Sample records for ultrasound hifu guided

  1. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    animals and humans for HIFU-induced ablation and drug delivery. Integrated CT-guided focused ultrasound holds promise for tissue ablation, enhancing local drug delivery, and CT thermometry for monitoring ablation in near real-time.

  2. High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.

    2003-06-01

    Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.

  3. Reproducibility of Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Thermal Lesions in Minimally-Invasive Brain Surgery

    NASA Astrophysics Data System (ADS)

    Zahedi, Sulmaz

    This study aims to prove the feasibility of using Ultrasound-Guided High Intensity Focused Ultrasound (USg-HIFU) to create thermal lesions in neurosurgical applications, allowing for precise ablation of brain tissue, while simultaneously providing real time imaging. To test the feasibility of the system, an optically transparent HIFU compatible tissue-mimicking phantom model was produced. USg-HIFU was then used for ablation of the phantom, with and without targets. Finally, ex vivo lamb brain tissue was imaged and ablated using the USg-HIFU system. Real-time ultrasound images and videos obtained throughout the ablation process showing clear lesion formation at the focal point of the HIFU transducer. Post-ablation gross and histopathology examinations were conducted to verify thermal and mechanical damage in the ex vivo lamb brain tissue. Finally, thermocouple readings were obtained, and HIFU field computer simulations were conducted to verify findings. Results of the study concluded reproducibility of USg-HIFU thermal lesions for neurosurgical applications.

  4. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours.

    PubMed

    Wijlemans, J W; Bartels, L W; Deckers, R; Ries, M; Mali, W P Th M; Moonen, C T W; van den Bosch, M A A J

    2012-09-28

    Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation.

  5. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours

    PubMed Central

    Bartels, L.W.; Deckers, R.; Ries, M.; Mali, W.P.Th.M.; Moonen, C.T.W.; van den Bosch, M.A.A.J.

    2012-01-01

    Abstract Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation. PMID:23022541

  6. Motion tracing system for ultrasound guided HIFU

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong

    2017-03-01

    One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.

  7. Combined magnetic resonance imaging and ultrasound echography guidance for motion compensated HIFU interventions

    NASA Astrophysics Data System (ADS)

    Ries, Mario; de Senneville, Baudouin Denis; Regard, Yvan; Moonen, Chrit

    2012-11-01

    The objective of this study is to evaluate the feasibility to integrate ultrasound echography as an additional imaging modality for continuous target tracking, while performing simultaneously real-time MR- thermometry to guide a High Intensity Focused Ultrasound (HIFU) ablation. Experiments on a moving phantom were performed with MRI-guided HIFU during continuous ultrasound echography. Real-time US echography-based target tracking during MR-guided HIFU heating was performed with heated area dimensions similar to those obtained for a static target. The combination of both imaging modalities shows great potential for real-time beam steering and MR-thermometry.

  8. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas

    PubMed Central

    Filipowska, Justyna; Łoziński, Tomasz

    2014-01-01

    Summary Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods. PMID:25469176

  9. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas.

    PubMed

    Filipowska, Justyna; Loziński, Tomasz

    2014-01-01

    Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods.

  10. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics.

    PubMed

    Shim, Jenny; Staruch, Robert M; Koral, Korgun; Xie, Xian-Jin; Chopra, Rajiv; Laetsch, Theodore W

    2016-10-01

    Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors. © 2016 Wiley Periodicals, Inc.

  11. Ultrasound-guided high-intensity focused ultrasound ablation for treating uterine arteriovenous malformation.

    PubMed

    Yan, X; Zhao, C; Tian, C; Wen, S; He, X; Zhou, Y

    2017-08-01

    To explore HIFU treatment for uterine arteriovenous malformation. A case report. Gynaecological department in a university teaching hospital of China. A patient with uterine arteriovenous malformation. The diagnosis of uterine arteriovenous malformation was made through MRI. Ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation was performed. HIFU is effective in treating uterine arteriovenous malformation. The patient had reduction of the lesion volume and obvious symptom relief, without significant adverse effects. HIFU can be used as a new treatment option for uterine arteriovenous malformation. Ultrasound-guided high-intensity focused ultrasound ablation is effective in treating uterine arteriovenous malformation. © 2017 Royal College of Obstetricians and Gynaecologists.

  12. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Casper, Andrew Jacob

    ultrasound phased-array. The phased-array allows for electronic steering of the HIFU focus and imaging of the acoustic medium. Investigating the dual-mode ultrasound array (DMUA) required the design and construction of a novel ultrasound-guided focused ultrasound (USgFUS) platform. The platform consisted of custom hardware designed for the unique requirements of operating a phased-array in both therapeutic and imaging modes. The platform also required the development of FPGA based signal processing and GPU based beamforming algorithms for online monitoring of the therapy process. The results presented in this thesis represent the first demonstration of a real-time USgFUS platform based around a DMUA. Experimental imaging and therapy results from series of animal experiments, including a 12 animal GLP study, are presented. In addition, in vitro control results, which build upon the DMUT work, are presented.

  13. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  14. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    PubMed Central

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  15. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    PubMed

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  16. Hyperechogenicity during high intensity focused ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Bailey, Michael; Rabkin, Brian; Khokhlova, Vera; Vaezy, Shahram

    2005-09-01

    Ultrasound guidance of HIFU therapy is attractive because of its portability, low cost, real-time image processing, simple integration with HIFU instruments, and the extensive availability of diagnostic ultrasound; however, the use of ultrasound visualization for the guidance and monitoring of HIFU therapy often relies on the appearance of a hyperechoic region in the ultrasound image. It is often assumed that the formation of a hyperechoic region at the HIFU treatment site results from bubble activity generated during HIFU exposure. However, it has been determined that this region can be generated with relatively short bursts of HIFU (on the order of 30 ms), bursts so short that negligible temperature elevations are expected to occur. In examining the histology associated with these hyperechoes, there is little evidence of traditional cavitation damage; rather, it appears as if there are many bubbles generated within the individuals cells, suggesting a thermal mechanism. Thermocouple measurements of the temperature elevation were inaccurate due to the short insonation period, but showed only a few-degree temperature rise. These anomalous results will be presented, along with additional data on HIFU hyperechogenicity, and a hypothesis given for the phenomenological origins of this effect. [Work supported in part by the NSBRI, U.S. Army, and the NIH.

  17. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Funke, Arik; Tanter, Mickaël; Aubry, Jean-François; Bossy, Emmanuel

    2012-06-01

    Photoacoustics has recently been proposed as a potential method to guide and/or monitor therapy based on high-intensity focused ultrasound (HIFU). We experimentally demonstrate the creation of a HIFU lesion at the location of an optical absorber, by use of photoacoustic signals emitted by the absorber detected on a dual mode transducer array. To do so, a dedicated ultrasound array intended to both detect photoacoustic waves and emit HIFU with the same elements was used. Such a dual-mode array provides automatically coregistered reference frames for photoacoustic detection and HIFU emission, a highly desired feature for methods involving guidance or monitoring of HIFU by use of photoacoustics. The prototype is first characterized in terms of both photoacoustic and HIFU performances. The probe is then used to perform an idealized scenario of photoacoustic-guided therapy, where photoacoustic signals generated by an absorbing thread embedded in a piece of chicken breast are used to automatically refocus a HIFU beam with a time-reversal mirror and necrose the tissue at the location of the absorber.

  18. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  19. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model.

    PubMed

    Huisman, Merel; Staruch, Robert M; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A; Burns, Dennis K; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160-300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson's trichrome and toluidine blue staining. All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post

  20. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model

    PubMed Central

    Huisman, Merel; Staruch, Robert M.; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A.; Burns, Dennis K.; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Purpose Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Methods Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining. Results All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Conclusion Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may

  1. High intensity focused ultrasound (HIFU) in tumor therapy.

    PubMed

    Sequeiros, Roberto Blanco; Joronen, Kirsi; Komar, Gaber; Koskinen, Seppo K

    HIFU (high intensity focused ultrasound) is a method in which high-frequency ultrasound is focused on a tissue in order to achieve a thermal effect and the subsequent percutaneously ablation, or tissue modulation. HIFU is non-invasive and results in an immediate tissue destruction effect corresponding to surgery, either percutaneously or through body cavities. HIFU can be utilized in the treatment of both benign and malignant tumors. In neurological diseases, focused HIFU can be used in the treatment of disorders of the basal ganglia.

  2. High-intensity focused ultrasound (HIFU) for adenomyosis: Two-year follow-up results.

    PubMed

    Shui, Lian; Mao, Shihua; Wu, Qingrong; Huang, Guohua; Wang, Jian; Zhang, Ruitao; Li, Kequan; He, Jia; Zhang, Lian

    2015-11-01

    To evaluate the long-term improvement of clinical symptoms of adenomyosis after treatment with ultrasound-guided high intensity focused ultrasound (USgHIFU). From January 2010 to December 2011, 350 patients with adenomyosis were treated with USgHIFU. Among the 350 patients, 224 of them completed the two years follow-up. The patients were followed up at 3 months, 1 year, and 2 years after HIFU treatment. Adverse effects and complications were recorded. All patients completed HIFU ablation without severe postoperative complications. 203 of the 224 patients who showed varying degrees of dysmenorrhea before treatment had the symptom scores decreased significantly after treatment (P<0.001). The relief rate was 84.7%, 84.7%, and 82.3%, respectively at 3 months, 1 year, and 2 years after treatment. The menstrual volume in 109 patients with menorrhagia was significantly improved after treatment (P<0.001) with a relief rate of 79.8%, 80.7%, and 78.9%, respectively at 3 months, 1 year, and 2 years after HIFU treatment. With its ability to sustain long-term clinical improvements, HIFU is a safe and effective treatment for adenomyosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer.

    PubMed

    Strunk, H M; Henseler, J; Rauch, M; Mücke, M; Kukuk, G; Cuhls, H; Radbruch, L; Zhang, L; Schild, H H; Marinova, M

    2016-07-01

    Evaluation of ultrasound-guided high-intensity focused ultrasound (HIFU) used for the first time in Germany in patients with inoperable pancreatic cancer for reduction of tumor volume and relief of tumor-associated pain. 15 patients with locally advanced inoperable pancreatic cancer and tumor-related pain symptoms were treated by HIFU (n = 6 UICC stage III, n = 9 UICC stage IV). 13 patients underwent simultaneous standard chemotherapy. Ablation was performed using the JC HIFU system (Chongqing, China HAIFU Company) with an ultrasonic device for real-time imaging. Imaging follow-up (US, CT, MRI) and clinical assessment using validated questionnaires (NRS, BPI) was performed before and up to 15 months after HIFU. Despite biliary or duodenal stents (4/15) and encasement of visceral vessels (15/15), HIFU treatment was performed successfully in all patients. Treatment time and sonication time were 111 min and 1103 s, respectively. The applied total energy was 386 768 J. After HIFU ablation, contrast-enhanced imaging showed devascularization of treated tumor regions with a significant average volume reduction of 63.8 % after 3 months. Considerable pain relief was achieved in 12 patients after HIFU (complete or partial pain reduction in 6 patients). US-guided HIFU with a suitable acoustic pathway can be used for local tumor control and relief of tumor-associated pain in patients with locally advanced pancreatic cancer. • US-guided HIFU allows an additive treatment of unresectable pancreatic cancer.• HIFU can be used for tumor volume reduction.• Using HIFU, a significant reduction of cancer-related pain was achieved.• HIFU provides clinical benefit in patients with pancreatic cancer. Citation Format: • Strunk HM, Henseler J, Rauch M et al. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer. Fortschr Röntgenstr 2016; 188: 662 - 670. © Georg Thieme Verlag KG

  4. Fast Lesion Mapping during HIFU Treatment Using Harmonic Motion Imaging guided Focused Ultrasound (HMIgFUS) In Vitro and In Vivo

    PubMed Central

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-01-01

    The successful clinical application of High Intensity Focused Ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic Motion Imaging guided Focused Ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The HMI lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map to be streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r2 = 0.81, slope = 0.90), width (r2 = 0.85, slope = 1.12) and area (r2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesion and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring. PMID:28323638

  5. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments.

    PubMed

    Kuroda, Kagayaki

    2018-02-01

    To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-02-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy.

  7. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy

    PubMed Central

    Copelan, Alexander; Hartman, Jason; Chehab, Monzer; Venkatesan, Aradhana M.

    2015-01-01

    Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy. PMID:26622104

  8. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) Treatment of Symptomatic Uterine Fibroids: An Evidence-Based Analysis.

    PubMed

    Pron, G

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is a noninvasive uterine-preserving treatment alternative to hysterectomy for women with symptomatic uterine leiomyomas (fibroids). Uterine fibroids commonly occur, have a broad impact on women's health and lifestyle, continue to be the main indication for hysterectomy, and represent a costly public health burden. The objectives of the analysis were to evaluate patients' eligibility for MRgHIFU treatment of symptomatic uterine fibroids and the technical success, safety, effectiveness, and durability of this treatment. The review also compared the safety and effectiveness of MRgHIFU with other minimally invasive uterine-preserving treatments and surgeries for uterine fibroids. A literature search was performed on March 27, 2014, using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews, for studies published from January 1, 2000, to March 27, 2014. The evidence review identified 2 systematic reviews, 2 RCTs, 45 cohort study reports, and 19 case reports involving HIFU treatment of symptomatic uterine fibroids. Eligibility for MRgHIFU treatment was variable, ranging from 14% to 74%. In clinical cohort studies involving 1,594 patients, 26 major complications (1.6%) were reported. MRgHIFU resulted in statistically and clinically significant reductions in fibroid-related symptoms in studies conducted in 10 countries, although few involved follow-up longer than 1 year. Retreatment rates following MRgHIFU were higher in early clinical studies involving regulated restrictions in the extent of fibroid ablation than in later reports involving near-complete ablation. Emergent interventions, however, were rare. Although a desire for fertility was an exclusion criteria for treatment, spontaneous term pregnancies did occur following HIFU. There were no randomized trials comparing MRgHIFU and

  9. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-04-01

    The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2  =  0.81, slope  =  0.90), width (r 2  =  0.85, slope  =  1.12) and area (r 2  =  0.58, slope  =  0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.

  10. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo.

    PubMed

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-04-21

    The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2   =  0.81, slope  =  0.90), width (r 2   =  0.85, slope  =  1.12) and area (r 2   =  0.58, slope  =  0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.

  11. High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment.

    PubMed

    Alkhorayef, Mohammed; Mahmoud, Mustafa Z; Alzimami, Khalid S; Sulieman, Abdelmoneim; Fagiri, Maram A

    2015-01-01

    High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period.

  12. High-Intensity Focused Ultrasound (HIFU) in Localized Prostate Cancer Treatment

    PubMed Central

    Alkhorayef, Mohammed; Mahmoud, Mustafa Z.; Alzimami, Khalid S.; Sulieman, Abdelmoneim; Fagiri, Maram A.

    2015-01-01

    Summary Background High-intensity focused ultrasound (HIFU) applies high-intensity focused ultrasound energy to locally heat and destroy diseased or damaged tissue through ablation. This study intended to review HIFU to explain the fundamentals of HIFU, evaluate the evidence concerning the role of HIFU in the treatment of prostate cancer (PC), review the technologies used to perform HIFU and the published clinical literature regarding the procedure as a primary treatment for PC. Material/Methods Studies addressing HIFU in localized PC were identified in a search of internet scientific databases. The analysis of outcomes was limited to journal articles written in English and published between 2000 and 2013. Results HIFU is a non-invasive approach that uses a precisely delivered ultrasound energy to achieve tumor cell necrosis without radiation or surgical excision. In current urological oncology, HIFU is used clinically in the treatment of PC. Clinical research on HIFU therapy for localized PC began in the 1990s, and the majority of PC patients were treated with the Ablatherm device. Conclusions HIFU treatment for localized PC can be considered as an alternative minimally invasive therapeutic modality for patients who are not candidates for radical prostatectomy. Patients with lower pre-HIFU PSA level and favourable pathologic Gleason score seem to present better oncologic outcomes. Future advances in technology and safety will undoubtedly expand the HIFU role in this indication as more of patient series are published, with a longer follow-up period. PMID:25806099

  13. High-intensity focused ultrasound for the treatment of fibroadenomata (HIFU-F) study.

    PubMed

    Peek, Mirjam C L; Ahmed, Muneer; Douek, Michael

    2015-01-01

    Breast fibroadenomata (FAD) are the most common benign lesions in women. For palpable lesions, there are currently three standard treatment options: reassurance (with or without follow-up), vacuum-assisted mammotomy (VAM) or surgical excision. High-intensity focused ultrasound (HIFU) ablation has been used in the treatment of FAD. The drawback of HIFU is its prolonged treatment duration. The aim of this trial is to evaluate circumferential HIFU treatment for the effective ablation of FAD with a reduced treatment time. Fifty patients (age ≥18 years) will be recruited with symptomatic FAD, visible on ultrasound (US, grade U2 benign). In patients ≥25 years, cytology or histology will be performed to confirm the diagnosis of a FAD. These patients will receive HIFU treatment using the US-guided Echopulse device (Theraclion Ltd., Malakoff, France) under local anaesthesia. An additional 50 patients will be recruited and contacted 6 months after discharge from the breast clinic. These patients will be offered an US scan to determine the change in size of their FAD. This natural change in size will be compared to the decrease in size after HIFU treatment. Secondary outcome measures include post-treatment complications, patient recorded outcome measures, mean treatment time and cost analysis. Current Controlled Trials: ISRCTN76622747.

  14. Magnetic Resonance–Guided High-Intensity Focused Ultrasound (MRgHIFU) Treatment of Symptomatic Uterine Fibroids: An Evidence-Based Analysis

    PubMed Central

    Pron, G

    2015-01-01

    Background Magnetic resonance–guided high-intensity focused ultrasound (MRgHIFU) is a noninvasive uterine-preserving treatment alternative to hysterectomy for women with symptomatic uterine leiomyomas (fibroids). Uterine fibroids commonly occur, have a broad impact on women's health and lifestyle, continue to be the main indication for hysterectomy, and represent a costly public health burden. Objectives The objectives of the analysis were to evaluate patients’ eligibility for MRgHIFU treatment of symptomatic uterine fibroids and the technical success, safety, effectiveness, and durability of this treatment. The review also compared the safety and effectiveness of MRgHIFU with other minimally invasive uterine-preserving treatments and surgeries for uterine fibroids. Methods A literature search was performed on March 27, 2014, using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews, for studies published from January 1, 2000, to March 27, 2014. Results The evidence review identified 2 systematic reviews, 2 RCTs, 45 cohort study reports, and 19 case reports involving HIFU treatment of symptomatic uterine fibroids. Eligibility for MRgHIFU treatment was variable, ranging from 14% to 74%. In clinical cohort studies involving 1,594 patients, 26 major complications (1.6%) were reported. MRgHIFU resulted in statistically and clinically significant reductions in fibroid-related symptoms in studies conducted in 10 countries, although few involved follow-up longer than 1 year. Retreatment rates following MRgHIFU were higher in early clinical studies involving regulated restrictions in the extent of fibroid ablation than in later reports involving near-complete ablation. Emergent interventions, however, were rare. Although a desire for fertility was an exclusion criteria for treatment, spontaneous term pregnancies did occur following HIFU. There were no

  15. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU

    PubMed Central

    2013-01-01

    Background The availability of open and versatile software tools is a key feature to facilitate pre-clinical research for magnetic resonance imaging (MRI) and magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) and expedite clinical translation of diagnostic and therapeutic medical applications. In the present study, two customizable software tools that were developed at the Thunder Bay Regional Research Institute are presented for use with both MRI and MR-HIFU. Both tools operate in a MATLAB®; environment. The first tool is named MatMRI and enables real-time, dynamic acquisition of MR images with a Philips MRI scanner. The second tool is named MatHIFU and enables the execution and dynamic modification of user-defined treatment protocols with the Philips Sonalleve MR-HIFU therapy system to perform ultrasound exposures in MR-HIFU therapy applications. Methods MatMRI requires four basic steps: initiate communication, subscribe to MRI data, query for new images, and unsubscribe. MatMRI can also pause/resume the imaging and perform real-time updates of the location and orientation of images. MatHIFU requires four basic steps: initiate communication, prepare treatment protocol, and execute treatment protocol. MatHIFU can monitor the state of execution and, if required, modify the protocol in real time. Results Four applications were developed to showcase the capabilities of MatMRI and MatHIFU to perform pre-clinical research. Firstly, MatMRI was integrated with an existing small animal MR-HIFU system (FUS Instruments, Toronto, Ontario, Canada) to provide real-time temperature measurements. Secondly, MatMRI was used to perform T2-based MR thermometry in the bone marrow. Thirdly, MatHIFU was used to automate acoustic hydrophone measurements on a per-element basis of the 256-element transducer of the Sonalleve system. Finally, MatMRI and MatHIFU were combined to produce and image a heating pattern that recreates the word ‘HIFU’ in a tissue

  16. TU-B-210-00: MR-Guided Focused Ultrasound Therapy in Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  17. Model-based ultrasound temperature visualization during and following HIFU exposure.

    PubMed

    Ye, Guoliang; Smith, Penny Probert; Noble, J Alison

    2010-02-01

    This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    PubMed

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  19. Monitoring high-intensity focused ultrasound (HIFU) therapy using radio frequency ultrasound backscatter to quantify heating

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay

    2005-09-01

    The spatial distribution and temporal history of tissue temperature is an essential indicator of thermal therapy progress, and treatment safety and efficacy. Magnetic resonance methods provide the gold standard noninvasive measurement of temperature but are costly and cumbersome compared to the therapy itself. We have been developing the use of ultrasound backscattering for real-time temperature estimation; ultrasonic methods have been limited to relatively low temperature rise, primarily due to lack of sensitivity at protein denaturation temperatures (50-70°C). Through validation experiments on gel phantoms and ex vivo tissue we show that temperature rise can be accurately mapped throughout the therapeutic temperature range using a new BioHeat Transfer Equation (BHTE) model-constrained inverse approach. Speckle-free temperature and thermal dose maps are generated using the ultrasound calibrated model over the imaged region throughout therapy delivery and post-treatment cooling periods. Results of turkey breast tissue experiments are presented for static HIFU exposures, in which the ultrasound calibrated BHTE temperature maps are shown to be very accurate (within a degree) using independent thermocouple measurements. This new temperature monitoring method may speed clinical adoption of ultrasound-guided HIFU therapy. [Work supported by Army MRMC.

  20. Initial investigation of a novel noninvasive weight loss therapy using MRI-Guided high intensity focused ultrasound (MR-HIFU) of visceral fat.

    PubMed

    Winter, Patrick M; Lanier, Matthew; Partanen, Ari; Dumoulin, Charles

    2016-07-01

    MRI-guided high intensity focused ultrasound (MR-HIFU) allows noninvasive heating of deep tissues. Specifically targeting visceral fat deposits with MR-HIFU could offer an effective therapy for reversing the development of obesity, diabetes, and metabolic syndrome. Overweight rats received either MR-HIFU of visceral fat, sham treatment, no treatment, or ex vivo temperature calibration. Conventional MR thermometry methods are not effective in fat tissue. Therefore, the T2 of fat was used to estimate heating in adipose tissue. HIFU treated rats lost 7.5% of their body weight 10 days after HIFU, compared with 1.9% weight loss in sham animals (P = 0.008) and 1.3% weight increase in untreated animals (P = 0.004). Additionally, the abdominal fat volume in treated animals decreased by 8.2 mL 7 days after treatment (P = 0.002). The T2 of fat at 1.5 Tesla increased by 3.3 ms per °C. The fat T2 was 103.3 ms before HIFU, but increased to 128.7 ms (P = 0.0005) after HIFU at 70 watts for 16 s and to 131.9 ms (P = 0.0005) after HIFU at 100 watts for 16 s. These experiments demonstrate that MR-HIFU of visceral fat could provide a safe, effective, and noninvasive weight loss therapy for combating obesity and the subsequent medical complications. Magn Reson Med 76:282-289, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. High intensity focused ultrasound (HIFU).

    PubMed

    Barkin, Jack

    2011-04-01

    Curative treatments for localized prostate cancer, from least invasive to most invasive, include brachytherapy, cryosurgery, three-dimensional conformal radiation therapy, external beam radiation therapy, and radical prostatectomy. A patient with localized, low risk or intermediate risk prostate cancer who is diagnosed at an early age and receives one of these treatments has only an approximately 50% chance of maintaining an undetectable prostate-specific antigen (PSA) level, good spontaneous erections, and total continence by 5 years after treatment. This article discusses transrectal high intensity focused ultrasound (HIFU) treatment of localized prostate cancer using the Sonablate 500 (Focus Surgery, Indianapolis, IN, USA) device, which the author has adopted in favor of the Ablatherm (EDAP, TMS S. A., Lyons, France) device, the other HIFU device approved for use in Canada. Characteristics of the ideal prostate cancer include stage T1-T2b, less than 40 cc in size, and with an anterior-posterior dimension of up to 35 mm high. The anterior zone of the prostate is treated before the posterior zone. The procedure involves 2 to 3 second bursts of ultrasound energy, followed by 3 second cooling cycles. In each treatment lesion, the physician achieves a temperature of 100 C at the focal point. The device allows for real-time visualization of tissue response following the delivery of ultrasound energy. HIFU is a minimally invasive, outpatient treatment for localized prostate cancer that provides similar short term and medium term cure rates and considerably less morbidity and side effects than other treatments. Although the effectiveness of HIFU has not yet been demonstrated in large, long term studies, this treatment option should be discussed with patients who have just been diagnosed with low risk or intermediate risk prostate cancer and desire aggressive, noninvasive, curative therapy, with potentially a lower incidence of side effects compared to conventional

  2. High-intensity focused ultrasound (HIFU) for pancreatic carcinoma: evaluation of feasibility, reduction of tumour volume and pain intensity.

    PubMed

    Marinova, Milka; Rauch, Maximilian; Mücke, Martin; Rolke, Roman; Gonzalez-Carmona, Maria A; Henseler, Jana; Cuhls, Henning; Radbruch, Lukas; Strassburg, Christian P; Zhang, Lian; Schild, Hans H; Strunk, Holger M

    2016-11-01

    Prognosis of patients with locally advanced pancreatic adenocarcinoma is extremely poor. They often suffer from cancer-related pain reducing their quality of life. This prospective observational study aimed to evaluate feasibility, local tumour response, and changes in quality of life and symptoms in Caucasian patients with locally advanced pancreatic cancer treated by ultrasound-guided high-intensity focused ultrasound (HIFU). Thirteen patients underwent HIFU, five with stage III, eight with stage IV UICC disease. Ten patients received simultaneous palliative chemotherapy. Postinterventional clinical assessment included evaluation of quality of life and symptom changes using standardized questionnaires. CT and MRI follow-up evaluated the local tumour response. HIFU was successfully performed in all patients. Average tumour reduction was 34.2 % at 6 weeks and 63.9 % at 3 months. Complete or partial relief of cancer-related pain was achieved in 10 patients (77 %), five of whom required less analgesics for pain control. Quality of life was improved revealing increased global health status and alleviated symptoms. HIFU treatment was well tolerated. Eight patients experienced transient abdominal pain directly after HIFU. HIFU ablation of pancreatic carcinoma is a feasible, safe and effective treatment with a crucial benefit in terms of reduction of tumour volume and pain intensity. • US-guided HIFU is feasible and safe for patients with unresectable pancreatic cancer. • HIFU can considerably reduce tumour volume and cancer-related pain. • Patients treated with HIFU experienced significant and lasting reduction of pain intensity. • HIFU has a crucial clinical benefit for patients with pancreatic cancer.

  3. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  4. A region-based segmentation method for ultrasound images in HIFU therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentationmore » becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a

  5. Advances of high intensity focused ultrasound (HIFU) for pancreatic cancer.

    PubMed

    Xiaoping, Li; Leizhen, Zheng

    2013-11-01

    High intensity focused ultrasound (HIFU) is a novel therapeutic modality. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumours, including pancreatic cancer. Preliminary studies suggest that HIFU may be useful for the palliative therapy of cancer-related pain in patients with unresectable pancreatic cancer. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.

  6. Robotic active positioning for magnetic resonance-guided high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Huang, Zhihong; Volovick, Alexander; Melzer, Andreas

    2012-11-01

    Magnetic resonance (MR) guided High-intensity focused ultrasound (HIFU) is a noninvasive method producing thermal necrosis and cavitation at the position of tumors with high accuracy. Because the typical size of the high-intensity focused ultrasound focus are much smaller than the targeted tumor or other tissues, multiple sonications and focus repositioning become necessary for HIFU treatment. In order to reach a much wider range, manual repositioning or using MR compatible mechanical actuators could be used. The repositioning technique is a time consuming procedure because it needs a series of MR imaging to detect the transducer and markers preplaced on the mechanical devices. We combined an active tracking technique into the MR guided HIFU system. In this work, the robotic system used is the MR-compatible robotics from InnoMotion{trade mark, serif} (IBSMM, Engineering spol. s r.o. / Ltd, Czech) which is originally designed for MR-guided needle biopsy. The precision and positioning speed of the combined robotic HIFU system are evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the HIFU treatment to operate in a larger spatial range and with a faster speed.

  7. Blood coagulation using High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc V.; Oh, Junghwan; Kang, Hyun Wook

    2014-03-01

    High Intensity Focused Ultrasound (HIFU) technology provides a feasible method of achieving thermal coagulation during surgical procedures. One of the potential clinical benefits of HIFU can induce immediate hemostasis without suturing. The objective of this study was to investigate the efficiency of a HIFU system for blood coagulation on severe vascular injury. ngHIFU treatment was implemented immediately after bleeding in artery. The ultrasound probe was made of piezoelectric material, generating a central frequency of 2.0 MHz as well as an ellipsoidal focal spot of 2 mm in lateral dimension and 10 mm in axial dimension. Acoustic coagulation was employed on a perfused chicken artery model in vitro. A surgical incision (1 to 2 mm long) was made with a scapel on the arterial wall, and heparinized autologous blood was made to leak out from the incision with a syringe pump. A total of 5 femoral artery incisions was treated with the HIFU beam. The intensity of 4500 W/cm2 at the focus was applied for all treatments. Complete hemostasis was achieved in all treatments, along with the treatment times of 25 to 50 seconds. The estimated intraoperative blood loss was from 2 to 5 mL. The proposed HIFU system may provide an effective method for immediate blood coagulation for arteries and veins in clinical applications.

  8. Ultrasound-guided trans-rectal high-intensity focused ultrasound (HIFU) for advanced cervical cancer ablation is feasible: a case report.

    PubMed

    Abel, M; Ahmed, H; Leen, E; Park, E; Chen, M; Wasan, H; Price, P; Monzon, L; Gedroyc, W; Abel, P

    2015-01-01

    High-intensity focused ultrasound (HIFU) is an ablative treatment undergoing assessment for the treatment of benign and malignant disease. We describe the first reported intracavitary HIFU ablation for recurrent, unresectable and symptomatic cervical cancer. A 38 year old woman receiving palliative chemotherapy for metastatic cervical adenocarcinoma was offered ablative treatment from an intracavitary trans-rectal HIFU device (Sonablate® 500). Pre-treatment symptoms included vaginal bleeding and discharge that were sufficient to impede her quality of life. No peri-procedural adverse events occurred. Symptoms resolved completely immediately post-procedure, reappeared at 7 days, increasing to pre-procedural levels by day 30. This first time experience of intracavitary cervical HIFU suggests that it is feasible for palliation of advanced cervical cancer, with no early evidence of unexpected toxicity. Ethical approval had also been granted for the use of per-vaginal access if appropriate. This route, alone or in combination with the rectal route, may provide increased accessibility in future patients with a redesigned device more suited to trans-vaginal ablations. Intracavitary HIFU is a potentially safe procedure for the treatment of cervical cancer and able to provide symptomatic improvement in the palliative setting.

  9. [High-intensity focused ultrasound (HIFU) for tumor pain relief in inoperable pancreatic cancer : Evaluation with the pain sensation scale (SES)].

    PubMed

    Marinova, M; Strunk, H M; Rauch, M; Henseler, J; Clarens, T; Brüx, L; Dolscheid-Pommerich, R; Conrad, R; Cuhls, H; Radbruch, L; Schild, H H; Mücke, M

    2017-02-01

    High-intensity focused ultrasound (HIFU) in combination with palliative standard therapy is an innovative and effective treatment option for pain reduction in patients with inoperable pancreatic cancer. Evaluation of the effects of additive ultrasound (US)-guided HIFU treatment in inoperable pancreatic cancer on the sensory and affective pain perception using validated questionnaries. In this study 20 patients with locally advanced inoperable pancreatic cancer and tumor-related pain were treated by US-guided HIFU (6 stage III, 12 stage IV according to UICC and 2 with local recurrence after surgery). Ablation was performed using the JC HIFU system (HAIFU, Chongqing, China) with an ultrasonic device for real-time imaging. Clinical assessment included evaluation of pain severity using validated questionnaires with particular attention to the pain sensation scale (SES) with its affective and sensory component and the numeric rating scale (NRS). The average pain reduction after HIFU was 2.87 points on the NRS scale and 57.3 % compared to the mean baseline score (n = 15, 75 %) in 19 of 20 treated patients. Four patients did not report pain relief, however, the previous opioid medication could be stopped (n = 2) or the analgesic dosage could be reduced (n = 2). No pain reduction was achieved in one patient. Furthermore, after HIFU emotional as well as sensory pain aspects were significantly reduced (before vs. 1 week after HIFU, p < 0.05 for all pain scales). US-guided HIFU can be used for effective and early pain relief and reduction of emotional and sensory pain sensation in patients with locally advanced pancreatic cancer.

  10. Visual servoing for a US-guided therapeutic HIFU system by coagulated lesion tracking: a phantom study.

    PubMed

    Seo, Joonho; Koizumi, Norihiro; Funamoto, Takakazu; Sugita, Naohiko; Yoshinaka, Kiyoshi; Nomiya, Akira; Homma, Yukio; Matsumoto, Yoichiro; Mitsuishi, Mamoru

    2011-06-01

    Applying ultrasound (US)-guided high-intensity focused ultrasound (HIFU) therapy for kidney tumours is currently very difficult, due to the unclearly observed tumour area and renal motion induced by human respiration. In this research, we propose new methods by which to track the indistinct tumour area and to compensate the respiratory tumour motion for US-guided HIFU treatment. For tracking indistinct tumour areas, we detect the US speckle change created by HIFU irradiation. In other words, HIFU thermal ablation can coagulate tissue in the tumour area and an intraoperatively created coagulated lesion (CL) is used as a spatial landmark for US visual tracking. Specifically, the condensation algorithm was applied to robust and real-time CL speckle pattern tracking in the sequence of US images. Moreover, biplanar US imaging was used to locate the three-dimensional position of the CL, and a three-actuator system drives the end-effector to compensate for the motion. Finally, we tested the proposed method by using a newly devised phantom model that enables both visual tracking and a thermal response by HIFU irradiation. In the experiment, after generation of the CL in the phantom kidney, the end-effector successfully synchronized with the phantom motion, which was modelled by the captured motion data for the human kidney. The accuracy of the motion compensation was evaluated by the error between the end-effector and the respiratory motion, the RMS error of which was approximately 2 mm. This research shows that a HIFU-induced CL provides a very good landmark for target motion tracking. By using the CL tracking method, target motion compensation can be realized in the US-guided robotic HIFU system. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Automatic segmentation for detecting uterine fibroid regions treated with MR-guided high intensity focused ultrasound (MR-HIFU).

    PubMed

    Antila, Kari; Nieminen, Heikki J; Sequeiros, Roberto Blanco; Ehnholm, Gösta

    2014-07-01

    Up to 25% of women suffer from uterine fibroids (UF) that cause infertility, pain, and discomfort. MR-guided high intensity focused ultrasound (MR-HIFU) is an emerging technique for noninvasive, computer-guided thermal ablation of UFs. The volume of induced necrosis is a predictor of the success of the treatment. However, accurate volume assessment by hand can be time consuming, and quick tools produce biased results. Therefore, fast and reliable tools are required in order to estimate the technical treatment outcome during the therapy event so as to predict symptom relief. A novel technique has been developed for the segmentation and volume assessment of the treated region. Conventional algorithms typically require user interaction ora priori knowledge of the target. The developed algorithm exploits the treatment plan, the coordinates of the intended ablation, for fully automatic segmentation with no user input. A good similarity to an expert-segmented manual reference was achieved (Dice similarity coefficient = 0.880 ± 0.074). The average automatic segmentation time was 1.6 ± 0.7 min per patient against an order of tens of minutes when done manually. The results suggest that the segmentation algorithm developed, requiring no user-input, provides a feasible and practical approach for the automatic evaluation of the boundary and volume of the HIFU-treated region.

  12. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    PubMed

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  13. Primary malignant tumours of the bony pelvis: US-guided high intensity focused ultrasound ablation.

    PubMed

    Wang, Yang; Wang, Wei; Tang, Jie

    2013-11-01

    The aim of this review is to evaluate the value of ultrasound (US)-guided high intensity focused ultrasound (HIFU) ablation in the treatment of primary malignant tumours of the bony pelvis. Eleven patients with primary malignant tumours of the bony pelvis received US-guided HIFU ablation. The maximum tumour size ranged from 5.6 to 25.0 cm (median 10.5 cm). Treatment was curative in four patients and palliative in seven patients. During follow-up, the effectiveness of HIFU ablation was assessed by contrast-enhanced magnetic resonance (MR). Significant coagulative necrosis was obtained in all patients after scheduled HIFU ablations; the volume ablation ratio was 86.7% ± 12.5% (range 65-100%). Complete tumour necrosis was achieved in all patients receiving curative HIFU ablation. No major complications were encountered. No patients died of local tumour progression during follow-up. US-guided HIFU ablation may be a safe and effective minimally invasive technique for the local treatment of primary malignant tumours of the bony pelvis.

  14. Monitoring evolution of HIFU-induced lesions with backscattered ultrasound

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.

    2003-04-01

    Backscattered radio frequency (rf) data from a modified commercial ultrasound scanner were collected in a series of in vitro experiments in which high intensity focused ultrasound (HIFU) was used to create lesions in freshly excised bovine liver tissue. Two signal processing approaches were used to visualize the temporal evolution of lesion formation. First, apparent tissue motion due to temperature rise was detected using cross-correlation techniques. Results indicate that differential processing of travel time can provide temperature change information throughout the therapy delivery phase and after HIFU has been turned off, over a relatively large spatial region. Second, changes in the frequency spectrum of rf echoes due to changes in the scattering properties of the heated region were observed well before the appearance of hyper-echogenic spots in the focal zone. Furthermore, the increase in attenuation in the lesion zone changes the measured backscatter spectrum from regions distal to it along the imaging beam. Both effects were visualized using spectral processing and display techniques that provide a color spatial map of these features for the clinician. Our results demonstrate potential for these ultrasound-based techniques in targeting and monitoring of HIFU therapy, and perhaps post-treatment visualization of HIFU-induced lesions.

  15. Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases.

    PubMed

    Huisman, Merel; Lam, Mie K; Bartels, Lambertus W; Nijenhuis, Robbert J; Moonen, Chrit T; Knuttel, Floor M; Verkooijen, Helena M; van Vulpen, Marco; van den Bosch, Maurice A

    2014-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has recently emerged as an effective treatment option for painful bone metastases. We describe here the first experience with volumetric MR-HIFU for palliative treatment of painful bone metastases and evaluate the technique on three levels: technical feasibility, safety, and initial effectiveness. In this observational cohort study, 11 consecutive patients (7 male and 4 female; median age, 60 years; age range, 53-86 years) underwent 13 treatments for 12 bone metastases. All patients exhibited persistent metastatic bone pain refractory to the standard of care. Patients were asked to rate their worst pain on an 11-point pain scale before treatment, 3 days after treatment, and 1 month after treatment. Complications were monitored. All data were prospectively recorded in the context of routine clinical care. Response was defined as a ≥2-point decrease in pain at the treated site without increase in analgesic intake. Baseline pain scores were compared to pain scores at 3 days and 1 month using the Wilcoxon signed-rank test. For reporting, the STROBE guidelines were followed. No treatment-related major adverse events were observed. At 3 days after volumetric MR-HIFU ablation, pain scores decreased significantly (p = 0.045) and response was observed in a 6/11 (55%) patients. At 1-month follow-up, which was available for nine patients, pain scores decreased significantly compared to baseline (p = 0.028) and 6/9 patients obtained pain response (overall response rate 67% (95% confidence interval (CI) 35%-88%)). This is the first study reporting on the volumetric MR-HIFU ablation for painful bone metastases. No major treatment-related adverse events were observed during follow-up. The results of our study showed that volumetric MR-HIFU ablation for painful bone metastases is technically feasible and can induce pain relief in patients with metastatic bone pain refractory to the standard of

  16. Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases

    PubMed Central

    2014-01-01

    Background Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has recently emerged as an effective treatment option for painful bone metastases. We describe here the first experience with volumetric MR-HIFU for palliative treatment of painful bone metastases and evaluate the technique on three levels: technical feasibility, safety, and initial effectiveness. Methods In this observational cohort study, 11 consecutive patients (7 male and 4 female; median age, 60 years; age range, 53–86 years) underwent 13 treatments for 12 bone metastases. All patients exhibited persistent metastatic bone pain refractory to the standard of care. Patients were asked to rate their worst pain on an 11-point pain scale before treatment, 3 days after treatment, and 1 month after treatment. Complications were monitored. All data were prospectively recorded in the context of routine clinical care. Response was defined as a ≥2-point decrease in pain at the treated site without increase in analgesic intake. Baseline pain scores were compared to pain scores at 3 days and 1 month using the Wilcoxon signed-rank test. For reporting, the STROBE guidelines were followed. Results No treatment-related major adverse events were observed. At 3 days after volumetric MR-HIFU ablation, pain scores decreased significantly (p = 0.045) and response was observed in a 6/11 (55%) patients. At 1-month follow-up, which was available for nine patients, pain scores decreased significantly compared to baseline (p = 0.028) and 6/9 patients obtained pain response (overall response rate 67% (95% confidence interval (CI) 35%–88%)). Conclusions This is the first study reporting on the volumetric MR-HIFU ablation for painful bone metastases. No major treatment-related adverse events were observed during follow-up. The results of our study showed that volumetric MR-HIFU ablation for painful bone metastases is technically feasible and can induce pain relief in patients with metastatic

  17. Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors

    PubMed Central

    Avedian, Raffi S.; Gold, Garry; Ghanouni, Pejman; Pauly, Kim Butts

    2015-01-01

    This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors. PMID:26120376

  18. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    PubMed

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  19. Novel Non-invasive Treatment With High-intensity Focused Ultrasound (HIFU).

    PubMed

    Marinova, M; Rauch, M; Schild, H H; Strunk, H M

    2016-02-01

    Ultrasound is not only used for diagnostic purposes but it also can be applied therapeutically so far that nowadays high-intensity focused ultrasound (HIFU) even represents a novel non-invasive treatment modality for various solid tumors. HIFU works by causing selectively deep tissue destruction of target lesions within the body without harming adjacent and overlying structures. In this article, we present an overview on both the mode of action and requirements for a HIFU treatment as well as on the safety and the current status of indications and possible applications with regard to benign and malignant gynecological diseases. Based on numerous studies and original articles, HIFU proved to be an effective and low-risk treatment option particularly for uterine fibroids and adenomyosis, but it also seems to be effective for breast fibroadenomas or even for breast cancer in special cases and other rare entities. © Georg Thieme Verlag KG Stuttgart · New York.

  20. High-Intensity Focused Ultrasound (HIFU) in Uterine Fibroid Treatment: Review Study.

    PubMed

    Mahmoud, Mustafa Z; Alkhorayef, Mohammed; Alzimami, Khalid S; Aljuhani, Manal Saud; Sulieman, Abdelmoneim

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids.

  1. High-Intensity Focused Ultrasound (HIFU) in Uterine Fibroid Treatment: Review Study

    PubMed Central

    Mahmoud, Mustafa Z.; Alkhorayef, Mohammed; Alzimami, Khalid S.; Aljuhani, Manal Saud; Sulieman, Abdelmoneim

    2014-01-01

    Summary Background High-intensity focused ultrasound (HIFU) is a highly precise medical procedure used locally to heat and destroy diseased tissue through ablation. This study intended to review HIFU in uterine fibroid therapy, to evaluate the role of HIFU in the therapy of leiomyomas as well as to review the actual clinical activities in this field including efficacy and safety measures beside the published clinical literature. Material/Methods An inclusive literature review was carried out in order to review the scientific foundation, and how it resulted in the development of extracorporeal distinct devices. Studies addressing HIFU in leiomyomas were identified from a search of the Internet scientific databases. The analysis of literature was limited to journal articles written in English and published between 2000 and 2013. Results In current gynecologic oncology, HIFU is used clinically in the treatment of leiomyomas. Clinical research on HIFU therapy for leiomyomas began in the 1990s, and the majority of patients with leiomyomas were treated predominantly with HIFUNIT 9000 and prototype single focus ultrasound devices. HIFU is a non-invasive and highly effective standard treatment with a large indication range for all sizes of leiomyomas, associated with high efficacy, low operative morbidity and no systemic side effects. Conclusions Uterine fibroid treatment using HIFU was effective and safe in treating symptomatic uterine fibroids. Few studies are available in the literature regarding uterine artery embolization (UAE). HIFU provides an excellent option to treat uterine fibroids. PMID:25371765

  2. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population

    PubMed Central

    Illing, R O; Kennedy, J E; Wu, F; ter Haar, G R; Protheroe, A S; Friend, P J; Gleeson, F V; Cranston, D W; Phillips, R R; Middleton, M R

    2005-01-01

    High-intensity focused ultrasound (HIFU) provides a potential noninvasive alternative to conventional therapies. We report our preliminary experience from clinical trials designed to evaluate the safety and feasibility of a novel, extracorporeal HIFU device for the treatment of liver and kidney tumours in a Western population. The extracorporeal, ultrasound-guided Model-JC Tumor Therapy System (HAIFU™ Technology Company, China) has been used to treat 30 patients according to four trial protocols. Patients with hepatic or renal tumours underwent a single therapeutic HIFU session under general anaesthesia. Magnetic resonance imaging 12 days after treatment provided assessment of response. The patients were subdivided into those followed up with further imaging alone or those undergoing surgical resection of their tumours, which enabled both radiological and histological assessment. HIFU exposure resulted in discrete zones of ablation in 25 of 27 evaluable patients (93%). Ablation of liver tumours was achieved more consistently than for kidney tumours (100 vs 67%, assessed radiologically). The adverse event profile was favourable when compared to more invasive techniques. HIFU treatment of liver and kidney tumours in a Western population is both safe and feasible. These findings have significant implications for future noninvasive image-guided tumour ablation. PMID:16189519

  3. Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation.

