 mm in diameter located in the tail of the pancreas. The procedure was well tolerated by the patient, and there were no procedural complications. The advantage of a large channel echo endoscope and our new prototype delivery system is that the endoprosthesis can be inserted in to a pancreatic cyst guided exclusively by EUS without exchange of endoscopes, catheters or guide wires. Further studies are warranted.

  13. A Detection-Theoretic Model of Echo Inhibition

    ERIC Educational Resources Information Center

    Saberi, Kourosh; Petrosyan, Agavni

    2004-01-01

    A detection-theoretic analysis of the auditory localization of dual-impulse stimuli is described, and a model for the processing of spatial cues in the echo pulse is developed. Although for over 50 years "echo suppression" has been the topic of intense theoretical and empirical study within the hearing sciences, only a rudimentary understanding of…

  14. 2pBAb5. Validation of three-dimensional strain tracking by volumetric ultrasound image correlation in a pubovisceral muscle model

    PubMed Central

    Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.

    2014-01-01

    Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165

  15. A recipe for echoes from exotic compact objects

    NASA Astrophysics Data System (ADS)

    Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei

    2017-10-01

    Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.

  16. Polarization properties of long-lived stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.; Popov, E. N.

    2015-01-01

    The polarization properties of the long-lived stimulated photon echo formed on the transition ja → jb with the atomic levels degenerate in the projections of the angular momenta are studied theoretically. The two particular transitions ja = 1 → jb = 0 and ja = 1 → jb = 1 with degenerate ground state ja = 1 are discussed. For the transitions ja = 1 → jb = 1 the polarizations and areas of the first (‘write’) and the third (‘read’) excitation pulses are found when the echo polarization faithfully reproduces the arbitrary polarization of the weak (single-photon) second (‘information’) pulse, so that this echo scheme may implement the quantum memory for a single-photon polarization qubit, while for the transitions ja = 1 → jb = 0 it is shown, that the echo polarization differs from that of the second pulse at any conditions.

  17. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  18. Auditory-tactile echo-reverberating stuttering speech corrector

    NASA Astrophysics Data System (ADS)

    Kuniszyk-Jozkowiak, Wieslawa; Adamczyk, Bogdan

    1997-02-01

    The work presents the construction of a device, which transforms speech sounds into acoustical and tactile signals of echo and reverberation. Research has been done on the influence of the echo and reverberation, which are transmitted as acoustic and tactile stimuli, on speech fluency. Introducing the echo or reverberation into the auditory feedback circuit results in a reduction of stuttering. A bit less, but still significant corrective effects are observed while using the tactile channel for transmitting the signals. The use of joined auditory and tactile channels increases the effects of their corrective influence on the stutterers' speech. The results of the experiment justify the use of the tactile channel in the stutterers' therapy.

  19. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple pregnancy - ultrasound; ...

  20. Induction of Apoptosis in U937 Cells by Using a Combination of Bortezomib and Low-Intensity Ultrasound

    PubMed Central

    Saliev, Timur; Feril, Loreto B.; Ogawa, Koichi; Watanabe, Akiko; Begimbetova, Dinara; Molkenov, Askhat; Alimbetov, Dauren; Tachibana, Katsuro

    2016-01-01

    Background We scrutinized the feasibility of apoptosis induction in blood cancer cells by means of low-intensity ultrasound and the proteasome inhibitor bortezomib (Velcade). Material/Methods Human leukemic monocyte lymphoma U937 cells were subjected to ultrasound in the presence of bortezomib and the echo contrast agent Sonazoid. Two types of acoustic intensity (0.18 W/cm2 and 0.05 W/cm2) were used for the experiments. Treated U937 cells were analyzed for viability and levels of early and late apoptosis. In addition, scanning electron microscopy analysis of treated cells was performed. Results The percentage of cells that underwent early apoptosis in the group treated with ultrasound and Sonazoid was 8.0±1.31% (intensity 0.18 W/cm2) and 7.0±1.69% (0.05 W/cm2). However, coupling of bortezomib and Sonazoid resulted in an increase in the percentage of cells in the early apoptosis phase, up to 32.50±3.59% (intensity 0.18 W/cm2) and 33.0±4.90% (0.05 W/cm2). The percentage of U937 cells in the late apoptosis stage was not significantly different from that in the group treated with bortezomib only. Conclusions Our findings indicate the feasibility of apoptosis induction in blood cancer cells by using a combination of bortezomib, ultrasound contrast agents, and low-intensity ultrasound. PMID:28003640

  1. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  2. Tools to Improve the Accuracy of Kidney Stone Sizing with Ultrasound

    PubMed Central

    Dunmire, Barbrina; Hsi, Ryan S.; Cunitz, Bryan W.; Paun, Marla; Bailey, Michael R.; Sorensen, Mathew D.; Harper, Jonathan D.

    2015-01-01

    Abstract Purpose: Ultrasound (US) overestimates stone size when compared with CT. The purpose of this work was to evaluate the overestimation of stone size with US in an in vitro water bath model and investigate methods to reduce overestimation. Materials and Methods: Ten human stones (3–12 mm) were measured using B-mode (brightness mode) US by a sonographer blinded to the true stone size. Images were captured and compared using both a commercial US machine and software-based research US device. Image gain was adjusted between moderate and high stone intensities, and the transducer-to-stone depth was varied from 6 to 10 cm. A computerized stone-sizing program was developed to outline the stone width based on a grayscale intensity threshold. Results: Overestimation with the commercial device increased with both gain and depth. Average overestimation at moderate and high gain was 1.9±0.8 and 2.1±0.9 mm, respectively (p=0.6). Overestimation increased an average of 22% with an every 2-cm increase in depth (p=0.02). Overestimation using the research device was 1.5±0.9 mm and did not vary with depth (p=0.28). Overestimation could be reduced to 0.02±1.1 mm (p<0.001) with the computerized stone-sizing program. However, a standardized threshold consistent across depth, system, or system settings could not be resolved. Conclusion: Stone size is consistently overestimated with US. Overestimation increased with increasing depth and gain using the commercial machine. Overestimation was reduced and did not vary with depth, using the software-based US device. The computerized stone-sizing program shows the potential to reduce overestimation by implementing a grayscale intensity threshold for defining the stone size. More work is needed to standardize the approach, but if successful, such an approach could significantly improve stone-sizing accuracy and lead to automation of stone sizing. PMID:25105243

  3. Adaptive lesion formation using dual mode ultrasound array system

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  4. Competency Assessment in Senior Emergency Medicine Residents for Core Ultrasound Skills.

    PubMed

    Schmidt, Jessica N; Kendall, John; Smalley, Courtney

    2015-11-01

    Quality resident education in point-of-care ultrasound (POC US) is becoming increasingly important in emergency medicine (EM); however, the best methods to evaluate competency in graduating residents has not been established. We sought to design and implement a rigorous assessment of image acquisition and interpretation in POC US in a cohort of graduating residents at our institution. We evaluated nine senior residents in both image acquisition and image interpretation for five core US skills (focused assessment with sonography for trauma (FAST), aorta, echocardiogram (ECHO), pelvic, central line placement). Image acquisition, using an observed clinical skills exam (OSCE) directed assessment with a standardized patient model. Image interpretation was measured with a multiple-choice exam including normal and pathologic images. Residents performed well on image acquisition for core skills with an average score of 85.7% for core skills and 74% including advanced skills (ovaries, advanced ECHO, advanced aorta). Residents scored well but slightly lower on image interpretation with an average score of 76%. Senior residents performed well on core POC US skills as evaluated with a rigorous assessment tool. This tool may be developed further for other EM programs to use for graduating resident evaluation.