    PubMed

    Hamano, Nobuhito; Negishi, Yoichi; Takatori, Kyohei; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Niidome, Takuro; Aramaki, Yukihiko

    2014-01-01

    Ultrasound (US) is used in the clinical setting not only for diagnosis but also for therapy. As a therapeutic US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical setting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however, microbubbles have room for improvement in size, stability, and targeting ability. To solve these issues, we reported that "Bubble liposomes" (BLs) containing the US imaging gas (perfluoropropane gas) liposomes were suitable for ultrasound imaging and gene delivery. In this study, we examined whether BLs and HIFU could enhance the ablation area of the tumor and the antitumor effect. First, we histologically analyzed the tumor after BLs and HIFU. The ablation area of the treatment of BLs and HIFU was broader than that of HIFU alone. Next, we monitored the temperature of the tumor, and examined the antitumor effect. The temperature increase with BLs and HIFU treatment was faster and higher than that with HIFU alone. Moreover, treatment with BLs and HIFU enhanced the antitumor effect, which was better than with HIFU alone. Thus, the combination of BLs and HIFU could be efficacious for cancer therapy.

  4. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MRgHIFU) for Treatment of Symptomatic Uterine Fibroids: An Economic Analysis

    PubMed Central

    Babashov, V; Palimaka, S; Blackhouse, G; O'Reilly, D

    2015-01-01

    Background Uterine fibroids, or leiomyomas, are the most common benign tumours in women of childbearing age. Some women experience symptoms (e.g., heavy bleeding) that require aggressive forms of treatment such as uterine artery embolization (UAE), myomectomy, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), and even hysterectomy. It is important to note that hysterectomy is not appropriate for women who desire future childbearing. Objectives The objective of this analysis was to evaluate the cost-effectiveness and budgetary impact of implementing MRgHIFU as a treatment option for symptomatic uterine fibroids in premenopausal women for whom drugs have been ineffective. Review Methods We performed an original cost-effectiveness analysis to assess the long-term costs and effects of MRgHIFU compared with hysterectomy, myomectomy, and UAE as a strategy for treating symptomatic uterine fibroids in premenopausal women aged 40 to 51 years. We explored a number of scenarios, e.g., comparing MRgHIFU with uterine-preserving procedures only, considering MRgHIFU-eligible patients only, and eliminating UAE as a treatment option. In addition, we performed a one-year budget impact analysis, using data from Ontario administrative sources. Four scenarios were explored in the budgetary impact analysis: MRgHIFU funded at 2 centres MRgHIFU funded at 2 centres and replacing only uterine-preserving procedures MRgHIFU funded at 6 centres MRgHIFU funded at 6 centres and replacing only uterine-preserving procedures Analyses were conducted from the Ontario public payer perspective. Results The base case determined that the uterine artery embolization (UAE) treatment strategy was the cost-effective option at commonly accepted willingness-to-pay values. Compared with hysterectomy, UAE was calculated as having an incremental cost-effectiveness ratio (ICER) of $46,480 per quality-adjusted life-year (QALY) gained. The MRgHIFU strategy was extendedly dominated by a

  5. Current and Future Clinical Applications of High-Intensity Focused Ultrasound (HIFU) for Pancreatic Cancer.

    PubMed

    Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong; Hwang, Joo Ha

    2010-09-01

    High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.

  6. Current and Future Clinical Applications of High-Intensity Focused Ultrasound (HIFU) for Pancreatic Cancer

    PubMed Central

    Jang, Hyun Joo; Lee, Jae-Young; Lee, Don-Haeng; Kim, Won-Hong

    2010-01-01

    High-intensity focused ultrasound (HIFU) is a novel therapeutic modality that permits noninvasive treatment of various benign and malignant solid tumors, including prostatic cancer, uterine fibroids, hepatic tumors, renal tumors, breast cancers, and pancreatic cancers. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumors, including pancreatic cancer. The results of nonrandomized studies of HIFU therapy in patients with pancreatic cancer have suggested that HIFU treatment can effectively alleviate cancer-related pain without any significant complications. This noninvasive method of delivering ultrasound energy into the body has recently been evolving from a method for purely thermal ablation to harnessing the mechanical effects of HIFU to induce a systemic immune response and to enhance targeted drug delivery. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges. PMID:21103296

  7. TU-B-210-01: MRg HIFU - Bone and Soft Tissue Tumor Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanouni, P.

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  8. TU-B-210-02: MRg HIFU - Advanced Approaches for Ablation and Hyperthermia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moonen, C.

    2015-06-15

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  9. Safety of ultrasound-guided high-intensity focused ultrasound ablation for diffuse adenomyosis: A retrospective cohort study.

    PubMed

    Feng, Yujie; Hu, Liang; Chen, Wenzhi; Zhang, Rong; Wang, Xi; Chen, Jinyun

    2017-05-01

    To evaluate the safety of ultrasound-guided high-intensity focused ultrasound (HIFU) ablation for patients with diffuse adenomyosis. This was a retrospective cohort study. The data was collected from 417 symptomatic adenomyosis patients who underwent ultrasound-guided HIFU between January 2012 and December 2015 at 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China. Among them were 260 patients with diffuse adenomyosis (Group D) and 157 patients with focal adenomyosis (Group F). All patients underwent contrast-enhanced magnetic resonance imaging (MRI) one week before and the day after HIFU treatment. Successful treatment with HIFU was measured by the non-perfused volume ratio (NPVR). Intraprocedural and postprocedural adverse effects and complications were recorded to assess the safety of the procedure. Patients were followed-up for three months post-treatment. Complications were given a grade A through F according to the SIR Standards. All patients successfully completed the procedure, non-perfused regions appeared in 415 (99.5%) patients. The non-perfused volume ratio (NPVR) of Group D was significantly lower than that of Group F (P<0.05). During the procedure, the odds ratio of skin-burning pain was 1.7 (OR=1.617, 95% CI: 1.103-2.532), when comparing Group D with Group F, while the odds ratio of inguinal pain was equal to 2.0 (OR=2.038, 95% CI: 1.161-3.580), when Group F was compared to Group D. 97 patients (23.3%) received nominal therapy due to complications ([Society of interventional radiology, SIR]-B grade), among them, there were 62 cases (23.8%) in Group D and 35 cases (22.3%) in Group F. No significant difference was found between the two groups (P>0.05) and neither of the reported complications of SIR-C-SIR-F occurred within the two groups. Based on our results, ultrasound-guided HIFU is safe for the treatment of diffuse adenomyosis, and controlling the ablation zone is crucial to ensure patients' safety. Copyright © 2016 Elsevier

  10. High intensity focused ultrasound in the treatment of breast fibroadenomata: results of the HIFU-F trial.

    PubMed

    Peek, M C L; Ahmed, M; Scudder, J; Baker, R; Pinder, S E; Douek, M

    2016-12-01

    Breast fibroadenomata (FAD) are the most common breast lumps in women. High intensity focused ultrasound (HIFU) is a non-invasive ablative technique that can be used to treat FAD but is associated with prolonged treatment times. In the HIFU-F trial, we evaluated the change in volume over time with circumferential HIFU treatment of FAD and compared this to no treatment. Patients ≥18 years, diagnosed with symptomatic, palpable FAD, visible on ultrasound (US) were recruited. Twenty patients were treated using US-guided HIFU under local anaesthesia. Another 20 participants underwent an US 6 months after diagnosis. Outcome measures included: reduction in treatment time compared to whole lesion ablation; feasibility to achieve a 50% reduction in volume after 6 months; decrease in volume compared to a control group and reduction in symptoms. Circumferential ablation reduced the mean treatment time by 37.5% (SD 20.1%) compared to whole lesion ablation. US demonstrated a significant mean reduction in FAD volume of 43.5% (SD 38.8%; p = 0.016, paired t-test) in the HIFU group compared to 4.6% (SD 46.0%; p = 0.530) in the control group after 6 months. This mean reduction in FAD volume between the two groups was significant in favour of the HIFU group (p = 0.002, grouped t-test). Pre-treatment pain completely resolved in 6 out of 8 patients 6 months post-treatment. Circumferential HIFU ablation of FAD is feasible, with a significant reduction in pain and volume compared to control participants. It provides a simple, non-invasive, outpatient-based alternative to surgical excision for FAD.

  11. Factors influencing the ablative efficiency of high intensity focused ultrasound (HIFU) treatment for adenomyosis: A retrospective study.

    PubMed

    Gong, Chunmei; Yang, Bin; Shi, Yarong; Liu, Zhongqiong; Wan, Lili; Zhang, Hong; Jiang, Denghua; Zhang, Lian

    2016-08-01

    Objectives The aim of this study was to investigate factors affecting ablative efficiency of high intensity focused ultrasound (HIFU) for adenomyosis. Materials and methods In all, 245 patients with adenomyosis who underwent ultrasound guided HIFU (USgHIFU) were retrospectively reviewed. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (MRI) before and after HIFU treatment. The non-perfused volume (NPV) ratio, energy efficiency factor (EEF) and greyscale change were set as dependent variables, while the factors possibly affecting ablation efficiency were set as independent variables. These variables were used to build multiple regression models. Results A total of 245 patients with adenomyosis successfully completed HIFU treatment. Enhancement type on T1 weighted image (WI), abdominal wall thickness, volume of adenomyotic lesion, the number of hyperintense points, location of the uterus, and location of adenomyosis all had a linear relationship with the NPV ratio. Distance from skin to the adenomyotic lesion's ventral side, enhancement type on T1WI, volume of adenomyotic lesion, abdominal wall thickness, and signal intensity on T2WI all had a linear relationship with EEF. Location of the uterus and abdominal wall thickness also both had a linear relationship with greyscale change. Conclusion The enhancement type on T1WI, signal intensity on T2WI, volume of adenomyosis, location of the uterus and adenomyosis, number of hyperintense points, abdominal wall thickness, and distance from the skin to the adenomyotic lesion's ventral side can all be used as predictors of HIFU for adenomyosis.

  12. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation.

    PubMed

    Zhang, Xuemei; Zheng, Yuanyi; Wang, Zhigang; Huang, Shuai; Chen, Yu; Jiang, Wei; Zhang, Hua; Ding, Mingxia; Li, Qingshu; Xiao, Xiaoqiu; Luo, Xin; Wang, Zhibiao; Qi, Hongbo

    2014-06-01

    High intensity focused ultrasound (HIFU) has attracted the great attention in tumor ablation due to its non-invasive, efficient and economic features. However, HIFU ablation has its intrinsic limitations for removing the residual tumor cells, thus the tumor recurrence and metastasis cannot be avoided in this case. Herein, we developed a multifunctional targeted poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs), which not only function as an efficient ultrasound contrast agent for tumor imaging, but also a targeted anticancer drug carrier and excellent synergistic agent for enhancing the therapeutic efficiency of HIFU ablation. Methotrexate (MTX)-loaded NBs were synthesized and filled with perfluorocarbon gas subsequently using a facile but general double emulsion evaporation method. The active tumor-targeting monoclonal anti-HLA-G antibodies (mAbHLA-G) were further conjugated onto the surface of nanobubbles. The mAbHLA-G/MTX/PLGA NBs could enhance the ultrasound imaging both in vitro and in vivo, and the targeting efficiency to HLA-G overexpressing JEG-3 cells has been demonstrated. The elaborately designed mAbHLA-G/MTX/PLGA NBs can specifically target to the tumor cells both in vitro and in vivo, and their blood circulation time in vivo was much longer than non-targeted MTX/PLGA NBs. Further therapeutic evaluations showed that the targeted NBs as a synergistic agent can significantly improve the efficiency of HIFU ablation by changing the acoustic environment, and the focused ultrasound can promote the on-demand MTX release both in vitro and in vivo. The in vivo histopathology test and immunohistochemical analysis showed that the mAbHLA-G/MTX/PLGA NBs plus HIFU group presented most serious coagulative necrosis, the lowest proliferation index and the highest apoptotic index. Therefore, the successful introduction of targeted mAbHLA-G/MTX/PLGA NBs provides an excellent platform for the highly efficient, imaging-guided and non-invasive HIFU synergistic therapy

  13. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-09-01

    first statement of work is to determine if high intensity focused ultrasound ( HIFU ) increases the cellular uptake of AS-MDM2, AS-bcl-2 and AS-PKA...Drug Delivery in Prostate Tumor in vivo Using MR Guided Focused Ultrasound (MRg HIFU ). WC, IFMBE Proceedings 25: pp341-344, 2009 6...pharmaceutical agents in the treatment target. In the model system proposed, pulsed high intensity focused ultrasound ( HIFU ) is hypothesized to improve

  14. A Comparison of Real-time Feedback and Tissue Response to Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Ablation using Scanned Track Exposure Regimes

    NASA Astrophysics Data System (ADS)

    Gray, Robert H. R.; Leslie, Thomas A.; Civale, John; Kennedy, James E.; ter Haar, Gail

    2007-05-01

    Real time ultrasound monitoring of tissue ablation in clinical HIFU treatments currently depends on the observation of the appearance of new hyperechoic regions within the target volume, allowing visually directed treatment. These grey-scale changes are attributed to the formation of gas or vapour bubbles. In this study, scanned track lesions have been formed in ex vivo bovine liver samples at a range of ablative intensities (free field spatial peak intensities 7 - 47 kW cm-2), and tracking speeds (1-2 mms-1). Their appearance on conventional B-mode ultrasound images has been assessed using digital imaging techniques over the first 60 seconds following HIFU exposure. The size of the lesion as seen on the ultrasound scan is compared to the macroscopic size of the lesion at dissection. It is seen that the lesion size is highly dependent on the intensity and scanning speed of the transducer. Reliable lesions can be created using scanned tracks at the lowest powers, with increased numbers of cycles, and grey-scale changes correlated strongly with the histological findings. Although not a highly sensitive indication of ablated area, ultrasound monitoring of treatment is highly specific thus confirming its clinical utility.

  15. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).

    PubMed

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-07

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p < 0.002 in the 2D HMI system. We demonstrated the

  16. High Intensity Focused Ultrasound (HIFU) Focal Spot Localization Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-01-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of High-Intensity Focused Ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the −3 dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p<0.002 in the 2D HMI system. We demonstrated the

  17. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the  -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p  <  0.002 in the 2D HMI system. We demonstrated

  18. MR-guided transcranial brain HIFU in small animal models

    PubMed Central

    Larrat, Benoît; Pernot, Mathieu; Aubry, Jean-François; Dervishi, Elvis; Sinkus, Ralph; Seilhean, Danielle; Marie, Yannick; Boch, Anne-Laure; Fink, Mathias; Tanter, Mickaël

    2010-01-01

    Recent studies have demonstrated the feasibility of transcranial High Intensity Focused Ultrasound (HIFU) therapy in the brain using adaptive focusing techniques. However, the complexity of the procedures imposes to provide an accurate targeting, monitoring and control of this emerging therapeutic modality in order to ensure the safety of the treatment and avoid potential damaging effects of ultrasound on healthy tissues. For these purposes, a complete workflow and setup for HIFU treatment under Magnetic Resonance (MR) guidance is proposed and implemented in rats. For the first time, tissue displacements induced by the acoustic radiation force are detected in vivo in brain tissues and measured quantitatively using motion-sensitive MR sequences. Such a valuable target control prior to treatment assesses the quality of the focusing pattern in situ and enables to estimate the acoustic intensity at focus. This MR-Acoustic radiation force imaging is then correlated with conventional MR-Thermometry sequences which are used to follow the temperature changes during the HIFU therapeutic session. Last, pre and post treatment Magnetic Resonance Elastography (MRE) datasets are acquired and evaluated as a new potential way to non invasively control the stiffness changes due to the presence of thermal necrosis. As a proof of concept, MRguided HIFU is performed in vitro in turkey breast samples and in vivo in transcranial rat brain experiments. The experiments are conducted using a dedicated MR compatible HIFU setup in a high field MRI scanner (7T). Results obtained on rats confirmed that both the MR localization of the US focal point and the pre and post HIFU measurement of the tissue stiffness, together with temperature control during HIFU are feasible and valuable techniques for an efficient monitoring of HIFU in the brain. Brain elasticity appears to be more sensitive to the presence of oedema than to tissue necrosis. PMID:20019400

  19. Two-year clinical follow-up after pulmonary vein isolation using high-intensity focused ultrasound (HIFU) and an esophageal temperature-guided safety algorithm.

    PubMed

    Neven, Kars; Metzner, Andreas; Schmidt, Boris; Ouyang, Feifan; Kuck, Karl-Heinz

    2012-03-01

    High-intensity frequency ultrasound (HIFU) can achieve pulmonary vein isolation (PVI), but severe complications have happened. An esophageal temperature (ET)-guided safety algorithm was implemented. We investigated medium-term outcome. After left atrial access, HIFU was applied until complete PVI. The safety algorithm was as follows: ≤3 complete ablations per pulmonary vein, early abortion when ET ≥40.0°C, use of Power Modulation at ET >39.0°C or when after 20 to 30 seconds no change in PV electrograms: to reduce the ablation temperature in the surrounding tissue, acoustic power is switched on and off with a frequency of 1 Hz; in all first ablations, use of Power Modulation after 50% of programmed time. Touch-up radiofrequency ablation when PVI failed. Follow-up included interviews and Holter electrocardiograms. Recurrence was defined as atrial fibrillation (AF) >30 seconds without a blanking period. A total of 28 symptomatic patients (18 males, age 63 years), with paroxysmal AF (n = 19) and persistent AF (n = 9) were included. After a median follow-up of 738 days, 22 of the 28 patients (79%) were free of AF without antiarrhythmic drugs. After 1 repeat procedure with radiofrequency ablation, 5 patients remained free of AF. The complications were as follows: 1 lethal atrial-to-esophageal fistula at day 31, 1 pericardial effusion at day 48, 1 unexplained death at day 49, and 2 persistent phrenic nerve palsies with full recovery within 12 months. Two-year follow-up after PVI using HIFU and an ET-guided safety algorithm shows success rates similar to those of radiofrequency-based procedures but with higher complication rates. Importantly, the ET-guided safety algorithm failed to prevent severe complications. HIFU does not meet safety standards required for the treatment of AF, and this led to a halt of its clinical use. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Non-invasive MR-guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas

    DTIC Science & Technology

    2012-07-01

    AD_________________ Award Number: W81XWH-11-1-0299 TITLE: Non- invasive MR-guided HIFU Therapy...3. DATES COVERED 1 July 2011-30 June 2012 4. TITLE AND SUBTITLE Non- invasive MR-guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas 5a... focused on technological development for thermal ablation in mice. Our goal was to establish a small-animal MR-guided HIFU experimental system that

  1. High intensity focused ultrasound surgery (HIFU) of the brain: A historical perspective, with modern applications

    PubMed Central

    Jagannathan, Jay; Sanghvi, Narendra K; Crum, Lawrence A; Yen, Chun-Po; Medel, Ricky; Dumont, Aaron S; Sheehan, Jason P; Steiner, Ladislau; Jolesz, Ferenc; Kassell, Neal F

    2014-01-01

    The field of MRI-guided high intensity focused ultrasound surgery (MRgFUS) is a rapidly evolving one with many potential applications in neurosurgery. This is the first of three articles on MRgFUS, this paper focuses on the historical development of the technology and it's potential applications to modern neurosurgery. The evolution of MRgFUS has occurred in parallel with modern neurological surgery and the two seemingly distinct disciplines share many of the same pioneering figures. Early studies on focused ultrasound treatment in the 1940's and 1950's demonstrated the ability to perform precise lesioning in the human brain, with a favorable risk-benefit profile. However, the need for a craniotomy, as well as lack of sophisticated imaging technology resulted in limited growth of HIFU for neurosurgery. More recently, technological advances, have permitted the combination of HIFU along with MRI guidance to provide an opportunity to effectively treat a variety of CNS disorders. Although challenges remain, HIFU-mediated neurosurgery may offer the ability to target and treat CNS conditions that were previously extremely difficult to perform. The remaining two articles in this series will focus on the physical principles of modern MRgFUS as well as current and future avenues for investigation. PMID:19190451

  2. MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform.

    PubMed

    Merckel, Laura G; Bartels, Lambertus W; Köhler, Max O; van den Bongard, H J G Desirée; Deckers, Roel; Mali, Willem P Th M; Binkert, Christoph A; Moonen, Chrit T; Gilhuijs, Kenneth G A; van den Bosch, Maurice A A J

    2013-04-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  3. Ultrasound-Guided Transesophageal High-Intensity Focused Ultrasound Cardiac Ablation in a Beating Heart: A Pilot Feasibility Study in Pigs.

    PubMed

    Bessiere, Francis; N'djin, W Apoutou; Colas, Elodie Constanciel; Chavrier, Françoise; Greillier, Paul; Chapelon, Jean Yves; Chevalier, Philippe; Lafon, Cyril

    2016-08-01

    Catheter ablation for the treatment of arrhythmia is associated with significant complications and often-repeated procedures. Consequently, a less invasive and more efficient technique is required. Because high-intensity focused ultrasound (HIFU) enables the generation of precise thermal ablations in deep-seated tissues without harming the tissues in the propagation path, it has the potential to be used as a new ablation technique. A system capable of delivering HIFU into the heart by a transesophageal route using ultrasound (US) imaging guidance was developed and tested in vivo in six male pigs. HIFU exposures were performed on atria and ventricles. At the time of autopsy, visual inspection identified thermal lesions in the targeted areas in three of the animals. These lesions were confirmed by histologic analysis (mean size: 5.5 mm(2) × 11 mm(2)). No esophageal thermal injury was observed. One animal presented with bradycardia due to an atrio-ventricular block, which provides real-time confirmation of an interaction between HIFU and the electrical circuits of the heart. Thus, US-guided HIFU has the potential to minimally invasively create myocardial lesions without an intra-cardiac device. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound.

    PubMed

    Moonen, Chrit T W

    2007-06-15

    Local temperature elevation may be used for tumor ablation, gene expression, drug activation, and gene and/or drug delivery. High-intensity focused ultrasound (HIFU) is the only clinically viable technology that can be used to achieve a local temperature increase deep inside the human body in a noninvasive way. Magnetic resonance imaging (MRI) guidance of the procedure allows in situ target definition and identification of nearby healthy tissue to be spared. In addition, MRI can be used to provide continuous temperature mapping during HIFU for spatial and temporal control of the heating procedure and prediction of the final lesion based on the received thermal dose. The primary purpose of the development of MRI-guided HIFU was to achieve safe noninvasive tissue ablation. The technique has been tested extensively in preclinical studies and is now accepted in the clinic for ablation of uterine fibroids. MRI-guided HIFU for ablation shows conceptual similarities with radiation therapy. However, thermal damage generally shows threshold-like behavior, with necrosis above the critical thermal dose and full recovery below. MRI-guided HIFU is being clinically evaluated in the cancer field. The technology also shows great promise for a variety of advanced therapeutic methods, such as gene therapy. MR-guided HIFU, together with the use of a temperature-sensitive promoter, provides local, physical, and spatio-temporal control of transgene expression. Specially designed contrast agents, together with the combined use of MRI and ultrasound, may be used for local gene and drug delivery.

  5. Thermal ablation system using high intensity focused ultrasound (HIFU) and guided by MRI

    NASA Astrophysics Data System (ADS)

    Damianou, C.; Ioannides, K.; HadjiSavas, V.; Milonas, N.; Couppis, A.; Iosif, D.; Komodromos, M.; Vrionides, F.

    2009-04-01

    In this paper magnetic resonance imaging (MRI) is investigated for monitoring lesions created by high intensity focused ultrasound (HIFU) in kidney, liver and brain in vitro and in vivo. Spherically focused transducers of 4 cm diameter, focusing at 10 cm and operating at 1 and 4 MHz were used. An MRI compatible positioning device was developed in order to scan the HIFU transducer. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the positioning device to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Both T1-w FSE and T2-w FSE imaged successfully lesions in kidney and liver. T1-w FSE and T2-w FSE and FLAIR shows better anatomical details in brain than T1-w FSE, but with T1-w FSE the contrast between lesion and brain is higher for both thermal and bubbly lesion. With this system we were able to create large lesions (by producing overlapping lesions). The length of the lesions in vivo brain was much higher than the length in vitro, proving that the penetration in the in vitro brain is limited by reflection due to trapped bubbles in the blood vessels.

  6. Contrast enhanced ultrasound (CEUS) with MRI image fusion for monitoring focal therapy of prostate cancer with high intensity focused ultrasound (HIFU)1.

    PubMed

    Apfelbeck, M; Clevert, D-A; Ricke, J; Stief, C; Schlenker, B

    2018-01-01

    Reduced acceptance of radical prostatectomy in patients with low risk or intermediate risk prostate cancer has significantly changed treatment strategies in prostate cancer (PCa) during the last years. Focal therapy of the prostate with high intensity focused ultrasound (HIFU) is an organ-preserving treatment for prostate cancer with less impairment of health-related quality of life. Follow-up after HIFU therapy by imaging modalities remains a major problem as eg. MRI performs poorly. Contrast enhanced ultrasound (CEUS) allows to monitor the vascular architecture of organs non-invasively. However, only limited data are available using CEUS to define successful and complete HIFU treatment of the prostate. In this study, we aimed to evaluate short-term image findings using CEUS and image fusion before and after HIFU treatment. Prospective single arm study in patients with uni- or bilateral, low or intermediate risk prostate cancer or recurrent cancer after radiotherapy treated with HIFU at our institution between October 2016 and November 2017. HIFU hemiablation or whole gland treatment was performed using the Focal One® device. PCa was diagnosed either by multiparametric magnetic resonance imaging (mpMRI) followed by MRI fusion based targeted biopsy combined with 12 core transrectal ultrasound (TRUS) guided biopsy or 12 core random biopsy only. Monitoring of the target region before, immediately and 24 hours after the ablation was done by CEUS in combination with image fusion using an axial T2-weighted MRI sequence. 6 consecutive patients with Gleason score (GS) 6, 5 patients with GS 7a prostate cancer and one patient with biochemical recurrence after radiotherapy were included in the study. Three patients underwent whole gland treatment due to histological proven bilateral PCa or recurrent PCa after radiotherapy. Hemiablation was performed in 9 patients with unilateral tumor and no PIRADS 4 or 5 lesion in the contralateral lobe. Median patient age was 69.8 years

  7. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: An in vitro study.

    PubMed

    Chanel, Laure-Anais; Nageotte, Florent; Vappou, Jonathan; Luo, Jianwen; Cuvillon, Loic; de Mathelin, Michel

    2015-01-01

    High Intensity Focused Ultrasound (HIFU) therapy is a very promising method for ablation of solid tumors. However, intra-abdominal organ motion, principally due to breathing, is a substantial limitation that results in incorrect tumor targeting. The objective of this work is to develop an all-in-one robotized HIFU system that can compensate motion in real-time during HIFU treatment. To this end, an ultrasound visual servoing scheme working at 20 Hz was designed. It relies on the motion estimation by using a fast ultrasonic speckle tracking algorithm and on the use of an interleaved imaging/HIFU sonication sequence for avoiding ultrasonic wave interferences. The robotized HIFU system was tested on a sample of chicken breast undergoing a vertical sinusoidal motion at 0.25 Hz. Sonications with and without motion compensation were performed in order to assess the effect of motion compensation on thermal lesions induced by HIFU. Motion was reduced by more than 80% thanks to this ultrasonic visual servoing system.

  8. Detection theory applied to high intensity focused ultrasound (HIFU) treatment evaluation

    NASA Astrophysics Data System (ADS)

    Sanghvi, Narendra; Wunderlich, Adam; Seip, Ralf; Tavakkoli, Jahangir; Dines, Kris; Baily, Michael; Crum, Lawrence

    2003-04-01

    The aim of this work is to develop a HIFU treatment evaluation algorithm based on 1-D pulse/echo (P/E) ultrasound data taken during HIFU exposures. The algorithm is applicable to large treatment volumes resulting from several overlapping elementary exposures. Treatments consisted of multiple HIFU exposures with an on-time of 3 seconds each, spaced 3 mm apart, and an off-time of 6 seconds in between HIFU exposures. The HIFU was paused for approximately 70 milliseconds every 0.5 seconds, while P/E data was acquired along the beam axis, using a confocal imaging transducer. Data was collected from multiple in vitro and in vivo tissue treatments, including shams. The cumulative energy change in the P/E data was found for every HIFU exposure, as a function of depth. Subsequently, a likelihood ratio test with a fixed false alarm rate was used to derive a positive or negative lesion creation decision for that position. For false alarm rates less than 5%, positive treatment outcomes were consistently detected for better than 90% of the HIFU exposures. In addition, the algorithm outcome correlated to the applied HIFU intensity level. Lesion formation was therefore successfully detected as a function of dosage. [Work supported by NIH SBIR Grant 2 R 44 CA 83244-02.

  9. Validating Ultrasound-based HIFU Lesion-size Monitoring Technique with MR Thermometry and Histology

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Petruzzello, John; Anand, Ajay; Sethuraman, Shriram; Azevedo, Jose

    2010-03-01

    In order to control and monitor HIFU lesions accurately and cost-effectively in real-time, we have developed an ultrasound-based therapy monitoring technique using acoustic radiation force to track the change in tissue mechanical properties. We validate our method with concurrent MR thermometry and histology. Comparison studies have been completed on in-vitro bovine liver samples. A single-element 1.1 MHz focused transducer was used to deliver HIFU and produce acoustic radiation force (ARF). A 5 MHz single-element transducer was placed co-axially with the HIFU transducer to acquire the RF data, and track the tissue displacement induced by ARF. During therapy, the monitoring procedure was interleaved with HIFU. MR thermometry (Philips Panorama 1T system) and ultrasound monitoring were performed simultaneously. The tissue temperature and thermal dose (CEM43 = 240 mins) were computed from the MR thermometry data. The tissue displacement induced by the acoustic radiation force was calculated from the ultrasound RF data in real-time using a cross-correlation based method. A normalized displacement difference (NDD) parameter was developed and calibrated to estimate the lesion size. The lesion size estimated by the NDD was compared with both MR thermometry prediction and the histology analysis. For lesions smaller than 8mm, the NDD-based lesion monitoring technique showed very similar performance as MR thermometry. The standard deviation of lesion size error is 0.66 mm, which is comparable to MR thermal dose contour prediction (0.42 mm). A phased array is needed for tracking displacement in 2D and monitoring lesion larger than 8 mm. The study demonstrates the potential of our ultrasound based technique to achieve precise HIFU lesion control through real-time monitoring. The results compare well with histology and an established technique like MR Thermometry. This approach provides feedback control in real-time to terminate therapy when a pre-determined lesion size is

  10. Thermal fixation of swine liver tissue after magnetic resonance-guided high-intensity focused ultrasound ablation.

    PubMed

    Courivaud, Frédéric; Kazaryan, Airazat M; Lund, Alice; Orszagh, Vivian C; Svindland, Aud; Marangos, Irina Pavlik; Halvorsen, Per Steinar; Jebsen, Peter; Fosse, Erik; Hol, Per Kristian; Edwin, Bjørn

    2014-07-01

    The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Non-invasive therapeutic use of High-Intensity Focused Ultrasound (HIFU) with 3 Tesla Magnetic Resonance Imaging in women with symptomatic uterine fibroids.

    PubMed

    Łoziński, Tomasz; Filipowska, Justyna; Gurynowicz, Grzegorz; Gabriel, Iwona; Czekierdowski, Artur

    2017-01-01

    Benign uterine fibroids are common female genital tract tumors and if symptomatic often require extensive surgery. When tumors are multiple and large or unusually located, the operative treatment may lead to significant morbidity and compromise quality of life. Recovery period after surgical treatment may be complicated by patient's medical condition and wound healing problems. Currently used other non-surgical treatment modalities usually provide only a temporal symptoms relief and may not be efficient in all affected women. In the last decade, minimally invasive treatment of uterine fibroids called Magnetic Resonance guided High-Intensity Focused Ultrasound (MRI HIFU) was introduced. This technique uses thermal ablation simultaneously with MRI imaging of the mass and tissue temperature measurements during the procedure where a focused ultrasound beam is applied externally to destroy tumors located in the human body. Successful application of MRI HIFU has been recently described in patients with various malignancies, such as breast, prostate and hepatocellular cancers as well as soft tissue and bone tumors. This technique is innovative and has been proven to be safe and effective but there are several limitations for treatment. The article highlights the relative advantages and disadvantages of MRI guided HIFU in women with uterine fibroids. The authors also describe high-resolution MRI technique on 3T MRI, along with the approach to interpretation of HIFU results applied to uterine fibroids that has been experienced at one institution.

  12. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    PubMed

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  13. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation

    PubMed Central

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J.; Fütterer, Jürgen J.; de Korte, Chris L.

    2017-01-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo, e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation. PMID:28736668

  14. Histopathological changes associated with high intensity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostate

    PubMed Central

    Van Leenders, G J L H; Beerlage, H; Ruijter, E; de la Rosette, J J M C H; van de Kaa, C A

    2000-01-01

    Aims—Investigation of the histopathological changes in prostatectomy specimens of patients with prostate cancer after high intensity focused ultrasound (HIFU) and identification of immunohistochemical markers for tissue damage after HIFU treatment. Methods—Nine patients diagnosed with adenocarcinoma of the prostate underwent unilateral HIFU treatment seven to 12 days before radical prostatectomy. The prostatectomy specimens were analysed histologically. Immunohistochemical staining and electron microscopy were performed to characterise more subtle phenotypic changes. Results—All prostatectomy specimens revealed well circumscribed HIFU lesions at the dorsal side of the prostate lobe treated. Most epithelial glands in the centre of the HIFU lesions revealed signs of necrosis. Glands without apparently necrotic features were also situated in the HIFU lesions, raising the question of whether lethal destruction had occurred. This epithelium reacted with antibodies to pancytokeratin, prostate specific antigen (PSA), and Ki67, but did not express cytokeratin 8, which is indicative of severe cellular damage. Ultrastructural examination revealed disintegration of cellular membranes and cytoplasmic organelles consistent with cell necrosis. HIFU treatment was incomplete at the ventral, lateral, and dorsal sides of the prostate lobe treated. Conclusions—HIFU treatment induces a spectrum of morphological changes ranging from apparent light microscopic necrosis to more subtle ultrastructural cell damage. All HIFU lesions are marked by loss of cytokeratin 8. HIFU does not affect the whole area treated, leaving vital tissue at the ventral, lateral, and dorsal sides of the prostate. Key Words: prostate cancer • high intensity focused ultrasound treatment PMID:10889823

  15. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays

    NASA Astrophysics Data System (ADS)

    Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas

    2017-03-01

    In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.

  16. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  17. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids.

    PubMed

    Held, Robert Thomas; Zderic, Vesna; Nguyen, Thuc Nghi; Vaezy, Shahram

    2006-02-01

    An ultrasound (US), image-guided high-intensity focused ultrasound (HIFU) device was developed for noninvasive ablation of uterine fibroids. The HIFU device was an annular phased array, with a focal depth range of 30-60 mm, a natural focus of 50 mm, and a resonant frequency of 3 MHz. The in-house control software was developed to operate the HIFU electronics drive system for inducing tissue coagulation at different distances from the array. A novel imaging algorithm was developed to minimize the HIFU-induced noise in the US images. The device was able to produce lesions in bovine serum albumin-embedded polyacrylamide gels and excised pig liver. The lesions could be seen on the US images as hyperechoic regions. Depths ranging from 30 to 60 mm were sonicated at acoustic intensities of 4100 and 6100 W/cm2 for 15 s each, with the latter producing average lesion volumes at least 63% larger than the former. Tissue sonication patterns that began distal to the transducer produced longer lesions than those that began proximally. The variation in lesion dimensions indicates the possible development of HIFU protocols that increase HIFU throughput and shorten tumor treatment times.

  18. High-intensity-focused-ultrasound (HIFU) induced homeostasis and tissue ablation

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunita; Michel, M. S.; Alken, Peter; Kohrmann, K. U.; Haecker, Axel

    2003-06-01

    At high intensity levels, ultrasound energy focused into remote tissue targets in human body has shown to produce thermal necrosis in circumscribed regions with sub-millimeter accuracy. The non-invasive modality known as HIFU has enormous potential for thermal ablation of cancers/tumors of the human body without any adverse effects in the surrounding normal tissue. In this paper, empirical results for parametric assessment and interdependence of several exposure variables are presented for producing thermal necrosis as well as hemostasis. Multiple HIFU transducers in selective spatial configuration have been deployed using a suitably designed experiemntal harness, with and without motorized jig scanning. The pre-planning and on-line procedure for treatment and specified instrumentation is described. Custom designed 25mm aperture HIFU probes resonating at 2 MHz focused at 64 and 80 mm are used. Results have been obtained in ex-vivo animal tissue and in vitro biological phantoms for hemostasis.

  19. Feasibility study of high intensity focused ultrasound (HIFU) for the treatment of hydatid cysts of the liver.

    PubMed

    Imankulov, S B; Fedotovskikh, G V; Shaimardanova, G M; Yerlan, M; Zhampeisov, N K

    2015-11-01

    This study evaluates the feasibility of using high intensity focused ultrasound (HIFU) for the treatment of hydatid cysts of the liver. HIFU ablation was carried out in 62 patients with echinococcosis of the liver. The mean age of patients was 40.76±14.84 (range: 17-72 years). The effectiveness of the treatment was monitored in real-time by changes in the gray-scale, and by morphological studies, computed tomography, magnetic resonance imaging, and ultrasound. Criteria for evaluating the effectiveness of treatment in real time were outlines. Cytomorphological picture of destructive changes of parasitic elements was presented as well. Loss of embryonic elements of the parasite was observed at the subcellular level after HIFU-ablation and underlines the effectiveness of HIFU. Copyright © 2015. Published by Elsevier B.V.

  20. Effect of abdominal liposuction on sonographically guided high-intensity focused ultrasound ablation.

    PubMed

    Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi

    2014-09-01

    The aim of this study was to evaluate the effect of abdominal liposuction on sonographically guided high-intensity focused ultrasound (HIFU) ablation. A total of 10 women with uterine fibroids or adenomyosis who had received abdominal liposuction were analyzed after sonographically guided HIFU ablation. Of the 10 women, 6 had a diagnosis of uterine fibroids, and 4 had a diagnosis of uterine adenomyosis. All of them had a history of a horizontal-margin split-cesarean delivery. In addition, 26 women with a history of a single horizontal-margin split-cesarean delivery who had a diagnosis of uterine fibroids or adenomyosis but had not received liposuction were analyzed together as a control group. Of the 10 women, 1 woman with uterine fibroids developed local skin erythema after treatment; 1 women with uterine adenomyosis developed a skin burn after treatment; and the remaining women had obvious skin-burning pain during treatment. All women who had not received liposuction finished the treatment with no serious adverse events during or after treatment. The pain scores and incidence of skin-burning pain were significantly higher in the liposuction group than the control group (P= .021 and .038, respectively). Abdominal liposuction may increase the risk of skin burns during sonographically guided HIFU ablation. © 2014 by the American Institute of Ultrasound in Medicine.

  1. HIFU Hemostasis of Liver Injuries Enhanced by Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Zderic, Vesna; Vaezy, Shahram; Brayman, Andrew A.; Matula, Thomas J.; O'Keefe, Grant E.; Crum, Lawrence A.

    2005-03-01

    Our objective was to investigate whether High-Intensity Focused Ultrasound (HIFU) hemostasis can be achieved faster in the presence of ultrasound contrast agents (UCA). Incisions (3 cm long and 0.5 cm deep) were made in surgically exposed rabbit liver. Optison at a concentration of 0.18 ml/kg was injected into the mesenteric vein, immediately before the incision was made. The HIFU applicator (frequency of 5.5 MHz, and intensity of 3,700 W/cm2) was scanned manually over the incision (at an approximate rate of 1 mm/s) until hemostasis was achieved. The times to complete hemostasis were measured and normalized with the initial blood loss. The hemostasis times were 59±23 s in the presence of Optison and 70±23 s without Optison. The presence of Optison produced a 37% reduction in the normalized hemostasis times (p<0.05). Optison also provided faster (by 34%) formation of the coagulum seal over the lesion. Gross observations showed that the lesion size did not change due to the presence of Optison. Histological analysis showed that lesions consisted of an area of coagulation necrosis in vicinity of the incision, occasionally surrounded by a congestion zone filled with blood. Our results suggest the potential utility of microbubble contrast agents for increasing efficiency of HIFU hemostasis of internal organ injuries.

  2. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  3. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2004-07-01

    applications using high-intensity focused ultrasound ( HIFU ). We tems, Once the real-time imaging capability is available for have shown that this dual-mode...Arrays Emad S. Ebbini, PI Introduction High-intensity focus ultrasound ( HIFU ) is gaining wider acceptance in noninvasive or minimally invasive targeting of...Methods in Ultrasound Imaging, ISBI 2004, Arlington, VA, April 2004. III. Yao and Ebbini, "Real-Time Monitoring of the Transients of HIFU -Induced Lesions

  4. High-intensity focused ultrasound in the treatment of breast fibroadenomata (HIFU-F trial).

    PubMed

    Peek, M C L; Ahmed, M; Scudder, J; Baker, R; Charalampoudis, P; Pinder, S E; Douek, M

    2017-10-02

    High-intensity focussed ultrasound (HIFU) is a non-invasive ablative technique utilising the application of high frequency ultrasound (US) pressure waves to cause tissue necrosis. This emerging technology is currently limited by prolonged treatment times. The aim of the HIFU-F trial was to perform circumferential HIFU treatment as a means of shortening treatment times. A prospective trial was set up to treat 50 consecutive patients ≥18 years of age. Eligible patients possessed symptomatic fibroadenomata, visible on US. Patients ≥25 years of age required histological confirmation of the diagnosis. Primary outcome measures were reduction in treatment time, reduction in volume on US after 12 months and complication rates. HIFU treatment was performed in 51 patients (53 treatments) with a mean age of 29.8 years (SD 7.2 years) and a diameter of 2.6 cm (SD 1.4 cm). Circumferential ablation reduced treatment times by an estimated 19.9 min (SD 25.1 min), which is a 29.4% (SD 15.2%) reduction compared with whole lesion ablation. Volume reduction of 43.2% (SD 35.4%; p < 0.005, paired t-test) was observed on US at 12 months post-treatment. Local complications completely resolved at 1 month apart from skin hyper-pigmentation, which persisted in nine cases at three months, six cases at 6 months and six at 12 months. Circumferential HIFU treatment for breast fibroadenomata is feasible to reduce both lesion size and treatment time. HIFU is a non-invasive alternative technique for the treatment of breast fibroadenomata. ISRCTN registration: 76622747.

  5. Experimental ablation of the pancreas with high intensity focused ultrasound (HIFU) in a porcine model.

    PubMed

    Xie, Biao; Li, Yu-Yuan; Jia, Lin; Nie, Yu-Qiang; Du, Hong; Jiang, Shu-Man

    2010-12-17

    The aim of this study was to determine the feasibility and safety of high intensity focused ultrasound's (HIFU) in pancreatic diseases. Twelve pigs were divided into three groups. The pancreases of pigs in Group A were ablated directly with HIFU, but those in Group B and C ablated by extracorporeal HIFU. The pigs in Group C were sacrificed at day 7 after HIFU. Serological parameters were determined pre-operation and post-operation. The entire pancreas was removed for histological examination. Each animal tolerate the HIFU ablation well. The complete necrosis was observed in targeted regions. The margins of the necrotic regions were clearly delineated from the surrounding normal tissues. Infiltration of inflammatory cells and phorocytosis on the boundary were found in group C. Blood and urine amylase levels were relatively steady after HIFU. No acute pancreatitis or severe complications occurred. In conclusion, HIFU ablation on the pancreas was safe and effective in experimental pigs.

  6. Experimental ablation of the pancreas with high intensity focused ultrasound (HIFU) in a porcine model

    PubMed Central

    Xie, Biao; Li, Yu-Yuan; Jia, Lin; Nie, Yu-Qiang; Du, Hong; Jiang, Shu-Man

    2011-01-01

    The aim of this study was to determine the feasibility and safety of high intensity focused ultrasound's (HIFU) in pancreatic diseases. Twelve pigs were divided into three groups. The pancreases of pigs in Group A were ablated directly with HIFU, but those in Group B and C ablated by extracorporeal HIFU. The pigs in Group C were sacrificed at day 7 after HIFU. Serological parameters were determined pre-operation and post-operation. The entire pancreas was removed for histological examination. Each animal tolerate the HIFU ablation well. The complete necrosis was observed in targeted regions. The margins of the necrotic regions were clearly delineated from the surrounding normal tissues. Infiltration of inflammatory cells and phorocytosis on the boundary were found in group C. Blood and urine amylase levels were relatively steady after HIFU. No acute pancreatitis or severe complications occurred. In conclusion, HIFU ablation on the pancreas was safe and effective in experimental pigs. PMID:21197259

  7. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2005-07-01

    dual-mode array is ing high-intensity focused ultrasound ( HIFU ) exhibit non- is used), perhaps a result of rectified diffusion. linear behavior that...applications using high-intensity focused ultrasound ( HIFU ). We tems. Once the real-time imaging capability is available for have shown that this dual-mode...INTRODUCTION two effects lead to echo time-shift that can be estimated High intensity focused ultrasound ( HIFU ) is a and have been shown to be related local

  8. Medical Ultrasound Technology Research and Development at the University of Washington Center for Industrial and Medical Ultrasound

    DTIC Science & Technology

    2003-10-02

    provide a world-class, advanced research center for bioengineering development and graduate education in high-intensity, focused ultrasound ( HIFU ). This...convenient, and robust. These technological enhancements have enabled the development of HIFU arrays and image-guided ultrasound systems for greater... Ultrasound (CIMU). The many disparate facilities and technical capabilities available to CIMU staff and students were integrated and enhanced to

  9. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system

    PubMed Central

    Adams, Matthew T.; Cleveland, Robin O.; Roy, Ronald A.

    2017-01-01

    Abstract. Real-time acousto-optic (AO) sensing has been shown to noninvasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposures. The technique is particularly appropriate for monitoring noncavitating lesions that offer minimal acoustic contrast. A numerical model is presented for an AO-guided HIFU system with an illumination wavelength of 1064 nm and an acoustic frequency of 1.1 MHz. To confirm the model’s accuracy, it is compared to previously published experimental data gathered during AO-guided HIFU in chicken breast. The model is used to determine an optimal design for an AO-guided HIFU system, to assess its robustness, and to predict its efficacy for the ablation of large volumes. It was found that a through transmission geometry results in the best performance, and an optical wavelength around 800 nm was optimal as it provided sufficient contrast with low absorption. Finally, it was shown that the strategy employed while treating large volumes with AO guidance has a major impact on the resulting necrotic volume and symmetry. PMID:28114454

  10. Monitoring of HIFU thermal damage using integrated photoacoustic imaging and high intensity focused ultrasound technique

    NASA Astrophysics Data System (ADS)

    Cui, Huizhong; Yang, Xinmai

    2011-03-01

    In this study, we applied an integrated photoacoustic imaging (PAI) and high intensity focused ultrasound (HIFU) system to noninvasively monitor the thermal damage due to HIFU ablation in vivo. A single-element, spherically focused ultrasonic transducer, with a central frequency of 5MHz, was used to generate a HIFU area in soft tissue. Photoacoustic signals were detected by the same ultrasonic transducer before and after HIFU treatments using different wavelengths. The feasibility of combined contrast imaging and treatment of solid tumor in vivo by the integrated PAI and HIFU system was also studied. Gold nanorods were used to enhance PAI during the imaging of a CT26 tumor, which was subcutaneously inoculated on the hip of a BALB/c mouse. Subsequently, the CT26 tumor was ablated by HIFU with the guidance of photoacoustic images. Our results suggested that the tumor was clearly visible on photoacoustic images after the injection of gold nanorods and was ablated by HIFU. In conclusion, PAI may potentially be used for monitoring HIFU thermal lesions with possible diagnosis and treatment of solid tumors.

  11. The potential applications of high-intensity focused ultrasound (HIFU) in vascular neurosurgery.

    PubMed

    Serrone, Joseph; Kocaeli, Hasan; Douglas Mast, T; Burgess, Mark T; Zuccarello, Mario

    2012-02-01

    This review assesses the feasibilty of high-intensity focused ultrasound (HIFU) in neurosurgical applications, specifically occlusion of intact blood vessels. Fourteen articles were examined. In summary, MRI was effective for HIFU guidance whereas MR angiography assessed vessel occlusion. Several studies noted immediate occlusion of blood vessels with HIFU. Long-term data, though scarce, indicated a trend of vessel recanalization and return to pre-treatment diameters. Effective parameters for extracranial vascular occlusion included intensity ranges of 1,690-8,800 W/cm(2), duration <15 seconds, and 0.68-3.3 MHz frequency. A threshold frequency-intensity product of 8,250 MHzW/cm(2) was needed for vascular occlusion with a sensitivity of 70% and a specificity of 86%. Complications include skin burns, hemorrhage, and damage to surrounding structures. With evidence that HIFU can successfully occlude extracranial blood vessels, refinement in applications and demonstrable intracranial occlusion are needed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Influence of high intensity focused ultrasound (HIFU) treatment to the pancreatic function in pancreatic cancer patients.

    PubMed

    Shi, Yulan; Ying, Xiao; Hu, Xiaoye; Zhao, Jing; Fang, Xuefeng; Wu, Minghui; Chen, Tian Zhou; Shen, Hong

    2015-05-01

    Present study was designed to investigate the pancreatic endocrine and exocrine function damage after High Intensity Focused Ultrasound (HIFU) therapy in patients with advanced pancreatic cancer. It was a retrospective analysis of blood glucose and amylase changes in 59 advanced pancreatic cancer patients treated with HIFU from 2010 February to 2014 January. The mean glucose and amylase before HIFU treatment were 6.02mmol/L and 59.17 U/L respectively. After HIFU treatment, it was shown that the mean glucose and amylase levels were 5.66mmol/L and 57.86/L respectively. There was no statistical significance between them. No acute pancreatitis was observed. The endocrine and exocrine function of pancreatic cancer patients was not damaged by HIFU treatment. HIFU treatment for the pancreatic cancer patients seems to be safe.

  13. [High intensity focused ultrasound (HIFU) : Importance in the treatment of prostate cancer].

    PubMed

    Ganzer, R

    2017-08-01

    High intensity focused ultrasound (HIFU) has been used since the beginning of the 1990s as an alternative treatment for prostate cancer. Overview of the current status and critical review of the different indications for HIFU in the treatment of prostate cancer. Review of the current literature on the indications, side effects, oncologic results and current guideline recommendations. The principle of HIFU is based on high energy sound waves, which lead to coagulation necrosis at the focal point. It can be applied for different indications: complete ablation of prostatic tissue is attempted in whole gland HIFU in the primary treatment of localized prostate cancer. There are several case series in the current literature with a maximum median follow-up of 8.1 years. The main side effect is the formation of bladder neck sclerosis. A further indication is for salvage HIFU in patients with localized recurrent prostate cancer after radiotherapy. This is a high-risk procedure due to increased risk of incontinence and formation of rectourethral fistula. Focal therapy is an innovative field aiming at partial prostate gland ablation with HIFU thereby reducing side effects. Technical improvements in HIFU enable treatment planning with fusion of multiparametric magnetic resonance imaging (mpMRI). Due to the experimental character, this should only be carried out within clinical trials. Due to a lack of prospective randomized trials and limited long-term results, whole gland HIFU is considered differently in the guidelines of European countries. Focal therapy is still experimental and should only be carried out within clinical trials.

  14. High-intensity focused ultrasound (HIFU) treatment for uterine fibroids: a meta-analysis.

    PubMed

    Ji, Yongshuo; Hu, Kaimeng; Zhang, Yu; Gu, Lijun; Zhu, Junqiu; Zhu, Linglin; Zhu, Yanfei; Zhao, Hong

    2017-12-01

    High-intensity focused ultrasound (HIFU) is a non-invasive uterine-preserving treatment alternative to hysterectomy for women with fibroids. We performed this meta-analysis to evaluate the efficacy of HIFU in the treatment of women with symptomatic fibroids comparing it to other approaches including medical treatment with mifepristone (Mife), traditional surgery with myomectomy or hysterectomy (MYC/HRM), and radiofrequency ablation (RF). 16 studies with 1725 women were included. The pooled data of HIFU comparing it to other methods in terms of complete or partial response rate (CR/PR) was not significantly better, but in subgroup analysis, the response rate was significantly higher than Mife, significantly lower than RF and comparable to MYC/HRM, respectively. For the endpoints of safety, the superiority of HIFU compared to MYC/HMR or Mife was found to be significant in terms of pain/discomfort, fever, transfusion, genital tract, gastrointestinal tract, and anesthesia-related complications, while no superiority was identified for skin burn, urinary tract, and nervous system complications. These results suggest that HIFU treatment of uterine leiomyomas leads to clinical improvement with few significant clinical complications and adverse events.

  15. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    NASA Astrophysics Data System (ADS)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  16. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system—current state of the art and future perspectives

    PubMed Central

    Diana, Michele; Schiraldi, Luigi; Liu, Yu-Yin; Memeo, Riccardo; Mutter, Didier; Pessaux, Patrick

    2016-01-01

    Background High intensity focused ultrasound (HIFU) is emerging as a valid minimally-invasive image-guided treatment of malignancies. We aimed to review to current state of the art of HIFU therapy applied to the digestive system and discuss some promising avenues of the technology. Methods Pertinent studies were identified through PubMed and Embase search engines using the following keywords, combined in different ways: HIFU, esophagus, stomach, liver, pancreas, gallbladder, colon, rectum, and cancer. Experimental proof of the concept of endoluminal HIFU mucosa/submucosa ablation using a custom-made transducer has been obtained in vivo in the porcine model. Results Forty-four studies reported on the clinical use of HIFU to treat liver lesions, while 19 series were found on HIFU treatment of pancreatic cancers and four studies included patients suffering from both liver and pancreatic cancers, reporting on a total of 1,682 and 823 cases for liver and pancreas, respectively. Only very limited comparative prospective studies have been reported. Conclusions Digestive system clinical applications of HIFU are limited to pancreatic and liver cancer. It is safe and well tolerated. The exact place in the hepatocellular carcinoma (HCC) management algorithm remains to be defined. HIFU seems to add clear survival advantages over trans arterial chemo embolization (TACE) alone and similar results when compared to radio frequency (RF). For pancreatic cancer, HIFU achieves consistent cancer-related pain relief. Further research is warranted to improve targeting accuracy and efficacy monitoring. Furthermore, additional work is required to transfer this technology on appealing treatments such as endoscopic HIFU-based therapies. PMID:27500145

  17. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system-current state of the art and future perspectives.

    PubMed

    Diana, Michele; Schiraldi, Luigi; Liu, Yu-Yin; Memeo, Riccardo; Mutter, Didier; Pessaux, Patrick; Marescaux, Jacques

    2016-08-01

    High intensity focused ultrasound (HIFU) is emerging as a valid minimally-invasive image-guided treatment of malignancies. We aimed to review to current state of the art of HIFU therapy applied to the digestive system and discuss some promising avenues of the technology. Pertinent studies were identified through PubMed and Embase search engines using the following keywords, combined in different ways: HIFU, esophagus, stomach, liver, pancreas, gallbladder, colon, rectum, and cancer. Experimental proof of the concept of endoluminal HIFU mucosa/submucosa ablation using a custom-made transducer has been obtained in vivo in the porcine model. Forty-four studies reported on the clinical use of HIFU to treat liver lesions, while 19 series were found on HIFU treatment of pancreatic cancers and four studies included patients suffering from both liver and pancreatic cancers, reporting on a total of 1,682 and 823 cases for liver and pancreas, respectively. Only very limited comparative prospective studies have been reported. Digestive system clinical applications of HIFU are limited to pancreatic and liver cancer. It is safe and well tolerated. The exact place in the hepatocellular carcinoma (HCC) management algorithm remains to be defined. HIFU seems to add clear survival advantages over trans arterial chemo embolization (TACE) alone and similar results when compared to radio frequency (RF). For pancreatic cancer, HIFU achieves consistent cancer-related pain relief. Further research is warranted to improve targeting accuracy and efficacy monitoring. Furthermore, additional work is required to transfer this technology on appealing treatments such as endoscopic HIFU-based therapies.

  18. High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer.

    PubMed

    Cordeiro, Ernesto R; Cathelineau, Xavier; Thüroff, Stefan; Marberger, Michael; Crouzet, Sebastien; de la Rosette, Jean J M C H

    2012-11-01

    What's known on the subject? and What does the study add? Novel therapeutic methods have emerged in recent years as 'focal' treatment alternatives in which cancer foci can be eradicated and greatly reducing the associated side-effects of radical treatment. High-intensity focused ultrasound (HIFU) seems to result in a well fitted technology, which has proven short- to medium-term cancer control, with a low rate of complications comparable with those of established therapies. This is an up-to-date review of the available literature on HIFU as a definitive treatment of prostate cancer. It describes the technique in a comprehensive approach in terms of technical features, procedure, indications, and gives an overview of its historical background; finally, we present the future applications of HIFU and its development trend. • To provide an up-to-date review of the available literature on high-intensity focused ultrasound (HIFU) as a definitive treatment of prostate cancer. • To present the technique in a comprehensive approach, comparing the available devices according to the existing evidence in terms of technical features, procedure, indications, and to give an overview of its historical background; and finally, to discuss future applications of HIFU and its development trend. • A systematic literature search was conducted using MEDLINE and EMBASE via Ovid databases (January 2000 to December 2011), to identify studies on HIFU for treatment of prostate cancer. • Only English-language and human-based full manuscripts that reported on case series studies with >50 participants, patient characteristics, efficacy and safety data were included. • No randomised controlled trials were identified by the literature search. We identified 31 uncontrolled studies that examined the efficacy of HIFU as primary treatment and two studies that examined the efficacy of HIFU as salvage treatment. • Most treated patients had localised prostate cancer (stage T1-T2); Gleason

  19. Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery.

    PubMed

    Han, Hyounkoo; Lee, Hohyeon; Kim, Kwangmeyung; Kim, Hyuncheol

    2017-11-28

    Although nanomedicines have been intensively investigated for cancer therapy in the past, poor accumulation of nanomedicines in tumor sites remains a serious problem. Therefore, a novel drug delivery system is required to enhance accumulation and penetration of nanomedicines at the tumor site. Recently, high-intensity focused ultrasound (HIFU) has been highlighted as a non-invasive therapeutic modality, and showed enhanced therapeutic efficacy in combination with nanomedicines. Cavitation effect induced by the combination of HIFU and microbubbles results in transiently enhanced cell membrane permeability, facilitating improved drug delivery efficiency into tumor sites. Therefore, we introduce the acoustic cavitation and thermal/mechanical effects of HIFU in conjunction with microbubble to overcome the limitation of conventional drug delivery. The cavitation effect maximized by the strong acoustic energy of HIFU induced the preferential accumulation of nanomedicine locally released from the nanomedicines-microbubble complex in the tumor. In addition, the mechanical effect of HIFU allowed the accumulated nanomedicines to penetrate into deeper tumor region. The preferential accumulation and deeper penetration of nanomedicines by HIFU showed enhanced therapeutic efficacy, compared to low frequency ultrasound (US). These overall results demonstrate that the strategy combined nanomedicines-microbubble complex with HIFU is a promising tools for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.

    2003-05-01

    The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.

  1. Feasibility of laser-integrated high intensity focused ultrasound (HIFU) treatment for bladder tumors: in vitro study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Phuc; Park, Suhyun; Oh, Junghwan; Kang, Hyun Wook

    2016-02-01

    Previous studies have shown that photothemal therapy combined with high intensity focused ultrasound (HIFU) can provide a promising method to achieve rapid thermal coagulation during surgical procedures. The current study investigated the feasibility of the laser-integrated high intensity focused ultrasound (HIFU) application to treat bladder tumors by enhancing thermal effects and therapeutic depth in vitro. To generate thermal coagulation, a single element HIFU transducer with a central frequency of 2.0 MHz was used to transmit acoustic energy to 15 fresh porcine bladders injected with an artificial tumor (100 µl gelatin and hemoglobin solution) in vitro. Simultaneously, an 80-W 532-nm laser system was also implemented to induce thermal necrosis in the targeted tissue. The intensity of 570 W/cm2 at the focus of HIFU and laser energy of 0.9 W were applied to all the samples for 40 s. The temperature rise increased up to about 1.6 or 3 folds (i.e., ΔT=32±3.8 K for laser-integrated HIFU, ΔT=20±6.5 K for HIFU only, and ΔT=11±5.6 K for laser only). The estimated lesion depth also increased by 1.3 and 2 folds during the dual-thermal treatment, in comparison with the treatment by either HIFU or laser. The results indicated that the laser-integrated HIFU treatment can be an efficient hyperthermic method for tumor coagulation.

  2. High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules without anesthesia or sedation.

    PubMed

    Trimboli, Pierpaolo; Bini, Fabiano; Marinozzi, Franco; Baek, Jung Hwan; Giovanella, Luca

    2018-02-16

    Thermal ablation of thyroid nodules has gained momentum due to the possibility to avoid surgery. High-intensity focused ultrasound (HIFU) allows thermal treatment by energy ultrasound beam inside the targeted zone. Aim of our study was to evaluate the effects of HIFU treatment using Beamotion mode without anesthesia. Since 2016, patients with normal thyroid function, benign thyroid nodules with diameter no larger than 4 cm, and presenting local discomfort and/or compressive symptoms were treated by HIFU. We performed Beamotion HIFU and did not use anesthesia. Nodule size and thyroid function were evaluated before HIFU and 6 and 12 months later. Complications to therapy and tolerability of patients were also recorded. According to local ethical committee, for this retrospective study formal consent was not required. The final series included 26 nodules from 26 patients with estimated volume of 2.81 ± 2.04 mL, treated by a power of 33.3 ± 10.3 W/site and energy of 2.1 ± 1.1 kJ. Nodules volume was significantly (p < 0.0001) reduced at 6 months of follow-up (1.83 ± 1.63 mL), and further at 1 year (1.57 ± 1.47 mL). Mean percentage of reduction over time of nodules was 48%. A 73% of patients described good comfort during treatment, 100% experienced good comfort just after therapy, and tolerability was high. No complications were recorded. At one 1 year of follow-up, 85% of subjects reported a reduction of local symptoms. HIFU therapy is effective in reducing size of thyroid nodules with major diameter below 4 cm and can be performed without anesthesia.

  3. Noninvasive MR-Guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas

    DTIC Science & Technology

    2014-09-01

    of TSC-Associated Renal Angiomyolipomas PRINCIPAL INVESTIGATOR: Yu Li CONTRACTING ORGANIZATION: Children’s Hospital, REPORT DATE...TITLE AND SUBTITLE Non nvasive MR- uided HIFU Therapy of TSC-Associated Renal Angiomyolipomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER 6. AUTHOR...investigation, we are reformatting our research and planning for another effort to investigate MR-guided HIFU therapy of TSC-related renal angiomyolipomas in

  4. Efficacy and safety of ultrasound-guided high intensity focused ultrasound ablation of symptomatic uterine fibroids in Black women: a preliminary study.

    PubMed

    Zhang, C; Jacobson, H; Ngobese, Z E; Setzen, R

    2017-08-01

    To evaluate the therapeutic effect and safety of ultrasound-guided high-intensity focused ultrasound (USgHIFU) treatment on symptomatic uterine fibroids in Black women. A feasibility study. Gynaecological department in a teaching hospital in South Africa. Premenopausal women with uterus fibroids. Twenty-six patients with 53 fibroids who underwent USgHIFU treatment were enrolled. The USgHIFU treatment information was recorded, including treatment time, sonication time and total energy. Adverse events were also observed and recorded during and after treatment. Safety and efficacy of USgHIFU for the treatment of uterine fibroids in Black women. The median volume of fibroids was 52.7 (interquartile range, 18.6-177.4) cm 3 . According to USgHIFU treatment plan, total energy of 298.6 ± 169.3 kJ (range, 76.0-889.2) within treatment time of 90.3 ± 43.3 minutes (range, 14.0-208.0), in which sonication time of 774.0 ± 432.9 seconds (range, 190.0-2224.0) was used to ablate fibroids. The average ablation rate was 80.6 ± 9.7% (range, 46.5-94.5%). During the procedure, 69.2% of the patients reported lower abdominal pain, 57.7% sciatic/buttock pain, 38.5% burning skin, and 34.6% transient leg pain. No severe complications were observed. USgHIFU is feasible and safe to use to treat symptomatic uterine fibroids in Black women. Multiple uterine fibroids are more frequently detected in Black women. USgHIFU is feasible and safe for the treatment of uterine fibroids in Black women. © 2017 Royal College of Obstetricians and Gynaecologists.

  5. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy.

    PubMed

    Tang, Hailin; Guo, Yuan; Peng, Li; Fang, Hui; Wang, Zhigang; Zheng, Yuanyi; Ran, Haitao; Chen, Yu

    2018-05-09

    As one of the most representative noninvasive therapeutic modalities, high-intensity focused ultrasound (HIFU) has shown great promise for cancer therapy, but its low therapeutic efficacy and biosafety significantly hinder further extensive clinical translation and application. In this work, we report on the construction of a multifunctional theranostic nanoplatform to synergistically enhance the HIFU-therapeutic efficacy based on nanomedicine. A targeted and temperature-responsive theranostic nanoplatform (PFH/DOX@PLGA/Fe 3 O 4 -FA) has been designed and fabricated for efficient ultrasound/magnetic resonance dual-modality imaging-guided HIFU/chemo synergistic therapy. Especially, the folate was conjugated onto the surface of the nanoplatform for achieving active targeting to hepatoma cells by receptor-ligand interaction, which facilitates accumulation of the nanoplatforms into the tumor site. The integrated superparamagnetic iron oxide nanoparticles could generate the contrast enhancement in T 2 -weighted magnetic resonance imaging. By virtue of the thermal effect as generated by HIFU, liquid-gas phase transition of perfluorohexane (PFH) in nanocomposites was induced to generate PFH microbubbles, which achieved the contrast-enhanced ultrasound imaging and significantly improved the HIFU ablation efficacy. The loaded anticancer drugs could be released from the nanocomposites in a controllable manner (both pH and HIFU responsiveness). These multifunctional nanocomposites have been demonstrated to efficiently suppress the tumor growth based on the enhanced and synergistic chemotherapy and HIFU ablation, providing an efficient theranostic nanoplatform for cancer treatment.

  6. Comparison of high intensity focused ultrasound (HIFU) exposures using empirical and backscatter attenuation estimation methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Ter Haar, Gail; Rivens, Ian; Bamber, Jeff

    2005-09-01

    Currently, the intensity to be used in our clinical HIFU treatments is calculated from the acoustic path lengths in different tissues measured on diagnostic ultrasound images of the patient in the treatment position, and published values of ultrasound attenuation coefficients. This yields an approximate value for the acoustic power at the transducer required to give a stipulated focal intensity in situ. Estimation methods for the actual acoustic attenuation have been investigated in large parts of the tissue path overlying the target volume from the backscattered ultrasound signal for each patient (backscatter attenuation estimation: BAE). Several methods have been investigated. The backscattered echo information acquired from an Acuson scanner has been used to compute the diffraction-corrected attenuation coefficient at each frequency using two methods: a substitution method and an inverse diffraction filtering process. A homogeneous sponge phantom was used to validate the techniques. The use of BAE to determine the correct HIFU exposure parameters for lesioning has been tested in ex vivo liver. HIFU lesions created with a 1.7-MHz therapy transducer have been studied using a semiautomated image processing technique. The reproducibility of lesion size for given in situ intensities determined using BAE and empirical techniques has been compared.

  7. [High-intensity focused ultrasound (HIFU): our experience in the treatment of prostate cancer relapsing after radiotherapy].

    PubMed

    Giovanessi, Luca; Peroni, Angelo; Mirabella, Giuseppe; Fugini, Andrea Vismara; Zani, Danilo; Cunico, Sergio Cosciani; Simeone, Claudio

    2011-01-01

    The aim of the study is to evaluate the safety and efficacy of high-intensity focused ultrasound (HIFU) treatment in patients with local prostate cancer recurrence after radiotherapy. From February 2009 to June 2010, 14 patients with prostate cancer recurrence after radiotherapy were selected for HIFU treatment; all patients had a positive TRUS-guided biopsy and the absence of distant metastases was confirmed by computer tomography, PET choline or bone scintigraphy. We classified all patients in 3 groups using D'Amico's classification: 4 patients high risk (PSA >20 ng/ml - 8≤ Gleason Score≤ 10 - clinical stage≥T2c), 8 patients intermediate risk (10 PSAnadir+1.2ng/ml) or after adjuvant therapy introduction. All complications were recorded. Of the 14 patients selected, 12 patients underwent HIFU treatments; 2 patients were excluded because of rectal strictures induced by radiotherapy. At a mean 13 months' follow-up, biochemical success rate was obtained in 1 of the high risk patients and in 5 of the low and intermediate risk patients; 1 man died for a disease not correlated with prostate cancer recurrence. Complications included urinary tract infection, acute urinary retentions, urethral strictures and light stress incontinence. In our experience salvage HIFU is a safe treatment option for local relapse after radiotherapy; its efficacy depends on a careful patient selection.

  8. High-intensity focused ultrasound in the treatment of breast tumours.

    PubMed

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  9. Animal and Clinical Studies for the Treatment of Liver Carcinomas with High-Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroyuki; Yamaguchi, Taketo; Yukisawa, Seigo; Masuya, Yoshio; Sudo, Kentaro; Okabe, Shinichiro; Yoshikawa, Masaharu; Ebara, Masaaki; Saisho, Hiromitsu; Ohto, Masao; Shinozuka, Norihiro; Li, Fagi; Zhu, Hui; Jin, Chengbin; Wu, Feng; Wang, Zhi-Biao

    2007-05-01

    In the study carried out in goats, we used the JC200 focused ultrasound tumor therapeutic system (Chongqing Haifu Tech Co., Ltd, China). The therapeutic ultrasound energy is produced by a transducer with a focal length of 160mm, at a frequency of 0.8MHz. The animals (n=6) were divided into a control group (n=3) and an experimental group subjected to costectomy (n=3). Costectomy was performed 1 week before HIFU. There was no difference in the coagulation volume between the two groups. Skin burns accompanied with reddish color and focal edema were observed in two goats. There were no other complications. In the clinical study, HIFU was applied in patients with with ⩽ 3 lesions of liver carcinoma ⩽ 4cm in diameter. The complications and anti-tumor effects on liver carcinomas should be evaluated. Tumor ablation was complete in 5 of 6 patients. There were no complications such as skin burns and local pain. HIFU did not influence blood chemical findings.

  10. Real-Time Tissue Change Monitoring on the Sonablate® 500 during High Intensity Focused Ultrasound (HIFU) Treatment of Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Chen, Wo-Hsing; Sanghvi, Narendra T.; Carlson, Roy; Uchida, Toyoaki

    2011-09-01

    Sonablate® 500 (SB-500) HIFU devices have been successfully used to treat prostate cancer non-invasively. In addition, Visually Directed HIFU with the SB-500 has demonstrated higher efficacy. Visually Directed HIFU works by displaying hyperechoic changes on the B-mode ultrasound images. However, small changes in the grey-scale images are not detectable by Visually Directed HIFU. To detect all tissue changes reliably, the SB-500 was enhanced with quantitative, real-time Tissue Change Monitoring (TCM) software. TCM uses pulse-echo ultrasound backscattered RF signals in 2D to estimate changes in the tissue properties caused by HIFU. The RF signal energy difference is calculated in selected frequency bands (pre and post HIFU) for each treatment site. The results are overlaid on the real-time ultrasound image in green, yellow and orange to represent low, medium and high degree of change in backscattered energy levels. The color mapping scheme was derived on measured temperature and backscattered RF signals from in vitro chicken tissue experiments. The TCM software was installed and tested in a clinical device to obtain human RF data. Post HIFU contrast enhanced MRI scans verified necrotic regions of the prostate. The color mapping success rate at higher HIFU power levels was 94% in the initial clinical test. Based on these results, TCM software has been released for wider usage. The clinical studies with TCM in Japan and The Bahamas have provided the following PSA (ng/ml) results. Japan (n = 97), PSA pre-treatment/post-treatment; minimum 0.7/0.0, maximum 76.0/4.73, median 6.89/0.07, standard deviation 11.19/0.62. The Bahamas (n = 59), minimum 0.4/0.0, maximum 13.0/1.4, median 4.7/0.1, standard deviation 2.8/0.3.

  11. High intensity focused ultrasound (HIFU) ablation of benign thyroid nodules - a systematic review.

    PubMed

    Lang, Brian Hung-Hin; Wu, Arnold L H

    2017-01-01

    With an increasing number of imaging studies being done nowadays, the number of incidentally discovered thyroid nodules is expected to rise. Although many of these nodules are small and benign in nature, some do grow and may cause pressure and/or thyrotoxic symptoms. Surgical resection has traditionally been recommended for symptomatic nodules but is associated with risk of hypothyroidism, bleeding, infection, and nerve damage. High intensity focused ultrasound (HIFU) is one of the non-surgical thermal ablation techniques that may serve as an alternative in the treatment of benign thyroid nodules. The present review is to systematically evaluate the efficacy and safety of HIFU ablation. We comprehensively searched all studies that evaluated the use of HIFU ablation as a treatment of benign thyroid nodules from Medline (PubMed) and Cochrane Library electronic databases using specific keywords. All titles identified by the search strategy were independently screened by two authors. Case reports, animal studies, editorials, expert opinions, reviews without original data and studies on pediatric population were excluded. Multiple reports of the same dataset were assessed and the most representative and updated report of a study was included. Five original studies were found. All treated thyroid nodules were confirmed to be benign cytologically and either appeared solid or predominantly (>70%) solid on ultrasonography. Only one type of commercially available US-guided device with an extracorporeal probe (3 MHz) was used in all the reported treatments. No major complications including recurrent laryngeal nerve injury, skin burn or haematoma were reported in all of the studies. The overall nodule volume reduction after single session of HIFU ablation ranged between 45 and 68%, depending on nodule size and length of follow-up. Despite the few number of studies, our review appeared to suggest that HIFU is a safe and efficacious method of treating symptomatic benign thyroid

  12. TU-A-210-00: HIFU Therapies - A Primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis inmore » 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation

  13. TU-A-210-01: HIFU Physics and Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eames, M.

    2015-06-15

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis inmore » 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation

  14. Real-time monitoring of ultrasound imaging of clinical high intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Ter Haar, Gail; Kennedy, James; Leslie, Tom; Wu, Feng

    2005-09-01

    Currently, many clinical devices use the change in gray scale seen on a real-time ultrasound image for the assessment of the success of HIFU treatment. It has been shown previously that, for a single HIFU lesion, the presence of gray-scale change was indicative of successful ablation in 100% of cases for 1.6-MHz beams, and in 90% of cases for 0.8-MHz exposures. The absence of gray-scale change was a reliable indicator of lack of ablative damage only for 0.8-MHz exposures (80%) in 80% of exposures using 1.6-MHz beams there was a lesion even in the absence of gray-scale change. This study has been extended to more realistic clinical treatment protocols. The image appearance has been studied for the different volume ablation techniques that are used in the treatment of liver and kidney cancer. The results will be presented.

  15. Imaging Ultrasound Guidance and on-line Estimation of Thermal Behavior in HIFU Exposed Targets

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunita; Haryanto, Amir

    2006-05-01

    Elevated temperatures have been used for many years to combat several diseases including treatment of certain types of cancers/tumors. High Intensity Focused Ultrasound (HIFU) has emerged as a potential non-invasive modality for trackless targeting of deep-seated cancers of human body. For the procedures which require thermal elevation such as hyperthermia and tissue ablation, temperature becomes a parameter of vital importance in order to monitor the treatment on-line. Also, embedding invasive temperature probes for this purpose beats the supremacy of the non-invasive ablating modality. In this paper, we describe the use of a non-invasive and inexpensive conventional imaging ultrasound modality for lesion positioning and estimation of thermal behavior of the tissue on exposure to HIFU. Representative results of our online lesion tracking algorithm for discerning lesioning behavior using image capture, processing and phase-shift measurements are presented.

  16. The role of numerical simulation for the development of an advanced HIFU system

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  17. Dynamic Analysis of Irradiation of High Intensity Focused Ultrasound (HIFU) to Achieve a Living Tissue Perforation

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kitazumi, Gontaro; Katsuike, Yasumasa; Hotta, Sayo; Maruyama, Hirotaka; Chiba, Toshio

    2010-03-01

    It is well known that tissue perforation is performed by the shock waves generated by the collapse of micro bubbles due to HIFU irradiation. However, the angle-dependency between the HIFU irradiation beam and the tissue membrane has not been studied in detail so far. The objective of this study was to investigate the HIFU parameters which were the most effective in perforating the tissues with the heart beating, especially the angle dependency of the beam with the observation using high speed video camera. The result shows that the ultrasound beam should be at right angle to the membrane to perforate the tissue membrane effectively.

  18. An 11-Channel Radio Frequency Phased Array Coil for Magnetic Resonance Guided High Intensity Focused Ultrasound of the Breast

    PubMed Central

    Minalga, E.; Payne, A.; Merrill, R.; Todd, N.; Vijayakumar, S.; Kholmovski, E.; Parker, D. L.; Hadley, J. R.

    2012-01-01

    In this study, a radio-frequency (RF) phased array coil was built to image the breast in conjunction with a Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11-channels. The RF coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise-ratio (SNR) profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in SNR, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. PMID:22431301

  19. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.

    PubMed

    Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario

    2012-03-01

    Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.

  20. Ultrasound contrast agents for bleeding detection and acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Zderic, Vesna; Luo, Wenbo; Brayman, Andrew; Crum, Lawrence; Vaezy, Shahram

    2005-04-01

    Objective: To investigate the application of ultrasound contrast agents (UCA) in improving both therapeutic and diagnostic aspects of ultrasound-guided High Intensity Focused Ultrasound (HIFU) therapy. Methods: Incisions (3 cm long, 0.5 cm deep) were made in rabbit livers (in anterior surface for HIFU treatment, or posterior surface for bleeding detection). UCA Optison (~0.1 ml/kg) was injected into mesenteric vein or ear vein. A HIFU applicator (5.5 MHz, 6400 W/cm2) was scanned manually over the incision until hemostasis was achieved. Occult bleeding was monitored with Doppler ultrasound. Results: The presence of Optison produced 37% reduction in hemostasis times normalized to initial bleeding rates. Gross and histological observations showed similar appearance of HIFU lesions produced in the presence of Optison and control HIFU lesions. The temperature reached 100°C in both HIFU only and HIFU+UCA treatments. Tension strength of hemostatic liver incisions was 0.9+/-0.5 N. Almost no bleeding could be detected before Optison injection. First appearance of contrast enhancement localized at the bleeding site was 15 s after Optison injection, and lasted for ~50 s. Conclusion: The presence of UCA during HIFU treatment of liver incisions resulted in shortening of HIFU application times and better visualization of bleeding sites.

  1. Prostate tissue ablation with MRI guided transurethral therapeutic ultrasound and intraoperative assessment of the integrity of the neurovascular bundle

    NASA Astrophysics Data System (ADS)

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Sokka, Sham; Karczmar, Gregory; Oto, Aytekin

    2017-03-01

    OBJECTIVES: Evaluation of the precision of prostate tissue ablation with MRI guided therapeuticultrasound by intraoperative objective assessment of the neurovascular bundle in canines in-vivo. METHODS: In this ongoing IACUC approved study, eight male canines were scanned in a clinical 3T Achieva MRI scanner (Philips) before, during, and after ultrasound therapy with a prototype MR-guided ultrasound therapy system (Philips). The system includes a therapy console to plan treatment, to calculate real-time temperature maps, and to control ultrasound exposures with temperature feedback. Atransurethral ultrasound applicator with eight transducer elements was used to ablate canine prostate tissue in-vivo. Ablated prostate tissue volumes were compared to the prescribed target volumes to evaluate technical effectiveness. The ablated volumes determined by MRI (T1, T2, diffusion, dynamic contrast enhanced and 240 CEM43 thermal dose maps) were compared to H&E stained histological slides afterprostatectomy. Potential nerve damage of the neurovascular bundle was objectively assessed intraoperativelyduring prostatectomy with a CaverMap Surgical Aid nerve stimulator (Blue Torch Medical Technologies). RESULTS: Transurethral MRI -guided ultrasound therapy can effectively ablate canine prostate tissue invivo. Coronal MR-imaging confirmed the correct placement of the HIFU transducer. MRI temperature maps were acquired during HIFU treatment, and subsequently used for calculating thermal dose. Prescribed target volumes corresponded to the 240 CEM43 thermal dose maps during HIFU treatment in all canines. Ablated volumes on high resolution anatomical, diffusion weighted, and contrast enhanced MR images matched corresponding histological slides after prostatectomy. MRI guidance with realtime temperature monitoring showed no damage to surrounding tissues, especially to the neurovascular bundle (assessed intra-operatively with a nerve stimulator) or to the rectum wall. CONCLUSIONS: Our study

  2. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    NASA Astrophysics Data System (ADS)

    Schafer, Mark E.; Gessert, James; Moore, Wayne

    2006-05-01

    Concomitant with the growing clinical use of High Intensity Focused Ultrasound (HIFU), there has been a need for reliable, economical and reproducible measurements of HIFU acoustic fields. A number of approaches have been proposed and investigated, most notably by Kaczkowski et al [Proc. 2003 IEEE Ultrasonics Symposium, 982-985]. We are developing a similar reflective scatterer approach, incorporating several novel features which improve the hydrophone's bandwidth, reliability, and reproducibility. For the scattering element, we have used a fused silica optical fiber with a polyamide protective coating. The receiver is designed as a segmented, truncated spherical structure with a 10cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. Each segment has its own high impedance, wideband preamplifier, and the signals from multiple segments are summed coherently. As an additional feature, the system is designed to pulse the PVDF elements so that the pulse-echo response can be used to align the fiber at the center. Initial tests of the system have demonstrated a receiver array sensitivity of -279 dB re 1 microVolt/Pa (before preamplification), with a scattering loss at the fiber of approximately 39dB, producing an effective sensitivity of -318 dB re 1 micro Volt/Pa. The addition of the closely coupled wideband preamplifiers boosts the signal to a range which is sufficient for the measurement of HIFU transducers. The effective bandwidth of the system exceeds 15MHz, through careful design and the use of PVDF as a sensor material. In order to test the system, a HIFU transducer in the 4.0MHz frequency range was tested at low output settings using a conventional PVDF membrane hydrophone. The prototype system was then used to characterize the same HIFU transducer at full power. The results showed good correlation between waveforms and cross

  3. High-intensity focused ultrasound (HIFU) in patients with solid malignancies: evaluation of feasibility, local tumour response and clinical results.

    PubMed

    Orgera, G; Monfardini, L; Della Vigna, P; Zhang, L; Bonomo, G; Arnone, P; Padrenostro, M; Orsi, F

    2011-08-01

    The purpose of this study was to evaluate the safety and efficacy of ultrasound-guided high-intensity focused ultrasound (USgHIFU) for ablation of solid tumours without damaging the surrounding structures. A specific written informed consent was obtained from every patient before treatment. From September 2008 to April 2009, 22 patients with 29 lesions were treated: nine patients with liver and/or soft-tissue metastases from colorectal carcinoma (CRC), six with pancreatic solid lesions, three with liver and/or bone metastases from breast cancer, one with osteosarcoma, one with muscle metastasis from lung cancer, one with iliac metastasis from multiple myeloma and one with abdominal liposarcoma. The mean diameter of tumours was 4.2 cm. All patients were evaluated 1 day, 1 month and 3 months after HIFU treatment by multidetector computed tomography (MDCT), positron-emission tomography (PET)-CT and clinical evaluation. The treatment time and adverse events were recorded. All patients had one treatment. Average treatment and sonication times were, respectively, 162.7 and 37.4 min. PET-CT or/and MDCT showed complete response in 11/13 liver metastases; all bone, soft-tissue and pancreatic lesions were palliated in symptoms, with complete response to PET-CT, MDCT or magnetic resonance imaging (MRI); the liposarcoma was almost completely ablated at MRI. Local oedema was observed in three patients. No other side effects were observed. All patients were discharged 1-3 days after treatment. According to our preliminary experience in a small number of patients, we conclude that HIFU ablation is a safe and feasible technique for locoregional treatment and is effective in pain control.

  4. High Intensity Focused Ultrasound (HIFU) Heating Improves Perfusion and Antimicrobial Efficacy in Mouse Staphylococcus Abscess.

    PubMed

    Wardlow, Rachel; Sahoo, Kaustuv; Dugat, Danielle; Malayer, Jerry; Ranjan, Ashish

    2018-04-01

    Chronic wounds typically require long-duration treatment with a combination of antibiotics administered systemically. This incurs adverse side effects and can require aversive surgical treatments and limb amputations. To improve non-invasive antimicrobial therapy, the objective of this study was to investigate antimicrobial chemotherapy combined with high-intensity focused ultrasound (HIFU) heating (HT). A Staphylococcus aureus abscess (80 ± 30 mm 3 ) was generated in the mouse flank region. Once the average temperature (~42 °C-46 °C) in the abscess was reached with HIFU-HT, a broad-spectrum antimicrobial (ciprofloxacin, 10 mg/kg) and perfusion marker (Evans blue dye, 40 mg/kg wt) were administered intravenously via the tail vein. Four hours later, mean abscess perfusion and colony-forming units (CFUs) per gram of abscess were determined. HIFU-HT increased abscess perfusion by ~2.5-fold (4 ± 0.6 µg/mL Evans blue) compared with control (1.5 ± 0.7 µg/mL), and improved antimicrobial efficacy to decrease percentage average survival of S. aureus by ~20% (46 ± 7 CFUs/g of abscess) versus that seen with ciprofloxacin alone (61 ± 4 CFU/g). Our in vivo data suggest that HIFU-HT can improve antimicrobial treatment responses against deep-seated bacteria in abscess wounds via enhanced perfusion. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. Basic study of less invasive high-intensity focused ultrasound (HIFU) in fetal therapy for twin reversed arterial perfusion (TRAP) sequence.

    PubMed

    Ichizuka, Kiyotake; Matsuoka, Ryu; Aoki, Hiroko; Hasegawa, Junichi; Okai, Takashi; Umemura, Shin-Ichiro

    2016-10-01

    The objective of the present study was to develop a high-intensity focused ultrasound (HIFU) transducer more suitable for clinical use in fetal therapy for twin reversed arterial perfusion (TRAP) sequence. We created a cooling and degassed water-circulating-type HIFU treatment device. HIFU was applied to renal branch vessels in three rabbits. Sequential HIFU irradiation contains a trigger wave, heating wave, and rest time. The duration of HIFU application was 10 s/course. Targeting could be achieved by setting the imaging probe in the center and placing the HIFU beam and imaging ultrasonic wave on the same axis. We confirmed under sequential HIFU irradiation with a total intensity of 1.94 kW/cm(2) (spatial average temporal average intensity) that the vein and artery were occluded in all three rabbits. Simultaneous occluding of the veins and arteries was confirmed with trigger waves and a resting phase using the HIFU transducer treatment device created for this study. Clinical application appears possible and may represent a promising option for fetal therapy involving TRAP sequence.

  6. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  7. Pulsed high intensity focused ultrasound (pHIFU) enhances delivery of doxorubicin in a preclinical model of pancreatic cancer

    PubMed Central

    Li, Tong; Wang, Yak-Nam; Khokhlova, Tatiana D.; D’Andrea, Samantha; Starr, Frank; Chen, Hong; McCune, Jeannine S.; Risler, Linda J.; Mashadi-Hossein, Afshin; Hwang, Joo Ha

    2015-01-01

    Pancreatic cancer is characterized by extensive stromal desmoplasia which decreases blood perfusion and impedes chemotherapy delivery. Breaking the stromal barrier could both increase perfusion and permeabilize the tumor, enhancing chemotherapy penetration. Mechanical disruption of the stroma can be achieved using ultrasound-induced bubble activity – cavitation. Cavitation is also known to result in microstreaming and could have the added benefit of actively enhancing diffusion into the tumors. Here, we report the ability to enhance chemotherapeutic drug doxorubicin (Dox) penetration using ultrasound-induced cavitation in a genetically engineered mouse model (KPC mouse) of pancreatic ductal adenocarcinoma. To induce localized inertial cavitation in pancreatic tumors, pulsed high intensity focused ultrasound (pHIFU) was used either during or before doxorubicin administration to elucidate the mechanisms of enhanced drug delivery (active versus passive drug diffusion). For both types, the pHIFU exposures which were associated with high cavitation activity resulted in disruption of the highly fibrotic stromal matrix and enhanced the normalized Dox concentration by up to 4.5 fold compared to controls. Furthermore, normalized Dox concentration was associated with the cavitation metrics (p < 0.01), indicating that high and sustained cavitation results in increased chemotherapy penetration. No significant difference between the outcomes of the two types, i.e., Dox infusion during or after pHIFU treatment, was observed, suggesting that passive diffusion into previously permeabilized tissue is the major mechanism for the increase in drug concentration. Together, the data indicate that pHIFU treatment of pancreatic tumors when resulting in high and sustained cavitation can efficiently enhance chemotherapy delivery to pancreatic tumors. PMID:26216548

  8. Design of HIFU transducers for generating specified nonlinear ultrasound fields

    PubMed Central

    Rosnitskiy, Pavel B.; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Maxwell, Adam; Kreider, Wayne; Bailey, Michael R.; Khokhlova, Vera A.

    2016-01-01

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this work was to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasilinear conditions at the focus. Multi-parametric nonlinear modeling based on the KZK equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. Results are presented in terms of the parameters of an equivalent single-element, spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full-diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields. PMID:27775904

  9. Treatment of Breast Tumors using Pulsed HIFU for Delivery and Activation of Sonosensitizers

    DTIC Science & Technology

    2010-02-14

    ABSTRACT High intensity focused ultrasound ( HIFU ) has been combined with a Rose Bengal derivative (RB2) to provide a synergistic cytotoxicity requiring...vivo in combination with cavitation driven by high intensity focused ultrasound ( HIFU ). Applying HIFU in pulsed mode (to avoid overheating) has...treated and control tumors. 15. SUBJECT TERMS high intensity focused ultrasound , sonodynamic, cavitation, free radicals, chemotherapy, targeted

  10. Treatment of Breast Tumors using Pulsed HIFU for Delivery and Activation of Sonosensitizers

    DTIC Science & Technology

    2009-08-01

    ABSTRACT High intensity focused ultrasound ( HIFU ) has been combined with a Rose Bengal derivative (RB2) to provide a synergistic cytotoxicity requiring the...by high intensity focused ultrasound ( HIFU ). Applying HIFU in pulsed mode (to avoid overheating) has shown promise in improving the penetration of...ablation for breast cancer treatment. 15. SUBJECT TERMS high intensity focused ultrasound , sonodynamic, cavitation, free radicals, chemotherapy

  11. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept.