  5. 2D/ 3D Quantitative Ultrasound of the Breast

    NASA Astrophysics Data System (ADS)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to

  6. Resolution limits of ultrafast ultrasound localization microscopy

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-01

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size

  7. Transvaginal ultrasound

    MedlinePlus

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  8. ECHO: A reference-free short-read error correction algorithm

    PubMed Central

    Kao, Wei-Chun; Chan, Andrew H.; Song, Yun S.

    2011-01-01

    Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth. PMID:21482625

  9. EChO. Exoplanet characterisation observatory

    NASA Astrophysics Data System (ADS)

    Tinetti, G.; Beaulieu, J. P.; Henning, T.; Meyer, M.; Micela, G.; Ribas, I.; Stam, D.; Swain, M.; Krause, O.; Ollivier, M.; Pace, E.; Swinyard, B.; Aylward, A.; van Boekel, R.; Coradini, A.; Encrenaz, T.; Snellen, I.; Zapatero-Osorio, M. R.; Bouwman, J.; Cho, J. Y.-K.; Coudé de Foresto, V.; Guillot, T.; Lopez-Morales, M.; Mueller-Wodarg, I.; Palle, E.; Selsis, F.; Sozzetti, A.; Ade, P. A. R.; Achilleos, N.; Adriani, A.; Agnor, C. B.; Afonso, C.; Allende Prieto, C.; Bakos, G.; Barber, R. J.; Barlow, M.; Batista, V.; Bernath, P.; Bézard, B.; Bordé, P.; Brown, L. R.; Cassan, A.; Cavarroc, C.; Ciaravella, A.; Cockell, C.; Coustenis, A.; Danielski, C.; Decin, L.; De Kok, R.; Demangeon, O.; Deroo, P.; Doel, P.; Drossart, P.; Fletcher, L. N.; Focardi, M.; Forget, F.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gaulme, P.; Hernández, J. I. González; Grasset, O.; Grassi, D.; Grenfell, J. L.; Griffin, M. J.; Griffith, C. A.; Grözinger, U.; Guedel, M.; Guio, P.; Hainaut, O.; Hargreaves, R.; Hauschildt, P. H.; Heng, K.; Heyrovsky, D.; Hueso, R.; Irwin, P.; Kaltenegger, L.; Kervella, P.; Kipping, D.; Koskinen, T. T.; Kovács, G.; La Barbera, A.; Lammer, H.; Lellouch, E.; Leto, G.; Lopez Morales, M.; Lopez Valverde, M. A.; Lopez-Puertas, M.; Lovis, C.; Maggio, A.; Maillard, J. P.; Maldonado Prado, J.; Marquette, J. B.; Martin-Torres, F. J.; Maxted, P.; Miller, S.; Molinari, S.; Montes, D.; Moro-Martin, A.; Moses, J. I.; Mousis, O.; Nguyen Tuong, N.; Nelson, R.; Orton, G. S.; Pantin, E.; Pascale, E.; Pezzuto, S.; Pinfield, D.; Poretti, E.; Prinja, R.; Prisinzano, L.; Rees, J. M.; Reiners, A.; Samuel, B.; Sánchez-Lavega, A.; Forcada, J. Sanz; Sasselov, D.; Savini, G.; Sicardy, B.; Smith, A.; Stixrude, L.; Strazzulla, G.; Tennyson, J.; Tessenyi, M.; Vasisht, G.; Vinatier, S.; Viti, S.; Waldmann, I.; White, G. J.; Widemann, T.; Wordsworth, R.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2012-10-01

    A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO's configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those

  10. Ultrasound

    MedlinePlus

    ... community Home > Pregnancy > Prenatal care > Ultrasound during pregnancy Ultrasound during pregnancy E-mail to a friend Please ... you. What are some reasons for having an ultrasound? Your provider uses ultrasound to do several things, ...

  11. Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach

    PubMed Central

    Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf

    2014-01-01

    Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341

  12. Compton echoes from nearby gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Giannios, Dimitrios; Younes, George; van der Horst, Alexander J.; Kouveliotou, Chryssa

    2018-06-01

    The recent discovery of gravitational waves from GW170817, associated with a short gamma-ray burst (GRB) at a distance of 40 Mpc, has demonstrated that short GRBs can occur locally and at a reasonable rate. Furthermore, gravitational waves enable us to detect close-by GRBs, even when we are observing at latitudes far from the jet's axis. We consider here Compton echoes, the scattered light from the prompt and afterglow emission. Compton echoes, an as yet undetected counterpart of GRBs, peak in X-rays and maintain a roughly constant flux for hundreds to thousands of years after the burst. Though too faint to be detected in typical cosmological GRBs, a fraction of close-by bursts with a sufficiently large energy output in X-rays, and for which the surrounding medium is sufficiently dense, may indeed be observed in this way. The detection of a Compton echo could provide unique insight into the burst properties and the environment's density structure. In particular, it could potentially determine whether or not there was a successful jet that broke through the compact binary merger ejecta. We discuss here the properties and expectations from Compton echoes and suggest methods for detectability.

  13. Ultrasound of the fingers for human identification using biometrics.

    PubMed

    Narayanasamy, Ganesh; Fowlkes, J Brian; Kripfgans, Oliver D; Jacobson, Jon A; De Maeseneer, Michel; Schmitt, Rainer M; Carson, Paul L

    2008-03-01

    It was hypothesized that the use of internal finger structure as imaged using commercially available ultrasound (US) scanners could act as a supplement to standard methods of biometric identification, as well as a means of assessing physiological and cardiovascular status. Anatomical structures in the finger including bone contour, tendon and features along the interphalangeal joint were investigated as potential biometric identifiers. Thirty-six pairs of three-dimensional (3D) gray-scale images of second to fourth finger (index, middle and ring) data taken from 20 individuals were spatially registered using MIAMI-Fuse software developed at our institution and also visually matched by four readers. The image-based registration met the criteria for matching successfully in 14 out of 15 image pairs on the same individual and did not meet criteria for matching in any of the 12 image pairs from different subjects, providing a sensitivity and specificity of 0.93 and 1.00, respectively. Visual matching of all image pairs by four readers yielded 96% successful match. Power Doppler imaging was performed to calculate the change in color pixel density due to physical exercise as a surrogate of stress level and to provide basic physiological information. (E-mail: gnarayan@umich.edu).

  14. Temporal signal processing of dolphin biosonar echoes from salmon prey.

    PubMed

    Au, Whitlow W L; Ou, Hui Helen

    2014-08-01

    Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification.

  15. The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.

    2017-11-01

    Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.

  16. Research on key technologies of LADAR echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo

    2015-10-01

    LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.

  17. The EChO science case

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2015-12-01

    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength

  18. A computational model for biosonar echoes from foliage

    PubMed Central

    Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao

    2017-01-01

    Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats. PMID:28817631

  19. A computational model for biosonar echoes from foliage.

    PubMed

    Ming, Chen; Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao; Müller, Rolf

    2017-01-01

    Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.