    PubMed

    Zachiu, Cornel; Denis de Senneville, Baudouin; Moonen, Chrit; Ries, Mario

    2015-07-01

    While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. The therapeutic workflow of a MR-guided HIFU intervention is in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys prove that slow physiological motion

  12. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachiu, Cornel, E-mail: C.Zachiu@umcutrecht.nl; Moonen, Chrit; Ries, Mario

    Purpose: While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. Methods: The therapeutic workflow of a MR-guided HIFU intervention ismore » in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. Results: Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys

  13. High-intensity focused ultrasound combined with hysteroscopic resection to treat retained placenta accreta.

    PubMed

    Lee, Jae-Seong; Hong, Gi-Youn; Park, Byung-Joon; Hwang, Hyejin; Kim, Rayon; Kim, Tae-Eung

    2016-09-01

    We present a case of retained placenta accreta treated by high-intensity focused ultrasound (HIFU) ablation followed by hysteroscopic resection. The patient was diagnosed as submucosal myoma based on ultrasonography in local clinic. Pathologic examination of several pieces of tumor mass from the hysteroscopic procedure revealed necrotic chorionic villi with calcification. HIFU was performed using an ultrasound-guided HIFU tumor therapeutic system. The ultrasound machine had been used for real-time monitoring of the HIFU procedure. After HIFU treatment, no additional vaginal bleeding or complications were observed. A hysteroscopic resection was performed to remove ablated placental tissue 7 days later. No abnormal vaginal bleeding or discharge was seen after the procedure. The patient was stable postoperatively. We proposed HIFU and applied additional hysteroscopic resection for a safe and effective method for treating retained placenta accreta to prevent complications from the remaining placental tissue and to improve fertility options.

  14. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy

    NASA Astrophysics Data System (ADS)

    You, Yufeng; Wang, Zhigang; Ran, Haitao; Zheng, Yuanyi; Wang, Dong; Xu, Jinshun; Wang, Zhibiao; Chen, Yu; Li, Pan

    2016-02-01

    High-intensity focused ultrasound (HIFU) is being generally explored as a non-invasive therapeutic modality to treat solid tumors. However, the clinical use of HIFU for large and deep tumor-ablation applications such as hepatocellular carcinoma (HCC) is currently entangled with long treatment duration and high operating energy. This critical issue can be potentially resolved by the introduction of HIFU synergistic agents (SAs). Traditional SAs such as microbubbles and microparticles face the problem of large size, short cycle time, damage to mononuclear phagocytic system and unsatisfactory targeting efficiency. In this work, we have developed a facile and versatile nanoparticle-based HIFU synergistic cancer surgery enhanced by transarterial chemoembolization for high-efficiency HCC treatment based on elaborately designed Fe3O4-PFH/PLGA nanocapsules. Multifunctional Fe3O4-PFH/PLGA nanocapsules were administrated into tumor tissues via transarterial injection combined with Lipiodol to achieve high tumor accumulation because transarterial chemoembolization by Lipiodol could block the blood vessels. The high synergistic HIFU ablation effect was successfully achieved against HCC tumors based on the phase-transformation performance of the perfluorohexane (PFH) inner core in the composite nanocapsules, as systematically demonstrated in VX2 liver tumor xenograft in rabbits. Multifunctional Fe3O4-PFH/PLGA nanocapsules were also demonstrated as efficient contrast agents for ultrasound, magnetic resonance and photoacoustic tri-modality imagings, potentially applicable for imaging-guided HIFU synergistic surgery. Therefore, the elaborate integration of traditional transarterial chemoembolization with recently developed nanoparticle-enhanced HIFU cancer surgery could efficiently enhance the HCC cancer treatment outcome, initiating a new and efficient therapeutic protocol/modality for clinic cancer treatment.

  15. High Intensity Focused Ultrasound (HIFU) Based Thrombolysis Using Multiple Frequency Excitations

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free approach for ischemic stroke treatment. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation because of the potential thermal damages. In this dissertation, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were first introduced as HIFU excitations to reduce the required treatment power as well as the treatment time. It was found that dual-frequency thrombolysis efficiency was statistically better than that of single-frequency, under the same acoustic power and excitation condition. Microbubbles (MBs) combined with dual-frequency focused ultrasound (DFFU) for thrombolysis in vitro was then proposed to further reduce the power required. MBs are widely used in therapeutic ultrasound thrombolysis due to the nonlinear characteristics of their harmonic responses, coalescence and cavitation effects, which could further enhance efficiency. It was shown in this study that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). MBs mediated DFFU thrombolysis were then studied with a flow system that mimicked the blood flow in the artery of the brain. It was found that the cavitation threshold of a DFFU excitation yielded a lower level than that of a SFFU excitation. All the experimental results indicated that multi-frequency ultrasound could improve the thrombolysis efficiency. However, this was not well established numerically. Hence, a numerical investigation on the inertial cavitation threshold of MBs under multifrequency ultrasound irradiation was then investigated to confirm the benefit of using multi-frequency ultrasound for various applications. The main contribution and findings of this dissertation are as follows: 1) For the HIFU along study, when varying the acoustic power while

  16. 2ND International Symposium on HIFU Therapy HIFU Seattle 2002

    DTIC Science & Technology

    2002-12-01

    Drug Delivery, and Sonodynamic Therapy. One can see from this topic coverage that the symposium was largely on HIFU (essentially the first five topics), yet also broad enough to cover most aspects of therapeutic ultrasound ....This book is a compilation of papers presented at the 2nd International Symposium on Therapeutic Ultrasound , held in Seattle, Washington, July 29...number of topic categories, viz., Clinical Studies, Laboratory Studies, Simulation and Monitoring, Dosimetry, Engineering, Lithotripsy, Ultrasound -Enhanced

  17. [High-intensity focused ultrasound (HIFU) for the prostate cancer treatment: 5-year resuts].

    PubMed

    Shaplysin, L V; Solov, V A; Vosdvizhenskiĭ, M O; Khametov, R Z

    2013-01-01

    During 2007-2012 748 patients with prostate cancer (PCa) underwent ultrasound ablation (HIFU). Patients were divided into 3 groups according to the prevalence and risk of disease progression: low risk (localized prostate cancer, 465 (62%) of patients) stage T1-2N0M0, total Gleason score < or = 6, the level of prostate-specific antigen (PSA) less than 20 ng/ml), high risk (locally advanced prostate cancer, 251 (34%) of patients)--stage T2-3N0M0, total Gleason score < or = 9, the PSA level from 20 to 60 ng/ml, the presence of local recurrence after radical prostatectomy (RPE) and external beam radiation (EBRT)--32 (4%) patients. Median follow-up after HIFU-therapy was 36 (3-54) months. At 12 and 48 months after treatment in patients with a low risk of progression median PSA was 0.2 and 0.5 ng/ml, in the group with a high risk 0.8 and 1.2 ng/ml, in patients with local recurrence after RPE and EBRT--0.5 and 1.7 ng/ml respectively. Generally HIFU treatment was successful in 90.9% of patients. It is shown that HIFU is safe minimally invasive treatment for localizes and locally advanced prostate cancer. It can be successfully performed in patients with local recurrence after RPE and EBRT.

  18. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  19. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    PubMed Central

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  20. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver.

    PubMed

    Petrusca, Lorena; Viallon, Magalie; Breguet, Romain; Terraz, Sylvain; Manasseh, Gibran; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana; Gross, Patrick; Sekins, K Michael; Becker, Christoph D; Salomir, Rares

    2014-01-16

    Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. At the end of the procedure, no ultrasound indication of the marker's presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Experimental validation of this new ballistic marker method was performed for

  1. Utility of a tumor-mimic model for the evaluation of the accuracy of HIFU treatments. results of in vitro experiments in the liver.

    PubMed

    N'Djin, William Apoutou; Melodelima, David; Parmentier, Hubert; Chesnais, Sabrina; Rivoire, Michel; Chapelon, Jean Yves

    2008-12-01

    Presented in this article is a tumor-mimic model that allows the evaluation, before clinical trials, of the targeting accuracy of a high intensity focused ultrasound (HIFU) device for the treatment of the liver. The tumor-mimic models are made by injecting a warm solution that polymerizes in hepatic tissue and forms a 1 cm discrete lesion that is detectable by ultrasound imaging and gross pathology. First, the acoustical characteristics of the tumor-mimics model were measured in order to determine if this model could be used as a target for the evaluation of the accuracy of HIFU treatments without modifying HIFU lesions in terms of size, shape and homogeneity. On average (n = 10), the attenuation was 0.39 +/- 0.05 dB.cm(-1) at 1 MHz, the ultrasound propagation velocity was 1523 +/- 1 m.s(-1) and the acoustic impedance was 1.84 +/- 0.00 MRayls. Next, the tumor-mimic models were used in vitro in order to verify, at a preclinical stage, that lesions created by HIFU devices guided by ultrasound imaging are properly positioned in tissues. The HIFU device used in this study is a 256-element phased-array toroid transducer working at a frequency of 3 MHz with an integrated ultrasound imaging probe working at a frequency of 7.5 MHz. An initial series of in vitro experiments has shown that there is no significant difference in the dimensions of the HIFU lesions created in the liver with or without tumor-mimic models (p = 0.3049 and p = 0.8796 for the diameter and depth, respectively). A second in vitro study showed that HIFU treatments performed on five tumor-mimics with safety margins of at least 1 mm were properly positioned. The margins obtained were on average 9.3 +/- 2.7 mm (min. 3.0 - max. 20.0 mm). This article presents in vitro evidence that these tumor-mimics are identifiable by ultrasound imaging, they do not modify the geometry of HIFU lesions and, thus, they constitute a viable model of tumor-mimics indicated for HIFU therapy.

  2. High-intensity focused ultrasound (HIFU)-assisted hepatic resection in an animal model.

    PubMed

    Gandini, Alessandro; Melodelima, David; Schenone, Francesco; N'Djin, Apoutou William; Chapelon, Jean Yves; Rivoire, Michel

    2012-07-01

    Bleeding is the main cause of postoperative complications of hepatic surgery. To minimize intraoperative bleeding during hepatectomy, resections are generally carried out under hepatic vascular control despite the risk of liver dysfunction in patients with chronic liver disease. This study evaluates the feasibility and safety of high-intensity focused ultrasound (HIFU)-assisted hepatic resection during an open procedure in an animal model. Three groups of 12-14-week-old Landrace pigs (n = 7/group) were used to evaluate HIFU-assisted liver resection (group A) vs liver resection with or without portal triad clamping (groups B and C). In each pig, liver resection was performed on the right and left paramedian lobes. The following were evaluated and compared in the 3 groups: total blood loss, blood loss/cm(2) of resection area, clip density, procedure duration, morbidity, and mortality. Median blood loss was significantly lower in group A than in group B (P = .02), and group C (P = .007). Median blood loss/cm(2) of resection area was 4.77 mL/cm² in group A, 11.35 mL/cm² in group B, 12.22 mL/cm² in Group C. Precoagulation resulted in sealing blood vessels <5 mm; therefore, median clip density during liver transection was 0.78 clip/cm² in group A, 1.61 clip/cm(2) in group B, and 1.57 clip/cm(2) in group C. Median duration of the surgical procedure was 12 min in group A, 21 min in group B, and 19 min in group C. HIFU-assisted hepatic resection during an open procedure in an animal model is safe, reduces bleeding, and allows real-time ultrasound guidance.

  3. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    NASA Astrophysics Data System (ADS)

    Schafer, Mark E.; Gessert, James

    2009-04-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  4. Health-related quality of life after salvage high-intensity focused ultrasound (HIFU) treatment for locally radiorecurrent prostate cancer.

    PubMed

    Berge, Viktor; Baco, Eduard; Dahl, Alv A; Karlsen, Steinar Johan

    2011-09-01

    To evaluate health-related quality of life (HRQOL) after salvage high-intensity focused ultrasound (HIFU) for locally radiorecurrent prostate cancer (PCa). Since June 2006 we have treated 61 patients consecutively by salvage HIFU. All patients were offered the University of California, Los Angeles Prostate Cancer Index (UCLA-PCI) questionnaire at baseline and at follow-up. Scores ranged from 0 (worst) to 100 (best). Clinically significant changes were defined as a minimum difference of 10 points between the baseline score and the score at follow-up.   Fifty-seven patients (93%) had evaluable data at baseline, compared with 46 (75%) after treatment. The mean time lapse between HIFU treatment and questionnaire response was 17.5 months (range 6-29 months). The mean score for urinary function decreased from 79.7 ± 12.1 prior to HIFU to 67.4 ± 17.8 after HIFU (P < 0.001). The mean score for sexual function decreased from 32.1 ± 24.1 prior to HIFU to 17.2 ± 17.0 after HIFU (P < 0.001). There were no significant effects on bowel function. There was a significant reduction in the mean score for Physical HRQOL, but the mean score for Mental HRQOL was did not change significantly. Treatment of localized radiorecurrent PCa by salvage HIFU is associated with clinically significant reductions in urinary and sexual function domains after a mean follow-up of 17.5 months. © 2011 The Japanese Urological Association.

  5. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  6. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  7. Preliminary ex vivo feasibility study on targeted cell surgery by high intensity focused ultrasound (HIFU).

    PubMed

    Wang, Zhi Biao; Wu, Junru; Fang, Liao Qiong; Wang, Hua; Li, Fa Qi; Tian, Yun Bo; Gong, Xiao Bo; Zhang, Hong; Zhang, Lian; Feng, Ruo

    2011-04-01

    High intensity focused ultrasound (HIFU) has become a new noninvasive surgical modality in medicine. A portion of tissue seated inside a patient's body may experience coagulative necrosis after a few seconds of insonification by high intensity focused ultrasound (US) generated by an extracorporeal focusing US transducer. The region of tissue affected by coagulative necrosis (CN) usually has an ellipsoidal shape when the thermal effect due to US absorption plays the dominant role. Its long and short axes are parallel and perpendicular to the US propagation direction respectively. It was shown by numerical computations using a nonlinear Gaussian beams model to describe the sound field in a focal zone and ex vivo experiments that the dimension of the short and long axes of the tissue which experiences CN can be as small as 50μm and 250μm respectively after one second exposure of US pulse (the spatial and pulse average acoustic power is on the order of tens of Watts and the local acoustic spatial and temporal pulse averaged intensity is on the order of 3×10(4)W/cm(2)) generated by a 1.6MHz HIFU transducer of 12cm diameter and 11cm geometric focal length (f-number=0.92). The concept of thermal dose of cumulative equivalent minutes was used to describe the possible tissue coagulative necrosis generated by HIFU. The numbers of cells which suffered CN were estimated to be on the order of 40. This result suggests that HIFU is able to interact with tens of cells at/near its focal zone while keeping the neighboring cells minimally affected, and thus the targeted cell surgery may be achievable. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Histopathology of breast cancer after magnetic resonance-guided high-intensity focused ultrasound and radiofrequency ablation.

    PubMed

    Knuttel, Floortje M; Waaijer, Laurien; Merckel, Laura G; van den Bosch, Maurice A A J; Witkamp, Arjen J; Deckers, Roel; van Diest, Paul J

    2016-08-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This study aimed to compare histopathological features of breast cancer after MR-HIFU ablation and RFA. MR-HIFU ablation and RFA were performed in- and ex-vivo. Tumours in six mastectomy specimens were partially ablated with RFA or MR-HIFU. In-vivo MR-HIFU ablation was performed 3-6 days before excision; RFA was performed in the operation room. Tissue was fixed in formalin and processed to haematoxylin and eosin (H&E) and cytokeratin-8 (CK-8)-stained slides. Morphology and cell viability were assessed. Ex-vivo ablation resulted in clear morphological changes after RFA versus subtle differences after MR-HIFU. CK-8 staining was decreased or absent. H&E tended to underestimate the size of thermal damage. In-vivo MR-HIFU resulted in necrotic-like changes. Surprisingly, some ablated lesions were CK-8-positive. Histopathology after in-vivo RFA resembled ex-vivo RFA, with hyper-eosinophilic stroma and elongated nuclei. Lesion borders were sharp after MR-HIFU and indistinct after RFA. Histopathological differences between MR-HIFU-ablated tissue and RF-ablated tissue were demonstrated. CK-8 was more reliable for cell viability assessment than H&E when used directly after ablation, while H&E was more reliable in ablated tissue left in situ for a few days. Our results contribute to improved understanding of histopathological features in breast cancer lesions treated with minimally invasive ablative techniques. © 2016 John Wiley & Sons Ltd.

  9. The effects of Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound ablation on human cadaver breast tissue.

    PubMed

    Merckel, Laura G; Deckers, Roel; Baron, Paul; Bleys, Ronald L A W; van Diest, Paul J; Moonen, Chrit T W; Mali, Willem P Th M; van den Bosch, Maurice A A J; Bartels, Lambertus W

    2013-10-05

    Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of

  10. Multi-parametric monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for focused ultrasound (HMIFU)

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa

    2012-11-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and relative phase-shift during high energy HIFU where tissue boiling occurs. Forty three (n=18) thermal lesions were formed in ex vivo canine liver specimens. Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-, 20-and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W. For the 10-, 20-, and 30-s treatment cases, a steady decrease in the displacement (-8.67±4.80, -14.44±7.77, 24.03±12.11μm), compressive strain -0.16±0.06, -0.71±0.30, -0.68±0.36 %, and phase shift +1.80±6.80, -15.80±9.44, -18.62±13.14 ° were obtained, respectively, indicating overall increase of relative stiffness and decrease of the viscosity-to-stiffness ratio during heating. After treatment, 2D HMI displacement images of the thermal lesions showed an increased lesion-to-background contrast of 1.34±0.19, 1.98±0.30, 2.26±0.80 and lesion size of 40.95±8.06, 47.6±4.87, and 52.23±2.19 mm2, respectively, which was validated again with pathology 25.17±6.99, 42.17±1.77, 47.17±3.10 mm2. Additionally, studies also investigated the performance of mutli-parametric monitoring under the influence of boiling and attenuation change due to tissue boiling, where discrepancies were found such as deteriorated displacement SNR and reversed lesion-to-background displacement contrast with indication on possible increase in attenuation and tissue gelatification or pulverization. Despite the challenge of the boiling mechanism, the relative phase shift served as consist biomechanical tissue

  11. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis.

    PubMed

    Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.

  12. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis

    PubMed Central

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862

  13. TU-A-210-02: HIFU: Why Should a Radiation Oncology Physicist Pay Attention?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, D.

    High-intensity focused ultrasound (HIFU) has developed rapidly in recent years and is used frequently for clinical treatments in Asia and Europe with increasing clinical use and clinical trial activity in the US, making it an important medical technology with which the medical physics community must become familiar. Akin to medical devices that deliver treatments using ionizing radiation, HIFU relies on emitter geometry to non-invasively form a tight focus that can be used to affect diseased tissue while leaving healthy tissue intact. HIFU is unique in that it does not involve the use of ionizing radiation, it causes thermal necrosis inmore » 100% of the treated tissue volume, and it has an immediate treatment effect. However, because it is an application of ultrasound energy, HIFU interacts strongly with tissue interfaces, which makes treatment planning challenging. In order to appreciate the advantages and disadvantages of HIFU as a thermal therapy, it is important to understand the underlying physics of ultrasound tissue interactions. The first lecture in the session will provide an overview of the physics of ultrasound wave propagation; the mechanism for the accumulation of heat in soft-tissue; image-guidance modalities including temperature monitoring; current clinical applications and commercial devices; active clinical trials; alternate mechanisms of action (future of FUS). The second part of the session will compare HIFU to existing ionization radiation techniques. The difficulties in defining a clear concept of absorbed dose for HIFU will be discussed. Some of the technical challenges that HIFU faces will be described, with an emphasis on how the experience of radiation oncology physicists could benefit the field. Learning Objectives: Describe the basic physics and biology of HIFU, including treatment delivery and image guidance techniques. Summarize existing and emerging clinical applications and manufacturers for HIFU. Understand that thermal ablation

  14. The potential of high intensity focused ultrasound (HIFU) combine phase-sensitive optical coherence tomography (PhS-OCT) for diseases diagnosis, treatment and monitoring

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Wang, Yan; Feng, Kairui; Li, Chunhui; Huang, Zhihong

    2018-02-01

    HIFU is a truly noninvasive, acoustic therapeutic technique that utilizes high intensity acoustic field in the focus to kill the targeted tissue for disease treatment purpose. The mechanical properties of targeted tissue changes before and after treatment, and this change can be accurately detected by shear wave elastography. Hence, shear wave elastography is usually used for monitoring HIFU treatment asynchronously. To improve the low spatial resolution in ultrasound shear wave elastography, and to perform diseases diagnosis, treatment and monitoring in the same system, a new setup that combines HIFU and PhS-OCT system was proposed in this study. This proposed setup could do 1) HIFU treatment when the transducer works at high energy level, 2) ultrasound induced shear wave optical coherence elastography for HIFU treatment asynchronous monitoring when the transducer works at low energy level. Ex-vivo bovine liver tissue was treated at the same energy level for different time (0s, 1s, 5s, 9s) in this research. Elastography was performed on the lesion area of the sample after HIFU treatment, and the elastogram was reconstructed by the time of flight time method. The elastogram results clearly show the boundary of HIFU lesion area and surrounding normal tissue, even for 1s treatment time. And the average elasticity of the lesion grows linearly as the treatment time increases. Combined with OCT needle probe, the proposed method has a large potential not only to be used for superficial diseases treatment, but also to be used for high-precision-demanded diseases treatment, e.g. nervous disease treatment.

  15. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T2 weighted MR imaging.

    PubMed

    Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping; Yang, Jun

    2017-05-01

    The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MRI prospectively. A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T 2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. The treatment time and sonication time of the combination group were 102.0 min (55.8-152.2 min) and 25.4 min (12.2-34.1 min); however, they were 149.0 min (87.0-210.0 min) and 38.9 min (14.0-46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm 3  s -1 (28.5-95.8 mm 3  s -1 ), 69.2 ± 29.8% (35.5-97.4%) and 9.9 KJ mm -3 (4.5-15.7 KJ mm -3 ) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm 3  s -1 (8.9-32.9 mm 3  s -1 ), 50.2 ± 27.3% (0-78.6%) and 23.8 KJ mm -3 (12.4-46.2 KJ mm -3 ), respectively. Pain scores in the combination group were 3.0 ± 0.5 points (2-4 points

  16. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver

    PubMed Central

    2014-01-01

    Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this

  17. High-Intensity Focused Ultrasound (HIFU) for the Treatment of Localized Prostate Cancer using Sonablate-500

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Ohkusa, Hiroshi; Yamashita, Hideyuki; Nagata, Yoshihiro

    2005-03-01

    We evaluated 181 patients with localized prostate cancer treated with high-intensity focused ultrasound (HIFU) for biochemical disease-free rate, safety, morbidity and predictors of biochemical outcome. A total of 181 patients underwent HIFU with the Sonablate-500 and with at least 12 months of follow-up. Biochemical failure was defined according to the criteria recommended by the American Society for Therapeutic Radiology and Oncology Consensus Panel. The biochemical disease-free rates at 1, 3 and 5 years in all patients were 84%, 80% and 78%, respectively. The biochemical disease-free rates at 3 years for patients with pretreatment PSA less than 10 ng/ml, 10.01 to 20.0 ng/ml and more than 20.0 ng/ml were 94%, 75% and 35%, respectively (p<0.0001). According to multivariate analysis preoperative PSA (p<0.0001) was a significant independent predictor of time to biochemical recurrence. HIFU therapy appears to be a safe and efficacious minimally invasive therapy for patients with localized prostate cancer, especially those with a pretreatment PSA level less than 20 ng/ml.

  18. Intrapleural fluid infusion for MR-guided high-intensity focused ultrasound ablation in the liver dome.

    PubMed

    Wijlemans, Joost W; de Greef, Martijn; Schubert, Gerald; Moonen, Chrit T W; van den Bosch, Maurice A A J; Ries, Mario

    2014-12-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of tumors in the liver dome is challenging because of the presence of air in the costophrenic angle. In this study, we used a porcine liver model and a clinical MR-HIFU system to assess the feasibility and safety of using intrapleural fluid infusion (IPI) to create an acoustic window for MR-HIFU ablation in the liver dome. Healthy adult Dalland land pigs (n = 6) under general anesthesia were used with animal committee approval. Degassed saline (200-800 mL) was infused into the intrapleural space under ultrasound guidance. A clinical 1.5-T MR-HIFU system was used to perform sonications (4-mm treatment cells, 300-450 W, 20-30 seconds) in the liver dome under real-time MR thermometry. An intercostal firing technique was used to prevent rib heating in one experiment. Technical success was defined as a temperature increase (>10°C) in the target area. After termination, the animal was examined for thermal damage to liver, diaphragm, pleura, lung, or intercostal muscle. An acoustic window was established in all animals. A temperature increase in the target area was achieved in all animals (max. 47°C-67°C). MR thermometry showed no heating outside the target area. Intercostal firing effectively reduced rib heating (55°C vs. 42°C). Postmortem examination revealed no unwanted thermal damage. One complication occurred, in the first experiment, because of an ill-suited needle (displacement of the needle). The results indicate that IPI may be used safely to assist MR-HIFU ablation of tumors in the liver dome. For reliable tissue coagulation, IPI must be combined with an intercostal sonication technique. Considering the proportion of patients with tumors in the liver dome, IPI widens the applicability of MR-HIFU ablation for liver tumors considerably. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  19. Image-based numerical modeling of HIFU-induced lesions

    NASA Astrophysics Data System (ADS)

    Almekkaway, Mohamed K.; Shehata, Islam A.; Haritonova, Alyona; Ballard, John; Casper, Andrew; Ebbini, Emad

    2017-03-01

    Atherosclerosis is a chronic vascular disease affecting large and medium sized arteries. Several treatment options are already available for treatment of this disease. Targeting atherosclerotic plaques by high intensity focused ultrasound (HIFU) using dual mode ultrasound arrays (DMUA) was recently introduced in literature. We present a finite difference time domain (FDTD) simulation modeling of the wave propagation in heterogeneous medium from the surface of a 3.5 MHz array prototype with 32-elements. After segmentation of the ultrasound image obtained for the treatment region in-vivo, we integrated this anatomical information into our simulation to account for different parameters that may be caused by these multi-region anatomical complexities. The simulation program showed that HIFU was able to induce damage in the prefocal region instead of the target area. The HIFU lesions, as predicted by our simulation, were well correlated with the actual damage detected in histology.

  20. Volume reduction of benign thyroid nodules 3 months after a single treatment with high-intensity focused ultrasound (HIFU).

    PubMed

    Korkusuz, Huedayi; Fehre, Niklas; Sennert, Michael; Happel, Christian; Grünwald, Frank

    2015-01-01

    High-intensity focused ultrasound (HIFU) is a promising, non-invasive technique in treating benign thyroid nodules (TNs). The aim of this study was to evaluate the efficacy of HIFU to induce clinically meaningful shrinkage in benign predominantly solid TNs and to identify variables that influence or predict the magnitude of TN volume reduction. For each of ten subjects, HIFU treatment was conducted on a single nodule. Nodular volume was measured sonographically at baseline and at 3 months post-procedure. Nodular function and early treatment assessment was done scintigraphically. Median nodular volume reduction was 0.7 ml absolute and 48.8% relative to pre-interventional size (p < 0.05). Absolute shrinkage was negatively correlated with the average treatment depth (τ = -0.61, p < 0.05). Absolute nodular volume was positively correlated with the scintigraphic nodular uptake reduction (τ = 0.66, p < 0.05). HIFU treatment of benign predominantly solid TNs appears to be safe and effective for inducing nodular shrinkage. Despite potential for improvement, a single treatment session with HIFU is already a viable alternative to more standard methods. The feasibility of multiple HIFU treatments requires further investigation. Due to the small sample size, the findings of this analysis need conformation by larger studies.

  1. MR-guided focused ultrasound robot for performing experiments on large animals

    NASA Astrophysics Data System (ADS)

    Mylonas, N.; Damianou, C.

    2011-09-01

    Introduction: In this paper an experimental MRI-guided focused ultrasound robot for large animals is presented. Materials and methods: A single element spherically focused transducer of 4 cm diameter, focusing at 10 cm and operating at 1 MHz was used. A positioning device was developed in order to scan the ultrasound transducer for performing MR-guided focused ultrasound experiments in large animals such as pig, sheep and dog. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, Acrylonitrile Butadiene Styrene (ABS) plastic, brass screws, and brass pulleys. The system is manufactured automatically using a rapid prototyping system. Results: The system was tested successfully in a number of animals for various tasks (creation of single lesions, creation of overlapping lesions, and MR compatibility). Conclusions: A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can be via a lateral or superior-inferior approach. This system has the potential to be marketed as a cost effective solution for performing experiments in small and large animals.

  2. Effects of oxytocin on high intensity focused ultrasound (HIFU) ablation of adenomysis: a prospective study.

    PubMed

    Zhang, Xin; Zou, Min; Zhang, Cai; He, Jia; Mao, Shihua; Wu, Qingrong; He, Min; Wang, Jian; Zhang, Ruitao; Zhang, Lian

    2014-09-01

    To investigate the effects of oxytocin on high-intensity focused ultrasound (HIFU) ablation for the treatment of adenomyosis. Eighty-six patients with adenomyosis from three hospitals were randomly assigned to the oxytocin group or control group for HIFU treatment. During HIFU treatment, 80 units of oxytocin was added in 500ml of 0.9% normal saline running at the rate of 2ml/min (0.32U/min) in the oxytocin group, while 0.9% normal saline was used in the control group. Both patients and HIFU operators were blinded to oxytocin or saline application. Treatment results, adverse effects were compared. When using oxytocin, the non-perfused volume (NPV) ratio was 80.7±11.6%, the energy-efficiency factor (EEF) was 8.1±9.9J/mm(3), and the sonication time required to ablate 1cm(3) was 30.0±36.0s/cm(3). When not using oxytocin, the non-perfused volume ratio was 70.8±16.7%, the EEF was 15.8±19.6J/mm(3), and the sonication time required to ablate 1cm(3) was 58.2±72.7S/cm(3). Significant difference in the NPV ratio, EEF, and the sonication time required to ablate 1cm(3) between the two groups was observed. No oxytocin related adverse effects occurred. Oxytocin could significantly decrease the energy for ablating adenomyosis with HIFU, safely enhance the treatment efficiency. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. High-Intensity Focused Ultrasound (HIFU) Using Sonablate® Devices for the Treatment of Benign Prostatic Hyperplasia and Localized Prostate Cancer: 18-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki

    2011-09-01

    From 1993 to 2010, we have treated 156 patients benign prostatic hyperplasia (BPH) and 1,052 patients localized prostate cancer high-intensity focused ultrasound (HIFU). Four different HIFU devices, SonablateR-200, SonablateR-500, SonablateR-500 version 4 and Sonablate® TCM, have been used for this study. Clinical outcome of HIFU for BPH did not show any superior effects to transurethral resection of the prostate, laser surgery or transurethral vapolization of the prostate. However, HIFU appears to be a safe and minimally invasive therapy for patients with localized prostate cancer, especially low- and intermediate-risk patients. The rate of clinical outcome has significantly improved over the years due to technical improvements in the device.

  4. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Significance of hyperechoic marks observed during high-intensity focused ultrasound (HIFU) ablation of benign thyroid nodules.

    PubMed

    Lang, Brian H H; Woo, Yu-Cho; Chiu, Keith Wan-Hang

    2018-06-01

    To examine the association between the appearance of hyperechoic marks (HEMs) during high-intensity focused ultrasound (HIFU) ablation of benign thyroid nodules and nodule shrinkage at 6 months. One hundred and thirty-six patients who underwent HIFU for benign thyroid nodule were analysed. An independent person carefully examined the B-mode ultrasonography screen for the appearance of HEMs after each pulse. The proportion of HEMs (%) was calculated by: [(Number of pulses that resulted in HEMs) / (Total number of pulses given per treatment) × 100] while the nodule shrinkage was measured by volume reduction ratio (VRR) = [Baseline volume-volume at 6 months]/[Baseline volume] * 100. Treatment success was defined as VRR ≥ 50 %. Patients with HEMs (n=91) had significantly greater 6-month VRR than those without HEMs (n=45) (65.76 % vs. 36.76 %, p<0.001). By regression analysis, after adjusting for age and energy per pulse, smaller nodule volume at baseline (OR 1.143, 95 % CI 1.038-1.256, p=0.006) and appearance of HEMs (OR 275.44, 95 % CI 26.63-2848.98, p<0.001) were independent predictors for treatment success. The appearance of HEMs during treatment was an independent determinant of treatment success following single-session HIFU ablation of benign thyroid nodule. • HIFU is a safe and effective treatment for benign thyroid nodules. • Lower BMI and greater applied power increase likelihood of hyperechoic marks. • The appearance of hyperechoic marks during HIFU affects subsequent treatment outcome.

  6. Real-Time Color-Doppler Guidance of HIFU for the Selective Avoidance or Occlusion of Blood Vessels

    NASA Astrophysics Data System (ADS)

    Rabkin, Brian A.; Zderic, Vesna; Vaezy, Shahram

    2005-03-01

    High-intensity focused ultrasound (HIFU) has been shown to effectively occlude blood vessels deep within tissue. The objective of the current study was to synchronize HIFU and color-Doppler ultrasound (US) for the real-time visualization of flow within blood vessels during HIFU treatment. The excitation of the HIFU was synchronized with the color-Doppler imager by collecting the excitation pulses of one of the elements of either a curved array intracavitary (C 9-5) or an intraoperative (CL 10-5) imaging probe. The collected excitation pulse was converted into a TTL-high pulse, which was delayed and gated to time the excitation duration and location of the HIFU pulse with respect to each imaging frame. The single pulse was used to drive a 3.2 MHz concave HIFU transducer (focal length of 3.5 cm, f-number 1) while the US imager was not collecting RF signals from the treatment region of the US image. The feasibility of the system was demonstrated in vivo by the selective ablation of tissue adjacent to, or the occlusion of, large vessels (including the femoral artery) both transcutaneously and interoperatively in the rabbit and pig. For the occlusion of vessels, the HIFU focus was placed immediately distal (with respect to the transducer) to the vessel at a depth of 2-2.5 cm. HIFU was applied at in situ intensities of 1000-2000 W/cm2, at a duty cycle of 50-75%, and a HIFU pulse repetition frequency (set by the US image frame rate) of 6-18 Hz. During each HIFU exposure, the HIFU pulse resulted in color interference bands running vertically within the color-Doppler window. Through the synchronization of the US imager with the HIFU excitation, the location and duration of the interference bands were set outside the treatment region within each image frame. This provided the operator with a clear view of the HIFU treatment site during therapy. Gross assessment showed necrosis of the tissue surrounding the HIFU treated vessel and occlusion of vessels up to 4 mm in diameter

  7. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I.; McDannold, Nathan J.; Porter, Tyrone M.

    2014-07-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  8. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions.

    PubMed

    Kopechek, Jonathan A; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J; Porter, Tyrone M

    2014-07-07

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  9. Clinical Predictors of Long-term Success in Ultrasound-guided High-intensity Focused Ultrasound Ablation Treatment for Adenomyosis

    PubMed Central

    Liu, Xin; Wang, Wei; Wang, Yang; Wang, Yuexiang; Li, Qiuyang; Tang, Jie

    2016-01-01

    Abstract The long-term outcomes of ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation treatment for adenomyosis and the relevant factors affecting the durability of symptom relief were assessed in this study. A total of 230 women with adenomyosis who were treated with USgHIFU ablation between January 2007 and December 2013 were retrospectively analyzed. The contrast-enhanced ultrasonography (CEUS) was performed immediately after the treatment to evaluate the ablation effect, and the nonperfused volume (NPV) ratio was then calculated. Regular follow-up was conducted and the visual analog scale (VAS) score was used to assess the changes in dysmenorrhea. The effect of treatment was evaluated after an average follow-up length of 3 months and the factors affecting clinical success and symptom relapse were identified. Of the 230 treated patients, 208 (90.4%) were followed up regularly, with a median follow-up length of 40 months (range, 18–94 months). Mean value of the NPV ratio calculated immediately after the treatment was 57.4 ± 24.4%. Varying degrees of symptomatic relief of dysmenorrhea based on the VAS scores were observed in 173 (83.2%) patients and 71.0% of the patients were asymptomatic during follow-up. Women with higher NPV ratio (OR = 0.964, 95% CI = 0.947–0.982, P = 0.000) and older age (OR = 0.342, 95% CI = 0.143–0.819, P = 0.016) were more likely to achieve clinical success. Dysmenorrhea recurred in 45 (26%) out of 173 cases; the median recurrence time was 12 months after treatment. The lower BMI (OR = 1.221, 95% CI = 1.079–1.381, P = 0.001) and the higher acoustic power (OR = 0.992, 95% CI = 0.986–0.998, P = 0.007) were associated with less risk of relapse. Twelve of the 14 patients who were retreated by USgHIFU ablation after experiencing dysmenorrhea recurrence achieved clinical success. USgHIFU ablation is an effective uterus-conserving treatment for symptomatic

  10. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T2 weighted MR imaging

    PubMed Central

    Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping

    2017-01-01

    Objective: The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T2 weighted MRI prospectively. Methods: A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. Results: The treatment time and sonication time of the combination group were 102.0 min (55.8–152.2 min) and 25.4 min (12.2–34.1 min); however, they were 149.0 min (87.0–210.0 min) and 38.9 min (14.0–46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm3 s-1 (28.5–95.8 mm3 s-1), 69.2 ± 29.8% (35.5–97.4%) and 9.9 KJ mm−3 (4.5–15.7 KJ mm−3) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm3 s−1 (8.9–32.9 mm3 s−1), 50.2 ± 27.3% (0–78.6%) and 23.8 KJ mm−3 (12.4–46.2 KJ mm−3), respectively. Pain scores in the combination group were 3.0

  11. An Ultrasound Image-Based Dynamic Fusion Modeling Method for Predicting the Quantitative Impact of In Vivo Liver Motion on Intraoperative HIFU Therapies: Investigations in a Porcine Model

    PubMed Central

    N'Djin, W. Apoutou; Chapelon, Jean-Yves; Melodelima, David

    2015-01-01

    Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20Hz, magnitude >13mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96Hz, magnitude <1mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard “cigar-shaped” millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC<45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing “cigar-shaped” lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC>75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3·min-1). To improve HIFU treatment control

  12. Clinical Consideration of Treatment to Ablate Uterine Fibroids with Magnetic Resonance Imaging-guided High Intensity Focused Ultrasound (MRgFUS): Sonalleve

    PubMed Central

    Jeong, Jae-Hyeok; Hong, Gil Pyo; Kim, Yu-Ri; Ha, Jae-Eun

    2016-01-01

    Objectives Magnetic resonance imaging (MRI)-guided high intensity focused ultrasound surgery (MRgFUS) is a newly emerging non-invasive technique for the treatment of uterine fibroids. The purpose of this study is to review the clinical impact of MRgFUS. Methods This study examined 157 patients. The high intensity focused ultrasound (HIFU) utilized in this study was Philips Achieva 1.5 Tesla MR (Philips Healthcare, Best, the Netherlands) and Sonalleve HIFU system. The patients were followed in post-operative Month 1, Month 3, and Month 6 to investigate any change. Then, these were further classified according to the use of uterine stimulant (oxytocin) in parallel, Funaki Type of uterine fibroid, HIFU intensity, and non-perfused volume (NPV) ratio. Results When the uterine stimulant was utilized, the HIFU intensity was measured at significantly lower levels, compared with the group not using uterine stimulant, and treatment duration was significantly. The NPV ratio was found significantly higher in the group using uterine stimulant. Concerning the correlation between Funaki Type of uterine fibroid and average sonication power, it was found that the closer to Type I, the lower the sonication power, the shorter the treatment duration, and the higher the NPV ratio significantly. Conclusions In this study, it was found that the lower the Funaki Types of uterine fibroids, and the higher the NPV ratio immediately after the operation, the larger the uterine fibroid volume decrease and SSS change were. Also, if uterine stimulant was used in parallel in treatment, treatment duration and HIFU intensity could become shorter and lower. PMID:27617244

  13. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-03-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  14. Multi-parametric monitoring and assessment of High Intensity Focused Ultrasound (HIFU) boiling by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): An ex vivo feasibility study

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase-shift during high energy HIFU treatment with tissue boiling. Forty three (n=43) thermal lesions were formed in ex vivo canine liver specimens (n=28). Two dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10-s, 20-s and 30-s HIFU durations at three different acoustic powers of 8, 10, and 11W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and Passive Cavitation Detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δφ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite unpredictable changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property change throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration

  15. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2014-03-07

    Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with

  16. High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke.

    PubMed

    Burgess, Alison; Huang, Yuexi; Waspe, Adam C; Ganguly, Milan; Goertz, David E; Hynynen, Kullervo

    2012-01-01

    It is estimated that only 2-6% of patients receive thrombolytic therapy for acute ischemic stroke suggesting that alternative therapies are necessary. In this study, we investigate the potential for high intensity focused ultrasound (HIFU) to initiate thrombolysis in an embolic model of stroke. Iron-loaded blood clots were injected into the middle cerebral artery (MCA) of New Zealand White rabbits, through the internal carotid artery and blockages were confirmed by angiography. MRI was used to localize the iron-loaded clot and target the HIFU beam for treatment. HIFU pulses (1.5 MHz, 1 ms bursts, 1 Hz pulse repetition frequency, 20 s duration) were applied to initiate thrombolysis. Repeat angiograms and histology were used to assess reperfusion and vessel damage. Using 275 W of acoustic power, there was no evidence of reperfusion in post-treatment angiograms of 3 rabbits tested. In a separate group of animals, 415 W of acoustic power was applied and reperfusion was observed in 2 of the 4 (50%) animals treated. In the last group of animals, acoustic power was further increased to 550 W, which led to the reperfusion in 5 of 7 (∼70%) animals tested. Histological analysis confirmed that the sonicated vessels remained intact after HIFU treatment. Hemorrhage was detected outside of the sonication site, likely due to the proximity of the target vessel with the base of the rabbit skull. These results demonstrate the feasibility of using HIFU, as a stand-alone method, to cause effective thrombolysis without immediate damage to the targeted vessels. HIFU, combined with imaging modalities used to identify and assess stroke patients, could dramatically reduce the time to achieve flow restoration in patients thereby significantly increasing the number of patients which benefit from thrombolysis treatments.

  17. High-Intensity Focused Ultrasound (HIFU) for Dissolution of Clots in a Rabbit Model of Embolic Stroke

    PubMed Central

    Burgess, Alison; Huang, Yuexi; Waspe, Adam C.; Ganguly, Milan; Goertz, David E.; Hynynen, Kullervo

    2012-01-01

    It is estimated that only 2–6% of patients receive thrombolytic therapy for acute ischemic stroke suggesting that alternative therapies are necessary. In this study, we investigate the potential for high intensity focused ultrasound (HIFU) to initiate thrombolysis in an embolic model of stroke. Iron-loaded blood clots were injected into the middle cerebral artery (MCA) of New Zealand White rabbits, through the internal carotid artery and blockages were confirmed by angiography. MRI was used to localize the iron-loaded clot and target the HIFU beam for treatment. HIFU pulses (1.5 MHz, 1 ms bursts, 1 Hz pulse repetition frequency, 20 s duration) were applied to initiate thrombolysis. Repeat angiograms and histology were used to assess reperfusion and vessel damage. Using 275 W of acoustic power, there was no evidence of reperfusion in post-treatment angiograms of 3 rabbits tested. In a separate group of animals, 415 W of acoustic power was applied and reperfusion was observed in 2 of the 4 (50%) animals treated. In the last group of animals, acoustic power was further increased to 550 W, which led to the reperfusion in 5 of 7 (∼70%) animals tested. Histological analysis confirmed thatthe sonicated vessels remained intact after HIFU treatment. Hemorrhage was detected outside of the sonication site, likely due to the proximity of the target vessel with the base of the rabbit skull. These results demonstrate the feasibility of using HIFU, as a stand-alone method, to cause effective thrombolysis without immediate damage to the targeted vessels. HIFU, combined with imaging modalities used to identify and assess stroke patients, could dramatically reduce the time to achieve flow restoration in patients thereby significantly increasing the number of patients which benefit from thrombolysis treatments. PMID:22870315

  18. Correlation of pretreatment clinical parameters and PSA nadir after high-intensity focused ultrasound (HIFU) for localised prostate cancer.

    PubMed

    Ganzer, Roman; Bründl, Johannes; Koch, Daniel; Wieland, Wolf F; Burger, Maximilian; Blana, Andreas

    2015-01-01

    To determine which pretreatment clinical parameters were predictive of a low prostate-specific antigen (PSA) nadir following high-intensity focused ultrasound (HIFU) treatment. Retrospective study of patients with clinically localised prostate cancer undergoing HIFU at a single centre between December 1997 and September 2009. Whole-gland treatment was applied. Patients also included if they had previously undergone transurethral resection of the prostate (TURP). TURP was also conducted simultaneously to HIFU. Biochemical failure based on Phoenix definition (PSA nadir + 2). Univariate and multivariate analysis of pretreatment clinical parameters conducted to assess those factors predictive of a PSA nadir ≤0.2 and >0.2 ng/ml. Mean (SD) follow-up was 6.2 (2.8) years; median (range) was 6.3 (1.1-12.2) years. Kaplan-Meier estimate of biochemical disease-free survival rate at 8 years was 83 and 48 % for patients achieving a PSA nadir of ≤0.2 and >0.2 ng/ml, respectively. Prostate volume and incidental finding of cancer were significant predictors of low PSA nadir (≤0.2 ng/ml). Prostate volume and incidental finding of cancer could be predictors for oncologic success of HIFU based on post-treatment PSA nadir.

  19. In Vitro and In Vivo Investigation of High-Intensity Focused Ultrasound (HIFU) Hat-Type Ablation Mode

    PubMed Central

    Dai, Hongya; Chen, Fei; Yan, Sijing; Ding, Xiaoya; Ma, Dazhao; Wen, Jing; Xu, Die; Zou, Jianzhong

    2017-01-01

    Background The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. Material/Methods HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. Results Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. Conclusions Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency. PMID:28699626

  20. In Vitro and In Vivo Investigation of High-Intensity Focused Ultrasound (HIFU) Hat-Type Ablation Mode.

    PubMed

    Dai, Hongya; Chen, Fei; Yan, Sijing; Ding, Xiaoya; Ma, Dazhao; Wen, Jing; Xu, Die; Zou, Jianzhong

    2017-07-12

    BACKGROUND The aim of this study was to investigate the feasibility of the application of high-intensity focused ultrasound (HIFU) hat-type ablation mode in in vitro and in vivo models, and to compare the ablation effects of different parameter combinations. MATERIAL AND METHODS HIFU hat-type ablation was performed in isolated bovine liver tissue and in the liver tissue in living rabbits, and the coagulative necrosis for different parameter combinations (plane angles and irradiation order) was investigated. We also analyzed and compared the ablation effects of traditional ablation and hat-type ablation modes. Coagulative necrosis morphology was detected with TTC staining, and the coagulative necrosis volume and energy efficiency factor (EEF) were calculated and compared. RESULTS Coagulative necrosis was observed in all the ablated groups, and the coagulative necrosis volume was much larger than the irradiation area. The coagulative necrosis induced by the hat-type ablation was more regular and controllable than the traditional ablation. The angles between the ablation planes determined the coagulative necrosis morphology, but did not affect the coagulative necrosis volume. Moreover, the irradiation order significantly influenced the coagulative necrosis. Importantly, under certain conditions, hat-type ablation achieved higher efficiency compared with the traditional ablation mode. CONCLUSIONS Compared with the traditional ablation mode, HIFU hat-type ablation effectively shortened the irradiation time, reduced the over-accumulation of energy, and increased the HIFU ablation efficiency.

  1. Pilot study: safety and effectiveness of simple ultrasound-guided high-intensity focused ultrasound ablating uterine leiomyoma with a diameter greater than 10 cm.

    PubMed

    Hou, Ruijie; Wang, Liwei; Li, Shaoping; Rong, Fengmin; Wang, Yuanyuan; Qin, Xuena; Wang, Shijin

    2018-02-01

    The study aimed to prospectively investigate whether uterine leiomyoma greater than 10 cm in diameter could be treated with simple ultrasound-guided high-intensity focused ultrasound (USgHIFU) in one-time treatment. A total of 36 patients with 36 symptomatic uterine leiomyoma greater than 10 cm in diameter who underwent simple USgHIFU treatment alone were analysed. Enhanced MRI was performed before and after HIFU treatment, and all patients had follow-up for 6 months after treatment. Symptom severity scores, treatment time, treatment speed, ablation rate, energy effect ratio, uterine leiomyoma regression rate, adverse events, liver and kidney functions, coagulation function and routine blood count were included in the study endpoints. The mean diameter of uterine leiomyoma was 11.2 ± 1.3 cm (10.0-14.3 cm). The median treatment time and treatment speed were 104.0 min (90.0-140.0 min) and 118.8 cm 3  h -1  (86.2-247.1 cm 3  h -1 ), respectively. The ablation rate of uterine leiomyoma was 71.9 ± 20.4% (32.1-100.0%), and the regression rate of uterine leiomyoma was 40.8 ± 7.5% (25.6-59.9%) at 6 months after treatment. The mean symptom severity scores decreased by an average of approximately 8.6 ± 2.3 (5-14) points. There were no significant changes in haemogram and blood chemical indexes of patients, except for the transient elevation of aspartate aminotransferase, total bilirubin and white blood cells after treatment. No serious adverse reactions occurred. According to our preliminary results, simple USgHIFU is a safe and effective single-treatment method of treating uterine leiomyoma greater than 10 cm in diameter and is an almost innocuous alternative therapeutic strategy. Advances in knowledge: The conclusions indicate simple USgHIFU is safe and effective as one-time treatment of uterine leiomyoma greater than 10 cm in diameter, it could be a promising therapeutic strategy.

  2. Transmural ultrasound imaging of thermal lesion and action potential changes in perfused canine cardiac wedge preparations by high intensity focused ultrasound ablation.

    PubMed

    Wu, Ziqi; Gudur, Madhu S R; Deng, Cheri X

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm(2)), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43 ± 1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96 ± 0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89 ± 0.01, n = 13) and change of APA (ROC AUC 0.79 ± 0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction.

  3. Transmural Ultrasound Imaging of Thermal Lesion and Action Potential Changes in Perfused Canine Cardiac Wedge Preparations by High Intensity Focused Ultrasound Ablation

    PubMed Central

    Wu, Ziqi; Gudur, Madhu S. R.; Deng, Cheri X.

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm2), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43±1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96±0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89±0.01, n = 13) and change of APA (ROC AUC 0.79±0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction. PMID:24349337

  4. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    NASA Astrophysics Data System (ADS)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for

  5. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    PubMed Central

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than −40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of −20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe ‘ripples’ when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm × 20.0 mm dimensions

  6. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    PubMed

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  7. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Hossack, James (Inventor); Owen, Neil (Inventor); Bailey, Michael R. (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  8. Prostatic needle biopsies following primary high intensity focused ultrasound (HIFU) therapy for prostatic adenocarcinoma: histopathological features in tumour and non-tumour tissue.

    PubMed

    Ryan, Paul; Finelli, Antonio; Lawrentschuk, Nathan; Fleshner, Neil; Sweet, Joan; Cheung, Carol; van der Kwast, Theodorus; Evans, Andrew

    2012-08-01

    High intensity focused ultrasound (HIFU) is currently offered as primary treatment for patients with clinically localised prostate cancer. Data on histopathological features of post-treatment biopsies are limited. Pretreatment biopsies were identified in 45 men (age range 41-85) who received primary HIFU therapy. Post-HIFU biopsies were performed in 30 of these patients (67%) at mean 14.1 months (95% CI 11.7 to 16.5) follow-up, 22 due to rising PSA and eight as part of routine follow-up. Biopsies were examined for presence, distribution and extent of adenocarcinoma, Gleason scores, use of standard immunohistochemistry and ablative tissue changes were attributable to HIFU. In post-HIFU biopsies performed for biochemical failure, 17/22 (77%) contained adenocarcinoma; 4/22 (18%) had higher post-HIFU Gleason score; 3/22 (14%) had newly recognised bilateral involvement; and 4/22 (18%) had higher percentage tissue involvement compared with pre-HIFU biopsies. Of cases without rising post-HIFU PSA, 2/8 (25%) routine follow-up biopsies contained adenocarcinoma. Stromal fibrosis was the commonest finding in non-tumour post-HIFU biopsy tissue (17/30, 57%) with coagulative necrosis occurring in fewer cases (4/30, 13%) and over a shorter follow-up interval than cases showing fibrosis (8.5 (0.2-16.8) vs 15.3 (11.5-19.1) months). Treatment effects in tumour cells precluding the assignment of Gleason scores or use of immunohistochemistry in post-HIFU biopsies were not identified. Post-HIFU biopsies are positive in more than 75% of patients with elevated or rising PSA. Stromal fibrosis is common but the tissue effects of this modality do not appear to impair pathologists' ability to detect and grade adenocarcinoma in follow-up biopsies.

  9. Benign Solid Thyroid Nodules: US-guided High-Intensity Focused Ultrasound Ablation-Initial Clinical Outcomes.

    PubMed

    Kovatcheva, Roussanka D; Vlahov, Jordan D; Stoinov, Julian I; Zaletel, Katja

    2015-08-01

    To assess the short-term efficacy and safety of ultrasonographically (US)-guided high-intensity focused ultrasound (HIFU) ablation for treatment of benign solid thyroid nodules. This prospective study was approved by the institutional ethics committee, and written informed consent was acquired. HIFU ablation was performed in one session with US guidance and conscious sedation in 20 euthyroid patients (mean age, 44.5 years) with a benign solitary or dominant thyroid nodule. Thyroid nodule volume, US structure, and Doppler pattern were assessed at baseline, at 1 week, and at 1, 3, and 6 months after treatment. Adverse events associated with HIFU were evaluated. Statistical analysis was conducted by using repeated measures analysis of variance, the Student t test, χ(2) test, and correlation analysis. The mean ± standard deviation nodule volume was 4.96 mL ± 2.79 at the start of the study. Nodule volume had decreased to 3.05 mL ± 1.96 at the 3-month follow-up examination (n = 20, P < .001), and reached 2.91 mL ± 2.43 by the 6-month follow-up examination (n = 16, P < .001). By then, the mean volume reduction was 48.7% ± 24.3 (P < .001). Isoechoic nodules showed greater reduction at 1 month than did hypoechoic nodules (31.6% ± 18.1 vs 16.4% ± 8.6, P = .053). Nodules with markedly increased blood flow showed smaller volume reduction at 3 months than did less-vascularized nodules (10.9% ± 14.5 vs 41.5% ± 20.3, P = .054). Minor transient complications (eg, subcutaneous edema, mild skin redness) were observed in two patients. Early data suggest that US-guided HIFU ablation is an effective and safe procedure for treatment of benign solid thyroid nodules. Initial US echogenicity and vascularization influence the ablation outcome. (©) RSNA, 2015.

  10. High-intensity focused ultrasound treatment of placenta accreta after vaginal delivery: a preliminary study.

    PubMed

    Bai, Y; Luo, X; Li, Q; Yin, N; Fu, X; Zhang, H; Qi, H

    2016-04-01

    To evaluate the safety and efficiency of high-intensity focused ultrasound (HIFU) in the treatment of placenta accreta after vaginal delivery. Enrolled into this study between September 2011 and September 2013 were 12 patients who had been diagnosed with placenta accreta following vaginal delivery and who had stable vital signs. All patients were treated using an ultrasound-guided HIFU treatment system. As indication of the effectiveness of the treatment we considered decreased vascular index on color Doppler imaging, decrease in size of residual placenta compared with pretreatment size on assessment by three-dimensional ultrasound with Virtual Organ Computer-aided Analysis, reduced signal intensity and degree of enhancement on magnetic resonance imaging and avoidance of hysterectomy following treatment. To assess the safety of HIFU treatment, we recorded side effects, hemorrhage, infection, sex steroid levels, return of menses and subsequent pregnancy. Patients were followed up in this preliminary study until December 2013. The 12 patients receiving HIFU treatment had an average postpartum hospital stay of 6.8 days and an average period of residual placental involution of 36.9 days. HIFU treatment did not apparently increase the risk of infection or hemorrhage and no patient required hysterectomy. In all patients menstruation recommenced after an average of 80.2 days, and sex steroid levels during the middle luteal phase of the second menstrual cycle were normal. Two patients became pregnant again during the follow-up period. This preliminary study suggests that ultrasound-guided HIFU is a safe and effective non-invasive method to treat placenta accreta patients after vaginal delivery who have stable vital signs and desire to preserve fertility. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  11. Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields

    NASA Astrophysics Data System (ADS)

    Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation oftissue. In this work, an inverse problem of determining transducer parameters to enable formation of shockswith desired amplitude at the focus is solved. The solution was obtained by performing multipledirect simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sourcesas well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocksare formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.

  12. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation.

    PubMed

    Merckel, Laura G; Knuttel, Floor M; Deckers, Roel; van Dalen, Thijs; Schubert, Gerald; Peters, Nicky H G M; Weits, Teun; van Diest, Paul J; Mali, Willem P Th M; Vaessen, Paul H H B; van Gorp, Joost M H H; Moonen, Chrit T W; Bartels, Lambertus W; van den Bosch, Maurice A A J

    2016-11-01

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. • MR-HIFU ablation with the dedicated breast system is safe and feasible • In none of the patients was skin redness or burns observed • No correlation was found between the applied energy and the temperature increase • The correlation between applied energy and size of tumour necrosis was good.

  13. Further Investigation on High-intensity Focused Ultrasound (HIFU) Treatment for Thyroid Nodules: Effectiveness Related to Baseline Volumes.

    PubMed

    Sennert, Michael; Happel, Christian; Korkusuz, Yücel; Grünwald, Frank; Polenz, Björn; Gröner, Daniel

    2018-01-01

    Several minimally invasive thermal techniques have been developed for the treatment of benign thyroid nodules. A new technique for this indication is high-intensity focused ultrasound (HIFU). The aim of this study was to assess effectiveness in varying preablative nodule volumes and whether outcome patterns that were reported during studies with other thermal ablative procedures for thyroid nodule ablation would also apply to HIFU. Over the last 2 years, 19 nodules in 15 patients (12 women) whose average age was 58.7 years (36-80) were treated with HIFU in an ambulatory setting. Patients with more than one nodule were treated in multiple sessions on the same day. The mean nodule volume was 2.56 mL (range 0.13-7.67 mL). The therapeutic ultrasound probe (Echopulse THC900888-H) used in this series functions with a frequency of 3 MHz, reaching temperatures of approximately 80°C-90°C and delivering an energy ranging from 87.6 to 320.3 J per sonication. To assess the effectiveness of thermal ablation, nodular volume was measured at baseline and at 3-month follow-up. The end point of the study was the volume reduction assessment after 3 months' follow-up. Therapeutic success was defined as volume reduction of more than 50% compared to baseline. This study was retrospectively analyzed using the Wilcoxon signed rank test and Kendall tau. The median percentage volume reduction of all 19 nodules after 3 months was 58%. An inverse correlation between preablative nodular volume and percentage volume shrinking was found (tau = -0.46, P < .05). Therapeutic success was achieved in 10 out of 19 patients (53%). HIFU of benign thyroid nodules can be carried out as an alternative therapy for nodules ≤3 mL if patients are refusing surgery or radioiodine therapy. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Gas-filled phospholipid nanoparticles conjugated with gadolinium play a role as a potential theragnostics for MR-guided HIFU ablation.

    PubMed

    Choi, Se-Young; Kim, Young-Sun; Seo, Yeong-Ju; Yang, Jehoon; Choi, Kyu-Sil

    2012-01-01

    To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C(5)F(12)-phospholipid nanobubbles (PLNs) 30-100 nm in diameter. The biochemical and physical characterization of Gd-C(5)F(12)-PLNs were performed. Since Gd-C(5)F(12)-PLN-50 (Φ = 50 nm) and Gd-C(5)F(12)-PLN-100 (Φ = 100 nm) enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C(5)F(12)-PLNs was longer than 1.5 hrs. Gd-C(5)F(12)-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C(5)F(12)-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C(5)F(12)-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C(5)F(12)-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation.

  15. Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results.

    PubMed

    Kaye, Elena A; Gutta, Narendra Babu; Monette, Sebastien; Gulati, Amitabh; Loh, Jeffrey; Srimathveeravalli, Govindarajan; Ezell, Paula C; Erinjeri, Joseph P; Solomon, Stephen B; Maybody, Majid

    2015-08-01

    Spastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system. The HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging. Reddening and mild thickening of the nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8-64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7-34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average. The acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.

  16. Moderate-to-deep sedation technique, using propofol and ketamine, allowing synchronised breathing for magnetic resonance high-intensity focused ultrasound (MR-HIFU) treatment for uterine fibroids: a pilot study.

    PubMed

    Vaessen, Hermanus H B; Knuttel, F M; van Breugel, J M M; Ikink, M E; Dieleman, J M; van den Bosch, M A A J; Knape, J T A

    2017-01-01

    Magnetic resonance high-intensity focused ultrasound (MR-HIFU) treatment for uterine fibroids is rapidly gaining popularity as a treatment modality. This procedure is generally uncomfortable, painful, and requires minimal or absence of movement and an MR-HIFU synchronised breathing pattern of the patient. Procedural sedation and analgesia protocols have become the standard practice in interventional radiology departments worldwide. The aim of this study was to explore if a sedation regimen with low-dose propofol and ketamine performed by trained non-medical sedation practitioners could result in relief of discomfort for the patient and in adequate working conditions for MR-HIFU treatment for uterine fibroids. In this study, conducted from August 2013 until November 2014, 20 patients were subjected to MR-HIFU treatment of uterine fibroids. Patients were deeply sedated using intravenous propofol and esketamine according to a standardised hospital protocol to allow synchronisation of the breathing pattern to the MR-HIFU. The quality of sedation for MR-HIFU and complications were recorded and analysed. The side effects of the sedation technique, the propofol and esketamine consumption rate, the duration of recovery, and patient satisfaction after 24 h were examined. A total of 20 female patients (mean age 42.4 [range 32-53] years) were enrolled. Mean propofol/esketamine dose was 1309 mg/39.5 mg (range 692-1970 mg/ 23.6-87.9 mg). Mean procedure time was 269 min (range 140-295 min). Application of the sedation protocol resulted in a regular breathing pattern, which could be synchronised with the MR-HIFU procedures without delay. The required treatment was completed in all cases. There were no major adverse events. Hypoxemia (oxygen desaturation <92%) and hallucinations were not observed. The use of a specific combination of IV propofol and esketamine for procedural sedation and analgesia reduced the discomfort and pain during MR-guided HIFU treatments of uterine

  17. Transsclera Drug Delivery by Pulsed High-Intensity Focused Ultrasound (HIFU): An Ex Vivo Study.

    PubMed

    Murugappan, Suresh Kanna; Zhou, Yufeng

    2015-01-01

    PURPOSE/AIM OF STUDY: Drug delivery to the ocular posterior segment is of importance, but it is a challenge in the treatment of irreversible blindness disease, such as age-related macular degeneration. Although some methods (i.e. intraocular injection, sustained release by polymer and iontophoresis) have been applied, some technical drawbacks, such as slow rate and damage to the eye, need to be overcome for wide use. In this study, the feasibility of high-intensity focused ultrasound (HIFU) to enhance the transsclera drug delivery was tested for the first time. One-hundred HIFU pulses with the driving frequency of 1.1 MHz, acoustic power of 105.6 W, pulse duration of 10-50 ms and pulse repetition frequency of 1 Hz were delivered to the fresh ex vivo porcine sclera specimen. In comparison to the passive diffusion (control), 50-ms HIFU can increase the penetration depth by 2.0 folds (501.7 ± 126.4 µm versus 252.4 ± 29.2 µm) using bicinchoninic acid assay and Rhodamine 6 G fluorescence intensity by 3.1 folds (22.4 ± 12.3 versus 7.1 ± 4.1) and coverage area by 2.6 folds (40.4 ± 9.1% versus 15.8 ± 2.9%). No morphological changes on the sonicated sclera samples were found using a surface electron microscope. In summary, pulsed-HIFU may be an effective modality in the transsclera drug delivery with a high transporting rate and depth. In vivo studies are necessary to further evaluate its performance, including the drug penetration and its possible side effects.

  18. Clinical Predictors of Long-term Success in Ultrasound-guided High-intensity Focused Ultrasound Ablation Treatment for Adenomyosis: A Retrospective Study.

    PubMed

    Liu, Xin; Wang, Wei; Wang, Yang; Wang, Yuexiang; Li, Qiuyang; Tang, Jie

    2016-01-01

    The long-term outcomes of ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation treatment for adenomyosis and the relevant factors affecting the durability of symptom relief were assessed in this study.A total of 230 women with adenomyosis who were treated with USgHIFU ablation between January 2007 and December 2013 were retrospectively analyzed. The contrast-enhanced ultrasonography (CEUS) was performed immediately after the treatment to evaluate the ablation effect, and the nonperfused volume (NPV) ratio was then calculated. Regular follow-up was conducted and the visual analog scale (VAS) score was used to assess the changes in dysmenorrhea. The effect of treatment was evaluated after an average follow-up length of 3 months and the factors affecting clinical success and symptom relapse were identified.Of the 230 treated patients, 208 (90.4%) were followed up regularly, with a median follow-up length of 40 months (range, 18-94 months). Mean value of the NPV ratio calculated immediately after the treatment was 57.4 ± 24.4%. Varying degrees of symptomatic relief of dysmenorrhea based on the VAS scores were observed in 173 (83.2%) patients and 71.0% of the patients were asymptomatic during follow-up. Women with higher NPV ratio (OR = 0.964, 95% CI = 0.947-0.982, P = 0.000) and older age (OR = 0.342, 95% CI = 0.143-0.819, P = 0.016) were more likely to achieve clinical success. Dysmenorrhea recurred in 45 (26%) out of 173 cases; the median recurrence time was 12 months after treatment. The lower BMI (OR = 1.221, 95% CI = 1.079-1.381, P = 0.001) and the higher acoustic power (OR = 0.992, 95% CI = 0.986-0.998, P = 0.007) were associated with less risk of relapse. Twelve of the 14 patients who were retreated by USgHIFU ablation after experiencing dysmenorrhea recurrence achieved clinical success.USgHIFU ablation is an effective uterus-conserving treatment for symptomatic adenomyosis with an acceptable

  19. High-Intensity Focused Ultrasound (HIFU) Using Sonablate-500 for the Treatment of Localized Prostate Cancer: 6-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Shoji, Sunao; Nagata, Yoshihiro

    2006-05-01

    We evaluated 281 patients of localized prostate cancer treated with high-intensity focused ultrasound (HIFU) for biochemical disease-free rate, safety, morbidity and predictors of biochemical outcome. A total of 281 patients underwent HIFU with the use of Sonablate-500 and with at least 12 months of follow-up. Biochemical failure was defined according to the criteria recommended by the American Society for Therapeutic Radiology and Oncology Consensus Panel. The biochemical disease-free rates at 1, 3 and 5 years in all patients were 78%, 74% and 72%, respectively. The biochemical disease-free rates at 5 years for patients with pretreatment PSA less than 10 ng/ml, 10.01 to 20.0 ng/ml and more than 20.0 ng/ml were 88%, 70% and 17%, respectively (p<0.0001). According to multivariate analysis preoperative PSA (p<0.0001) was significant independent predictors of time to biochemical recurrence. HIFU therapy appears to be a safe and efficacious minimally invasive therapy for patients with localized prostate cancer, especially those with a pretreatment PSA level less than 20 ng/ml.

  20. High-intensity focused ultrasound for the treatment of solid tumor: Chinese clinical experience

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akira; Zhang, Hong; Sun, Kun; Hasumura, Hiromi; Liu, Botao; Fu, Yurui; Yang, Zaocheng

    2006-05-01

    As a non-invasive modality, high-intensity focused ultrasound (HIFU) therapy has been received an interest for the treatment of solid tumor. There are some makers of HIFU for the equipment in China. The Sonic CZ901 is developed from the Mianyang stream that has a great advantage for guiding by color Doppler ultrasound imaging. For the research about possibility of this equipment, we evaluate the clinical usefulness to the solid tumor of HIFU treatment at Wujing general hospital in Beijing. We elucidate the result in 28 cases with benign and malignant tumor (Uterine myoma:16, Benign prostatic hypertrophy:5, Benign breast tumor:2, Breast cancer:1, Retroperitoneal tumor:1, Pheochromocytoma:1, Liver cancer: 2) . After 14˜90days, all cases show the reduction of tumor size (Max.3.2cm, Min.1.6cm, :Mean 2.2cm reduced), and the blood flow of tumor completely reduced in 7/23, partially reduced in16/23. Clinical symptoms disappeared in 7, clearly improved in 14, improved in 7. All treatments had no adverse event except for two cases of liver cancer. They felt an abdominal pain that controllable by medicine and it improved within 6hours. It is concluded that HIFU with guide by ultrasound imaging is very safe, painless and effective as the anti-tumor treatment.

  1. Performance assessment of HIFU lesion detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3D finite-element-based framework with experimental validation

    PubMed Central

    Hou, Gary Y.; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69, 5.39 and 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, and 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. PMID:22036637

  2. Segmental liver resection assisted by HIFU: tissue precauterization using a toroidal-shaped HIFU transducer

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Melodelima, D.; Schenone, F.; Rivoire, M.; Chapelon, J. Y.

    2010-03-01

    The development of new cauterization techniques for hepatic resection is critical for improving the safety of the procedure. Previous studies showed the feasibility of using HIFU or radiofrequency precoagulation to limit blood loss during dissection of the organ. Here we report a new therapeutic modality using high intensity focused ultrasound (HIFU) to perform a bloodless hepatic resection that could represent a promising alternative. A comparative study was performed to evaluate the interest of using this complementary tool to improve surgical resection in the liver. This study used a 3 MHz HIFU toroidal-shaped phased array transducer which allows the generation of a single conical lesion of 7 cm3 in 40 seconds. In order to minimize blood loss and dissection time, a barrier of coagulative necrosis was generated with the HIFU device before hepatectomy, by juxtaposing single conical lesions on the line of dissection. Resection assisted by HIFU (RA-HIFU) was compared with classical dissections with clamping (RC) and without clamping (Control). For each technique 14 partial liver resections were performed in seven pigs. The parameters examined were vascular control and times of treatment. Precoagulation allowed the vascular isolation of small vessels and surgical clips were mainly used for the control of vessels>5 mm in diameter. The number of clips used per unit of liver surface dissected in RA-HIFU (0.8±0.3 cm-2) was significantly lower than in the other groups (RC: 1.6±0.4 cm-2, Control: 1.8±0.8 cm-2, p<0.01). In addition, blood loss was lower in RA-HIFU (7.4±6.5 ml.cm-2) than in RC (11.2±4.5 ml.cm-2) and Control (14.0±6.7 ml.cm-2). The time of dissection in RA-HIFU (13±5 min) was shorter than in RC (23±8 minutes) and Control (18±5 minutes). The feasibility and the efficiency of RA-HIFU using a toroidal-shaped HIFU transducer without additional devices were demonstrated. This technique enhances the resection procedure and will be able to be tested in

  3. Design of HIFU transducers to generate specific nonlinear ultrasound fields.

    PubMed

    Khokhlova, Vera A; Yuldashev, Petr V; Rosnitskiy, Pavel B; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Sapozhnikov, Oleg A

    2016-01-01

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation of tissue. In this work, an inverse problem of determining transducer parameters to enable formation of shocks with desired amplitude at the focus is solved. The solution was obtained by performing multiple direct simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sources as well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocks are formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.

  4. Design of HIFU transducers to generate specific nonlinear ultrasound fields

    PubMed Central

    Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2017-01-01

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation of tissue. In this work, an inverse problem of determining transducer parameters to enable formation of shocks with desired amplitude at the focus is solved. The solution was obtained by performing multiple direct simulations of the parabolic Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sources as well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocks are formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90–100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University. PMID:28580038

  5. High-intensity Focused Ultrasound (HIFU) as salvage therapy for radio-recurrent prostate cancer: predictors of disease response.

    PubMed

    Dason, Shawn; Wong, Nathan C; Allard, Christopher B; Hoogenes, Jen; Orovan, William; Shayegan, Bobby

    2018-01-01

    Some men with localized radio-recurrent prostate cancer may benefit from salvage high-intensity focused ultrasound (HIFU). Herein, we describe oncologic outcomes and predictors of disease response after salvage whole gland HIFU from our prospective cohort. Patients with localized radio-recurrent prostate cancer were prospectively enrolled from January 2005 to December 2014. Participants had to meet both biochemical and histological definitions of recurrence. Exclusion criteria included the receipt of prior salvage therapy, presence of metastatic disease, and administration of ADT in the 6-months prior to enrollment. Participants were treated with a single session of whole-gland HIFU ablation with the AblathermTM device (EDAP, France). The primary endpoint was recurrence-free survival (RFS), defined as a composite endpoint of PSA progression (Phoenix criteria), receipt of any further salvage therapy, receipt of ADT, clinical progression, or death. Kaplan-Meier survival analysis was used to determine the primary end-point and stratifications were used to determine the significance of 6 pre-specified predictors of improved RFS (TRUS biopsy grade, number of study entry TRUS biopsy cores positive, palpable disease at study enrollment, pre-HIFU PSA, an undetectable post-HIFU PSA nadir, and receipt of prior hormone therapy). Survival analysis was performed on participants with a minimum of 1-year follow-up. Twenty-four participants were eligible for study inclusion with a median follow-up of 31.0 months. Median PSA at study entry was 4.02ng/ml. Median time to PSA nadir was 3 months after treatment and median post-HIFU PSA nadir was 0.04ng/ ml. Median 2-year and 5-year RFS was 66.3% and 51.6% respectively. Of our 6 pre-specified predictors, an undetectable PSA nadir was the only significant predictor of improved RFS (HR 0.07, 95% CI 0.02-0.29, log-rank P<0.001). One participant underwent an intervention for a urethral stricture. No participants developed osteitis pubis or

  6. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin.

    PubMed

    Lee, Sugun; Kim, Hee-Jin; Park, Hyun Jun; Kim, Hyoung Moon; Lee, So Hyun; Cho, Sung Bin

    2017-07-01

    Non-focused ultrasound and high-intensity focused ultrasound (HIFU) devices induce lipolysis by generating acoustic cavitation and coagulation necrosis in targeted tissues. We aimed to investigate the morphometric characteristics of immediate tissue reactions induced by 2 MHz, 13-mm focused HIFU via two-dimensional ultrasound images and histologic evaluation of cadaveric skin from the abdomen and thigh. Acoustic fields of a 2 MHz, 38-mm HIFU transducer were characterized by reconstruction of the fields using acoustic intensity measurement. Additionally, abdominal and thigh tissues from a fresh cadaver were treated with a HIFU device for a single, two, and three pulses at the pulse energy of 130 J/cm 2 and a penetration depth of 13 mm. Acoustic intensity measurement revealed characteristic focal zones of significant thermal injury at the depth of 38 mm. In both the abdomen and thigh tissue, round to oval ablative thermal injury zones (TIZs) were visualized in subcutaneous fat layers upon treatment with a single pulse of HIFU treatment. Two to three HIFU pulses generated larger and more remarkable ablative zones throughout subcutaneous fat layers. Finally, experimental treatment in a tumescent infiltration-like setting induced larger HIFU-induced TIZs of an oval or columnar shape, compared to non-tumescent settings. Although neither acoustic intensity measurement nor cadaveric tissue exactly reflects in vivo HIFU-induced reactions in human tissue, we believe that our data will help guide further in vivo studies in investigating the therapeutic efficacy and safety of HIFU-induced lipolysis.

  7. Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Elena A., E-mail: kayee@mskcc.org; Gutta, Narendra Babu, E-mail: gnbabu.aiims@gmail.com; Monette, Sebastien, E-mail: monettes@mskcc.org

    IntroductionSpastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system.MethodsThe HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging.ResultsReddening and mild thickening of themore » nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8–64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7–34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average.ConclusionThe acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.« less

  8. High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orgera, Gianluigi, E-mail: gianluigi.orgera@ieo.it; Krokidis, Miltiadis; Monfardini, Lorenzo

    2011-04-15

    We describe the use of ultrasound-guided high-intensity focused ultrasound (HIFU) for ablation of two pancreatic neuroendocrine tumours (NETs; insulinomas) in two inoperable young female patients. Both suffered from episodes of severe nightly hypoglycemia that was not efficiently controlled by medical treatment. After HIFU ablation, local disease control and symptom relief were achieved without postinterventional complications. The patients remained free of symptoms during 9-month follow-up. The lesions appeared to be decreased in volume, and there was decreased enhancing pattern in the multidetector computed tomography control (MDCT). HIFU is likely to be a valid alternative for symptoms control in patients with pancreaticmore » NETs. However, currently the procedure should be reserved for inoperable patients for whom symptoms cannot be controlled by medical therapy.« less

  9. A multi-element high intensity focused ultrasound transducer: Design, fabrication, and testing

    NASA Astrophysics Data System (ADS)

    Vaezy, Shahram; Held, Robert; Miller, Blake; Fleury, Gerard

    2004-05-01

    The goal of this project is to develop an intra-cavity image-guided high intensity focused ultrasound (HIFU) device using piezocomposite technology and commercially available ultrasound imaging. The HIFU array, manufactured by Imasonic Corporation, is an 11-element annular phased array, with a focal length range of 30-60 mm, and operating frequency of 3 MHz (bandwidth of 1 MHz). The imaging probe (C9-5, Philips) is configured such that the focal axis of the HIFU beam was within the image plane. The array includes six complete central rings and five side-truncated peripheral rings, all with the natural radius of curvature of 50 mm. Impedance of all elements is approximately 50 ohms (10% accuracy for real and imaginary parts). Cross coupling between adjacent elements is less than, -40 dB. High power measurements showed more than 75% efficiency, at surface intensity of 2.66 W/cm2. Schlieren imaging showed effective focusing at all focal lengths (30-60 mm). The image-guided HIFU device requires water or hydrogel coupling, and possibly water cooling. The results of the full characterization for lesion formation in tissue-mimicking phantoms and biological tissues will be presented. Possible applications include uterine fibroids, abnormal uterine bleeding, and intraoperative hemostasis of occult hemorrhage.

  10. Sequential high intensity focused ultrasound (HIFU) ablation in the treatment of benign multinodular goitre: an observational retrospective study.

    PubMed

    Lang, Brian H H; Woo, Yu-Cho; Chiu, Keith Wan-Hang

    2018-03-19

    Assessing the efficacy and safety of sequential high-intensity focused ultrasound (HIFU) ablation in a multinodular goitre (MNG) by comparing them with single HIFU ablation. One hundred and four (84.6%) patients underwent single ablation of a single nodule (group I), while 19 (15.4%) underwent sequential ablation of two relatively-dominant nodules in a MNG (group II). Extent of shrinkage per nodule [by volume reduction ratio (VRR)], pain scores (by 0-10 visual analogue scale) during and after ablation, and rate of vocal cord palsy (VCP), skin burn and nausea/vomiting were compared between the two groups. All 19 (100%) sequential ablations completed successfully. The 3- and 6-month VRR of each nodule were comparable between the two groups (p > 0.05) and in group II, the 3- and 6-month VRR between the first and second nodules were comparable (p = 0.710 and p = 0.548, respectively). Pain score was significantly higher in group II in the morning after ablation (2.29 vs 1.15, p = 0.047) and nausea/vomiting occurred significantly more frequently in group II (15.8% vs 0.0%, p = 0.012). However, VCP and skin burn were comparable (p > 0.05). Sequential ablation had comparable efficacy and safety as single ablation. However, patients undergoing sequential ablation are at higher likelihood of pain in the following morning and nausea/vomiting after ablation. • Sequential HIFU ablation is well-tolerated in patients with two dominant thyroid nodules • More pain is experienced in the morning following sequential HIFU ablation • More nausea/vomiting is experienced following sequential HIFU ablation.

  11. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  12. Whole-Body Bone Scan Findings after High-Intensity Focused Ultrasound (HIFU) Treatment.

    PubMed

    Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon

    2011-12-01

    This study aims to examine the findings of (99m)Tc-diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary or metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57 ± 9 years) were studied. HIFU treatment was performed in the liver (n = 40), pancreas (n = 16), and breast (n = 6). Mean interval time between HIFU treatment and bone scan was 106 ± 105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero-axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco-lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow-up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary or metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.

  13. Optimization of Focused Ultrasound and Image Based Modeling in Image Guided Interventions

    NASA Astrophysics Data System (ADS)

    Almekkawy, Mohamed Khaled Ibrahim

    Image-guided high intensity focused ultrasound (HIFU) is becoming increasingly accepted as a form of noninvasive ablative therapy for the treatment of prostate cancer, uterine fibroids and other tissue abnormalities. In principle, HIFU beams can be focused within small volumes which results in forming precise lesions within the target volume (e.g. tumor, atherosclerotic plaque) while sparing the intervening tissue. With this precision, HIFU offers the promise of noninvasive tumor therapy. The goal of this thesis is to develop an image-guidance mode with an interactive image-based computational modeling of tissue response to HIFU. This model could be used in treatment planning and post-treatment retrospective evaluation of treatment outcome(s). Within the context of treatment planning, the challenge of using HIFU to target tumors in organs partially obscured by the rib cage are addressed. Ribs distort HIFU beams in a manner that reduces the focusing gain at the target (tumor) and could cause a treatment-limiting collateral damage. We present a refocusing algorithms to efficiently steer higher power towards the target while limiting power deposition on the ribs, improving the safety and efficacy of tumor ablation. Our approach is based on an approximation of a non-convex to a convex optimization known as the semidefinite relaxation (SDR) technique. An important advantage of the SDR method over previously proposed optimization methods is the explicit control of the sidelobes in the focal plane. A finite-difference time domain (FDTD) heterogeneous propagation model of a 1-MHz concave phased array was used to model the acoustic propagation and temperature simulations in different tissues including ribs. The numerical methods developed for the refocusing problem are also used for retrospective analysis of targeting of atherosclerotic plaques using HIFU. Cases were simulated where seven adjacent HIFU shots (5000 W/cm2, 2 sec exposure time) were focused at the plaque

  14. Uterine fibroids: semiquantitative perfusion MR imaging parameters associated with the intraprocedural and immediate postprocedural treatment efficiencies of MR imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Kim, Young-sun; Kim, Byoung-Gie; Rhim, Hyunchul; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Choi, Chel Hun; Lee, Yoo-Young; Lim, Hyo Keun

    2014-11-01

    To determine whether semiquantitative perfusion magnetic resonance (MR) imaging parameters are associated with therapeutic effectiveness of MR imaging-guided high-intensity focused ultrasound ( HIFU high-intensity focused ultrasound ) ablation of uterine fibroids and which semiquantitative perfusion parameters are significant with regard to treatment efficiency. This study was approved by the institutional review board, and informed consent was obtained from all subjects. Seventy-seven women (mean age, 43.3 years) with 119 fibroids (mean diameter, 7.5 cm) treated with MR imaging-guided HIFU high-intensity focused ultrasound ablation were analyzed. The correlation between semiquantitative perfusion MR parameters (peak enhancement, relative peak enhancement, time to peak, wash-in rate, washout rate) and heating and ablation efficiencies (lethal thermal dose volume based on MR thermometry and nonperfused volume based on immediate contrast-enhanced image divided by intended treatment volume) were evaluated by using a linear mixed model on a per-fibroid basis. The specific value of the significant parameter that had a substantial effect on treatment efficiency was determined. The mean peak enhancement, relative peak enhancement, time to peak, wash-in rate, and washout rate of the fibroids were 1293.1 ± 472.8 (range, 570.2-2477.8), 171.4% ± 57.2 (range, 0.6%-370.2%), 137.2 seconds ± 119.8 (range, 20.0-300.0 seconds), 79.5 per second ± 48.2 (range, 12.5-236.7 per second), and 11.4 per second ± 10.1 (range, 0-39.3 per second), respectively. Relative peak enhancement was found to be independently significant for both heating and ablation efficiencies (B = -0.002, P < .001 and B = -0.003, P = .050, respectively). The washout rate was significantly associated with ablation efficiency (B = -0.018, P = .043). Both efficiencies showed the most abrupt transitions at 220% of relative peak enhancement. Relative peak enhancement at semiquantitative perfusion MR imaging was

  15. [MR-guided focused ultrasound. Current and future applications].

    PubMed

    Trumm, C G; Napoli, A; Peller, M; Clevert, D-A; Stahl, R; Reiser, M; Matzko, M

    2013-03-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier.

  16. Color Doppler Sonographic Evaluation of Peak Systolic Velocity and Pulsatility Index in Artery after Pulsed HIFU Exposure

    NASA Astrophysics Data System (ADS)

    Yang, Feng-Yi; Chiu, Wei-Hsiu; Yeh, Chi-Fang

    2011-09-01

    The objective of current study was to investigate the functional changes in arteries induced by pulsed-HIFU with or without microbubbles. Sonication was applied at an ultrasound frequency of 1 MHz with a burst length of 50 ms and a repetition frequency of 1 Hz. The duration of the whole sonication was 6s. The abdominal aortas of Sprague-Dawley rats were surgically exposed and sonicated with pulsed HIFU; the pulsed HIFU beam was aimed using color images of the blood flow. There was no obvious normalized peak systolic velocity (PSV) change at various acoustic powers of pulsed-HIFU exposure in the absence of ultrasound contrast agent (UCA). However, the normalized PSV change induced by pulsed-HIFU decreased with the injected dose of UCA at acoustic powers. At this time, the normalized pulsatility index (PI) change in the vessel subjected to pulsed-HIFU increased in proportion to UCA dose. Additional research is needed to investigate the detailed mechanical effects of pulsed-HIFU exposure on blood flow and the structure of vessel walls.

  17. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    PubMed

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. A User-Friendly Software Package for HIFU Simulation

    NASA Astrophysics Data System (ADS)

    Soneson, Joshua E.

    2009-04-01

    A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.

  19. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.

    PubMed

    Salomir, Rares; Petrusca, Lorena; Auboiroux, Vincent; Muller, Arnaud; Vargas, Maria-Isabel; Morel, Denis R; Goget, Thomas; Breguet, Romain; Terraz, Sylvain; Hopple, Jerry; Montet, Xavier; Becker, Christoph D; Viallon, Magalie

    2013-06-01

    The treatment of liver cancer is a major public health issue because the liver is a frequent site for both primary and secondary tumors. Rib heating represents a major obstacle for the application of extracorporeal focused ultrasound to liver ablation. Magnetic resonance (MR)-guided external shielding of acoustic obstacles (eg, the ribs) was investigated here to avoid unwanted prefocal energy deposition in the pathway of the focused ultrasound beam. Ex vivo and in vivo (7 female sheep) experiments were performed in this study. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) was performed using a randomized 256-element phased-array transducer (f∼1 MHz) and a 3-T whole-body clinical MR scanner. A physical mask was inserted in the prefocal beam pathway, external to the body, to block the energy normally targeted on the ribs. The effectiveness of the reflecting material was investigated by characterizing the efficacy of high-intensity focused ultrasound beam reflection and scattering on its surface using Schlieren interferometry. Before high-intensity focused ultrasound sonication, the alignment of the protectors with the conical projections of the ribs was required and achieved in multiple steps using the embedded graphical tools of the MR scanner. Multiplanar near real-time MR thermometry (proton resonance frequency shift method) enabled the simultaneous visualization of the local temperature increase at the focal point and around the exposed ribs. The beam defocusing due to the shielding was evaluated from the MR acoustic radiation force impulse imaging data. Both MR thermometry (performed with hard absorber positioned behind a full-aperture blocking shield) and Schlieren interferometry indicated a very good energy barrier of the shielding material. The specific temperature contrast between rib surface (spatial average) and focus, calculated at the end point of the MRgHIFU sonication, with protectors vs no protectors, indicated an important

  20. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Chen, X; Cvetkovic, D

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals weremore » euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.« less

  1. Sparse matrix beamforming and image reconstruction for real-time 2D HIFU monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with in vitro validation

    PubMed Central

    Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a

  2. Robotic high-intensity focused ultrasound (rHIFU) for the prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Solovov, Vyacheslav; Shaplygin, Leonid; Vozdvizhenskiy, Mikhail

    2012-11-01

    Introduction & Objectives: rHIFU shows a successful treatment for localized prostate cancer (PC). Here we explored the effectiveness of the rHIFU treatment for the prostate cancer, hormone-resistant prostate cancer (HRPC) and failure after external beam radiotherapy (EBRT) and radical prostatectomy (RPE). Materials & Methods: 748 patients were treated in our center between Sep 2007 - February 2012: 137 - hormone-resistance (median time before hormone-resistance 25 months), 286 - received neoadjuvant hormone therapy 6 months, 293 - no treatment before HIFU, 32 - after the EBRT failure. 667 patients underwent TURP+rHIFU, 81 only rHIFU (volume prostate <40cc). Mean follow-up is 38 months (range 3-52). All patients were divided into 3 groups: low risk progression (Gleason <7, stage T1-2N0M0, PSA<20, n= 465), high risk progression - (Gleason ≤9, stage T2-3N0M0, PSA <60, n= 251), after EBRT and RPE failure (n= 39). The mean age of the whole group of patients were 70 (52-89) years, mean prostate volume - 39 (5,5-108) cc. Results: Median PSA level 12 months after rHIFU treatment were 0,04 (0-2,24) ng/ml - low risk group, for high risk group - 0,5 (0-48,4) ng/ml, with failure after EBRT and RPE- 0,5 (0-3,2) ng/ml; 36 months after rHIFU treatment were 0,5 (0,02-3,6) ng/ml - low risk group, for high risk group - 3,2 (0-21,38) ng/ml, with failure after EBRT and RPE - 1,7 (0-9,8) ng/ml. Patients with low risk had 4,5% of progression, with high risk PC - 25%, with failure after EBRT and RPE - 19,6%. Kaplan-Meir analyses of the total group indicated that the risk of progression after 1 year follow-up was 10%, the risk of progression was 23% after 4 years of follow-up. Complications: incontinence I - 17,5%, incontinence II - 7,7%, stricture - 18,2%, fistula - 0,3 %. Conclusions: Our experience shows that rHIFU ablation is safe, minimally invasive, effective treatment with moderate side effects for the PC, hormone-resistant prostate cancer, rHIFU also may be used as a salvage

  3. MR-guided adaptive focusing of ultrasound

    PubMed Central

    Larrat, Benoît; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickaël

    2010-01-01

    Adaptive focusing of ultrasonic waves under the guidance of a Magnetic Resonance (MR) system is demonstrated for medical applications. This technique is based on the maximization of the ultrasonic wave intensity at one targeted point in space. The wave intensity is indirectly estimated from the local tissue displacement induced at the chosen focus by the acoustic radiation force of ultrasonic beams. Coded ultrasonic waves are transmitted by an ultrasonic array and an MRI scanner is used to measure the resulting local displacements through a motion sensitive MR sequence. After the transmission of a set of spatially encoded ultrasonic waves, a non iterative inversion process is employed to accurately estimate the spatial-temporal aberration induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) were recovered within acceptable errors (<0.8 rad). This non invasive technique is shown to accurately correct phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU. PMID:20704061

  4. Bone remodeling after MR imaging-guided high-intensity focused ultrasound ablation: evaluation with MR imaging, CT, Na(18)F-PET, and histopathologic examination in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Seo, Youngho; Horvai, Andrew E; Hawkins, Randall A; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2015-02-01

    To serially monitor bone remodeling in the swine femur after magnetic resonance (MR) imaging-guided high-intensity focused ultrasound (HIFU) ablation with MR imaging, computed tomography (CT), sodium fluorine 18 (Na(18)F)-positron emission tomography (PET), and histopathologic examination, as a function of sonication energy. Experimental procedures received approval from the local institutional animal care and use committee. MR imaging-guided HIFU was used to create distal and proximal ablations in the right femurs of eight pigs. The energy used at the distal target was higher (mean, 419 J; range, 390-440 J) than that used at the proximal target (mean, 324 J; range, 300-360 J). Imaging was performed before and after ablation with 3.0-T MR imaging and 64-section CT. Animals were reevaluated at 3 and 6 weeks with MR imaging (n = 8), CT (n = 8), Na(18)F-PET (n = 4), and histopathologic examination (n = 4). Three-dimensional ablation lengths were measured on contrast material-enhanced MR images, and bone remodeling in the cortex was measured on CT images. Ablation sizes at MR imaging 3 and 6 weeks after MR imaging-guided HIFU ablation were similar between proximal (low-energy) and distal (high-energy) lesions (average, 8.7 × 21.9 × 16.4 mm). However, distal ablation lesions (n = 8) demonstrated evidence of subperiosteal new bone formation at CT, with a subtle focus of new ossification at 3 weeks and a larger focus of ossification at 6 weeks. New bone formation was associated with increased uptake at Na(18)F-PET in three of four animals; this was confirmed at histopathologic examination in four of four animals. MR imaging-guided HIFU ablation of bone may result in progressive remodeling, with both subcortical necrosis and subperiosteal new bone formation. This may be related to the use of high energies. MR imaging, CT, and PET are suitable noninvasive techniques to monitor bone remodeling after MR imaging-guided HIFU ablation. © RSNA, 2014.