  20. Echo Boom Impact

    ERIC Educational Resources Information Center

    Dordai, Phillipe; Rizzo, Joseph

    2006-01-01

    Like their baby-boomer parents, the echo-boom generation is reshaping the college and university landscape. At 80 million strong, this group of children and young adults born between 1980 and 1995 now is flooding the college and university system, spurring a college building boom. According to Campus Space Crunch, a Hillier Architecture survey of…

  1. Echo power analysis and simulation of low altitude radio fuze

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolu; Chen, Biao; Xu, Tao; Xu, Suqin

    2013-01-01

    The echo power from the earth gound which was received by fuze plays an important role in aerial defense missile, especially when the fuze is working in the look down mode. It is necessary to analyze and even simulate the echo power signals to enhance the missile's anti-jamming ability. In this paper, the quantity of echo power from the earth ground of low altitude radio fuze was analyzed in detail. Three boundary equations of area irradiated by electromagnetic beams were presented, which include two equidistant curve equations and one equal-Doppler curve equation. The relationship between the working mode and the critical height was analyzed. The calculating formula of echo power waveform was derived. And based on the derived formula, the correlation between the maximal echo power and the incident height was given and simulated, which would be helpful for the further researches of low altitude radio fuze.

  2. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  3. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.

    PubMed

    Tsui, Po-Hsiang; Zhou, Zhuhuang; Lin, Ying-Hsiu; Hung, Chieh-Ming; Chung, Shih-Jou; Wan, Yung-Liang

    2017-01-01

    The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1). However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05) for 2 MHz, 0.93 (0.89-0.98) for 2.3 MHz, 0.87 (0.84-0.92) for 2.5 MHz, 0.82 (0.77-0.88) for 3.3 MHz, and 0.81 (0.76-0.88) for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p < 0.0001). However, the effect of ultrasound frequency on the statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727). The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.

  4. UV beam shaper alignment sensitivity: grayscale versus binary designs

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    What defines a good flat top beam shaper? What is more important; an ideal flat top profile or ease of alignment and stability? These are the questions designers and fabricators can not easily define, since they are a function of experience. Anyone can generate a theoretical beam shaper design and model it until it is clear that on paper the design looks good and meets the general needs of the end customer. However, the method of fabrication can add a twist that is not fully understood by either party until the beam shaper is actually tested for the first time in a system and also produced in high volume. This paper provides some insight into how grayscale and binary fabrication methods can produce the same style of beam shaper, with similar beam shaping performance; however provide a result wherein each fabricated design has separate degrees of sensitivity for alignment and stability. The paper will explain the design and fabrication approach for the two units and present alignment and testing data to provide a contrast comparison. Further data will show that over twenty sets of each fabricated design there is a consistency to the sensitivity issue. An understanding of this phenomenon is essential when considering the use of beam shapers on production equipment that is dedicated to producing micron-precision features within high value microelectronic and consumer products. We will present our findings and explore potential explanations and solutions.

  5. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Effluent Limit Exceedances Report | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. Pollutant Loading Report (DMR) | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. Analyze Trends: Pesticide Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. Technical Users Background Document | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. About Loading Tool Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Facility Search - Drinking Water | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. About the Nutrient Model | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Resources - Guidance and Policy | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Hierarchy of Loading Calculations | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Facility Search - All Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. NPDES Monitoring Data Download | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Facility Search - Hazardous Waste | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Puget Sound Watershed.pdf | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Long Island Sound.pdf | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. DMR Search Statistics Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Custom Search Results Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Black hole ringdown echoes and howls

    NASA Astrophysics Data System (ADS)

    Nakano, Hiroyuki; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro

    2017-07-01

    Recently the possibility of detecting echoes of ringdown gravitational waves from binary black hole mergers was shown. The presence of echoes is expected if the black hole is surrounded by a mirror that reflects gravitational waves near the horizon. Here, we present slightly more sophisticated templates motivated by a waveform which is obtained by solving the linear perturbation equation around a Kerr black hole with a complete reflecting boundary condition in the stationary traveling wave approximation. We estimate that the proposed template can bring about a 10% improvement in the signal-to-noise ratio.

  3. Assessment of carotid stiffness and intima-media thickness from ultrasound data: comparison between two methods.

    PubMed

    Bianchini, Elisabetta; Bozec, Erwan; Gemignani, Vincenzo; Faita, Francesco; Giannarelli, Chiara; Ghiadoni, Lorenzo; Demi, Marcello; Boutouyrie, Pierre; Laurent, Stéphane

    2010-08-01

    Increased arterial stiffness and carotid intima-media thickness (IMT) are considered independent predictors of cardiovascular events. The aim of this study was to compare a system recently developed in our laboratory for automatic assessment of these parameters from ultrasound image sequences to a reference radio frequency (RF) echo-tracking system. Common carotid artery scans of 21 patients with cardiovascular risk factors and 12 healthy volunteers were analyzed by both devices for the assessment of diameter (D), IMT, and distension (DeltaD). In the healthy volunteers, analyses were repeated twice to evaluate intraobserver variability. Agreement was evaluated by Bland-Altman analysis, whereas reproducibility was expressed as a coefficient of variation (CV). Regarding the agreement between the two systems, bias values +/- SD were 0.060 +/- 0.110 mm for D, -0.006 +/- 0.039 mm for IMT, and -0.016 +/- 0.039 mm for DeltaD. Intraobserver CVs were 2% +/- 2% for D, 5% +/- 5% for IMT, and 6% +/- 6% for DeltaD with the RF echo-tracking system and 2% +/- 1% for D, 6% +/- 6% for IMT, and 8% +/- 6% for DeltaD with our automated system. Although B-mode-based devices are less precise than RF-based ones, our automated system has good agreement with the reference method and comparable reproducibility, at least when high-quality images are analyzed. Hence, this study suggests that the presented system based on image processing from standard ultrasound scans is a suitable device for measuring IMT and local arterial stiffness parameters in clinical studies.

  4. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  5. ECHOS: Early Childhood Hands-On Science Efficacy Study

    ERIC Educational Resources Information Center

    Brown, Judy A.; Greenfield, Daryl B.; Bell, Elizabeth; Juárez, Cheryl Lani; Myers, Ted; Nayfeld, Irena

    2013-01-01

    "ECHOS: Early Childhood Hands-On Science" was developed at the Miami Science Museum as a comprehensive set of science lessons sequenced to lead children toward a deeper understanding of science content and the use of science process skills. The purpose of the research is to determine whether use of the "ECHOS" model will…

  6. [Value of gray scale analysis for the assessment of ultrasound detected structures in the area of the abdomen].

    PubMed

    Wildgrube, H J; Dehwald, H

    1990-01-01

    The characteristics of the echo structure constitute an important criterion for the appraisal of sonograms. Since every pixel usually represents one out of 64 gray values, it should be possible to use the density as an objective parameter of the echo structure. In this study, the echogenicity of the pancreas was examined. The density of the pancreas became higher with increasing accumulation of fatty connective tissue or as a result of air in the intestine. In 42 people with varying degrees of obesity, the echo structure was compared with the gray scale distribution of the lumen of the gallbladder, aorta and the water-filled stomach. The results indicated that the increasing echodensity is attributable to reflections and scatter of the ultrasound in adjacent regions. The presence of air gave rise to the same effect. On the basis of standardized investigations at 15-minute intervals, the density and the visual index under the influence of a quick-acting simethicone preparation (Lefax) were compared. The density also decreased significantly within 30 to 45 minutes parallel to the reduction of superimpositional interferences due to air. The present investigations confirm the relevance of gray scale analysis for objective confirmation of sonographic structures. However, they make it evident that the echo pattern is quantifiable only under standardized conditions and when the projection plane is largely occupied. Misleading mixed values are measured in marginal zones and in superimpositions.

  7. Radar echo from a flat conducting plate - near and far

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.S.