  5. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrara, K.

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  6. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling.

    PubMed

    Yeo, Sin Yuin; Arias Moreno, Andrés J; van Rietbergen, Bert; Ter Hoeve, Natalie D; van Diest, Paul J; Grüll, Holger

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. A total of 12 healthy rat femurs were ablated using 10 W for 46 ± 4 s per sonication with 4 sonications for each femur. At 7 days after treatments, all animals underwent MR and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Then, six animals were euthanized. At 1 month following ablations, the remaining six animals were scanned again with MR and SPECT/CT prior to euthanization. Thereafter, both the HIFU-treated and contralateral control bones of three animals from each time interval were processed for histology, whereas the remaining bones were subjected to micro-CT (μCT), three-point bending tests, and micro-finite element (micro-FE) analyses. At 7 days after HIFU ablations, edema formation around the treated bones coupled with bone marrow and cortical bone necrosis was observed on MRI and histological images. SPECT/CT and μCT images revealed presence of bone modeling through an increased uptake of (99m)Tc-MDP and formation of woven bone, respectively. At 31 days after ablations, as illustrated by imaging and histology, healing of the treated bone and the surrounding soft tissue was noted, marked by decreased in amount of tissue damage, formation of scar tissue, and sub-periosteal reaction. The results of three-point bending tests showed no significant differences in elastic stiffness, ultimate load, and yield load between the HIFU-treated and contralateral control bones at 7 days and 1 month after treatments. Similarly, the elastic stiffness and Young's moduli determined by micro-FE analyses at both time intervals were not statistically different. Multimodality imaging and histological data illustrated the presence of HIFU-induced bone damage at the cellular level, which activated the

  7. Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: Multi-institutional analysis of 418 patients.

    PubMed

    Crouzet, Sebastien; Blana, Andreas; Murat, Francois J; Pasticier, Gilles; Brown, Stephen C W; Conti, Giario N; Ganzer, Roman; Chapet, Olivier; Gelet, Albert; Chaussy, Christian G; Robertson, Cary N; Thuroff, Stefan; Ward, John F

    2017-06-01

    To report the oncological outcome of salvage high-intensity focused ultrasound (S-HIFU) for locally recurrent prostate cancer after external beam radiotherapy (EBRT) from a multicentre database. This retrospective study comprises patients from nine centres with local recurrent disease after EBRT treated with S-HIFU from 1995 to 2009. The biochemical failure-free survival (bFFS) rate was based on the 'Phoenix' definition (PSA nadir + 2 ng/mL). Secondary endpoints included progression to metastasis and cancer-specific death. Kaplan-Meier analysis was performed examining overall (OS), cancer-specific (CSS) and metastasis-free survival (MFS). Adverse events and quality of life status are reported. In all, 418 patients with a mean (SD) follow-up of 3.5 (2.5) years were included. The mean (SD) age was 68.6 (5.8) years and the PSA level before S-HIFU was 6.8 (7.8) ng/mL. The median PSA nadir after S-HIFU was 0.19 ng/mL. The OS, CSS and MFS rates at 7 years were 72%, 82% and 81%, respectively. At 5 years the bFFS rate was 58%, 51% and 36% for pre-EBRT low-, intermediate- and high-risk patients, respectively. The 5-year bFFS rate was 67%, 42% and 22% for pre-S-HIFU PSA level ≤4, 4-10 and ≥10 ng/mL, respectively. Complication rates decreased after the introduction of specific post-RT parameters: incontinence (grade II or III) from 32% to 19% (P = 0.002); bladder outlet obstruction or stenosis from 30% to 15% (P = 0.003); recto-urethral fistula decreased from 9% to 0.6% (P < 0.001). Study limitations include being a retrospective analysis from a registry with no control group. S-HIFU for locally recurrent prostate cancer after failed EBRT is associated with 7-year CSS and MFS rates of >80% at a price of significant morbidity. S-HIFU should be initiated early following EBRT failure. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  8. 11C choline PET guided salvage radiotherapy with volumetric modulation arc therapy and hypofractionation for recurrent prostate cancer after HIFU failure: preliminary results of tolerability and acute toxicity.

    PubMed

    Alongi, Filippo; Liardo, Rocco L E; Iftode, Cristina; Lopci, Egesta; Villa, Elisa; Comito, Tiziana; Tozzi, Angelo; Navarria, Pierina; Ascolese, Anna M; Mancosu, Pietro; Tomatis, Stefano; Bellorofonte, Carlo; Arturo, Chiti; Scorsetti, Marta

    2014-10-01

    The purpose of this work was to evaluate tolerance, feasibility and acute toxicity in patients undergoing salvage radiotherapy after high-intensity focused ultrasound (HIFU) failure. From 2005 to 2011 a total of 15 patients were treated with HIFU as primary radical treatment. Between July 2011 and February 2013, all 15 patients presented biochemical relapse after HIFU and 11C choline PET documenting intrapostatic-only failure. Salvage EBRT was performed with moderate hypofractionation schedule in 28 fractions with volumetric modulation arc therapy (VMAT). Genito-urinary (GU) and rectal and bowel toxicity were scored by common terminology criteria for adverse events version 4 (CTCAE V.4) scale. Biochemical response was assessed by ASTRO Phoenix criteria. Median age of patients was 67 years (range: 53-85). The median Gleason score was 7 (range: 6-9). The median prostate specific antigen (PSA) at the time of biochemical relapse after HIFU was 5.2 ng/mL (range: 2-64.2). Seven of the 15 patients received androgen deprivation therapy (ADT) started after HIFU failure, interrupted before 11C choline PET and radiotherapy. Median prescribed dose was 71.4 Gy (range: 71.4-74.2 Gy) in 28 fractions. No radiation related major upper gastrointestinal (GI), rectal and GU toxicity were experienced. GU, acute grade 1 and grade 2 toxicities were recorded in 7/15 and 4/15 respectively; bowel acute grade 1 and grade 2 toxicities in 4/15 and 1/15; rectal acute grade 1 and grade 2 toxicities in 3/15 and 2/15 respectively. No grade 3 or greater acute or late toxicities occurred. Biochemical control was assessed in 12/15 (80%) patients. With a median follow up of 12 months, three out of 15 patients, with biochemical relapse, showed lymph-nodal recurrence. Our early clinical results and biochemical data confirm the feasibility and show a good tolerance of the 11C choline PET guided salvage radiation therapy after HIFU failure. The findings of low acute toxicity is encouraging, but longer

  9. Validation of tissue change monitoring (TCM) on the Sonablate® 500 during high intensity focused ultrasound (HIFU) treatment of prostate cancer with real-time thermometry

    NASA Astrophysics Data System (ADS)

    Chen, Wo-Hsing; Sanghvi, Narendra T.; Carlson, Roy; Schatzl, Georg; Marberger, Michael

    2012-10-01

    The Sonablate® 500 has quantitative, real-time Tissue Change Monitoring (TCM) software that estimates changes in tissue properties due to HIFU treatment of prostate cancer. This study validates the Sonablate 500 TCM system using real-time thermometry. Five patients with histologically confirmed, organ-confined prostate cancer were enrolled. Four patients with focal cancer had hemiablation and one had whole gland ablation. TCM generates energy reading based on spectral analysis on the RF backscattered ultrasound signals; results are used as an estimator of tissue temperature. Needle thermocouples were placed transperineally under TRUS guidance in the prostate to monitor temperatures from focal zone, posterior to the focal zone and on the lateral gland where no HIFU was applied. The HIFU treatments averaged 37, 35 and 19.7 Watts for the treatment for anterior, middle and posterior zones. The measured temperatures (Average, Max, and Min) in the HIFU treatment zones were 84, 114 and 70 degrees C. The temperature estimated by TCM energy readings were 83% 75-100 degrees C and 17% 60-75 degrees C with an average of 91 degrees C. Outside the focal zone, average recorded temperature was 50 degrees C. Average temperature in the lateral lobe where no HIFU was applied was 40.7 degrees C.

  10. High-intensity focused ultrasound ablation assisted using color Doppler imaging for the treatment of hepatocellular carcinomas.

    PubMed

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Maeda, Shin; Tanaka, Katsuaki; Ohto, Masao; Ito, Ryu; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang, Zhi-Biao

    2013-12-01

    We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.

  11. A modeling-based assessment of acousto-optic sensing for monitoring high-intensity focused ultrasound lesion formation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew Tyler

    Real-time acousto-optic (AO) sensing---a dual-wave modality that combines ultrasound with diffuse light to probe the optical properties of turbid media---has been demonstrated to non-invasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposure. The AO signal indicates the onset of lesion formation and predicts resulting lesion volumes. Although proof-of-concept experiments have been successful, many of the underlying parameters and mechanisms affecting thermally induced optical property changes and the AO detectability of HIFU lesion formation are not well understood. In thesis, a numerical simulation was developed to model the AO sensing process and capture the relevant acoustic, thermal, and optical transport processes. The simulation required data that described how optical properties changed with heating. Experiments were carried out where excised chicken breast was exposed to thermal bath heating and changes in the optical absorption and scattering spectra (500 nm--1100 nm) were measured using a scanning spectrophotometer and an integrating sphere assembly. Results showed that the standard thermal dose model currently used for guiding HIFU treatments needs to be adjusted to describe thermally induced optical property changes. To model the entire AO process, coupled models were used for ultrasound propagation, tissue heating, and diffusive light transport. The angular spectrum method was used to model the acoustic field from the HIFU source. Spatial-temporal temperature elevations induced by the absorption of ultrasound were modeled using a finite-difference time-domain solution to the Pennes bioheat equation. The thermal dose model was then used to determine optical properties based on the temperature history. The diffuse optical field in the tissue was then calculated using a GPU-accelerated Monte Carlo algorithm, which accounted for light-sound interactions and AO signal detection. The simulation was

  12. SU-F-J-225: Histology Study of MR Guided Pulsed Focused Ultrasound On Treatment of Prostate Cancer in Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Cvetkovic, D; Chen, X

    Purpose: Our previous study demonstrated significant tumor growth delay in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. The temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized atmore » pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level using the DAB analysis software. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality may synergize with PARP inhibitors to achieve better therapeutic result.« less

  13. Ultrasound-guided synovial biopsy

    PubMed Central

    Sitt, Jacqueline C M; Wong, Priscilla

    2016-01-01

    Ultrasound-guided needle biopsy of synovium is an increasingly performed procedure with a high diagnostic yield. In this review, we discuss the normal synovium, as well as the indications, technique, tissue handling and clinical applications of ultrasound-guided synovial biopsy. PMID:26581578

  14. MR-guided Focused Ultrasound for Uterine Fibroids

    MedlinePlus

    ... Professions Site Index A-Z MR-guided Focused Ultrasound for Uterine Fibroids Magnetic Resonance-guided Focused Ultrasound ( ... are the limitations of MRgFUS? What is Focused Ultrasound of Uterine Fibroids? Magnetic Resonance-guided Focused Ultrasound ( ...

  15. Selecting Random Distributed Elements for HIFU using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng

    2011-09-01

    As an effective and noninvasive therapeutic modality for tumor treatment, high-intensity focused ultrasound (HIFU) has attracted attention from both physicians and patients. New generations of HIFU systems with the ability to electrically steer the HIFU focus using phased array transducers have been under development. The presence of side and grating lobes may cause undesired thermal accumulation at the interface of the coupling medium (i.e. water) and skin, or in the intervening tissue. Although sparse randomly distributed piston elements could reduce the amplitude of grating lobes, there are theoretically no grating lobes with the use of concave elements in the new phased array HIFU. A new HIFU transmission strategy is proposed in this study, firing a number of but not all elements for a certain period and then changing to another group for the next firing sequence. The advantages are: 1) the asymmetric position of active elements may reduce the side lobes, and 2) each element has some resting time during the entire HIFU ablation (up to several hours for some clinical applications) so that the decreasing efficiency of the transducer due to thermal accumulation is minimized. Genetic algorithm was used for selecting randomly distributed elements in a HIFU array. Amplitudes of the first side lobes at the focal plane were used as the fitness value in the optimization. Overall, it is suggested that the proposed new strategy could reduce the side lobe and the consequent side-effects, and the genetic algorithm is effective in selecting those randomly distributed elements in a HIFU array.

  16. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  17. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammet, S.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  18. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  19. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors.

    PubMed

    Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings.

  20. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors

    PubMed Central

    Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings. PMID:29042775

  1. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1°C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T2, since T2 increases linearly in fat during heating. T2-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T2. Calibration of T2-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T2 and temperature with a thermocouple. A positive T2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T2-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  2. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  3. Evolution of the ablation region after magnetic resonance-guided high-intensity focused ultrasound ablation in a Vx2 tumor model.

    PubMed

    Wijlemans, Joost W; Deckers, Roel; van den Bosch, Maurice A A J; Seinstra, Beatrijs A; van Stralen, Marijn; van Diest, Paul J; Moonen, Chrit T W; Bartels, Lambertus W

    2013-06-01

    Volumetric magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) is a completely noninvasive image-guided thermal ablation technique. Recently, there has been growing interest in the use of MR-HIFU for noninvasive ablation of malignant tumors. Of particular interest for noninvasive ablation of malignant tumors is reliable treatment monitoring and evaluation of response. At this point, there is limited evidence on the evolution of the ablation region after MR-HIFU treatment. The purpose of the present study was to comprehensively characterize the evolution of the ablation region after volumetric MR-HIFU ablation in a Vx2 tumor model using MR imaging, MR temperature data, and histological data. Vx2 tumors in the hind limb muscle of New Zealand White rabbits (n = 30) were ablated using a clinical MR-HIFU system. Twenty-four animals were available for analyses. Magnetic resonance imaging was performed before and immediately after ablation; MR temperature mapping was performed during the ablation. The animals were distributed over 7 groups with different follow-up lengths. Depending on the group, animals were reimaged and then killed on day 0, 1, 3, 7, 14, 21, or 28 after ablation. For all time points, the size of nonperfused areas (NPAs) on contrast-enhanced T1-weighted (CE-T1-w) images was compared with lethal thermal dose areas (ie, the tissue area that received a thermal dose of 240 equivalent minutes or greater [EM] at 43°C) and with the necrotic tissue areas on histology sections. The NPA on CE-T1-w imaging showed an increase in median size from 266 ± 148 to 392 ± 178 mm(2) during the first day and to 343 ± 170 mm(2) on day 3, followed by a gradual decrease to 113 ± 103 mm(2) on day 28. Immediately after ablation, the NPA was 1.6 ± 1.4 times larger than the area that received a thermal dose of 240 EM or greater in all animals. The median size of the necrotic area on histology was 1.7 ± 0.4 times larger than the NPA immediately after

  4. A retrospective analysis of survival factors of high intensity focused ultrasound (HIFU) treatment for unresectable pancreatic cancer.

    PubMed

    Ning, Zhou-Yu; Cheng, Chien-Shan; Xie, Jing; Chen, Qi-Wen; Xu, Li-Tao; Zhuang, Li-Ping; Zhang, Chen-Yue; Song, Li-Bin; Shi, Wei-Dong; Zhu, Xiao-Yan; Wang, Peng; Wang, Kun; Meng, Zhi-Qiang

    2016-06-01

    To retrospectively evaluate possible impact factors of HIFU treatment outcome for unresectable pancreatic cancer patients. A total of 689 patients with unresectable pancreatic cancer were recruited in our center from December 30, 2007 to January 30, 2015. 436 patients with unresectable pancreatic cancers received HIFU treatment; the other 253 patients received non-HIFU treatment. Among these 436 patients, 345 patients received a one-time HIFU treatment, 91 patients received HIFU treatment from 2 to 5 times in the same pancreatic mass; 89 patients received HIFU treatment alone; 347 patients received HIFU-based combined therapies. Complications and overall survivals (OS) data in each group were collected. The median overall survivals (mOS) in HIFU group and non-HIFU group were 7.1 vs. 5 months (P=0.005): 9.3 vs. 7.3 months (P=0.202) for patients with stage II disease, 8.3 vs. 7.3 months (P=0.783) for patients with stage III disease, and 6.4 vs. 4.2 months (P<0.0001) for patients with stage IV disease, respectively. Furthermore, there was a significant difference between repeated HIFU and one-time HIFU (mOS: 8.6 vs. 6.8 months, P=0.011). Time of HIFU treatment (P=0.0027), chemotherapy (P<0.0001), radiotherapy (P=0.0006), regional intra-arterial chemotherapy (RIAC) (P<0.0001), and stage (P<0.0001) were independent prognostic factors for the patients who received HIFU treatment. Cox analysis on the relative risk of prognostic factors showed that repeated HIFU vs. one-time HIFU (HR=0.729: 95% CI=0.576-0.924), chemotherapy vs. non-chemotherapy (HR=0.664: 95% CI=0.576-0.766), radiotherapy vs. non-radiotherapy (HR=0.580: 95% CI=0.427-0.789), RIAC vs. non-RIAC (HR=0.737: 95% CI=0.648-0.837), and stage (HR=1.386, 95% CI=1.187-1.619) were associated with significantly inferior survival. Overall, adverse events occurred in 23.2% (101/436) in the HIFU group, which included increase of serum or urinary amylase levels, incomplete intestinal obstruction, mild fever, etc. There were

  5. WE-EF-BRA-12: Magnetic Resonance- Guided High-Intensity Focused Ultrasound for Localized Ablation of Head and Neck Tissue Structures: A Feasibility Study in An Animal Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partanen, A; Ellens, N; Noureldine, S

    Purpose: High-intensity focused ultrasound (HIFU) ablation is feasible in the head and neck [1]. This study aims to expand upon these findings to assess the feasibility of treatment planning and monitoring via magnetic resonance imaging (MRI) guidance using a clinical MR-guided HIFU platform. Methods: Two 31 kg pigs were anaesthetized, shaved, and positioned prone on the HIFU table (Sonalleve, Philips Healthcare, Vantaa, Finland). The necks were acoustically coupled to the integrated transducer using gel pads and degassed water. MR imaging verified acoustic coupling and facilitated target selection in the thyroid and thymus. Targets were thermally ablated with 130–200 W ofmore » acoustic power over a period of 16 s at a frequency of 1.2 MHz while being monitored through real-time, multi-planar MR-thermometry. Contrast-enhanced MR imaging was used to assess treatment efficacy. Post-treatment, animals were euthanized and sonicated tissues were harvested for histology assessment. Results: MR-thermometry, post-contrast-imaging, and gross pathology demonstrated that the system was capable of causing localized thermal ablation in both the thyroid and the thymus without damaging the aerodigestive tract. In one animal, superficial bruising was observed in the ultrasound beam path. Otherwise, there were no adverse events. Analysis of the tissue histology found regions of damage consistent with acute thermal injury at the targeted locations. Conclusion: It is feasible to use a clinical MR-guided HIFU platform for extracorporeal ablation of porcine head and neck tissues. MR guidance and thermometry are sufficient to target and monitor treatment in the thyroid region, despite the presence of the inhomogeneous aerodigestive tract. Further study is necessary to assess efficacy and survival using a tumor model, and to examine what modifications should be made to the transducer positioning system and associated patient positioning aids to adapt it for clinical head and neck

  6. Cardiac Ventricular HIFU: Convergence of Experiment and Theory in the Canine Model

    NASA Astrophysics Data System (ADS)

    Muratore, Robert; Abe, Yukio; Homma, Shunichi; Bernardi, Richard; Kalisz, Andrew; Feleppa, Ernest J.

    2007-05-01

    OBJECTIVE: HIFU is a promising technique for treating cardiac ventricular diseases such as sustained ventricular tachycardia. Ablations can potentially destroy arrhythmogenic foci and block reentrant circuits. Towards this end, we have learned to control HIFU lesions in the canine model in vivo. METHODS: Experiment — Thoracotomies were performed on anesthetized dogs, following IACUC guidelines. In this open-chest configuration, a polyethylene water-filled bag was coupled to the myocardium with degassed ultrasound gel. The transducer was lowered into the water. Ventricular locations were targeted and insonified with multiple 200-ms HIFU bursts of 60-W acoustic power; the bursts were triggered with the electrocardiogram QRS complex. The therapeutic transducer was a 35-mm focal length, 33-mm diameter PZT annular array, excited at 5.25 MHz. Its -3dB focal region dimensions were 2.5 mm axially and 0.3 mm transversely. A confocal diagnostic transducer was used for aiming and for recording backscattered radiofrequency ultrasound data. Theory — A comprehensive acoustic model has been developed. Individual modules numerically simulate physical processes such as ultrasound beam propagation, energy transfer, and heat flow within tissue. One set of modules simulates HIFU ablation in moving tissue. Tissue motion was obtained from digitized B-mode videos of transverse cross sections of a beating canine heart. Epicardial and endocardial surface positions were extracted from the video frames. Additional simulations of static tissue compared linear and nonlinear propagation models. RESULTS: Significant agreement between simulated and measured lesion sizes and between linear and nonlinear propagation models was demonstrated.

  7. A Novel Approach to Regeneration of Bone: Using Focused Ultrasound for the Spatiotemporal Patterning of Angiogenic and Osteogenic Factors

    DTIC Science & Technology

    2012-04-01

    approach uses high intensity focused ultrasound ( HIFU ) and heat shock/ligand-dependent gene switches. Focused ultrasound generates localized...vasculature and bone. The approach uses high intensity focused ultrasound ( HIFU ) and heat shock/ligand-dependent gene switches. Focused ultrasound ...regeneration. Biomedical applications of high intensity focused ultrasound ( HIFU ) have revolved primarily around the mechanical and thermal ablation of

  8. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound.

    PubMed

    Cornelis, François; Grenier, Nicolas; Moonen, Chrit T; Quesson, Bruno

    2011-08-01

    The purpose of this study was to evaluate quantitatively in vivo the tissue thermal properties during high-intensity focused ultrasound (HIFU) heating. For this purpose, a total of 52 localized sonications were performed in the kidneys of six pigs with HIFU monitored in real time by volumetric MR thermometry. The kidney perfusion was modified by modulation of the flow in the aorta by insertion of an inflatable angioplasty balloon. The resulting temperature data were analyzed using the bio-heat transfer model in order to validate the model under in vivo conditions and to estimate quantitatively the absorption (α), thermal diffusivity (D) and perfusion (w(b)) of renal tissue. An excellent correspondence was observed between the bio-heat transfer model and the experimental data. The absorption and thermal diffusivity were independent of the flow, with mean values (± standard deviation) of 20.7 ± 5.1 mm(3) K J(-1) and 0.23 ± 0.11 mm(2) s(-1), respectively, whereas the perfusion decreased significantly by 84% (p < 0.01) with arterial flow (mean values of w(b) of 0.06 ± 0.02 and 0.008 ± 0.007 mL(-1) mL s(-1)), as predicted by the model. The quantitative analysis of the volumetric temperature distribution during nondestructive HIFU sonication allows the determination of the thermal parameters, and may therefore improve the quality of the planning of noninvasive therapy with MR-guided HIFU. Copyright © 2010 John Wiley & Sons, Ltd.

  9. In-office rapid volumetric ablation of uterine fibroids under ultrasound imaging guidance: Preclinical and early clinical experience with the Mirabilis transabdominal HIFU treatment system

    NASA Astrophysics Data System (ADS)

    Leal, José G. Garza; León, Ivan Hernandez; Sáenz, Lorena Castillo; Aguirre, Juan M. Aguilar; Lagos, Joel J. Islas; Parsons, Jessica E.; Darlington, Gregory P.; Lau, Michael P. H.

    2017-03-01

    Mirabilis Medica, Inc. (Bothell, WA, USA) has developed a high-intensity focused ultrasound (HIFU) system for producing rapid transabdominal volumetric ablation of uterine fibroids in an office-based setting. The Mirabilis HIFU Treatment System utilizes integrated ultrasound imaging guidance and short treatment times under 15 minutes. Treatment with the Mirabilis system is generally well tolerated using only oral analgesia without anesthesia or sedation. This paper summarizes certain technical aspects of the Mirabilis HIFU technology, the preclinical development process, and the results of the first in-human clinical study using the Mirabilis system. During preclinical studies, an in vivo transcutaneous porcine lower extremity model was used in a total of 180 adult swine to develop the HIFU treatment regimen parameters. Additionally, 108 excised human uteri with fibroids obtained from scheduled hysterectomies were treated in an ex vivo experimental setup and evaluated. These preclinical activities resulted in a HIFU treatment technique referred to as Mirabilis Shell Ablation, which enables rapid volumetric fibroid ablation by directing the HIFU energy to the outer perimeter of the target volume (the `shell') without insonating its core. This method results in efficient fibroid treatment through a synergistic combination of direct tissue ablation, cooperative heating effects, and indirect ischemic necrosis in the interior of the volume. After refining this technique and performing safety testing in the in vivo porcine model, a clinical pilot study was conducted to assess the initial safety and performance of the Mirabilis HIFU Treatment System for transabdominal treatment of uterine fibroids in eligible women who were scheduled to undergo hysterectomy following treatment with the device. A total of 37 women meeting certain eligibility criteria were treated at two clinical sites in Mexico. Twenty-nine (29) of these 37 women received only prophylactic sublingual

  10. Quantitative measurement and real-time tracking of high intensity focused ultrasound using phase-sensitive optical coherence tomography: Feasibility study.

    PubMed

    Le, Nhan; Song, ShaoZhen; Nabi, Ghulam; Wang, Ruikang; Huang, Zhihong

    2016-09-01

    Phase-sensitive optical coherence tomography (PhS-OCT) is proposed, as a new high intensity focused ultrasound (HIFU) imaging guidance to detect and track HIFU focus inside 1% agar samples in this work. The experiments studied the effect of varying HIFU power on the induction of shear wave, which can be implemented as a new technique to monitor focused ultrasound surgery (FUS). A miniature HIFU transducer (1.02 MHz, 20 mm aperture diameter, 15 mm radius of curvature) was produced in-house, pressure-field mapped, and calibrated. The transducer was then embedded inside a 1% agar phantom, which was placed under PhS-OCT for observation, under various HIFU power settings (acoustic power, and number of cycles per pulse). Shear wave was induced on the sample surface by HIFU and was captured in full under PhS-OCT. The lowest HIFU acoustic power output for the detection of shear wave was found to be 0.36 W (1.02 MHz, 100 cycles/pulse), or with the number of cycles/pulse as low as 20 (1.02 MHz, 0.98 W acoustic power output). A linear relationship between acoustic power output and the maximum shear wave displacement was found in the first study. The second study explores a non-linear correlation between the (HIFU) numbers of cycles per pulse, and the maximum shear wave displacement. PhS-OCT demonstrates excellent tracking and detection of HIFU-induced shear wave. The results could benefit other imaging techniques in tracking and guiding HIFU focus. Further studies will explore the relationship between the physical transducer characteristics and the HIFU-induced shear wave.

  11. Focused ultrasound: concept for automated transcutaneous control of hemorrhage in austere settings.

    PubMed

    Kucewicz, John C; Bailey, Michael R; Kaczkowski, Peter J; Carter, Stephen J

    2009-04-01

    High intensity focused ultrasound (HIFU) is being developed for a range of clinical applications. Of particular interest to NASA and the military is the use of HIFU for traumatic injuries because HIFU has the unique ability to transcutaneously stop bleeding. Automation of this technology would make possible its use in remote, austere settings by personnel not specialized in medical ultrasound. Here a system to automatically detect and target bleeding is tested and reported. The system uses Doppler ultrasound images from a clinical ultrasound scanner for bleeding detection and hardware for HIFU therapy. The system was tested using a moving string to simulate blood flow and targeting was visualized by Schlieren imaging to show the focusing of the HIFU acoustic waves. When instructed by the operator, a Doppler ultrasound image is acquired and processed to detect and localize the moving string, and the focus of the HIFU array is electronically adjusted to target the string. Precise and accurate targeting was verified in the Schlieren images. An automated system to detect and target simulated bleeding has been built and tested. The system could be combined with existing algorithms to detect, target, and treat clinical bleeding.

  12. Effect of biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging, on ultrasound-guided high-intensity focused ultrasound ablation.

    PubMed

    Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi

    2015-02-01

    The aims of this study were to assess the effects of the biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging (MRI), on ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation. Thirty-five patients with 39 symptomatic uterine fibroids who underwent myomectomy or hysterectomy were enrolled. Before surgery, the uterine fibroids were subdivided into hypo-intense, iso-intense, heterogeneous hyper-intense and homogeneous hyper-intense categories based on signal intensity on T2-weighted MRI. Tissue density and moisture content were determined in post-operative samples and normal uterine tissue, the isolated uterine fibroids were subjected to USgHIFU, and the extent of ablation was measured using triphenyltetrazolium chloride. Hematoxylin and eosin staining and sirius red staining were undertaken to investigate the organizational structure of the uterine fibroids. Estrogen and progesterone receptor expression was assayed via immunohistochemical staining. The mean diameter of uterine fibroids was 6.9 ± 2.8 cm. For all uterine fibroids, the average density and moisture content were 10.7 ± 0.7 mg/mL and 75.7 ± 2.4%, respectively; and for the homogeneous hyper-intense fibroids, 10.3 ± 0.5 mg/mL and 76.6 ± 2.3%. The latter subgroup had lower density and higher moisture content compared with the other subgroups. After USgHIFU treatment, the extent of ablation of the hyper-intense fibroids was 102.7 ± 42.1 mm(2), which was significantly less than those of the hypo-intense and heterogeneous hyper-intense fibroids. Hematoxylin and eosin staining and sirius red staining revealed that the homogeneous hyper-intense fibroids had sparse collagen fibers and abundant cells. Immunohistochemistry results revealed that estrogen and progesterone receptors were highly expressed in the homogeneous hyper-intense fibroids. This study revealed that lower density, higher moisture content, sparse collagen

  13. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System.

    PubMed

    Farhanieh, Omid; Sahafi, Ali; Bardhan Roy, Rupak; Ergun, Arif Sanli; Bozkurt, Ayhan

    2017-06-01

    Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe. An 8-element capacitive micromachined ultrasound transducer (CMUT) ring array of 2 mm diameter has been used as the ultrasound source. The driver chip is fabricated in 0.35 μm AMS high-voltage CMOS technology and comprises eight continuous-wave (CW) high-voltage CMUT drivers (10.9 ns and 9.4 ns rise and fall times at 20 V pp output into a 15 pF), an eight-channel digital beamformer (8-12 MHz output frequency with 11.25 ° phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128-192 MHz). The chip occupies 1.85 × 1.8 mm 2 area including input and output (I/O) pads. When the transducer array is immersed in sunflower oil and driven by the IC with eight 20 V pp CW pulses at 10 MHz, real-time thermal images of the HIFU beam indicate that the focal temperature rises by 16.8  ° C in 11 seconds. Each HV driver consumes around 67 mW of power when driving the CMUT array at 10 MHz, which adds up to 560 mW for the whole chip. FEM based analysis reveals that the outer surface temperature of the catheter is expected to remain below the 42  ° C tissue damage limit during therapy.

  14. Treatment of cornual pregnancy in a patient with adenomyosis by high-intensity focused ultrasound (HIFU) ablation

    PubMed Central

    Yu, Lixia; Xu, Linying; Xu, Xiaoyan

    2017-01-01

    Abstract Rationale: Cornual ectopic pregnancy in adenomyosis patients is a rare clinical condition, which may require careful approach for accurate diagnosis and treatment. Patient concerns: A 38-year-old woman presented with amenorrhea for 8 weeks and serum HCG levels of 1455 mmol/L. The B ultrasound showed an endometrial thickness of 1.7 cm, and the presence of a cystic structure (16 6 mm) at the right uterine horn. Color Doppler flow imaging (CDFI) accurately detected and confirmed the position of the cystic structure with its clear boundaries. Diagnoses: Cornual ectopic pregnancy in adenomyosis. Interventions: The diagnosis was confirmed and treated by HIFU ablation. Total ablation was performed for 738 seconds without any bleeding. Outcomes: Serum HCG levels decreased to < 0.1 mmol/L after 60 days post operation, and follow-up for 11 months showed a regular menstrual cycle without dysmenorrhea. Gestational sac was not obvious at postoperative 90 days by MRI. The adenomyosis associated lesion with blood perfusion became smaller at postoperative 90 days. Lessons: In this case, we successfully performed HIFU ablation and treated the cornual ectopic pregnancy in an adenomyosis patient for the first time, without any adverse complications. PMID:29310371

  15. Integrated photoacoustic/ultrasound/HFU system based on a clinical ultrasound imaging platform

    NASA Astrophysics Data System (ADS)

    Kim, Jeesu; Choi, Wonseok; Park, Eun-Yeong; Kim, Chulhong

    2018-02-01

    Non-invasive treatment of tumor is beneficial for the favorable prognosis of the patients. High Intensity Focused Ultrasound (HIFU) is an emerging non-invasive treatment tool that ablates tumor lesions by increasing local temperature without damaging surrounding tissues. In HIFU therapy, accurate focusing of the HIFU energy into the target lesion and real-time assessment of thermal distribution are critical for successful and safe treatment. Photoacoustic (PA) imaging is a novel biomedical imaging technique that can visualize functional information of biological tissues based on optical absorption and thermoelastic expansion. One unique feature of PA imaging is that the amplitude of the PA signal reflects the local temperature. Here, we demonstrate a real-time temperature monitoring system that can evaluate thermal distribution during HIFU therapy. We have integrated a HIFU treatment system, a clinical ultrasound (US) machine, and a tunable laser system and have acquired real-time PA/US images of in vitro phantoms and in vivo animals during HIFU therapy without interference from the therapeutic US waves. We have also evaluated the temperature monitoring capability of the system by comparing the amplitude of PA signals with the measured temperature in melanoma tumor bearing mice. Although much more updates are required for clinical applications, the results show the promising potential of the system to ensure accurate and safe HIFU therapy by monitoring the thermal distribution of the treatment area.

  16. Twelve years' experience with high-intensity focused ultrasound (HIFU) using sonablate™ devices for the treatment of localized prostate cancer

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Nakano, Muyura; Shoji, Sunao; Nagata, Yoshihiro; Usui, Yukio; Terachi, Toshiro

    2012-10-01

    To report on the long-term results of high-intensity focused ultrasound (HIFU) in the treatment of localized prostate cancer. Patients with clinical Stage T1c-T3N0M0, biopsy proven, localized prostate cancer, with a serum prostate specific antigen (PSA) level of <30 ng/ml, any Gleason score were included. All patients underwent HIFU using the Sonablate™ (S) device and were required to have a minimal follow-up of 2 years after the last HIFU session to be included in this analysis. Four different generation HIFU devices, S200, S500, S500 version 4 and S500 TCM, have been used for this study. Biochemical failure was defined according to the Phoenix definition (PSA nadir+2ng/ml). Seven hundred and fifty-three men with prostate cancer were included. The patients were divided into two groups: in the Former group, 421 patients were treated with S200 and 500 from 1990 to 2005; in the Latter group, 332 patients were treated with S500 ver. 4 and TCM from 2005 to 2009. The mean age, PSA, Gleason score, operation time, and follow-up period in the Former and Latter groups were 68 and 67 years, 11.3 and 9.7 ng/ml, 6.2 and 6.6, 167 and 101 min, and 49 and 38 months, respectively. The biochemical disease-free rate (BDFR) in the groups at 5 years was, respectively, 67% and 53%, and was 50% at 10 years in the Former group (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the Former group at 5 and 10 years were 68% and 65%, 52% and 48%, and 43% and 40%, respectively (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the Latter group at 5 years were 83%, 76%, and 42% (p<0.0001). The negative prostate biopsy rate in the Former and Latter groups was 81% and 93%, respectively. Postoperative erectile dysfunction was noted in 45%, 38%, and 24% of patients at 6 months, 12 months, and 2 years after HIFU. The results after long-term follow-up have indicated that HIFU is an efficient and safe treatment for patients with

  17. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation.

    PubMed

    Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E

    2014-11-01

    Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.

  18. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  19. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  20. Multi-Frequency Harmonics Technique for HIFU Tissue Treatment

    NASA Astrophysics Data System (ADS)

    Rybyanets, Andrey N.; Lugovaya, Maria A.; Rybyanets, Anastasia A.

    2010-03-01

    New technique for enhancing of tissue lysis and enlarging treatment volume during one HIFU sonification is proposed. The technique consists in simultaneous or alternative (at optimal repetition frequency) excitation of single element HIFU transducer on a frequencies corresponding to odd natural harmonics of piezoceramic element at ultrasound energy levels sufficient for producing cavitational, thermal or mechanical damage of fat cells at each of aforementioned frequencies. Calculation and FEM modeling of transducer vibrations and acoustic field patterns for different frequencies sets were performed. Acoustic pressure in focal plane was measured in water using calibrated hydrophone and 3D acoustic scanning system. In vitro experiments on different tissues and phantoms confirming the advantages of multifrequency harmonic method were performed.

  1. Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs

    NASA Astrophysics Data System (ADS)

    Diodato, A.; Cafarelli, A.; Schiappacasse, A.; Tognarelli, S.; Ciuti, G.; Menciassi, A.

    2018-02-01

    High intensity focused ultrasound (HIFU) is an emerging therapeutic solution that enables non-invasive treatment of several pathologies, mainly in oncology. On the other hand, accurate targeting of moving abdominal organs (e.g. liver, kidney, pancreas) is still an open challenge. This paper proposes a novel method to compensate the physiological respiratory motion of organs during HIFU procedures, by exploiting a robotic platform for ultrasound-guided HIFU surgery provided with a therapeutic annular phased array transducer. The proposed method enables us to keep the same contact point between the transducer and the patient’s skin during the whole procedure, thus minimizing the modification of the acoustic window during the breathing phases. The motion of the target point is compensated through the rotation of the transducer around a virtual pivot point, while the focal depth is continuously adjusted thanks to the axial electronically steering capabilities of the HIFU transducer. The feasibility of the angular motion compensation strategy has been demonstrated in a simulated respiratory-induced organ motion environment. Based on the experimental results, the proposed method appears to be significantly accurate (i.e. the maximum compensation error is always under 1 mm), thus paving the way for the potential use of this technique for in vivo treatment of moving organs, and therefore enabling a wide use of HIFU in clinics.

  2. Expulsion of Fibroids to the Endometrial Cavity after Magnetic Resonance Imaging-guided High Intensity Focused Ultrasound Surgery (MRgFUS) Treatment of Intramural Uterine Fibroids

    PubMed Central

    Jeong, Jae-Hyeok; Hong, Gil Pyo; Kim, Yu-Ri; Hong, Da Gyo; Ha, Jae-Eun; Yeom, Jung In; Kim, Eun-Jeong; Kim, Hyung-Il

    2016-01-01

    Objectives This report seeks to introduce some cases of the patients who received magnetic resonance imaging (MRI)-guided high intensity focused ultrasound (HIFU) surgery (MRgFUS)-based intramural uterine fibroids treatment where the post-MRgFUS intramural uterine fibroids decreased in its volume and protruded towards the endometrial cavity to be expelled by hysteroscopy. Methods Of the 157 patients who had received MRgFUS treatment in the Obstetrics and Gynecology of the Hospital from March, 2015 to February, 2016; this study examined 6 of the cases where, after high intensity focused ultrasound treatment, intramural uterine fibroids protruded towards the endometrial cavity to be removed by hysteroscopic myomectomy. The high intensity focused ultrasound utilized in the cases were Philips Achieva 1.5 Tesla MR (Philips Healthcare, Best, The Netherlands) and Sonalleve HIFU system. Results The volume of fibroids ranged from 26.0 cm3 to 199.5 cm3, averaging 95.6 cm3. The major axis length ranged from 4.0 cm to 8.2 cm, averaging 6.3 cm. Fibroid location in all of the patients was in intramural uterine before treatment but after the high intensity focused ultrasound treatment, the fibroids were observed to protrude towards the endometrial cavity in at least Day 5 or up to Day 73 to allow hysteroscopic myomectomy. Conclusions In some cases, after an intramural uterine fibroid is treated with MRgFUS, fibroid volume is decreased and the fibroid protrudes towards the endometrial cavity. In this case, hysteroscopic myomectomy can be a useful solution. PMID:28119893

  3. HIFU and Chemotherapy Synergistic Inhibitory Effect on Dunning AT2 Tumour-Bearing Rats

    NASA Astrophysics Data System (ADS)

    Curiel, Laura; Paparel, Philipe; Chesnais, Sabrina; Gelet, Albert; Chapelon, Jean-Yves

    2005-03-01

    Since there is no 100% satisfactory treatment for localized prostate cancer in patients presenting symptoms representing a poor prognosis (stage T3, high Gleason score, PSA level greater than 15 ng/ml, etc.), this study aimed to evaluate the therapeutic and synergistic inhibition effects of using High Intensity Focused Ultrasound (HIFU) in combination with chemotherapy (Taxane + Estramustine). Forty-one Dunning AT2 tumour-bearing Copenhagen rats receiving HIFU and/or chemotherapy were divided into four groups: control group; chemotherapy group; HIFU group; and HIFU-chemotherapy combined group. Increase in the tumour volume was observed over 3 weeks and the tumour volume doubling time was evaluated. Growth curves for each group were then plotted and statistically evaluated. HIFU treatment combined with Taxane + Estramusine was found to have a significant synergistic effect; on day 30, the distribution of tumour volume relative to the treatment group was significantly different (p = 0.0007). The control group volumes were significantly greater than those of the chemotherapy-only (p = 0.006) or HIFU-only group (p = 0.006). The greatest difference was observed between the chemotherapy plus HIFU combined group and the control group. Additionally, tumour-doubling times were 7.7 days for the control group, 13.2 days for the HIFU-only group, and 31.2 days for the chemotherapy plus HIFU group. The differences in tumour growth rates between the chemotherapy plus HIFU combined group and a chemotherapy-only + HIFU-only grouping was 3.8% (p = 0.0020). Thus, the combined chemotherapy plus HIFU treatment was clearly more effective in reducing the tumour size than HIFU only or chemotherapy only, which indicates a synergy between the two types of treatment. Our results suggest that this combined therapy could be useful for the treatment of high-risk prostate cancer.

  4. Porcine pilot study of MRI-guided HIFU treatment for neonatal intraventricular hemorrhage (IVH)

    NASA Astrophysics Data System (ADS)

    Looi, Thomas; Waspe, Adam; Mougenot, Charles; Amaral, Joao; Temple, Michael; Hynynen, Kullervo; Drake, James

    2012-11-01

    Intraventricular hemorrhage (IVH) occurs in 15% of premature babies and 50% of IVH cases progress to posthemorrhagic ventricular dilation due to large blood clots forming in the ventricles. Existing treatments such as tissue plasminogen activator (tPA) and surgical intervention have severe side effects in paediatric patients that include excessive bleeding and complications. This study investigates the feasibility of MR-HIFU for sonothrombolysis of blood clots from IVH using natural acoustic windows, known as fontanelles, in the skulls of newborns. The study involved 2 elements: a phantom study to examine beam limitations and acoustic properties, and an in-vivo porcine study. A phantom skull was created from sample patient data and was used to analyze reachability of the Philips Sonavelle system. Acoustic measurements of the phantom (attenuation of 5-14 dB and speed of sound of 1722-2965 m/s) indicated the phantom effectively mimics neonatal skull bone. For the ex-vivo studies, a porcine clot was created and sonicated for 5 mins at 500W with a 0.5% duty cycle. For the in-vivo experiment, a vertex craniotomy was performed and porcine blood was injected into the lateral ventricle under ultrasound guidance. Sonication using the prior parameters induced cavitation and post-sonication T1 and T2 images verified clot lysis. Further H&E analysis showed no presence of blood in the ventricles. These positive results show that MR-HIFU has potential as a noninvasive tool for sonothrombolysis of neonatal IVH clots.

  5. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the

  6. Acoustic Hemostasis and Hemorrhage Control in Combat Casualty Care

    DTIC Science & Technology

    2004-12-01

    of Mississippi 1 Coliseum Drive University, MS 38677-1848 ABSTRACT High Intensity Focused Ultrasound ( HIFU ) is a new treatment modality that shows...Intensity Focused Ultrasound ( HIFU ) to this site to induce cauterization and to terminate/control the bleeding. We call this approach “Image-guided...during HIFU exposure to a porcine liver. Fig. 3. Illustration of the use of a hyperechoic region in the ultrasound image to provide HIFU targeting

  7. Ultrasound-guided peripheral nerve blockade.

    PubMed

    Chin, Ki Jinn; Chan, Vincent

    2008-10-01

    The use of ultrasound for peripheral nerve blockade is becoming popular. Although the feasibility of ultrasound-guided nerve blockade is now clear, it is uncertain at this time whether it represents the new standard for regional anesthesia in terms of efficacy and safety. The ability to visualize nerve location, needle advancement, needle-nerve interaction, and local anesthetic spread makes ultrasound-guided nerve block an attractive option. Study results indicate that these advantages can improve the ease of block performance, block success rates, and complications. At the same time there is evidence that ultrasound-guided regional anesthesia is a unique skill in its own right, and that proficiency in it requires training and experience. Ultrasound is a valuable tool that is now available to the regional anesthesiologist, and it is fast becoming a standard part of practice. It promises to be of especial value to the less experienced practitioner. Ultrasound does not in itself, however, guarantee the efficacy and safety of peripheral nerve blockade. Proper training in its use is required and we can expect to see the development of formal standards and guidelines in this regard.

  8. Factors affecting tumor ablation during high intensity focused ultrasound treatment.

    PubMed

    Hassanuddin, Aizan; Choi, Jun-Ho; Seo, Dong-Wan; Ryu, Choong Heon; Kim, Su-Hui; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2014-07-01

    High intensity focused ultrasound (HIFU) utilizes a targeted extracorporeal focused ultrasound beam to ablate neoplastic pancreatic tissue. We used an in vitro model to examine the effects of bone, metallic stents, plastic stents, metal plates, and cyst-like lesions on HIFU treatment. HIFU was delivered to the phantom models implanted with foreign bodies, and the location, shape, and size of the ablated zones were evaluated. Bone and metallic plates reflected the ultrasound beam, shifting the ablation zone from the focal zone to the prefocal area. In the phantoms containing metal stent, plastic stent, and cyst, most of the ablative energy was reflected to the prefocal area by the surface, with the remainder penetrating through the phantom. The area of the ablated margins was significantly larger in size and volume than the intended focal ablation zone. During HIFU therapy, artificial or anatomical barriers could affect the direction of the ultrasound beams, shifting the ablation zone from the focal area to a prefocal site with a larger than expected ablation zone. These factors should be considered prior to HIFU treatment for pancreatic tumors because they could limit ablation success, in addition to causing complications.

  9. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology

    PubMed Central

    Malietzis, G; Monzon, L; Hand, J; Wasan, H; Leen, E; Abel, M; Muhammad, A; Abel, P

    2013-01-01

    High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy. PMID:23403455

  10. High intensity focused ultrasound (HIFU) and ethanol induced tissue ablation: Thermal lesion volume and temperature ex vivo

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen Hai

    HIFU is the upcoming technology for noninvasive or minimally invasive tumor ablation via the localized acoustic energy deposition at the focal region within the tumor target. The presence of cavitation bubbles had been shown to improve the therapeutic effect of HIFU. In this study, we have investigated the effect of HIFU on temperature rise and cavitation bubble activity in ethanol-treated porcine liver and kidney tissues. We have also explored changes in the viability and proliferation rate of HepG2, SW1376, and FB1 cancer cells with their exposure to ethanol and HIFU. Tissues were submerged in 95% ethanol for five hours and then exposed to HIFU generated by a 1.1 MHz transducer or injected into focal spot before HIFU exposure. Cavitation events were measured by a passive cavitation detection technique for a range of acoustic power from 1.17 W to 20.52 W. The temperature around the focal zone was measured by type K or type E thermocouples embedded in the samples. In experiments with cancer cells, 2.7 millions cells were treated with concentration of ethanol at concentration 2%, 4%, 10%, 25%, and 50% and the cell were exposed to HIFU with power of 2.73 W, 8.72 W, and 12.0 W for 30 seconds. Our data show that the treatment of tissues with ethanol reduces the threshold power for inertial cavitation and increases the temperature rise. The exposure of cancer cells to various HIFU power only showed a higher number of viable cells 24 to 72 hours after HIFU exposure. On the other hand, both the viability and proliferation rate were significantly decreased in cells treated with ethanol and then HIFU at 8.7 W and 12.0 W even at ethanol concentration of 2 and 4 percent. In conclusion, the results of our study indicate that percutaneous ethanol injection (PEI) and HIFU have a synergistic effect on cancer cells ablation.

  11. Effects of HIFU induced cavitation on flooded lung parenchyma.

    PubMed

    Wolfram, Frank; Dietrich, Georg; Boltze, Carsten; Jenderka, Klaus Vitold; Lesser, Thomas Günther

    2017-01-01

    High intensity focused ultrasound (HIFU) has gained clinical interest as a non-invasive local tumour therapy in many organs. In addition, it has been shown that lung cancer can be targeted by HIFU using One-Lung Flooding (OLF). OLF generates a gas free saline-lung compound in one lung wing and therefore acoustic access to central lung tumours. It can be assumed that lung parenchyma is exposed to ultrasound intensities in the pre-focal path and in cases of misguiding. If so, cavitation might be induced in the saline fraction of flooded lung and cause tissue damage. Therefore this study was aimed to determine the thresholds of HIFU induced cavitation and tissue erosion in flooded lung. Resected human lung lobes were flooded ex-vivo. HIFU (1,1 MHz) was targeted under sonographic guidance into flooded lung parenchyma. Cavitation events were counted using subharmonic passive cavitation detection (PCD). B-Mode imaging was used to detect cavitation and erosion sonographically. Tissue samples out of the focal zone were analysed histologically. In flooded lung, a PCD and a sonographic cavitation detection threshold of 625  Wcm - 2 ( p r  = 4, 3  MPa ) and 3.600  Wcm - 2 ( p r  = 8, 3  MPa ) was found. Cavitation in flooded lung appears as blurred hyperechoic focal region, which enhances echogenity with insonation time. Lung parenchyma erosion was detected at intensities above 7.200  Wcm - 2 ( p r  = 10, 9  MPa ). Cavitation occurs in flooded lung parenchyma, which can be detected passively and by B-Mode imaging. Focal intensities required for lung tumour ablation are below levels where erosive events occur. Therefore focal cavitation events can be monitored and potential risk from tissue erosion in flooded lung avoided.

  12. Modelling the temperature evolution of bone under high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR-HIFU

  13. [Ultrasound-guided peripheral catheterization].

    PubMed

    Salleras-Duran, Laia; Fuentes-Pumarola, Concepció

    2016-01-01

    Peripheral catheterization is a technique that can be difficult in some patients. Some studies have recently described the use of ultrasound to guide the venous catheterization. To describe the success rate, time required, complications of ultrasound-guided peripheral venous catheterization. and patients and professionals satisfaction The search was performed in databases (Medline-PubMed, Cochrane Library, CINAHL and Cuiden Plus) for studies published about ultrasound-guided peripheral venous catheterization performed on patients that provided results on the success of the technique, complications, time used, patient satisfaction and the type of professional who performed the technique. A total of 21 studies were included. Most of them get a higher success rate 80% in the catheterization ecoguide and time it is not higher than the traditional technique. The Technical complications analyzed were arterial puncture rates and lower nerve 10%. In all studies measuring and comparing patient satisfaction in the art ecoguide is greater. Various professional groups perform the technique. The use of ultrasound for peripheral pipes has a high success rate, complications are rare and the time used is similar to that of the traditional technique. The technique of inserting catheters through ultrasound may be learned by any professional group performing venipuncture. Finally, it gets underscores the high patient satisfaction with the use of this technique. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  14. Real-time method for motion-compensated MR thermometry and MRgHIFU treatment in abdominal organs.

    PubMed

    Celicanin, Zarko; Auboiroux, Vincent; Bieri, Oliver; Petrusca, Lorena; Santini, Francesco; Viallon, Magalie; Scheffler, Klaus; Salomir, Rares

    2014-10-01

    Magnetic resonance-guided high-intensity focused ultrasound is considered to be a promising treatment for localized cancer in abdominal organs such as liver, pancreas, or kidney. Abdominal motion, anatomical arrangement, and required sustained sonication are the main challenges. MR acquisition consisted of thermometry performed with segmented gradient-recalled echo echo-planar imaging, and a segment-based one-dimensional MR navigator parallel to the main axis of motion to track the organ motion. This tracking information was used in real-time for: (i) prospective motion correction of MR thermometry and (ii) HIFU focal point position lock-on target. Ex vivo experiments were performed on a sheep liver and a turkey pectoral muscle using a motion demonstrator, while in vivo experiments were conducted on two sheep liver. Prospective motion correction of MR thermometry yielded good signal-to-noise ratio (range, 25 to 35) and low geometric distortion due to the use of segmented EPI. HIFU focal point lock-on target yielded isotropic in-plane thermal build-up. The feasibility of in vivo intercostal liver treatment was demonstrated in sheep. The presented method demonstrated in moving phantoms and breathing sheep accurate motion-compensated MR thermometry and precise HIFU focal point lock-on target using only real-time pencil-beam navigator tracking information, making it applicable without any pretreatment data acquisition or organ motion modeling. Copyright © 2013 Wiley Periodicals, Inc.

  15. Non-invasive MR-guided HIFU Therapy of TSC-Associated Renal Angiomyolipomas

    DTIC Science & Technology

    2013-07-01

    developed in the second year. The physical mechanisms underlying HIFU is that a HIFU transducer constructed with a concave shape and/or multiple...Philips 3T scanner. (c) A mechanic stage was constructed for holding/stabilizing the mouse and the coil within the MRI scanner. Inside the stage...using the mechanic stage in (c). 5 cm ~2 cm 6 imaging, T2 weighted imaging, stiffness weighted imaging, and phase imaging. It will be

  16. Treatment of cornual pregnancy in a patient with adenomyosis by high-intensity focused ultrasound (HIFU) ablation: A case report.

    PubMed

    Yu, Lixia; Xu, Linying; Xu, Xiaoyan

    2017-12-01

    Cornual ectopic pregnancy in adenomyosis patients is a rare clinical condition, which may require careful approach for accurate diagnosis and treatment. A 38-year-old woman presented with amenorrhea for 8 weeks and serum HCG levels of 1455 mmol/L. The B ultrasound showed an endometrial thickness of 1.7 cm, and the presence of a cystic structure (16 6 mm) at the right uterine horn. Color Doppler flow imaging (CDFI) accurately detected and confirmed the position of the cystic structure with its clear boundaries. Cornual ectopic pregnancy in adenomyosis. The diagnosis was confirmed and treated by HIFU ablation. Total ablation was performed for 738 seconds without any bleeding. Serum HCG levels decreased to < 0.1 mmol/L after 60 days post operation, and follow-up for 11 months showed a regular menstrual cycle without dysmenorrhea. Gestational sac was not obvious at postoperative 90 days by MRI. The adenomyosis associated lesion with blood perfusion became smaller at postoperative 90 days. In this case, we successfully performed HIFU ablation and treated the cornual ectopic pregnancy in an adenomyosis patient for the first time, without any adverse complications.

  17. A New Clinical HIFU System (Teleson II)

    NASA Astrophysics Data System (ADS)

    Ma, Yixin; Symonds-Tayler, Richard; Rivens, Ian H.; ter Haar, Gail R.

    2007-05-01

    Previous clinical trials with our first prototype HIFU system (Teleson I) for the treatment of liver tumors, demonstrated a major challenge to be treatment of those tumors located behind the ribs. We have designed a new multi-element transducer for rib sparing. Initial simulation and experimental results (using a single channel power amplifier) are very encouraging. A new clinical HIFU system which can drive the multi-element transducer and control each channel independently is being designed and constructed. This second version of a clinical prototype HIFU system consists of a 3D motorised gantry, a multi-channel signal generator, a multi-channel power amplifier, a user interface PC, an embedded controller and auxiliary circuits for real-time interleaving/synchronization control and a to-be-implemented safety monitoring and data logging unit. For multi-element transducers, each element can be individually switched on and off for rib sparing, and phase and amplitude modulated for potential phased array applications. The multi-channel power amplifier can be switched on/off very rapidly at required intervals to interleave with ultrasound B-Scan imaging for HIFU monitoring or radiation force elastography imaging via a dedicated interleaving/timing module. The gantry movement can also be synchronised with power amplifier on/off and phase/amplitude updating for lesion generation under a wide variety of conditions including single lesions, lesion arrays and lesions "tracks" created whilst translating the active transducer. Results from testing the system using excised tissue will be presented.

  18. [Effect of low-dose focused ultrasound pre-irradiation versus microbubbles for enhancing high-intensity focused ultrasound ablation of VX2 hepatic tumor in rabbits].

    PubMed

    Zhang, Yi; Yang, Chao; Zou, Jian-Zhong; Chen, Fei; Ou, Xia; Zou, Hai-Rong; Wang, Yan

    2016-10-20

    To compare the effect of low-dose focused ultrasound pre-irradiation and microbubbles for enhancing the ablation effect of high intensity focused ultrasound (HIFU) on VX 2 hepatic tumor in rabbits. Fifty-five rabbits bearing VX 2 hepatic tumor were randomly divided into low-dose pre-irradiation + HIFU ablation group, microbubbles+HIFU ablation group, and HIFU ablation group for corresponding treatments. The pathological changes in the tumors after low-dose irradiation, time for HIFU ablation, tumor volume with coagulative necrosis, energy efficiency factor (EEF), pathological changes in the ablated tumor, and sound channel of HIFU ablation were observed. Tumor cell edema, vacuolar changes in the cytoplasm and tumor interstitial vascular congestion were observed 24 h after low-dose pre-irradiation. The ablation time were significantly shorter, coagulative necrosis volume was larger, and EEF was lower in low-dose irradiation + HIFU ablation group and microbubbles+HIFU ablation group than in simple HIFU ablation group (P<0.05), but the differences between the former two groups were not significant. The effectiveness and stability of the synergistic effect of low-dose pre-irradiation were inferior to microbubbles, but the former ensured a better safety of the sound channel. Low-dose irradiation has comparable synergistic effect in HIFU with microbubbles with such advantages as non-invasiveness, high concentration and good safety, and can be a potentially new method to enhance the efficiency of HIFU.

  19. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids.

    PubMed

    Kim, Young-Sun; Kim, Tae-Joong; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Ahn, Joong Hyun; Lee, Jeong-Won; Kim, Byoung-Gie

    2017-09-01

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. • After MR-HIFU ablation for submucosal fibroid, endometrium is mostly preserved/minimally impaired. • Endometrial-protruded submucosal fibroid is susceptible to more severe endometrial impairment. • The impaired endometrium may recover spontaneously at follow-up MR exams.

  20. Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids: Effect of Bowel Interposition on Procedure Feasibility and a Unique Bowel Displacement Technique.

    PubMed

    Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul

    2016-01-01

    To evaluate the effect of bowel interposition on assessing procedure feasibility, and the usefulness and limiting conditions of bowel displacement techniques in magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. Institutional review board approved this study. A total of 375 screening MR exams and 206 MR-HIFU ablations for symptomatic uterine fibroids performed between August 2010 and March 2015 were retrospectively analyzed. The effect of bowel interposition on procedure feasibility was assessed by comparing pass rates in periods before and after adopting a unique bowel displacement technique (bladder filling, rectal filling and subsequent bladder emptying; BRB maneuver). Risk factors for BRB failure were evaluated using logistic regression analysis. Overall pass rates of pre- and post-BRB periods were 59.0% (98/166) and 71.7% (150/209), and in bowel-interposed cases they were 14.6% (7/48) and 76.4% (55/72), respectively. BRB maneuver was technically successful in 81.7% (49/60). Through-the-bladder sonication was effective in eight of eleven BRB failure cases, thus MR-HIFU could be initiated in 95.0% (57/60). A small uterus on treatment day was the only significant risk factor for BRB failure (B = 0.111, P = 0.017). The BRB maneuver greatly reduces the fraction of patients deemed ineligible for MR-HIFU ablation of uterine fibroids due to interposed bowels, although care is needed when the uterus is small.

  1. High-intensity focused ultrasound ablation of thyroid nodules: first human feasibility study.

    PubMed

    Esnault, Olivier; Franc, Brigitte; Ménégaux, Fabrice; Rouxel, Agnès; De Kerviler, Eric; Bourrier, Pierre; Lacoste, François; Chapelon, Jean-Yves; Leenhardt, Laurence

    2011-09-01

    Thyroid surgery is common, but complications may occur. High-intensity focused ultrasound (HIFU) is a minimally invasive alternative to surgery. We hypothesized that an optimized HIFU device could be safe and effective for ablating benign thyroid nodules without affecting neighboring structures. In this open, single-center feasibility study, 25 patients were treated with HIFU with real-time ultrasound imaging 2 weeks before a scheduled thyroidectomy for multinodular goiter. Thyroid ultrasonography imaging, thyroid function, were evaluated before and after treatment. Adverse events were carefully recorded. Each patient received HIFU for one thyroid nodule, solid or mixed, with mean diameter ≥8 mm, and no suspicion of malignancy. The HIFU device was progressively adjusted with stepwise testing. The energy level for ablation ranged from 35 to 94 J/pulse for different groups of patients. One pathologist examined all removed thyroids. Three patients discontinued treatment due to pain or skin microblister. Among the remaining 22 patients, 16 showed significant changes by ultrasound. Macroscopic and histological examinations showed that all lesions were confined to the targeted nodule without affecting neighboring structures. At pathological analysis, the extent of nodule destruction ranged from 2% to 80%. Five out of 22 patients had over 20% pathological lesions unmistakably attributed to HIFU. Seventeen cases had putative lesions including nonspecific necrosis, hemorrhage, nodule detachment, cavitations, and cysts. Among these 17 cases, 12 had both ultrasound changes and cavitation at histology that may be expected for an HIFU effect. In the last three patients ablated at the highest energy level, significant ultrasound changes and complete coagulative necrosis were observed in 80%, 78%, and 58% of the targeted area, respectively. There were no major complications of ablation. This study showed the potential efficacy of HIFU for human thyroid nodule ablation

  2. Uterine Fibroids: Correlation of T2 Signal Intensity with Semiquantitative Perfusion MR Parameters in Patients Screened for MR-guided High-Intensity Focused Ultrasound Ablation.

    PubMed

    Kim, Young-Sun; Lee, Jeong-Won; Choi, Chel Hun; Kim, Byoung-Gie; Bae, Duk-Soo; Rhim, Hyunchul; Lim, Hyo Keun

    2016-03-01

    To evaluate the relationships between T2 signal intensity and semiquantitative perfusion magnetic resonance (MR) parameters of uterine fibroids in patients who were screened for MR-guided high-intensity focused ultrasound (HIFU) ablation. Institutional review board approval was granted, and informed consents were waived. One hundred seventy most symptom-relevant, nondegenerated uterine fibroids (mean diameter, 7.3 cm; range, 3.0-17.2 cm) in 170 women (mean age, 43.5 years; range, 24-56 years) undergoing screening MR examinations for MR-guided HIFU ablation from October 2009 to April 2014 were retrospectively analyzed. Fibroid signal intensity was assessed as the ratio of the fibroid T2 signal intensity to that of skeletal muscle. Parameters of semiquantitative perfusion MR imaging obtained during screening MR examination (peak enhancement, percentage of relative peak enhancement, time to peak [in seconds], wash-in rate [per seconds], and washout rate [per seconds]) were investigated to assess their relationships with T2 signal ratio by using multiple linear regression analysis. Correlations between T2 signal intensity and independently significant perfusion parameters were then evaluated according to fibroid type by using Spearman correlation test. Multiple linear regression analysis revealed that relative peak enhancement showed an independently significant correlation with T2 signal ratio (Β = 0.004, P < .001). Submucosal intracavitary (n = 20, ρ = 0.275, P = .240) and type III (n = 18, ρ = 0.082, P = .748) fibroids failed to show significant correlations between perfusion and T2 signal intensity, while significant correlations were found for all other fibroid types (ρ = 0.411-0.629, P < .05). In possible candidates for MR-guided HIFU ablation, the T2 signal intensity of nondegenerated uterine fibroids showed an independently significant positive correlation with relative peak enhancement in most cases, except those of submucosal intracavitary or type III

  3. MR-ARFI-based method for the quantitative measurement of tissue elasticity: application for monitoring HIFU therapy

    NASA Astrophysics Data System (ADS)

    Vappou, Jonathan; Bour, Pierre; Marquet, Fabrice; Ozenne, Valery; Quesson, Bruno

    2018-05-01

    Monitoring thermal therapies through medical imaging is essential in order to ensure that they are safe, efficient and reliable. In this paper, we propose a new approach, halfway between MR acoustic radiation force imaging (MR-ARFI) and MR elastography (MRE), allowing for the quantitative measurement of the elastic modulus of tissue in a highly localized manner. It relies on the simulation of the MR-ARFI profile, which depends on tissue biomechanical properties, and on the identification of tissue elasticity through the fitting of experimental displacement images measured using rapid MR-ARFI. This method was specifically developed to monitor MR-guided high intensity focused ultrasound (MRgHIFU) therapy. Elasticity changes were followed during HIFU ablations (N  =  6) performed ex vivo in porcine muscle samples, and were compared to temperature changes measured by MR-thermometry. Shear modulus was found to increase consistently and steadily a few seconds after the heating started, and such changes were found to be irreversible. The shear modulus was found to increase from 1.49  ±  0.48 kPa (before ablation) to 3.69  ±  0.93 kPa (after ablation and cooling). Thanks to its ability to perform quantitative elasticity measurements in a highly localized manner around the focal spot, this method proved to be particularly attractive for monitoring HIFU ablations.

  4. High-frequency ultrasound-responsive block copolymer micelle.

    PubMed

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  5. High-Frequency Ultrasound M-mode Imaging for Identifying Lesion and Bubble Activity during High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-01-01

    Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600 – 6100 W/cm2) was applied to ex-vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radiofrequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during, and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, as compared to macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies. PMID:22341055

  6. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound

    PubMed Central

    NEGUSSIE, AYELE H.; YARMOLENKO, PAVEL S.; PARTANEN, ARI; RANJAN, ASHISH; JACOBS, GENEVIEVE; WOODS, DAVID; BRYANT, HENRY; THOMASSON, DAVID; DEWHIRST, MARK W.; WOOD, BRADFORD J.; DREHER, MATTHEW R.

    2012-01-01

    Purpose Objectives of this study were to: 1) develop iLTSL, a low temperature sensitive liposome co-loaded with an MRI contrast agent (ProHance® Gd-HP-DO3A) and doxorubicin, 2) characterise doxorubicin and Gd-HP-DO3A release from iLTSL and 3) investigate the ability of magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) to induce and monitor iLTSL content release in phantoms and in vivo. Methods iLTSL was passively loaded with Gd-HP-DO3A and actively loaded with doxorubicin. Doxorubicin and Gd-HP-DO3A release was quantified by fluorescence and spectroscopic techniques, respectively. Release with MR-HIFU was examined in tissue-mimicking phantoms containing iLTSL and in a VX2 rabbit tumour model. Results iLTSL demonstrated consistent size and doxorubicin release kinetics after storage at 4°C for 7 days. Release of doxorubicin and Gd-HP-DO3A from iLTSL was minimal at 37°C but fast when heated to 41.3°C. The magnitude of release was not significantly different between doxorubicin and Gd-HP-DO3A over 10 min in HEPES buffer and plasma at 37°, 40° and 41.3°C (p>0.05). Relaxivity of iLTSL increased significantly (p <0.0001) from 1.95 ± 0.05 to 4.01 ± 0.1 mMs−1 when heated above the transition temperature. Signal increase corresponded spatially and temporally to MR-HIFU-heated locations in phantoms. Signal increase was also observed in vivo after iLTSL injection and after each 10-min heating (41°C), with greatest increase in the heated tumour region. Conclusion An MR imageable liposome formulation co-loaded with doxorubicin and an MR contrast agent was developed. Stability, imageability, and MR-HIFU monitoring and control of content release suggest that MR-HIFU combined with iLTSL may enable real-time monitoring and spatial control of content release. PMID:21314334

  7. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    PubMed Central

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  8. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the

  9. High-intensity focused ultrasound (HIFU) using Sonablate{trade mark, serif} devices for the treatment of localized prostate cancer: 13-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Tomonaga, Tetsuro; Shoji, Sunao; Kim, Hakushi; Nagata, Yoshihiro

    2012-11-01

    To report on the long-term results of high-intensity focused ultrasound (HIFU) in the treatment of localized prostate cancer. Eight hundred and eighty-four men with prostate cancer treated with Sonablate® (SB) devices were included. All patients were followed for more than 2 years. The patients were divided into three groups: in the first group, 419 patients were treated with SB200/500 from 1999 to 2006; in the second group, 263 patients were treated with SB 500 ver. 4 from 2005 to 2009: in the third group, 202 patients were treated with SB 500 TCM from 2007 up to present. Biochemical failure was defined according to the Phoenix definition (PSA nadir + 2 ng/ml). The mean age, PSA, Gleason score, operation time, and follow-up period in each group were 68, 66 and 67 years, 11.2, 9.7 and 9.3 ng/ml, 6.2, 6.6 and 6.7, 167, 101 and 106 min, and 56, 48 and 36 months, respectively. The biochemical disease-free rate (bDFR) in each group at 5 years was, respectively, 54%, 61% and 84%, and was 50% at 10 years in the SB200/500 group (p<0.0001). The bDFR in patients in the low-, intermediate-, and high-risk groups in all patients at 10 years were 72% and 58%, 44%, respectively (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the SB500 TCM group at 5 years were 97%, 83%, and 74% (p=0.0056). The negative prostate biopsy rates in 3 groups were 81%, 92% and 88%, respectively. As post HIFU complications, urethral stricture, acute epididymitis and urinary incontinence were noted in 18.0%, 6.2% and 1.9%, respectively. Rectourethral fistula was occurred in 0.6% in the first HIFU cases, Postoperative erectile dysfunction was noted in 27% of patients at 2 years after HIFU. HIFU therapy appears to be minimally invasive, efficacious, and safe for patients with localized prostate cancer. Technological advances as well as cultural and economic vectors have caused a shift from to minimally invasive techniques.

  10. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Lee, Donghoon; Marro, Kenneth I.; Crum, Lawrence A.; Khokhlova, Vera A.; Bailey, Michael R.

    2009-01-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 °C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 °C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3×0.5×2 mm3) yielded a maximum of 73 °C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems. PMID:19354416

  11. Ultrasound-Guided Renal Access for Percutaneous Nephrolithotomy: A Description of Three Novel Ultrasound-Guided Needle Techniques

    PubMed Central

    Chu, Carissa; Masic, Selma; Usawachintachit, Manint; Hu, Weiguo; Yang, Wenzeng; Stoller, Marshall; Li, Jianxing

    2016-01-01

    Abstract Ultrasound-guided renal access for percutaneous nephrolithotomy (PCNL) is a safe, effective, and low-cost procedure commonly performed worldwide, but a technique underutilized by urologists in the United States. The purpose of this article is to familiarize the practicing urologist with methods for ultrasound guidance for percutaneous renal access. We discuss two alternative techniques for gaining renal access for PCNL under ultrasound guidance. We also describe a novel technique of using the puncture needle to reposition residual stone fragments to avoid additional tract dilation. With appropriate training, ultrasound-guided renal access for PCNL can lead to reduced radiation exposure, accurate renal access, and excellent stone-free success rates and clinical outcomes. PMID:26414304

  12. Uterine fibroids: Influence of "T2-Rim sign" on immediate therapeutic responses to magnetic resonance imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Yeo, Sin Yuin; Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Hwang, Na Young

    2017-12-01

    To investigate the influence of a high-signal-intensity peripheral rim on T2-weighted MR images (i.e., T2-rim sign) on the immediate therapeutic responses of MR-guided high intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. This retrospective study was approved by the institutional review board, and patient informed consent was obtained for MR-HIFU ablation. In total, 196 fibroids (diameter 6.2±2.6cm) in 123 women (age 43.4±5.0 years) who underwent MR-HIFU ablation from January 2013 to April 2016 were included. The effects of a T2-rim sign on the immediate therapeutic responses (non-perfused volume [NPV] ratio, ablation efficiency [NPV/treatment cell volume], ablation quality [grade 1-5, poor to excellent]) were investigated with univariable and multivariable analyses using generalized estimating equation (GEE) analysis. In multivariable analysis, T2 signal intensity ratio of fibroids-to-skeletal muscle, relative peak enhancement of fibroids, and subcutaneous fat thickness were also considered. The presence of a T2-rim sign significantly lowered the NPV ratio (54.0±28.0% vs. 83.7±17.7%), ablation efficiency (0.6±0.5 vs. 1.3±0.6), ablation quality (3.1±1.2 vs. 4.2±0.8), (P<0.0001). GEE analysis showed that the presence of a T2-rim sign was independently significant for ablation efficiency and ablation quality (P<0.05). Uterine fibroids with a T2-rim sign showed significantly poorer immediate therapeutic responses to MR-HIFU ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adaptive lesion formation using dual mode ultrasound array system

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  14. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  15. A History of the Sonocare CST-100: The First FDA-approved HIFU Device

    NASA Astrophysics Data System (ADS)

    Muratore, Robert

    2006-05-01

    The Sonocare CST-100 Therapeutic Ultrasound System, designed for the treatment of glaucoma, was developed in the 1980s and became the first high intensity focused ultrasound (HIFU) device to receive Food and Drug Administration approval. The system arose from studies done by F.L. Lizzi, Eng.Sc.D., of Riverside Research Institute and D.J. Coleman, M.D., of Cornell Medical Center/New York Hospital on the safety of ultrasound diagnosis of the eye. As safety limits were probed, therapeutic regimes were discovered. Optimization of operational parameters, clinical experience, and engineering design came together through a spin-off company, Sonocare, Inc., formed to produce and market the ophthalmic device. Various precedents were set during the approval process, including the acceptance by the FDA of radiation momentum imparted to an absorber as a measure of acoustic power. Many devices were sold, but the laser industry, grandfathered into the therapeutic field, eventually out-marketed Sonocare. The CST-100 remains as a model of elegant industrial design, and existing units are used daily in HIFU laboratory experiments.

  16. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    PubMed

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  18. Agar-Silica-Gel Heating Phantom May Be Suitable for Long-Term Quality Assurance of MRgHIFU

    NASA Astrophysics Data System (ADS)

    Partanen, Ari

    2009-04-01

    In MRgHIFU, the purpose of frequent quality assurance is to detect changes in system performance to prevent adverse effects during treatments. Due to high ultrasound intensities in MRgHIFU, it is essential to assure that the procedure is safe and efficacious and that image-based guidance of the treatment is reliable. We aimed to develop a guideline for MRgHIFU QA by acquiring MR temperature maps during ultrasonic heating of an agar-silica-gel phantom over a four month-period using three separate MRgHIFU uterine leiomyoma treatment systems. From this data, the stability of the maximum temperature elevation, the targeting accuracy, and the dimensions of the heated volume were analyzed. Additionally, we studied the sensitivity of these parameters to reveal hypothetical decrease in HIFU performance. After calibration, the mean targeting offsets of the heated volume were observed to be less than 2 mm in the three orthogonal directions. The measured maximum temperature elevation and the length and the width of the heated volume remained consistent throughout the four-month period. Furthermore, it was found that the parameters under investigation were sensitive to reveal the decreased HIFU performance. We conclude that an agar-silica -based phantom is suitable for targeting accuracy and heating properties QA of MRgHIFU system even in long-term use. Moreover, this simple QA method may be used to reveal small changes in HIFU performance assuring consistent functionality and safety of the MRgHIFU system.

  19. PRESAGE® as a new calibration method for high intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Costa, M.; McErlean, C.; Rivens, I.; Adamovics, J.; Leach, M. O.; ter Haar, G.; Doran, S. J.

    2015-01-01

    High Intensity Focused ultrasound (HIFU) is a non-invasive cancer therapy that makes use of the mainly thermal effects of ultrasound to destroy tissue. In order to achieve reliable treatment planning, it is necessary to characterise the ultrasound source (transducer) and to understand how the wave propagates in tissue and the energy deposition in the focal region. This novel exploratory study investigated how HIFU affects PRESAGE®, an optical phantom used for radiotherapy dosimetry, which is potentially a rapid method of calibrating the transducer. Samples, of two different formulations, were exposed to focused ultrasound and imaged using Optical Computed Tomography. First results showed that, PRESAGE® changes colour on ultrasound exposure (darker green regions were observed) with the alterations being related to the acoustic power and sample composition. Future work will involve quantification of these alterations and understanding how to relate them to the mechanisms of action of HIFU.

  20. Design and Evaluation of Complex Moving HIFU Treatment Protocols

    NASA Astrophysics Data System (ADS)

    Kargl, Steven G.; Andrew, Marilee A.; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2005-03-01

    The use of moving high-intensity focused ultrasound (HIFU) treatment protocols is of interest in achieving efficient formation of large-volume thermal lesions in tissue. Judicious protocol design is critical in order to avoid collateral damage to healthy tissues outside the treatment zone. A KZK-BHTE model, extended to simulate multiple, moving scans in tissue, is used to investigate protocol design considerations. Prediction and experimental observations are presented which 1) validate the model, 2) illustrate how to assess the effects of acoustic nonlinearity, and 3) demonstrate how to assess and control collateral damage such as prefocal lesion formation and lesion formation resulting from thermal conduction without direct HIFU exposure. Experimental data consist of linear and circular scan protocols delivered over a range of exposure regimes in ex vivo bovine liver.

  1. A toroidial-shaped HIFU transducer for assisting hepatic resection: a complementary tool for surgery

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Melodelima, D.; Schenone, F.; Rivoire, M.; Chapelon, J. Y.

    2009-04-01

    A toroidial-shaped HIFU medical device with integrated ultrasound imaging was developed for the treatment of colorectal liver metastasis. The HIFU toroidïal-shaped transducer contained 256-elements (working frequency: 3 MHz) and allows creating a single conical lesion of 7 cm3 in 40 seconds (Ifocal = 1700 W.cm-2). Volumes of treatment can then be significantly increase by juxtaposing single lesions. Presented here is the use of this device in an animal model as a complementary tool to improve surgical resection in the liver. A zone of coagulative necrosis before transecting the liver was performed using this device in order to minimize blood loss and dissection time during hepatectomy. Resection assisted by HIFU (RA-HIFU) was compared with classical dissections with clamping (RC) and without clamping (Control). For each technique 14 partial liver resections were performed in seven pigs. Blood loss per dissection surface area was the main outcome parameter. Blood loss during liver transection was significantly lower in RA-HIFU (7.4±3.3 ml.cm-2) than in RC (34%) and Control (47%). The duration of transection in RA-HIFU (13±3 min) was significantly shorter than in RC (44%) and Control (28%). Precoagulation also resulted in the use of significantly fewer clips; the number of clips used per square centimetre was 50% lower in RA-HIFU (0.8±0.2 cm-2) than in the other groups.

  2. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU.

    PubMed

    Han, Meng; Wang, Na; Guo, Shifang; Chang, Nan; Lu, Shukuan; Wan, Mingxi

    2018-07-01

    Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy

    PubMed Central

    Hsiao, Yi-Hsuan; Kuo, Shou-Jen; Tsai, Horng-Der; Chou, Ming-Chih; Yeh, Guang-Perng

    2016-01-01

    The treatment of cancer is an important issue in both developing and developed countries. Clinical use of ultrasound in cancer is not only for the diagnosis but also for the treatment. Focused ultrasound surgery (FUS) is a noninvasive technique. By using the combination of high-intensity focused ultrasound (HIFU) and imaging method, FUS has the potential to ablate tumor lesions precisely. The main mechanisms of HIFU ablation involve mechanical and thermal effects. Recent advances in HIFU have increased its popularity. Some promising results were achieved in managing various malignancies, including pancreas, prostate, liver, kidney, breast and bone. Other applications include brain tumor ablation and disruption of the blood-brain barrier. We aim at briefly outlining the clinical utility of FUS as a noninvasive technique for a variety of types of cancer treatment. PMID:26918034

  4. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.

    PubMed

    Song, Junho; Lucht, Benjamin; Hynynen, Kullervo

    2012-07-01

    With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.

  5. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    PubMed

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  6. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation.

    PubMed

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Shi, Dennis; Kumar, Kaushlendra; Goodwin, Andrew P

    2017-09-01

    The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL -1 (7 × 10 9 particles mL -1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multi-focal HIFU reduces cavitation in mild-hyperthermia.

    PubMed

    Chaplin, Vandiver; Caskey, Charles F

    2017-01-01

    Mild-hyperthermia therapy (40-45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5

  8. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    NASA Astrophysics Data System (ADS)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  9. MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Do, Loi; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2014-11-01

    To evaluate hyperacute (<1 hour) changes on magnetic resonance (MR) and computed tomography (CT) imaging following MR-guided high-intensity focused ultrasound (MRgHIFU) in a swine bone model as a function of sonication number and energy. Experimental procedures received approval from the local Institutional Animal Care and Use Committee. MRgHIFU was used to create distal and proximal ablations in the right femur of eight pigs. Each target was dosed with four or six sonications within similar volumes. The energy dosed to the distal target was higher (419 ± 19 J) than the proximal target (324 ± 17 J). The targeted femur and contralateral control were imaged before and after ablation using MR at 3T. Qualitative changes in signal on T1-weighted, T2-weighted, and T1-weighted postcontrast images were assessed. Ablation dimensions were calculated from postcontrast MRI. The 64-slice CT images were also obtained before and after ablation and qualitative changes were assessed. MRgHIFU bone ablation size measured on average 8.5 × 21.1 × 16.2 mm (transverse × craniocaudal × anteroposterior). Interestingly, within similar prescribed volumes, increasing the number of sonications from 4 to 6 increased the depth of the intramedullary hypoenhanced zone from 2.9 mm to 6.5 mm (P < 0.001). There was no difference in the appearance of low versus high energy ablations. CT imaging did not show structural abnormalities. The number of MRgHIFU focal sonications can be used to increase the depth of treatment within the targeted bone. Unlike CT, T2-weighted and contrast-enhanced MR demonstrated the hyperacute structural changes in the femur and surrounding soft tissue. © 2013 Wiley Periodicals, Inc.

  10. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    PubMed

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    You, Dong Gil; Yoon, Hong Yeol; Jeon, Sangmin; Um, Wooram; Son, Sejin; Park, Jae Hyung; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-11-01

    Recently, ultrasound (US)-based drug delivery strategies have received attention to improve enhanced permeation and retention (EPR) effect-based passive targeting efficiency of nanoparticles in vitro and in vivo conditions. Among the US treatment techniques, pulsed-high intensity focused ultrasound (pHIFU) have specialized for improving tissue penetration of various macromolecules and nanoparticles without irreversible tissue damages. In this study, we have demonstrated that pHIFU could be utilized to improve tissue penetration of fluorescent dye-labeled glycol chitosan nanoparticles (FCNPs) in femoral tissue of mice. pHIFU could improve blood flow of the targeted-blood vessel in femoral tissue. In addition, tissue penetration of FCNPs was specifically increased 5.7-, 8- and 9.3-folds than that of non-treated (0 W pHIFU) femoral tissue, when the femoral tissue was treated with 10, 20 and 50 W of pHIFU, respectively. However, tissue penetration of FCNPs was significantly reduced after 3 h post-pHIFU treatment (50 W). Because overdose (50 W) of pHIFU led to irreversible tissue damages, including the edema and chapped red blood cells. These overall results support that pHIFU treatment can enhance the extravasation and tissue penetration of FCNPs as well as induce irreversible tissue damages. We expect that our results can provide advantages to optimize pHIFU-mediated delivery strategy of nanoparticles for further clinical applications.

  12. High-intensity focused ultrasound in obstetrics and gynecology: the birth of a new era of noninvasive surgery?

    PubMed

    Griffiths, A; terHaar, G; Rivens, I; Giussani, D; Lees, C

    2012-12-01

    Although ultrasound is an essential investigative modality in obstetrics and gynecology, the potential for therapeutic high-intensity focused ultrasound (HIFU) (also referred to as focused ultrasound surgery, FUS) to offer an alternative to invasive surgery is less well known. The ability of HIFU to create discrete regions of tissue necrosis only in precisely targeted positions by careful placement of the focus, without the need for any surgical intervention, has made HIFU of interest to those seeking noninvasive alternatives to conventional abdominal surgery. This article reviews the current experimental and clinical experience with HIFU in obstetrics and gynecology, and outlines potential future applications in fetal medicine and the challenges faced in their development. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Assistive technology for ultrasound-guided central venous catheter placement.

    PubMed

    Ikhsan, Mohammad; Tan, Kok Kiong; Putra, Andi Sudjana

    2018-01-01

    This study evaluated the existing technology used to improve the safety and ease of ultrasound-guided central venous catheterization. Electronic database searches were conducted in Scopus, IEEE, Google Patents, and relevant conference databases (SPIE, MICCAI, and IEEE conferences) for related articles on assistive technology for ultrasound-guided central venous catheterization. A total of 89 articles were examined and pointed to several fields that are currently the focus of improvements to ultrasound-guided procedures. These include improving needle visualization, needle guides and localization technology, image processing algorithms to enhance and segment important features within the ultrasound image, robotic assistance using probe-mounted manipulators, and improving procedure ergonomics through in situ projections of important information. Probe-mounted robotic manipulators provide a promising avenue for assistive technology developed for freehand ultrasound-guided percutaneous procedures. However, there is currently a lack of clinical trials to validate the effectiveness of these devices.

  14. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  15. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  16. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    NASA Astrophysics Data System (ADS)

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  17. Endoscopic ultrasound-guided biliary drainage

    PubMed Central

    Chavalitdhamrong, Disaya; Draganov, Peter V

    2012-01-01

    Endoscopic ultrasound (EUS)-guided biliary drainage has emerged as a minimally invasive alternative to percutaneous and surgical interventions for patients with biliary obstruction who had failed endoscopic retrograde cholangiopancreatography (ERCP). EUS-guided biliary drainage has become feasible due to the development of large channel curvilinear therapeutic echo-endoscopes and the use of real-time ultrasound and fluoroscopy imaging in addition to standard ERCP devices and techniques. EUS-guided biliary drainage is an attractive option because of its minimally invasive, single step procedure which provides internal biliary decompression. Multiple investigators have reported high success and low complication rates. Unfortunately, high quality prospective data are still lacking. We provide detailed review of the use of EUS for biliary drainage from the perspective of practicing endoscopists with specific focus on the technical aspects of the procedure. PMID:22363114

  18. Diffusion-weighted magnetic resonance imaging using different b-value combinations for the evaluation of treatment results after volumetric MR-guided high-intensity focused ultrasound ablation of uterine fibroids.

    PubMed

    Ikink, Marlijne E; Voogt, Marianne J; van den Bosch, Maurice A A J; Nijenhuis, Robbert J; Keserci, Bilgin; Kim, Young-sun; Vincken, Koen L; Bartels, Lambertus W

    2014-09-01

    To assess the value of diffusion-weighted magnetic resonance imaging (DWI) and apparent diffusion coefficient (ADC) mapping using different b-value combinations for treatment evaluation after magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) of uterine fibroids. Fifty-six patients with 67 uterine fibroids were treated with volumetric MR-HIFU. Pre-treatment and post-treatment images were obtained using contrast-enhanced T1-weighted MRI (CE-T1WI) and DWI using b = 0, 200, 400, 600, 800 s/mm(2). ADC maps were generated using subsets of b-values to investigate the effects of tissue ablation on water diffusion and perfusion in fibroids treated with MR-HIFU. Four combinations of b-values were used: (1) all b-values; (2) b = 0, 200 s/mm(2); (3) b = 400, 600, 800 s/mm(2); and (4) b = 0, 800 s/mm(2). Using the lowest b-values (0 and 200 s/mm(2)), the mean ADC value in the ablated tissue reduced significantly (p < 0.001) compared with baseline. Calculating the ADC value with the highest b-values (400, 600, 800 s/mm(2)), the ADC increased significantly (p < 0.001) post-treatment. ADC maps calculated with the lowest b-values resulted in the best visual agreement of non-perfused fibroid tissue detected on CE images. Other b-value combinations and normal myometrium showed no difference in ADC after MR-HIFU treatment. A decrease in contrast agent uptake within the ablated region on CE-T1WI was correlated to a significantly decreased ADC when b = 0 and 200 s/mm(2) were used. DWI could be useful for treatment evaluation after MR-HIFU of uterine fibroids. The ADC in fibroid tissue is influenced by the choice of b- values. Low b-values seem the best choice to emphasise perfusion effects after MR-HIFU.

  19. High Intensity Focused Ultrasound (HIFU) as a Salvage Treatment for Recurrent Prostate Cancer after Brachytherapy — a Feasibility Study

    NASA Astrophysics Data System (ADS)

    Chapman, Alexander T.; Rivens, Ian H.; Thompson, Alan C.; ter Haar, Gail R.

    2007-05-01

    HIFU may be an effective salvage treatment for patients who develop local recurrence after permanent low-dose brachytherapy. It has been suggested that the presence of seeds in the prostate may obstruct the HIFU beam or alter the heating characteristics of the prostate tissue. Acoustic field measurements were made using a membrane hydrophone and lesioning experiments were carried out in ex vivo bovine liver. These revealed a significant effect of the seeds on the HIFU focal region as well as a reduction in lesion length when seeds were placed in a pre-focal position. Further work is needed to evaluate the full effects of implanted brachytherapy seeds on the clinical delivery of HIFU.

  20. Outcomes of ultrasound guided renal mass biopsies.

    PubMed

    Sutherland, Edward L; Choromanska, Agnieszka; Al-Katib, Sayf; Coffey, Mary

    2018-06-01

    The purpose of this study was to evaluate the rate of nondiagnostic ultrasound-guided renal mass biopsies (RMBs) at our institution and to determine what patient, procedural, and focal renal mass (FRM) factors were associated with nondiagnostic ultrasound-guided RMBs. Eighty-two ultrasound-guided renal mass biopsies performed between January 2014 and October 2016 were included in our study. Biopsy outcomes (diagnostic vs. nondiagnostic) and patient, procedural, and FRM characteristics were retrospectively reviewed and recorded. Univariate statistical analyses were performed to identify biopsy characteristics that were indicative of nondiagnostic biopsy. Ultrasound-guided RMBs were diagnostic in 70 out of 82 cases (85%) and non-diagnostic in 12 cases (15%). Among the diagnostic biopsies, 54 (77%) were malignant cases, 94% of which were renal cell carcinoma (RCC). Of the 12 nondiagnostic cases, the final diagnosis was RCC in 4 cases and angiomyolipoma in one case; seven of the nondiagnostic cases were lost to follow-up. A weak association (p = 0.04) was found between the number of needle passes and the biopsy outcome. None of the remaining collected RMB characteristics showed a significant correlation with a diagnostic or nondiagnostic RMB. Six patients (7%) experienced complications. Ultrasound-guided renal mass biopsy is a safe and effective method for the diagnosis of renal masses with a low rate of nondiagnostic outcomes. A nondiagnostic biopsy should not be treated as a surrogate for a diagnosis since a significant number of patients with nondiagnostic biopsies have subsequently been shown to have renal malignancies. Repeat biopsy should be considered in such cases.