    1982-01-01

    Over certain types of terrain, a radar fuze (or altimeter), by virtue of the horizontal component of its velocity, is likely to pass over various flat objects of limited size. The echo from such objects could have a duration less than that of one Doppler cycle, where the Doppler frequency is due to the vertical component of the velocity. If the terrain is principally made up of such objects, their echoes are in most cases entirely uncorrelated with each other. Hence, the total echo after mixing at the radar with the delayed transmitted wave would have a noise-like spectrum notmore » at all confined to the Doppler-frequency band where the desired echo signal is expected. This would seriously degrade the performance of a radar that utilizes correlation. This work shows that the echo from a square flat plate will be of duration greater than the time it takes to pass over the plate if the height h above it satisfies h > a/sup 2//lambda where a is the plate-edge dimension and lambda is the radar wavelength. The results presented here can be used to determine the spatial region wherein the echo exists, and the magnitude and phase of the echo from such a plate. I infer from these results that the case where the signal has a noise-like spectrum is not impossible but it is unlikely for the applications with which I am familiar.« less

  8. Torsion of normal adnexa in postmenarcheal women: can ultrasound indicate an ischemic process?

    PubMed

    Smorgick, N; Maymon, R; Mendelovic, S; Herman, A; Pansky, M

    2008-03-01

    Torsion of normal adnexa is a rare event involving steadily increasing congestion and ischemia of the ovary. We investigated whether this process can be characterized by sonographic features. Twelve menstrually cycling women with 14 separate episodes of laparoscopic-proven torsion of normal adnexa were identified retrospectively, and the results of their preoperative gray-scale ultrasound examinations and Doppler flow evaluations were analyzed. The cases were classified into 'short-term' (< 24 h; range, 3-24 h) and 'prolonged' (> 24 h; range, 1-10 days) duration of torsion according to the reported period of abdominal pain before admission. Absence of any additional adnexal pathology was confirmed by both intraoperative inspection and postoperative follow-up ultrasound examinations. The median age of the cohort was 24.0 (interquartile range (IQR), 20.5-28.7) years, and parity ranged from 0 to 3. All affected ovaries were significantly enlarged compared with non-affected ones (median cross-sectional area, 18.1 (IQR, 12.4-26.4) cm(2) vs. 4.3 (IQR, 2.9-6.2) cm(2), P < 0.01). We could distinguish two distinct sonographic patterns of torted ovaries: there were numerous small peripheral follicles in the ovarian parenchyma in nine cases, and there was a solid-appearing mass with hypo- and hyperechogenic foci in five cases. Comparison of the ultrasound images of patients with short-term vs. long-term abdominal pain revealed that the solid-appearing ovary was more common in the latter group (0/6 vs. 5/8, P = 0.03), while there was no significant difference between groups in the presence of free pelvic fluid or median ovarian cross-sectional area. Intraovarian blood flow was diminished or absent in five of the eight patients in whom color Doppler imaging was performed. Ultrasound images of twisted normal adnexa may vary according to the duration of the condition, reflecting the pathological series of events of increased ovarian congestion and necrosis. Recognition of the

  9. Multi-echo GRE imaging of knee cartilage.

    PubMed

    Yuen, Joanna; Hung, Jachin; Wiggermann, Vanessa; Robinson, Simon D; McCormack, Robert; d'Entremont, Agnes G; Rauscher, Alexander

    2017-05-01

    To visualize healthy and abnormal articular cartilage, we investigated the potential of using the 3D multi-echo gradient echo (GRE) signal's magnitude and frequency and maps of T2* relaxation. After optimizing imaging parameters in five healthy volunteers, 3D multi-echo GRE magnetic resonance (MR) images were acquired at 3T in four patients with chondral damage prior to their arthroscopic surgery. Average magnitude and frequency information was extracted from the GRE images, and T2* maps were generated. Cartilage abnormalities were confirmed after arthroscopy and were graded using the Outerbridge classification scheme. Regions of interest were identified on average magnitude GRE images and compared to arthroscopy. All four patients presented with regions of Outerbridge Grade I and II cartilage damage on arthroscopy. One patient had Grade III changes. Grade I, II, and III changes were detectable on average magnitude and T2* maps, while Grade II and higher changes were also observable on MR frequency maps. For average magnitude images of healthy volunteers, the signal-to-noise ratio of the magnitude image averaged over three echoes was 4.26 ± 0.32, 12.26 ± 1.09, 14.31 ± 1.93, and 13.36 ± 1.13 in bone, femoral, tibial, and patellar cartilage, respectively. This proof-of-principle study demonstrates the feasibility of using different imaging contrasts from the 3D multi-echo GRE scan to visualize abnormalities of the articular cartilage. © 2016 International Society for Magnetic Resonance in Medicine Level of Evidence: 1 J. MAGN. RESON. IMAGING 2017;45:1502-1513. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    NASA Astrophysics Data System (ADS)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  11. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging.

    PubMed

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-26

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents--inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  12. Goldstone Tracking the Echo Satelloon.

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. This photograph shows the first pass of Echo 1, NASA's first communications satellite, over the Goldstone Tracking Station managed by NASA's Jet Propulsion Laboratory, in Pasadena, California, in the early morning of Aug. 12, 1960. The movement of the antenna, star trails (shorter streaks), and Echo 1 (the long streak in the middle) are visible in this image. Project Echo bounced radio signals off a 10-story-high, aluminum-coated balloon orbiting the Earth. This form of "passive" satellite communication -- which mission managers dubbed a "satelloon" -- was an idea conceived by an engineer from NASA's Langley Research Center in Hampton, Virginia, and was a project managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. JPL's role involved sending and receiving signals through two of its 85-foot-diameter (26-meter-diameter) antennas at the Goldstone Tracking Station in California's Mojave Desert. The Goldstone station later became part of NASA's Deep Space Network. JPL, a division of Caltech in Pasadena, California, manages the Deep Space Network for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA21114

  13. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  14. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    PubMed

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  15. Adiabatic passage in photon-echo quantum memories

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2013-11-01

    Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.

  16. The anti-bat strategy of ultrasound absorption: the wings of nocturnal moths (Bombycoidea: Saturniidae) absorb more ultrasound than the wings of diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae)

    PubMed Central

    Guarato, Francesco; Windmill, James F. C.

    2017-01-01

    ABSTRACT The selection pressure from echolocating bats has driven the development of a diverse range of anti-bat strategies in insects. For instance, several studies have proposed that the wings of some moths absorb a large portion of the sound energy contained in a bat's ultrasonic cry; as a result, the bat receives a dampened echo, and the moth becomes invisible to the bat. To test the hypothesis that greater exposure to bat predation drives the development of higher ultrasound absorbance, we used a small reverberation chamber to measure the ultrasound absorbance of the wings of nocturnal (Bombycoidea: Saturniidae) and diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). The absorption factor of the nocturnal saturniids peaks significantly higher than the absorption factor of the diurnal chalcosiines. However, the wings of the chalcosiines absorb more ultrasound than the wings of some diurnal butterflies. Following a phylogenetic analysis on the character state of diurnality/ nocturnality in the Zygaenidae, we propose that diurnality in the Chalcosiinae is plesiomorphic (retained); hence, the absorbance of their wings is probably not a vestigial trait from an ancestral, nocturnal form but an adaptation to bat activity that overlaps their own. On a within-species level, females of the saturniids Argema mittrei and Samia cynthia ricini have significantly higher absorption factors than the males. In the female S. c. ricini, the higher absorption factor corresponds to a detection distance by bats that is at best 20-30% shorter than that of the male. PMID:27913454

  17. Clinical applications of very high frequency ultrasound in ophthalmology

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Coleman, D. Jackson; Reinstein, Dan Z.; Lizzi, Frederic L.

    2004-05-01

    The eye is ideally suited for diagnostic imaging with very high frequency (>35 MHz) ultrasound (VHFU) because of its peripheral location and cystic structure. VHFU allows high resolution visualization of pathologies affecting the anterior segment of the eye, including tumors, cysts, foreign bodies, and corneal pathologies. We developed a series of prototype instruments suitable for ophthalmic studies using both polymer and lithium niobate transducers, with digitization of radiofrequency echo data at up to 500 MHz. While initially using linear scan geometries, we subsequently developed an arc-shaped scan matched to the curvature of the 0.5-mm-thick cornea to circumvent the effect of specular deflection of the ultrasound beam produced by the corneas curved surface. This technique allowed us to obtain data across the entire cornea and determination of the thickness of each corneal layer, including the epithelium (approximately 50 microns in thickness) and the surgically induced interface produced in LASIK, the most common form of refractive surgery. By scanning in a series of meridians, and applying optimized signal processing strategies (deconvolution, analytic signal envelope determination), corneal pachymetric maps representing the local thickness of each layer can be generated and aid in diagnosis of surgically induced defects or refractive abnormalities.

  18. Heterodyne-detected dispersed vibrational echo spectroscopy.

    PubMed

    Jones, Kevin C; Ganim, Ziad; Tokmakoff, Andrei

    2009-12-24

    We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.

  19. Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing eddy-current artifacts and shortening the echo time.

    PubMed

    Shrestha, Manoj; Hok, Pavel; Nöth, Ulrike; Lienerth, Bianca; Deichmann, Ralf

    2018-03-30

    The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC. The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo. Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm. Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.

  20. Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens

    NASA Astrophysics Data System (ADS)

    Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui

    2015-10-01

    The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.

  1. Ultrafast NMR diffusion measurements exploiting chirp spin echoes.

    PubMed

    Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko

    2017-04-01

    Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Four-dimensional Doppler ultrasound measurements in carotid bifurcation models: effect of concentric versus eccentric stenosis

    NASA Astrophysics Data System (ADS)

    Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.

    2001-05-01

    A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.

  3. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  4. Ultrasound Imaging of Muscle Contraction of the Tibialis Anterior in Patients with Facioscapulohumeral Dystrophy.

    PubMed

    Gijsbertse, Kaj; Goselink, Rianne; Lassche, Saskia; Nillesen, Maartje; Sprengers, André; Verdonschot, Nico; van Alfen, Nens; de Korte, Chris

    2017-11-01

    A need exists for biomarkers to diagnose, quantify and longitudinally follow facioscapulohumeral muscular dystrophy (FSHD) and many other neuromuscular disorders. Furthermore, the pathophysiological mechanisms leading to muscle weakness in most neuromuscular disorders are not completely understood. Dynamic ultrasound imaging (B-mode image sequences) in combination with speckle tracking is an easy, applicable and patient-friendly imaging tool to visualize and quantify muscle deformation. This dynamic information provides insight in the pathophysiological mechanisms and may help to distinguish the various stages of diseased muscle in FSHD. In this proof-of-principle study, we applied a speckle tracking technique to 2-D ultrasound image sequences to quantify the deformation of the tibialis anterior muscle in patients with FSHD and in healthy controls. The resulting deformation patterns were compared with muscle ultrasound echo intensity analysis (a measure of fat infiltration and dystrophy) and clinical outcome measures. Of the four FSHD patients, two patients had severe peroneal weakness and two patients had mild peroneal weakness on clinical examination. We found a markedly varied muscle deformation pattern between these groups: patients with severe peroneal weakness showed a different motion pattern of the tibialis anterior, with overall less displacement of the central tendon region, while healthy patients showed a non-uniform displacement pattern, with the central aponeurosis showing the largest displacement. Hence, dynamic muscle ultrasound of the tibialis anterior muscle in patients with FSHD revealed a distinctively different tissue deformation pattern among persons with and without tibialis anterior weakness. These findings could clarify the understanding of the pathophysiology of muscle weakness in FSHD patients. In addition, the change in muscle deformation shows good correlation with clinical measures and quantitative muscle ultrasound measurements. In

  5. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  6. Classification of underwater target echoes based on auditory perception characteristics

    NASA Astrophysics Data System (ADS)

    Li, Xiukun; Meng, Xiangxia; Liu, Hang; Liu, Mingye

    2014-06-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  7. HF Radar Sea-echo from Shallow Water.

    PubMed

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-08-06

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  8. Characterization of echoes: A Dyson-series representation of individual pulses

    NASA Astrophysics Data System (ADS)

    Correia, Miguel R.; Cardoso, Vitor

    2018-04-01

    The ability to detect and scrutinize gravitational waves from the merger and coalescence of compact binaries opens up the possibility to perform tests of fundamental physics. One such test concerns the dark nature of compact objects: are they really black holes? It was recently pointed out that the absence of horizons—while keeping the external geometry very close to that of General Relativity—would manifest itself in a series of echoes in gravitational wave signals. The observation of echoes by LIGO/Virgo or upcoming facilities would likely inform us on quantum gravity effects or unseen types of matter. Detection of such signals is in principle feasible with relatively simple tools but would benefit enormously from accurate templates. Here we analytically individualize each echo waveform and show that it can be written as a Dyson series, for arbitrary effective potential and boundary conditions. We further apply the formalism to explicitly determine the echoes of a simple toy model: the Dirac delta potential. Our results allow to read off a few known features of echoes and may find application in the modeling for data analysis.

  9. Prostate cancer prediction using the random forest algorithm that takes into account transrectal ultrasound findings, age, and serum levels of prostate-specific antigen.

    PubMed

    Xiao, Li-Hong; Chen, Pei-Ran; Gou, Zhong-Ping; Li, Yong-Zhong; Li, Mei; Xiang, Liang-Cheng; Feng, Ping

    2017-01-01

    The aim of this study is to evaluate the ability of the random forest algorithm that combines data on transrectal ultrasound findings, age, and serum levels of prostate-specific antigen to predict prostate carcinoma. Clinico-demographic data were analyzed for 941 patients with prostate diseases treated at our hospital, including age, serum prostate-specific antigen levels, transrectal ultrasound findings, and pathology diagnosis based on ultrasound-guided needle biopsy of the prostate. These data were compared between patients with and without prostate cancer using the Chi-square test, and then entered into the random forest model to predict diagnosis. Patients with and without prostate cancer differed significantly in age and serum prostate-specific antigen levels (P < 0.001), as well as in all transrectal ultrasound characteristics (P < 0.05) except uneven echo (P = 0.609). The random forest model based on age, prostate-specific antigen and ultrasound predicted prostate cancer with an accuracy of 83.10%, sensitivity of 65.64%, and specificity of 93.83%. Positive predictive value was 86.72%, and negative predictive value was 81.64%. By integrating age, prostate-specific antigen levels and transrectal ultrasound findings, the random forest algorithm shows better diagnostic performance for prostate cancer than either diagnostic indicator on its own. This algorithm may help improve diagnosis of the disease by identifying patients at high risk for biopsy.

  10. Methodological approach for the assessment of ultrasound reproducibility of cardiac structure and function: a proposal of the study group of Echocardiography of the Italian Society of Cardiology (Ultra Cardia SIC) Part I

    PubMed Central

    2011-01-01

    When applying echo-Doppler imaging for either clinical or research purposes it is very important to select the most adequate modality/technology and choose the most reliable and reproducible measurements. Quality control is a mainstay to reduce variability among institutions and operators and must be obtained by using appropriate procedures for data acquisition, storage and interpretation of echo-Doppler data. This goal can be achieved by employing an echo core laboratory (ECL), with the responsibility for standardizing image acquisition processes (performed at the peripheral echo-labs) and analysis (by monitoring and optimizing the internal intra- and inter-reader variability of measurements). Accordingly, the Working Group of Echocardiography of the Italian Society of Cardiology decided to design standardized procedures for imaging acquisition in peripheral laboratories and reading procedures and to propose a methodological approach to assess the reproducibility of echo-Doppler parameters of cardiac structure and function by using both standard and advanced technologies. A number of cardiologists experienced in cardiac ultrasound was involved to set up an ECL available for future studies involving complex imaging or including echo-Doppler measures as primary or secondary efficacy or safety end-points. The present manuscript describes the methodology of the procedures (imaging acquisition and measurement reading) and provides the documentation of the work done so far to test the reproducibility of the different echo-Doppler modalities (standard and advanced). These procedures can be suggested for utilization also in non referall echocardiographic laboratories as an "inside" quality check, with the aim at optimizing clinical consistency of echo-Doppler data. PMID:21943283

  11. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    NASA Astrophysics Data System (ADS)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  12. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  13. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  14. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy.

    PubMed

    Schad, Kelly C; Hynynen, Kullervo

    2010-09-07

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 microm in diameter and diluted to a concentration of 8 x 10(6) droplets mL(-1). The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  15. Relativistic electron dropout echoes induced by interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  16. Comparison of high intensity focused ultrasound (HIFU) exposures using empirical and backscatter attenuation estimation methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff

    2005-09-01

    Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.

  17. A Spiral Spin-Echo MR Imaging Technique for Improved Flow Artifact Suppression in T1-Weighted Postcontrast Brain Imaging: A Comparison with Cartesian Turbo Spin-Echo.

    PubMed

    Li, Z; Hu, H H; Miller, J H; Karis, J P; Cornejo, P; Wang, D; Pipe, J G

    2016-04-01

    A challenge with the T1-weighted postcontrast Cartesian spin-echo and turbo spin-echo brain MR imaging is the presence of flow artifacts. Our aim was to develop a rapid 2D spiral spin-echo sequence for T1-weighted MR imaging with minimal flow artifacts and to compare it with a conventional Cartesian 2D turbo spin-echo sequence. T1-weighted brain imaging was performed in 24 pediatric patients. After the administration of intravenous gadolinium contrast agent, a reference Cartesian TSE sequence with a scanning time of 2 minutes 30 seconds was performed, followed by the proposed spiral spin-echo sequence with a scanning time of 1 minutes 18 seconds, with similar spatial resolution and volumetric coverage. The results were reviewed independently and blindly by 3 neuroradiologists. Scores from a 3-point scale were assigned in 3 categories: flow artifact reduction, subjective preference, and lesion conspicuity, if any. The Wilcoxon signed rank test was performed to evaluate the reviewer scores. The t test was used to evaluate the SNR. The Fleiss κ coefficient was calculated to examine interreader agreement. In 23 cases, spiral spin-echo was scored over Cartesian TSE in flow artifact reduction (P < .001). In 21 cases, spiral spin-echo was rated superior in subjective preference (P < .001). Ten patients were identified with lesions, and no statistically significant difference in lesion conspicuity was observed between the 2 sequences. There was no statistically significant difference in SNR between the 2 techniques. The Fleiss κ coefficient was 0.79 (95% confidence interval, 0.65-0.93). The proposed spiral spin-echo pulse sequence provides postcontrast images with minimal flow artifacts at a faster scanning time than its Cartesian TSE counterpart. © 2016 by American Journal of Neuroradiology.

  18. Research of laser echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou

    2015-11-01

    Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.

  19. Echo-Enabled X-Ray Vortex Generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Marinelli, A.

    2012-11-01

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.

  20. Plantar fascia segmentation and thickness estimation in ultrasound images.

    PubMed

    Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian

    2017-03-01

    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Realization of the FPGA-based reconfigurable computing environment by the example of morphological processing of a grayscale image

    NASA Astrophysics Data System (ADS)

    Shatravin, V.; Shashev, D. V.

    2018-05-01

    Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.

  2. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  3. Detection of generalized synchronization using echo state networks

    NASA Astrophysics Data System (ADS)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  4. A Pilot Study Assessing ECG versus ECHO Ventriculoventricular Optimization in Pediatric Resynchronization Patients.

    PubMed

    Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M

    2016-02-01

    Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P < 0.01). Mean cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.

  5. Frequency-selective quantitation of short-echo time 1H magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Poullet, Jean-Baptiste; Sima, Diana M.; Van Huffel, Sabine; Van Hecke, Paul

    2007-06-01

    Accurate and efficient filtering techniques are required to suppress large nuisance components present in short-echo time magnetic resonance (MR) spectra. This paper discusses two powerful filtering techniques used in long-echo time MR spectral quantitation, the maximum-phase FIR filter (MP-FIR) and the Hankel-Lanczos Singular Value Decomposition with Partial ReOrthogonalization (HLSVD-PRO), and shows that they can be applied to their more complex short-echo time spectral counterparts. Both filters are validated and compared through extensive simulations. Their properties are discussed. In particular, the capability of MP-FIR for dealing with macromolecular components is emphasized. Although this property does not make a large difference for long-echo time MR spectra, it can be important when quantifying short-echo time spectra.

  6. Hybrid ultrasound and dual-wavelength optoacoustic biomicroscopy for functional neuroimaging

    NASA Astrophysics Data System (ADS)

    Rebling, Johannes; Estrada, Hector; Zwack, Michael; Sela, Gali; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Many neurological disorders are linked to abnormal activation or pathological alterations of the vasculature in the affected brain region. Obtaining simultaneous morphological and physiological information of neurovasculature is very challenging due to the acoustic distortions and intense light scattering by the skull and brain. In addition, the size of cerebral vasculature in murine brains spans an extended range from just a few microns up to about a millimeter, all to be recorded in 3D and over an area of several dozens of mm2. Numerous imaging techniques exist that excel at characterizing certain aspects of this complex network but are only capable of providing information on a limited spatiotemporal scale. We present a hybrid ultrasound and dual-wavelength optoacoustic microscope, capable of rapid imaging of murine neurovasculature in-vivo, with high spatial resolution down to 12 μm over a large field of view exceeding 50mm2. The dual wavelength imaging capability allows for the visualization of functional blood parameters through an intact skull while pulse-echo ultrasound biomicroscopy images are captured simultaneously by the same scan head. The flexible hybrid design in combination with fast high-resolution imaging in 3D holds promise for generating better insights into the architecture and function of the neurovascular system.

  7. Fidelity of an optical memory based on stimulated photon echoes.

    PubMed

    Staudt, M U; Hastings-Simon, S R; Nilsson, M; Afzelius, M; Scarani, V; Ricken, R; Suche, H; Sohler, W; Tittel, W; Gisin, N

    2007-03-16

    We investigated the preservation of information encoded into the relative phase and amplitudes of optical pulses during storage and retrieval in an optical memory based on stimulated photon echo. By interfering photon echoes produced in a single-mode Ti:Er:LiNbO(3) waveguide, we found that decoherence in the medium translates only as loss and not as degradation of information. We measured a visibility for interfering echoes close to 100%. These results may have important implications for future long-distance quantum communication protocols.

  8. TU-FG-BRB-09: Thermoacoustic Range Verification with Perfect Co-Registered Overlay of Bragg Peak onto Ultrasound Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, S; Kireeff Covo, M; Jackson, A

    Purpose: The potential of particle therapy has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying thermoacoustic localization of the Bragg peak onto an ultrasound image. Methods: Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the inflector of the 88″ cyclotron at Lawrence Berkeley National Lab. 2 Gy were delivered in 2 µs by a beam with peak current of 2 µA. Thermoacoustic emissions were detected by a cardiac array andmore » Verasonics V1 ultrasound system, which also generated a grayscale ultrasound image. 1024 thermoacoustic pulses were averaged before filtering and one-way beamforming focused signal onto the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Experiments were performed with the cavity both empty and filled with olive oil. Results: In the waterbath overlays of the Bragg peak agreed with Monte Carlo simulations to within 800±170 µm. Agreement within 1.3 ± 0.2 mm was achieved in the gelatin phantom, although relative stopping powers were estimated only to first order from CT scans. Protoacoustic signals were detected after travel from the Bragg peak through 29 mm and 65 mm of phantom material when the cavity was empty and full of olive oil, respectively. Conclusion: Protoacoustic range verification is feasible with a commercial clinical ultrasound array, but at doses exceeding the clinical realm. Further optimization of both transducer array and injection line chopper is required to enable range verification within a 2 Gy dose limit, which would enable online adaptive treatment. This work was supported in part by a UWM Intramural Instrumentation Grant and by the Director

  9. Development and external validation of new ultrasound-based mathematical models for preoperative prediction of high-risk endometrial cancer.

    PubMed

    Van Holsbeke, C; Ameye, L; Testa, A C; Mascilini, F; Lindqvist, P; Fischerova, D; Frühauf, F; Fransis, S; de Jonge, E; Timmerman, D; Epstein, E

    2014-05-01

    To develop and validate strategies, using new ultrasound-based mathematical models, for the prediction of high-risk endometrial cancer and compare them with strategies using previously developed models or the use of preoperative grading only. Women with endometrial cancer were prospectively examined using two-dimensional (2D) and three-dimensional (3D) gray-scale and color Doppler ultrasound imaging. More than 25 ultrasound, demographic and histological variables were analyzed. Two logistic regression models were developed: one 'objective' model using mainly objective variables; and one 'subjective' model including subjective variables (i.e. subjective impression of myometrial and cervical invasion, preoperative grade and demographic variables). The following strategies were validated: a one-step strategy using only preoperative grading and two-step strategies using preoperative grading as the first step and one of the new models, subjective assessment or previously developed models as a second step. One-hundred and twenty-five patients were included in the development set and 211 were included in the validation set. The 'objective' model retained preoperative grade and minimal tumor-free myometrium as variables. The 'subjective' model retained preoperative grade and subjective assessment of myometrial invasion. On external validation, the performance of the new models was similar to that on the development set. Sensitivity for the two-step strategy with the 'objective' model was 78% (95% CI, 69-84%) at a cut-off of 0.50, 82% (95% CI, 74-88%) for the strategy with the 'subjective' model and 83% (95% CI, 75-88%) for that with subjective assessment. Specificity was 68% (95% CI, 58-77%), 72% (95% CI, 62-80%) and 71% (95% CI, 61-79%) respectively. The two-step strategies detected up to twice as many high-risk cases as preoperative grading only. The new models had a significantly higher sensitivity than did previously developed models, at the same specificity. Two

  10. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array.

    PubMed

    Hajian, Mehdi; Gaspar, Robert; Maev, Roman Gr

    2017-12-01

    The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.

  11. Modeling of Field-Aligned Guided Echoes in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Green, James L.

    2004-01-01

    The conditions under which high frequency (f>>f(sub uh)) long-range extraordinary-mode discrete field-aligned echoes observed by the Radio Plasma Imager (RPI) on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in the plasmasphere are investigated by ray tracing modeling. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and less than 10 wavelengths wide can guide nearly field-aligned propagating high frequency X mode waves. Effective guidance of wave at a given frequency and wave normal angle (Psi) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  12. Modeling of field-aligned guided echoes in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Fung, Shing F.; Green, James L.

    2005-01-01

    Ray tracing modeling is used to investigate the plasma conditions under which high-frequency (f ≫ fuh) extraordinary mode waves can be guided along geomagnetic field lines. These guided signals have often been observed as long-range discrete echoes in the plasmasphere by the Radio Plasma Imager (RPI) onboard the Imager for Magnetopause-to-Aurora Global Exploration satellite. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere, although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and <10 wavelengths wide can guide nearly field-aligned propagating high-frequency X mode waves. Effective guidance of a wave at a given frequency and wave normal angle (Ψ) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  13. Dance of the Light Echoes

    NASA Image and Video Library

    2008-05-29

    This composite image from NASA Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A center and its surrounding light echoes -- dances of light through dusty clouds, created when stars blast apart.

  14. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    NASA Technical Reports Server (NTRS)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  15. Analyze Trends: Drinking Water Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Pollutant Loading Report Help - DMR | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. ICIS-NPDES Data Set Download | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Facility Search – Enforcement and Compliance Data | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Indirect Industrial Discharger Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. DMR Loading Tool Frequently Asked Questions | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Water Quality Indicators Data Review | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Hypoxia Task Force Scope and Methodology | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Annual Loadings (Hypoxia Task Force Search) | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Nutrient Modeling (Hypoxia Task Force Search) | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Effluent Limit Exceedances Search (beta) | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Multi-Year Loading Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. Analyze Trends: State Air Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. Analyze Trends: State Water Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. Overview of Loading Tool Architecture | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. Effluent Limit Exceedance Search Criteria Help | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Pollutant Loading Report Help - TRI | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. NPDES Monitoring Data Download Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Effluent Limit Exceedances Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Effluent Limit Exceedances Search Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Effluent Limit Exceedances Search Results Help | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Monitoring Period Loads Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Civil Enforcement Case Report Data Dictionary | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Water Pollution Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. Albermarle and Pamlico Sounds.pdf | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. TRI DMR Dashboard Top Industries_Chemicals.png | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Water Pollutant Loading Tool Modernization | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. HF Radar Sea-echo from Shallow Water

    PubMed Central

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-01-01

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776

  3. Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.

    PubMed

    Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V

    2018-07-01

    Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. HST Archival Imaging of the Light Echoes of SN 1987A

    NASA Astrophysics Data System (ADS)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  5. Vascular Pattern Analysis on Microvascular Sonography for Differentiation of Pleomorphic Adenomas and Warthin Tumors of Salivary Glands.

    PubMed

    Ryoo, Inseon; Suh, Sangil; Lee, Young Hen; Seo, Hyung Suk; Seol, Hae Young; Woo, Jeong-Soo; Kim, Soo Chin

    2018-03-01

    Pleomorphic adenomas and Warthin tumors are the most common salivary gland tumors. It is important to differentiate between them because at least a partial parotidectomy is necessary for pleomorphic adenomas, whereas enucleation is sufficient for Warthin tumors. This study aimed to evaluate the usefulness of vascular pattern analysis using microvascular sonography to differentiate between the tumors. Sixty-two patients with pathologically proven pleomorphic adenomas (n = 38) and Warthin tumors (n = 24) were included. For all tumors, grayscale, power Doppler, and microvascular sonographic examinations were performed. Differences in vascular patterns (vascular distribution and internal vascularity) on power Doppler and microvascular sonography as well as grayscale sonographic features (size, shape, border, echogenicity, heterogeneity, and cystic change) between pleomorphic adenomas and Warthin tumors were evaluated. A comparison of diagnostic performances of grayscale sonography with power Doppler sonography and grayscale sonography with microvascular sonography was performed. The level of interobserver agreement between 2 reviewers in diagnosing tumors was evaluated. No grayscale sonographic features showed a significant difference between the tumors. Vascular distributions and internal vascularity on power Doppler sonography (P = .01 and .002) and microvascular sonography (both P < .001) were all significantly different. The diagnostic accuracy of grayscale sonography with microvascular sonography (79.0%) was higher than that of grayscale sonography with power Doppler sonography (72.6%). This difference was significant according to the McNemar test (P = .004). Interobserver agreement was excellent in diagnosing tumors on both grayscale sonography with power Doppler sonography (κ = 0.83) and grayscale sonography with microvascular sonography (κ = 0.94). Vascular pattern analysis using microvascular sonography with other sonographic

  6. Collision-induced stimulated photon echoes in ‘strong’ magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2018-05-01

    Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.

  7. The anti-bat strategy of ultrasound absorption: the wings of nocturnal moths (Bombycoidea: Saturniidae) absorb more ultrasound than the wings of diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae).

    PubMed

    Ntelezos, Athanasios; Guarato, Francesco; Windmill, James F C

    2017-01-15

    The selection pressure from echolocating bats has driven the development of a diverse range of anti-bat strategies in insects. For instance, several studies have proposed that the wings of some moths absorb a large portion of the sound energy contained in a bat's ultrasonic cry; as a result, the bat receives a dampened echo, and the moth becomes invisible to the bat. To test the hypothesis that greater exposure to bat predation drives the development of higher ultrasound absorbance, we used a small reverberation chamber to measure the ultrasound absorbance of the wings of nocturnal (Bombycoidea: Saturniidae) and diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). The absorption factor of the nocturnal saturniids peaks significantly higher than the absorption factor of the diurnal chalcosiines. However, the wings of the chalcosiines absorb more ultrasound than the wings of some diurnal butterflies. Following a phylogenetic analysis on the character state of diurnality/ nocturnality in the Zygaenidae, we propose that diurnality in the Chalcosiinae is plesiomorphic (retained); hence, the absorbance of their wings is probably not a vestigial trait from an ancestral, nocturnal form but an adaptation to bat activity that overlaps their own. On a within-species level, females of the saturniids Argema mittrei and Samia cynthia ricini have significantly higher absorption factors than the males. In the female S. c. ricini, the higher absorption factor corresponds to a detection distance by bats that is at best 20-30% shorter than that of the male. © 2017. Published by The Company of Biologists Ltd.

  8. Note: Comparative experimental studies on the performance of 2-2 piezocomposite for medical ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Marinozzi, F.; Bini, F.; Biagioni, A.; Grandoni, A.; Spicci, L.

    2013-09-01

    The paper reports the experimental investigation of the behavior of 2-2 Lead Zirconate Titanate (PZT)-polymer composite transducers array for clinical ultrasound equipments. Several 2-2 plate composites having the same dicing pitch of 0.11 mm and different volume fractions were manufactured and investigated. Measurements were performed through different techniques such as electrical impedance, pulse-echo, and Laser Doppler Vibrometer. With the last one, maps of the surface displacement were presented relative to thickness mode and first lateral mode resonance frequencies. The transducers with volume fractions of the 40% resulted markedly inefficient, whereas the largest bandwidth and best band shape were achieved by the 50%.

  9. Software Applications to Access Earth Science Data: Building an ECHO Client

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Cechini, M.; Pilone, D.

    2010-12-01

    Historically, developing an ECHO (NASA’s Earth Observing System (EOS) ClearingHOuse) client required interaction with its SOAP API. SOAP, as a framework for web service communication has numerous advantages for Enterprise applications and Java/C# type programming languages. However, as interest has grown for quick development cycles and more intriguing “mashups,” ECHO has seen the SOAP API lose its appeal. In order to address these changing needs, ECHO has introduced two new interfaces facilitating simple access to its metadata holdings. The first interface is built upon the OpenSearch format and ESIP Federated Search framework. The second interface is built upon the Representational State Transfer (REST) architecture. Using the REST and OpenSearch APIs to access ECHO makes development with modern languages much more feasible and simpler. Client developers can leverage the simple interaction with ECHO to focus more of their time on the advanced functionality they are presenting to users. To demonstrate the simplicity of developing with the REST API, participants will be led through a hands-on experience where they will develop an ECHO client that performs the following actions: + Login + Provider discovery + Provider based dataset discovery + Dataset, Temporal, and Spatial constraint based Granule discovery + Online Data Access

  10. Echoes of a Stellar Ending

    NASA Image and Video Library

    2012-03-14

    Listed as Cassiopeia A, this remnant of the supernova is one of the brightest radio sources in the known universe. More recently, NASA WISE telescope detected infrared echoes of the flash of light rippling outwards from the supernova.

  11. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  12. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  13. Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.

    PubMed

    Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L

    1994-02-01

    Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. ECHO Services: Foundational Middleware for a Science Cyberinfrastructure

    NASA Technical Reports Server (NTRS)

    Burnett, Michael

    2005-01-01

    This viewgraph presentation describes ECHO, an interoperability middleware solution. It uses open, XML-based APIs, and supports net-centric architectures and solutions. ECHO has a set of interoperable registries for both data (metadata) and services, and provides user accounts and a common infrastructure for the registries. It is built upon a layered architecture with extensible infrastructure for supporting community unique protocols. It has been operational since November, 2002 and it available as open source.

  15. High pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubble interrogated by acoustic radiation force

    PubMed Central

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-01-01

    A high pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on measured motion of the microbubble, the Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using indentation test. Measured values of Young’s moduli of 4 bovine lenses ranged from 2.6±0.1 to 26±1.4 kPa and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. PMID:22797709

  16. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  17. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-07

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep

  18. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  19. Discrimination of complex synthetic echoes by an echolocating bottlenose dolphin

    NASA Astrophysics Data System (ADS)

    Helweg, David A.; Moore, Patrick W.; Dankiewicz, Lois A.; Zafran, Justine M.; Brill, Randall L.

    2003-02-01

    Bottlenose dolphins (Tursiops truncatus) detect and discriminate underwater objects by interrogating the environment with their native echolocation capabilities. Study of dolphins' ability to detect complex (multihighlight) signals in noise suggest echolocation object detection using an approximate 265-μs energy integration time window sensitive to the echo region of highest energy or containing the highlight with highest energy. Backscatter from many real objects contains multiple highlights, distributed over multiple integration windows and with varying amplitude relationships. This study used synthetic echoes with complex highlight structures to test whether high-amplitude initial highlights would interfere with discrimination of low-amplitude trailing highlights. A dolphin was trained to discriminate two-highlight synthetic echoes using differences in the center frequencies of the second highlights. The energy ratio (ΔdB) and the timing relationship (ΔT) between the first and second highlights were manipulated. An iso-sensitivity function was derived using a factorial design testing ΔdB at -10, -15, -20, and -25 dB and ΔT at 10, 20, 40, and 80 μs. The results suggest that the animal processed multiple echo highlights as separable analyzable features in the discrimination task, perhaps perceived through differences in spectral rippling across the duration of the echoes.

  20. Tissue velocity imaging of coronary artery by rotating-type intravascular ultrasound.

    PubMed

    Saijo, Yoshifumi; Tanaka, Akira; Owada, Naoki; Akino, Yoshihisa; Nitta, Shinichi

    2004-04-01

    Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.