  1. Real-time monitoring of thermal and mechanical tissue response to modulated phased-array HIFU beams in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Ballard, John R.; Haritonova, Alyona; Choi, Jeungwan; Bischof, John; Ebbini, Emad S.

    2012-10-01

    An integrated system employing real-time ultrasound thermography and strain imaging in monitoring tissue response to phased-array heating patterns has been developed. The imaging system is implemented on a commercially available scanner (SonixRP) at frame rates > 500 fps with limited frame sizes covering the vicinity of the HIFU focal spot. These frame rates are sufficient to capture tissue motion and deformation even in the vicinity of large arteries. With the high temporal and spatial resolution of our strain imaging system, we are able to capture and separate tissue strains due to natural motion (breathing and pulsation) from HIFU induced strains (thermal and mechanical). We have collected in vivo strain imaging during sub-therapeutic and therapeutic HIFU exposure in swine and rat model. A 3.5-MHz phased array was used to generate sinusoidally-modulated pHIFU beams at different intensity levels and durations near blood vessels of different sizes (e.g. femoral in the swine and rat models). The results show that our approach is capable of characterizing the thermal and mechanical tissue response to sub-therapeutic pHIFU beam. For therapeutic pHIFU beams, the approach is still capable of localizing the therapeutic beam, but the results at the focal spot are complicated by bubble generation.

  2. Full acoustic and thermal characterization of HIFU field in the presence of a ribcage model

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Le, Nhan; Nabi, Ghulam; Huang, Zhihong

    2017-03-01

    In the treatment of abdominal organs using high intensity focused ultrasound (HIFU), the patient's ribs are in the pathway of the HIFU beams which could result in acoustic distortion, occasional skin burns and insufficient energy delivered to the target organs. To provide full characterization of HIFU field with the influence of ribcage, the ribcage phantom reconstructed from a patient's CT images was created by tissue mimicking materials and its effect on acoustic field was characterized. The effect of the ribcage on acoustic field has been provided in acoustic pressure distribution, acoustic power and focal temperature. Measurement result shows focus splitting with one main focus and two secondary intensity maxima. With the presence of ribcage phantom, the acoustic pressure was reduced by 48.3% and another two peak values were observed near the main focus, reduced by 65.0% and 71.7% respectively. The acoustic power was decreased by 47.5% to 52.5%. With these characterization results, the form of the focus, the acoustic power, acoustic pressure and temperature rise are provided before the transcostal HIFU treatment, which are significant to determine the energy delivery dose. In conclusion, this ribcage model and characterization technique will be useful for the further study in the abdominal HIFU treatment.

  3. Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid ... Needle Aspiration Biopsy of the Thyroid? What is Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid? ...

  4. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment.

    PubMed

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-03-28

    To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student's t-test was used and a P-value < 0.05 was considered statistically significant. Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm(3) for single sonication 3000J, 0.50-0.84 cm(3), for double 3000J, 0.75-0.78 cm(3) for single 4400J and 0.12-2.65 cm(3) for double 4400J) and at postmortem (0.23-0.52 cm(3), 0.25-0.82 cm(3), 0.45-0.68 cm(3) and 0.29-1.80 cm(3), respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  5. Ultrasound-guided chest biopsies.

    PubMed

    Middleton, William D; Teefey, Sharlene A; Dahiya, Nirvikar

    2006-12-01

    Pulmonary nodules that are surrounded by aerated lung cannot be visualized with sonography. Therefore, percutaneous biopsy must be guided with computed tomography or fluoroscopy. Although this restriction only applies to central lung nodules, it has permeated referral patterns for other thoracic lesions and has retarded the growth of ultrasound-guided interventions. Nevertheless, sonography is an extremely flexible modality that can expeditiously guide many biopsy procedures in the thorax. Peripheral pulmonary nodules can be successfully biopsied with success rates exceeding 90% and complications rates of less than 5%. Orienting the probe parallel to the intercostal space facilitates biopsies of peripheral pulmonary nodules. Anterior mediastinal masses that extend to the parasternal region are often easily approachable provided the internal mammary vessels, costal cartilage, and deep great vessels are identified and avoided. Superior mediastinal masses can be sampled from a suprasternal or supraclavicular approach. Phased array probes or tightly curved arrays may provide improved access for biopsies in this location. Posterior mediastinal masses are more difficult to biopsy with ultrasound guidance because of the overlying paraspinal muscles. However, when posterior mediastinal masses extend into the posterior medial pleural region, they can be biopsied with ultrasound guidance. Because many lung cancers metastasize to the supraclavicular nodes, it is important to evaluate the supraclavicular region when determining the best approach to obtain a tissue diagnosis. When abnormal supraclavicular nodes are present, they often are the easiest and safest lesions to biopsy.

  6. Ultrasound-Guided Single-Injection Infraclavicular Block Versus Ultrasound-Guided Double-Injection Axillary Block: A Noninferiority Randomized Controlled Trial.

    PubMed

    Boivin, Ariane; Nadeau, Marie-Josée; Dion, Nicolas; Lévesque, Simon; Nicole, Pierre C; Turgeon, Alexis F

    2016-01-01

    Single-injection ultrasound-guided infraclavicular block is a simple, reliable, and effective technique. A simplified double-injection ultrasound-guided axillary block technique with a high success rate recently has been described. It has the advantage of being performed in a superficial and compressible location, with a potentially improved safety profile. However, its effectiveness in comparison with single-injection infraclavicular block has not been established. We hypothesized that the double-injection ultrasound-guided axillary block would show rates of complete sensory block at 30 minutes noninferior to the single-injection ultrasound-guided infraclavicular block. After approval by our research ethics committee and written informed consent, adults undergoing distal upper arm surgery were randomized to either group I, ultrasound-guided single-injection infraclavicular block, or group A, ultrasound-guided double-injection axillary block. In group I, 30 mL of 1.5% mepivacaine was injected posterior to the axillary artery. In group A, 25 mL of 1.5% mepivacaine was injected posteromedial to the axillary artery, after which 5 mL was injected around the musculocutaneous nerve. Primary outcome was the rate of complete sensory block at 30 minutes. Secondary outcomes were the onset of sensory and motor blocks, surgical success rates, performance times, and incidence of complications. All outcomes were assessed by a blinded investigator. The noninferiority of the double-injection ultrasound-guided axillary block was considered if the limits of the 90% confidence intervals (CIs) were within a 10% margin of the rate of complete sensory block of the infraclavicular block. At 30 minutes, the rate of complete sensory block was 79% in group A (90% CI, 71%-85%) compared with 91% in group I (90% CI, 85%-95%); the upper limit of CI of group A is thus included in the established noninferiority margin of 10%. The rate of complete sensory block was lower in group A (proportion

  7. Radio Frequency Ultrasound Time Series Signal Analysis to Evaluate High-intensity Focused Ultrasound Lesion Formation Status in Tissue.

    PubMed

    Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan

    2016-01-01

    High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.

  8. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    PubMed Central

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  9. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    PubMed

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  10. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  11. [Ultrasound guided percutaneous nephrolithotripsy].

    PubMed

    Guliev, B G

    2014-01-01

    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff.

  12. Uterine fibroids: postsonication temperature decay rate enables prediction of therapeutic responses to MR imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Kim, Young-sun; Park, Min Jung; Keserci, Bilgin; Nurmilaukas, Kirsi; Köhler, Max O; Rhim, Hyunchul; Lim, Hyo Keun

    2014-02-01

    To determine whether intraprocedural thermal parameters as measured with magnetic resonance (MR) thermometry can be used to predict immediate or delayed therapeutic response after MR-guided high-intensity focused ultrasound (HIFU) ablation of uterine fibroids. Institutional review board approval and subject informed consent were obtained. A total of 105 symptomatic uterine fibroids (mean diameter, 8.0 cm; mean volume, 251.8 mL) in 71 women (mean age, 43.3 years; age range, 25-52 years) who underwent volumetric MR HIFU ablation were analyzed. Correlations between tumor-averaged intraprocedural thermal parameters (peak temperature, thermal dose efficiency [estimated volume of 240 equivalent minutes at 43°C divided by volume of treatment cells], and temperature decay rate after sonication) and the immediate ablation efficiency (ratio of nonperfused volume [NPV] at immediate follow-up to treatment cell volume) or ablation sustainability (ratio of NPV at 3-month follow-up to NPV at immediate follow-up) were assessed with linear regression analysis. A total of 2818 therapeutic sonications were analyzed. At immediate follow-up with MR imaging (n = 105), mean NPV-to-fibroid volume ratio and ablation efficiency were 0.68 ± 0.26 (standard deviation) and 1.35 ± 0.75, respectively. A greater thermal dose efficiency (B = 1.894, P < .001) and slower temperature decay rate (B = -1.589, P = .044) were independently significant factors that indicated better immediate ablation efficiency. At 3-month follow-up (n = 81), NPV had decreased to 43.1% ± 21.0 of the original volume, and only slower temperature decay rate was significantly associated with better ablation sustainability (B = -0.826, P = .041). The postsonication temperature decay rate enables prediction of both immediate and delayed therapeutic responses, whereas thermal dose efficiency enables prediction of immediate therapeutic response to MR HIFU ablation of uterine fibroids. © RSNA, 2013.

  13. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    PubMed

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  14. Influence of cavitation bubble growth by rectified diffusion on cavitation-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Sugiyama, Kazuyasu; Takagi, Shu; Matsumoto, Yoichiro

    2017-11-01

    Cavitation is becoming increasingly important in therapeutic ultrasound applications such as diagnostic, tumor ablation and lithotripsy. Mass transfer through gas-liquid interface due to rectified diffusion is important role in an initial stage of cavitation bubble growth. In the present study, influences of the rectified diffusion on cavitation-enhanced high-intensity focused ultrasound (HIFU) was investigated numerically. Firstly, the mass transfer rate of gas from the surrounding medium to the bubble was examined as function of the initial bubble radius and the driving pressure amplitude. As the result, the pressure required to bubble growth was decreases with increasing the initial bubble radius. Next, the cavitation-enhanced HIFU, which generates cavitation bubbles by high-intensity burst and induces the localized heating owing to cavitation bubble oscillation by low-intensity continuous waves, was reproduced by the present simulation. The heating region obtained by the simulation is agree to the treatment region of an in vitro experiment. Additionally, the simulation result shows that the localized heating is enhanced by the increase of the equilibrium bubble size due to the rectified diffusion. This work was supported by JSPS KAKENHI Grant Numbers JP26420125,JP17K06170.

  15. Shape-based ultrasound tomography using a Born model with application to high intensity focused ultrasound therapy.

    PubMed

    Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O

    2008-05-01

    A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.

  16. A clinically feasible treatment protocol for magnetic resonance-guided high-intensity focused ultrasound ablation in the liver.

    PubMed

    Wijlemans, Joost W; de Greef, Martijn; Schubert, Gerald; Bartels, Lambertus W; Moonen, Chrit T W; van den Bosch, Maurice A A J; Ries, Mario

    2015-01-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) allows for noninvasive thermal ablation under real-time temperature imaging guidance. The purpose of this study was to assess the feasibility and safety of MR-HIFU ablation of liver tissue in a clinically acceptable setting. The experimental protocol was designed with a clinical ablation procedure of a small malignant tumor in mind; the procedures were performed within a clinically feasible time frame and care was taken to avoid adverse events. The main outcome was the size and quality of the ablated liver tissue volume on imaging and histology. Secondary outcomes were safety and treatment time. Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system, which consisted of an HIFU tabletop with a skin cooling system integrated into a 1.5-T MR scanner. A liver tissue volume was ablated with multiple sonication cells (4 × 4 × 10 mm, 450 W). Both MR thermometry and sonication were respiratory-gated using a pencil beam navigator on the diaphragm. Contrast-enhanced T1-weighted (CE-T1w) imaging was performed for treatment evaluation. Targeted total treatment time was 3 hours. The abdominal wall, liver, and adjacent organs were inspected postmortem for thermal damage. Ablated tissue volumes were processed for cell viability staining. The ablated volumes were analyzed using MR imaging, MR thermometry, and cell viability histology. Eleven volume ablations were performed in 10 animals, resulting in a median nonperfused volume (NPV) on CE-T1w imaging of 1.6 mL (interquartile range [IQR], 0.8-2.3; range, 0.7-3.0). Cell viability histology showed a damaged volume of 1.5 mL (IQR, 1.1-1.8; range, 0.7-2.3). The NPV was confluent in 10 of the 11 cases. The ablated tissue volume on cell viability histology was confluent in all 9 available cases. In all cases, there was a good correspondence between the aspects of the NPV on CE-T1w and the ablated volume on cell viability

  17. Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure.

    PubMed

    Ghoshal, Goutam; Kemmerer, Jeremy P; Karunakaran, Chandra; Abuhabsah, Rami; Miller, Rita J; Sarwate, Sandhya; Oelze, Michael L

    2014-10-01

    Quantitative ultrasound (QUS) imaging is hypothesized to map temperature elevations induced in tissue with high spatial and temporal resolution. To test this hypothesis, QUS techniques were examined to monitor high-intensity focused ultrasound (HIFU) exposure of tissue. In situ experiments were conducted on mammary adenocarcinoma tumors grown in rats and lesions were formed using a HIFU system. A thermocouple was inserted into the tumor to provide estimates of temperature at one location. Backscattered time-domain waveforms from the tissue during exposure were recorded using a clinical ultrasonic imaging system. Backscatter coefficients were estimated using a reference phantom technique. Two parameters were estimated from the backscatter coefficient (effective scatterer diameter (ESD) and effective acoustic concentration (EAC). The changes in the average parameters in the regions corresponding to the HIFU focus over time were correlated to the temperature readings from the thermocouple. The changes in the EAC parameter were consistently correlated to temperature during both heating and cooling of the tumors. The changes in the ESD did not have a consistent trend with temperature. The mean ESD and EAC before exposure were 120 ± 16 μm and 32 ± 3 dB/cm3, respectively, and changed to 144 ± 9 μm and 51 ± 7 dB/cm3, respectively, just before the last HIFU pulse was delivered to the tissue. After the tissue cooled down to 37 °C, the mean ESD and EAC were 126 ± 8 μm and 35 ± 4 dB/cm3, respectively. Peak temperature in the range of 50-60 °C was recorded by a thermocouple placed just behind the tumor. These results suggest that QUS techniques have the potential to be used for non-invasive monitoring of HIFU exposure. © The Author(s) 2014.

  18. Pulsed-High Intensity Focused Ultrasound (HIFU) Exposures for Enhanced Delivery of Therapeutics: Mechanisms and Applications

    NASA Astrophysics Data System (ADS)

    Frenkel, Victor; Deng, Cheri; O'Neill, Brian E.; Quijano, Jade; Stone, Michael J.; Dromi, Sergio; Hunter, Finie; Xie, Jianwu; Quinn, Timothy P.; Wood, Bradford J.; Li, King C. P.

    2006-05-01

    The majority of focused ultrasound applications today involve long, continuous exposures that produce significant temperature elevations for tissue ablation and irreversible coagulative necrosis. Comparatively little has been done with non-continuous (or, pulsed) exposures that can produce primarily mechanical effects with only minimal heat. Our investigations have shown that pulsed-HIFU exposures can non-invasively and non-destructively enhance the delivery of both systemically and locally injected materials (e.g. imaging agents, optical probes, and plasmid DNA) in both normal and cancerous tissues. It is hypothesized that the enhancing effects are directly linked to tissue displacement from locally-generated radiation forces. In normal tissue, it is thought that shear forces are produced between adjacent tissue regions experiencing non-uniform displacement. The resulting strain opens cellular junctions in both the vasculature and the parenchyma, increasing extravasation and interstitial diffusion, respectively. In solid tumors, improved delivery is thought to also be related to both an increase in fluid exchange that leads to decreased interstitial pressure, and disruptions of fibrillar collagen in the extracellular matrix. Preliminary experiments are presented that were carried out to help elucidate the mechanisms by which enhanced delivery was achieved, and possible directions for future investigations are discussed.

  19. Efficacy of high-intensity focused ultrasound-assisted hepatic resection (HIFU-AR) on blood loss reduction in patients with liver metastases requiring hepatectomy: study protocol for a randomized controlled trial.

    PubMed

    Dupré, Aurélien; Pérol, David; Blanc, Ellen; Peyrat, Patrice; Basso, Valéria; Chen, Yao; Vincenot, Jérémy; Kocot, Anthony; Melodelima, David; Rivoire, Michel

    2017-02-06

    Liver resection is the only potentially curative treatment for colorectal liver metastases (LM). It is considered a safe procedure, but is often associated with blood loss during liver transection. Blood transfusions are frequently needed, but they are associated with increased morbidity and risk of recurrence. Many surgical devices have been developed to decrease blood loss. However, none of them has proven superior to the standard crushing technique. We developed a new, powerful intra-operative high-intensity focused ultrasound (HIFU) transducer which destroys tissue by coagulative necrosis. We aim to evaluate whether HIFU-assisted liver resection (HIFU-AR) results in reduced blood loss. This is a prospective, single-centre, randomized (1:1 ratio), comparative, open-label phase II study. Patients with LM requiring a hepatectomy for ≥ 2 segments will be included. Patients with cirrhosis or sinusoidal obstruction syndrome with portal hypertension will be excluded. The primary endpoint is normalized blood loss in millilitres per square centimetre of liver section plane. Secondary endpoints are: total blood loss, transection time, transection time per square centimetre of liver area, haemostasis time, clip density on the liver section area, rate and duration of the Pringle manœuvre, rate of patients needing a blood transfusion, length of hospital stay, morbidity, patients with positive resection margin, and local recurrence. Assuming a blood loss of 7.6 ± 3.7 mL/cm 2 among controls, the study will have 85% power to detect a twofold decrease of blood loss in the experimental arm, using a Wilcoxon (Mann-Whitney) rank-sum test with a 0.05 two-sided significance level. Twenty-one randomized patients per arm are required. Considering the risk of contraindications at surgery, up to eight patients may be enrolled in addition to the 42 planned, with an enrolment period of 24 months. Randomization will be stratified by surgeon. We previously demonstrated the

  20. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring.

    PubMed

    Feng, Gang; Hao, Lan; Xu, Chunyan; Ran, Haitao; Zheng, Yuanyi; Li, Pan; Cao, Yang; Wang, Qi; Xia, Jizhu; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is widely applied to tumors in clinical practice due to its minimally invasive approach. However, several issues lower therapeutic efficiency in some cases. Many synergists such as microbubbles and perfluorocarbon nanoparticles have recently been used to improve HIFU treatment efficiency, but none were determined to be effective and safe in vivo. In this study, nanoscale bubble-generating liposomes (liposomes containing ammonium bicarbonate [Lip-ABC]) were prepared by film hydration followed by sequential extrusion. Their stable nanoscale particle diameter was confirmed, and their bubble-generating capacity after HIFU triggering was demonstrated with ultrasound imaging. Lip-ABC had good stability in vivo and accumulated in the tumor interstitial space based on the enhanced permeability and retention effect evaluated by photoacoustic imaging. When used to synergize HIFU ablation to bovine liver in vitro and implanted breast tumors of BALB/c nude mice, Lip-ABC outperformed the control. Importantly, all mice survived HIFU treatment, suggesting that Lip-ABC is a safe HIFU synergist.

  1. Analysis of "dry" mesothelioma with ultrasound guided biopsies.

    PubMed

    Stigt, Jos A; Boers, James E; Groen, Harry J M

    2012-12-01

    Image-guided sampling of the thickened pleura is a sensitive approach in patients with malignant pleural mesothelioma with pleural effusion. Malignant pleural mesothelioma presenting without effusion however is more of a diagnostic challenge. In this study we report the diagnostic yield and complications of ultrasound-guided cutting needle biopsies in this particular category of patients. A retrospective database analysis from September 2007 until January 2012 was performed in 56 patients with malignant pleural mesothelioma. Clinical characteristics and results of diagnostic evaluations were analysed. Of the 56 patients with malignant pleural mesothelioma, 20 patients presented without pleural effusion of with locular effusion. Ultrasound-guided cutting needle biopsy was performed in 14/20 patients with a diagnostic accuracy of 80%. Only 1 patient had mild haemoptysis immediately following biopsies. Diagnosing patients with pleural thickenings suspect for malignant mesothelioma without pleural effusion or with loculated pleural effusion is effective and safe with ultrasound-guided cutting needle biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Interstitial ablation and imaging of soft tissue using miniaturized ultrasound arrays

    NASA Astrophysics Data System (ADS)

    Makin, Inder R. S.; Gallagher, Laura A.; Mast, T. Douglas; Runk, Megan M.; Faidi, Waseem; Barthe, Peter G.; Slayton, Michael H.

    2004-05-01

    A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive, interstitial ultrasound ablation that can be performed laparoscopically or percutaneously. Research in this area at Guided Therapy Systems and Ethicon Endo-Surgery has included development of miniaturized (~3 mm diameter) linear ultrasound arrays capable of high power for bulk tissue ablation as well as broad bandwidth for imaging. An integrated control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast. Simulations of ultrasonic heat deposition, bio-heat transfer, and tissue modification provide understanding and guidance for development of treatment strategies. Results from in vitro and in vivo ablation experiments, together with corresponding simulations, will be described. Using methods of rotational scanning, this approach is shown to be capable of clinically relevant ablation rates and volumes.

  3. HIFU therapy for local recurrence of prostate cancer after external beam radiotherapy and radical prostatectomy - 5,5 years experience

    NASA Astrophysics Data System (ADS)

    Solovov, V. A.; Vozdvizhenskiy, M. O.; Matysh, Y. S.

    2017-03-01

    Objectives. To evaluate the clinical efficacy of high-intensity focused ultrasound ablation (HIFU) for local recurrence of prostate cancer after external beam radiotherapy (EBRT) and radical prostatectomy (RPE). Materials and Methods: During 2007-2013 years 47 patients with local recurrence of prostate cancer after EBRT and RPE undertook HIFU therapy on the system "Ablaterm» (EDAP, France). Relapse arose after an average of 2 years after EBRT and RPE. Median follow-up after HIFU therapy was 38 (12-60) months. The mean age was 68.5 ± 5.8 years. The median PSA level before HIFU - 15.4 (7-48) ng / mL. Results: In 34 patients (72.3%) at six months after treatment the median PSA was 0.4 (0-3.2) ng / mL, in 48 months - 0.9 (0.4-7.5) ng / mL. In 13 patients (27.7%) at 6 months was observed progression of the disease. In general, after a 5-year follow-up 72.3% of the patients had no data for the progression and recurrence. Conclusion: HIFU therapy in patients with local recurrence of prostate cancer after EBRT and RPE is minimally invasive and effective technology.

  4. Noninvasive body sculpting technologies with an emphasis on high-intensity focused ultrasound.

    PubMed

    Jewell, Mark L; Solish, Nowell J; Desilets, Charles S

    2011-10-01

    Body-sculpting procedures are becoming increasingly popular in the United States. Although surgical lipoplasty remains the most common body sculpting procedure, a demand exists for noninvasive alternatives capable of reducing focal adiposity without the risks of adverse events (AEs) associated with invasive excisional body-sculpting procedures. This report describes the mechanism of action, efficacy, safety, and tolerability of cryolipolysis, radiofrequency ablation, low-level external laser therapy, injection lipolysis, low-intensity nonthermal ultrasound, and high-intensity focused ultrasound (HIFU), with an emphasis on thermal HIFU. The articles cited were identified via a PubMed search, with additional article citations identified by manual searching of the reference lists of articles identified through the literature search. Each of the noninvasive treatments reviewed can be administered on an outpatient basis. These treatments generally have fewer complications than lipoplasty and require little or no anesthesia or analgesia. However, HIFU is the only treatment that can produce significant results in a single treatment, and only radiofrequency, low-level laser therapy, and cryolipolysis have been approved for use in the United States. Early clinical data on HIFU support its efficacy and safety for body sculpting. In contrast, radiofrequency, laser therapy, and injection lipolysis have been associated with significant AEs. The published literature suggests that noninvasive body-sculpting techniques such as radiofrequency ablation, cryolipolysis, external low-level lasers, laser ablation, nonthermal ultrasound, and HIFU may be appropriate options for nonobese patients requiring modest reduction of adipose tissue.

  5. Dual-frequency ultrasound focal therapy for MRI-guided transurethral treatment of the prostate: Study in gel phantom

    NASA Astrophysics Data System (ADS)

    N'Djin, W. Apoutou; Mougenot, Charles; Kobelevskiy, Ilya; Ramsay, Elizabeth; Bronskill, Michael; Chopra, Rajiv

    2012-11-01

    overtreated regions each represented 7% of the prostate volume. MRI-guided transurethral ultrasound procedure enables full treatment and focal therapy in human prostate geometry. Prostate volume heating was fast compared to standard HIFU prostate treatments. Dual-frequency ultrasound exposures allowed optimal heat deposition in all prostate regions. The focal therapy strategy is promising as regard to safety and could contribute to enhance the post-treatment autonomy of the patient.

  6. Ultrasound-Guided Treatment of Peripheral Nerve Pathology.

    PubMed

    Dettori, Nathan; Choudur, Hema; Chhabra, Avneesh

    2018-07-01

    High-resolution ultrasound serves as a fast, accessible, reliable, and radiation-free tool for anatomical and dynamic evaluation of various peripheral nerves. It can be used not only to identify and diagnose peripheral nerve and perineural pathology accurately but also to guide various nerve and perineural interventions. We describe the normal and pathologic appearances of peripheral nerves, the pathologies commonly affecting the individual peripheral nerves, and the current ultrasound-guided peripheral nerve interventions and techniques. Future directions are also highlighted. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound.

    PubMed

    Skjelvareid, Martin H; Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-09-18

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a "self-focusing" heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  8. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound

    PubMed Central

    Stormo, Svein Kristian; Þórarinsdóttir, Kristín Anna; Heia, Karsten

    2017-01-01

    High Intensity Focused Ultrasound (HIFU) can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a “self-focusing” heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface. PMID:28926968

  9. Significant skin burns may occur with the use of a water balloon in HIFU treatment

    NASA Astrophysics Data System (ADS)

    Ritchie, Robert; Collin, Jamie; Wu, Feng; Coussios, Constantin; Leslie, Tom; Cranston, David

    2012-10-01

    HIFU is a minimally-invasive therapy suitable for treating selected intra-abdominal tumors. Treatment is safe although skin burns may occur due to pre-focal heating. HIFU treatment of a renal transplant tumor located in the left lower abdomen was undertaken in our centre. Treatment was performed prone, requiring displacement of the abdominal wall away from the treatment field using a water balloon, constructed of natural rubber latex and filled with degassed water. Intra-operatively, ultrasound imaging and physical examination of the skin directly over the focal region was normal. Immediately post-operative, a full-thickness skin burn was evident at the periphery of the balloon location, outside the expected HIFU path. Three possibilities may account for this complication. Firstly, the water balloon may have acted as a lens, focusing the HIFU to a neo-focus off axis. Secondly, air bubbles may have been entrapped between the balloon and the skin, causing heating at the interface. Finally, heating of the isolated water within the balloon may have been sufficient to cause burning. In this case, the placement of a water balloon caused a significant skin burn. Care should be taken in their use as burns, situated off axis, may occur even if the overlying skin appears normal.

  10. Ultrasound-guided venous access for pacemakers and defibrillators.

    PubMed

    Seto, Arnold H; Jolly, Aaron; Salcedo, Jonathan

    2013-03-01

    Ultrasound guidance is widely recommended to reduce the risk of complications during central venous catheter placement. However, ultrasound guidance is not commonly utilized for implanting leads for cardiac rhythm management devices. We describe our technique of ultrasound-guided pacemaker implantation, including a novel pull-through technique that allows percutaneous guidewire insertion prior to the first incision. We review the literature and recent advances in ultrasound imaging technology that may facilitate the adoption of ultrasound guidance. Ultrasound guidance provides a safe and rapid technique for extrathoracic subclavian or axillary venous lead placement. © 2012 Wiley Periodicals, Inc.

  11. Electrophysiological changes correlated with temperature increases induced by high-intensity focused ultrasound ablation.

    PubMed

    Wu, Ziqi; Kumon, Ronald E; Laughner, Jacob I; Efimov, Igor R; Deng, Cheri X

    2015-02-01

    To gain better understanding of the detailed mechanisms of high-intensity focused ultrasound (HIFU) ablation for cardiac arrhythmias, we investigated how the cellular electrophysiological (EP) changes were correlated with temperature increases and thermal dose (cumulative equivalent minutes [CEM43]) during HIFU application using Langendorff-perfused rabbit hearts. Employing voltage-sensitive dye di-4-ANEPPS, we measured the EP and temperature during HIFU using simultaneous optical mapping and infrared imaging. Both action potential amplitude (APA) and action potential duration at 50% repolarization (APD50) decreased with temperature increases, and APD50 was more thermally sensitive than APA. EP and tissue changes were irreversible when HIFU-induced temperature increased above 52.3 ± 1.4°C and log10(CEM43) above 2.16 ± 0.51 (n = 5), but were reversible when temperature was below 50.1 ± 0.8°C and log10(CEM43) below -0.9 ± 0.3 (n = 9). EP and temperature/thermal dose changes were spatially correlated with HIFU-induced tissue necrosis surrounded by a transition zone. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Efficacy and safety of non-invasive body tightening with high-intensity focused ultrasound (HIFU).

    PubMed

    Ko, E J; Hong, J Y; Kwon, T-R; Choi, E J; Jang, Y-J; Choi, S Y; Yoo, K H; Kim, S Y; Kim, B J

    2017-11-01

    Noninvasive skin-tightening devices have become increasingly popular in response to increasing demand for improvements in skin laxity and tightening with minimal risk and recovery time. We evaluated the efficacy and safety of HIFU for skin tightening in the face and body. A total of 32 Korean subjects enrolled in this prospective clinical trial. The subjects were treated with HIFU to both cheeks, lower abdomen, and thigh. Skin elasticity was measured before and after treatment using a Cutometer (CT575, Courage and Khazaka ® , Cologne, Germany). Three blinded, experienced dermatologists evaluated paired pre- and post-treatment (week 4 and 12) photographs according to the Global Aesthetic Improvement Scale (GAIS). Participants also completed self-assessments using GAIS. Subjects rated their pain on a numeric rating scale (NRS) immediately, 7 days, 4 weeks, and 12 weeks after treatment. Skin elasticity measured via a Cutometer was significantly improved 12 weeks after treatment at all treated sites (P<.05). Both IGAIS and SGAIS showed significant improvements 12 weeks after treatment. Immediately after treatment the mean NRS score was 3.00±1.586, but no pain was reported at 4 and 12 weeks post-treatment. No serious adverse effects were observed during the follow-up period. HIFU safely and effectively improves skin elasticity and clinical contouring of the face and body. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Efficacy of ultrasound-guided thoracentesis catheter drainage for pleural effusion

    PubMed Central

    Cao, Weitian; Wang, Yi; Zhou, Ningming; Xu, Bing

    2016-01-01

    The factors influencing the efficacy of ultrasound-guided thoracentesis catheter drainage were investigated in the present study. A retrospective analysis of clinical data from 435 patients who presented with a pleural effusion was performed. Patients were divided into a control group and an intervention group. Thirty-seven patients in the control group were given standard care using pleural puncture to draw the excess fluid. The 398 patients in the intervention group were treated using ultrasound-guided thoracentesis catheter drainage. The rate of successful drainage of a pleural effusion was significantly higher (P<0.05), while the rate of complication was lower, in the ultrasound-guided thoracentesis cases compared to standard care treatment. In conclusion, ultrasound-guided thoracentesis catheter drainage is an efficient, safe and minimally invasive procedure to alleviate pleural effusion. The efficacy of the procedure is related to the separation of pleural effusion, drainage tube type and tube diameter. PMID:28105155

  14. Ultrasound-guided interventional procedures around the shoulder.

    PubMed

    Messina, Carmelo; Banfi, Giuseppe; Orlandi, Davide; Lacelli, Francesca; Serafini, Giovanni; Mauri, Giovanni; Secchi, Francesco; Silvestri, Enzo; Sconfienza, Luca Maria

    2016-01-01

    Ultrasound is an established modality for shoulder evaluation, being accurate, low cost and radiation free. Different pathological conditions can be diagnosed using ultrasound and can be treated using ultrasound guidance, such as degenerative, traumatic or inflammatory diseases. Subacromial-subdeltoid bursitis is the most common finding on ultrasound evaluation for painful shoulder. Therapeutic injections of corticosteroids are helpful to reduce inflammation and pain. Calcific tendinopathy of rotator cuff affects up to 20% of painful shoulders. Ultrasound-guided treatment may be performed with both single- and double-needle approach. Calcific enthesopathy, a peculiar form of degenerative tendinopathy, is a common and mostly asymptomatic ultrasound finding; dry needling has been proposed in symptomatic patients. An alternative is represented by autologous platelet-rich plasma injections. Intra-articular injections of the shoulder can be performed in the treatment of a variety of inflammatory and degenerative diseases with corticosteroids or hyaluronic acid respectively. Steroid injections around the long head of the biceps brachii tendon are indicated in patients with biceps tendinopathy, reducing pain and humeral tenderness. The most common indication for acromion-clavicular joint injection is degenerative osteoarthritis, with ultrasound representing a useful tool in localizing the joint space and properly injecting various types of drugs (steroids, lidocaine or hyaluronic acid). Suprascapular nerve block is an approved treatment for chronic shoulder pain non-responsive to conventional treatments as well as candidate patients for shoulder arthroscopy. This review provides an overview of these different ultrasonography-guided procedures that can be performed around the shoulder.

  15. High intensity focused ultrasound ablation of goat liver in vivo: Pathologic changes of portal vein and the "heat-sink" effect.

    PubMed

    Jiang, F; He, M; Liu, Y J; Wang, Z B; Zhang, L; Bai, J

    2013-01-01

    The purpose of this study was to evaluate pathological changes of the portal vein (PV) and the effects on main branches of the hepatic PV during HIFU (high-intensity focused ultrasound) sonication when liver tissue adjacent to the main branches of hepatic PV was ablated. Normal liver tissue at 0mm, 5mm, 10mm away from the hepatic portal vein in 50 healthy goats was ablated with magnetic resonance image-guided HIFU (MRgHIFU). MRI showed a non-perfusion region at the target area but did not show any significant changes of the PV immediately after HIFU. The histological examination 1 day after HIFU showed coagulative necrosis at the target area, revealed deep-dyed swelling collagen (CS) fibers and vessel wall fracture (VWF) in the PV adjacent to the target area; however, no CS or VWF was observed in the PV 1 week after HIFU ablation. The energy required to ablate the foci at 0mm was 21% more than that at 10mm from the PV (p<0.05); the energy needed to ablate foci 5mm away from the PV was 10% more than that at 10mm from the PV (p<0.05). We concluded that minor injury of the hepatic portal vein may occur when ablating the adjacent liver tissue, and the acoustic energy deposition is related to the distance to the portal vein. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ultrasound guided therapeutic injections of the cervical spine and brachial plexus.

    PubMed

    Cormick, Wes

    2014-02-01

    Introduction : Recent applications in ultrasound imaging include ultrasound assessment and ultrasound guided therapeutic injections of the spine and brachial plexus. Discussion : Ultrasound is an ideal modality for these regions as it allows accurate safe and quick injection of single or multiple sites. It has the added advantages of lack of ionising radiation, and can be done without requiring large expensive radiology equipment. Conclusion : Brachial plexus pathology may be present in patients presenting for shoulder symptoms where very little is found at imaging the shoulder. It is important to understand the anatomy and normal variants that may exist to be able to recognise when pathology is present. When pathology is demonstrated it is easy to do a trial of therapy with ultrasound guided injection of steroid around the nerve lesion. This review will outline the normal anatomy and variants and common pathology, which can be amenable to ultrasound guided injection of steroid.

  17. Characterization of a Multi-element Clinical HIFU System Using Acoustic Holography and Nonlinear Modeling

    PubMed Central

    Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539

  18. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  19. Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU).

    PubMed

    Park, Sun Min; Kim, Min Sang; Park, Sang-Jun; Park, Eun Sung; Choi, Kyu-Sil; Kim, Young-Sun; Kim, Hyun Ryoung

    2013-09-28

    We developed a novel temperature-sensitive liposome, STL composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG-2000), cholesterol, and a fatty acid conjugated elastin-like polypeptide (ELP). The STL had a unilamellar spherical shape with a mean diameter of 160 nm. Doxorubicin (DOX) was encapsulated by the STL using an ammonium sulfate gradient method with a lipid to drug ratio of 1:0.2 (w/w), resulting in 95% loading efficiency. The STL exhibited better stability than conventional low temperature sensitive liposome (LTSL-lysolipid-based temperature sensitive liposomes; DPPC:MSPC:DSPE-PEG-2000=90:10:4) at 37 °C in the presence of serum; there was rapid release of doxorubicin in the range of 39-42 °C (≥95% release at 42 °C within 10s). A confocal microscope revealed that DOX encapsulated in STL (STL-DOX) was taken up much better by cell nuclei at 42 °C than at 37 °C. The difference in cell viability between 37 and 42 °C was 63% relative to STL-DOX and 18% for LTSL-DOX. The pharmacokinetics (PK) and antitumor effect of STL-DOX combined with high-intensity focused ultrasound (HIFU) were studied, and compared with LTSL. An in vivo study demonstrated that STL-DOX is highly stable, with a long circulating property (half life=2.03±0.77 h) in HIFU-untreated mice, and resulted in significant tumor regression for 2 days after intravenous injection of STL-DOX at 5 mg DOX/kg in combination with HIFU. These results are better than conventional LTSL, for which the blood circulation time is short (0.92±0.17 h) and inhibition of tumor growth is weak. These results indicate that the properties of stability at 37 °C and burst release at 42 °C of STL-DOX act synergistically against tumors. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High-intensity focused ultrasound (HIFU) in prostate cancer: a single centre experience in patients with low, intermediate or high-risk of progression.

    PubMed

    Callea, Andrea; Piccinni, Roberto; Zizzi, Vito; Sblendorio, Domenico; Berardi, Bartolomeo; Tempesta, Antonio; Gala, Francesco Giuseppe; Traficante, Antonio

    2010-12-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive treatment based on thermal ablation of tissues which are warmed up to 85 degrees C in the focal area. Clinical studies have shown such treatment modality to be safe and effective in the management of localised prostate cancer as well as of local recurrences after radical prostatectomy or radiotherapy. From May 2002 to June 2010, 171 patients with no previous treatment for prostate cancer, aged 44 to 86 years (mean 74.7) underwent 197 HIFU treatments; 22 patients needed a second treatment as the first was incomplete (4 patients) or because of recurrence (18 patients). The prognosis subgroups were defined as low-risk in 29 patients (clinical stage T1-T2a, PSA < or = 10 ng/mL and Gleason score lower than 7), intermediate-risk in 47 patients (clinical stage T2b or PSA 10 - 20 ng/mL or Gleason score of 7), and high-risk in 95 patients (clinical stage > or = T2c or PSA > 20 ng/mL or Gleason score higher than 7). At a mean follow-up of 67.9 months, biochemical success rate (PSA constantly < 0.5 ng/ml) was obtained in 84.2% of low and intermediate risk patients and in 43.1% of high risk patients; post-treatment biopsies (6 months after treatment) revealed no residual tumour in 93.4% of low or intermediate risk patients and in 63.1% of high risk patients. Radical prostatectomy remains the "gold standard" for localised prostate cancer. However, HIFU seems to be a promising alternative and less invasive treatment modality with an encouraging success rate, at least in the short-term, in patients with low and medium risk of progression, not candidates for radical surgery; in cancers with clinical stage > or = T2c, or PSA > 20 ng/mL, or Gleason score higher than 7 seems to get good results in about half of patients.

  1. Automated geometric optimization for robotic HIFU treatment of liver tumors.

    PubMed

    Williamson, Tom; Everitt, Scott; Chauhan, Sunita

    2018-05-01

    High intensity focused ultrasound (HIFU) represents a non-invasive method for the destruction of cancerous tissue within the body. Heating of targeted tissue by focused ultrasound transducers results in the creation of ellipsoidal lesions at the target site, the locations of which can have a significant impact on treatment outcomes. Towards this end, this work describes a method for the optimization of lesion positions within arbitrary tumors, with specific anatomical constraints. A force-based optimization framework was extended to the case of arbitrary tumor position and constrained orientation. Analysis of the approximate reachable treatment volume for the specific case of treatment of liver tumors was performed based on four transducer configurations and constraint conditions derived. Evaluation was completed utilizing simplified spherical and ellipsoidal tumor models and randomly generated tumor volumes. The total volume treated, lesion overlap and healthy tissue ablated was evaluated. Two evaluation scenarios were defined and optimized treatment plans assessed. The optimization framework resulted in improvements of up to 10% in tumor volume treated, and reductions of up to 20% in healthy tissue ablated as compared to the standard lesion rastering approach. Generation of optimized plans proved feasible for both sub- and intercostally located tumors. This work describes an optimized method for the planning of lesion positions during HIFU treatment of liver tumors. The approach allows the determination of optimal lesion locations and orientations, and can be applied to arbitrary tumor shapes and sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Multifunctional pulse generator for high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  3. HIFU as a Neoadjuvant Therapy in Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Zhong, P.; Xing, F.; Huang, X.; Zhu, H.; Lo, H. W.; Zhong, X.; Pruitt, S.; Robertson, C.

    2011-09-01

    To broaden the application spectrum of HIFU in cancer therapy, we performed a pilot experiment to evaluate the potential of using HIFU as a neoadjuvant therapy prior to surgery. Mice bearing wild-type B16F10 melanoma inoculated subcutaneously were either untreated (control) or treated by HIFU, CPA-7 or HIFU+CPA-7 before surgical resection of the primary tumor two days after HIFU treatment. The animals were then followed for four weeks or up to the humane endpoint to determine local recurrence, distant metastasis, and survival rate. The results demonstrate that animals treated by HIFU+CPA-7 (which is a small molecule that suppresses STAT3 activity) had a significantly lower recurrence rate, and slower growth of the recurrent tumor, with concomitantly higher survival rate, followed by those treated with CPA-7 and HIFU, respectively. Immunological assays revealed that CPA-7 treatment could significantly lower STAT3, and subsequently, Treg activities. In particular, the combination of HIFU and CPA-7 can induce a much stronger anti-tumor immune response than HIFU or surgery alone, as assessed by CTL and IFN-γ secretion. Overall, our results suggest that HIFU in combination with immunotherapy strategies has the potential to be used as a neoadjuvant therapy to prime the host with a strong anti-tumor immune response before surgical resection of the primary tumor. This multimodality, combinational therapy has the potential to greatly broaden the range of HIFU applications in cancer therapy with lower tumor recurrence and improved survival rate.

  4. Magnetic Resonance-Guided High Intensity Focused Ultrasound Ablation of Breast Cancer.

    PubMed

    Knuttel, Floortje M; van den Bosch, Maurice A A J

    2016-01-01

    This chapter describes several aspects of MR-HIFU treatment for breast cancer. The current and future applications, technical developments and clinical results are discussed. MR-HIFU ablation is under investigation for the treatment of breast cancer, but is not yet ready for clinical implementation. Firstly, the efficacy of MR-HIFU ablation should be investigated in large trials. The existing literature shows that results of initial, small studies are moderate, but opportunities for improvement are available. Careful patient selection, taking treatment margins into account and using a dedicated breast system might improve treatment outcomes. MRI-guidance has proven to be beneficial for the accuracy and safety of HIFU treatments because of its usefulness before, during and after treatments. In conclusion, MR-HIFU is promising for the treatment of breast cancer and might lead to a change in breast cancer care in the future.

  5. Guiding Intramuscular Diaphragm Injections Using Real-time Ultrasound & Electromyography

    PubMed Central

    Sarwal, Aarti; Cartwright, Michael S.; Mitchell, Erin; Williams, Koudy; Walker, Francis O.; Childers, Martin K.

    2014-01-01

    Introduction We describe a unique method that combines ultrasound and electromyography to guide intramuscular diaphragm injections in anesthetized large animals. Methods Ultrasound was used to visualize the diaphragm on each side of spontaneously breathing, anesthetized beagle dogs and cynomolgus macaques. An electromyography needle was introduced and directed by ultrasound to confirm that the needle entered the muscular portion of the diaphragm, and methylene blue was injected. Injection accuracy was confirmed upon necropsy by tracking the spread of methylene blue. Results All methylene blue injections were confirmed to have been placed appropriately into the diaphragm. Conclusions This study demonstrates the feasibility and accuracy of using ultrasound and EMG to guide injections and to reduce complications associated with conventional blind techniques. Ultrasound guidance can be used for clinical electromyography of the diaphragm. Future applications may include targeted diaphragm injections with gene replacement therapy in neuromuscular diseases. PMID:25354257

  6. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system

    NASA Astrophysics Data System (ADS)

    van Breugel, J. M. M.; de Greef, M.; Wijlemans, J. W.; Schubert, G.; van den Bosch, M. A. A. J.; Moonen, C. T. W.; Ries, M. G.

    2017-07-01

    The incidence of small renal masses (SRMs) sized  <4 cm has increased over the decades (as co-findings/or due to introduction of cross sectional imaging). Currently, partial nephrectomy (PN) or watchful waiting is advised in these patients. Ultimately, 80-90% of these SRMs require surgical treatment and PN is associated with a 15% complication rate. In this aging population, with possible comorbidities and poor health condition, both PN and watchful waiting are non-ideal treatment options. This resulted in an increased need for early, non-invasive treatment strategies such as MR-guided high intensity focused ultrasound (MR-HIFU). (i) To investigate the feasibility of creating a confluent lesion in the kidney using respiratory-gated MR-HIFU under clinical conditions in a pre-clinical study and (ii) to evaluate the reproducibility of the MR-HIFU ablation strategy. Healthy pigs (n  =  10) under general anesthesia were positioned on a clinical MR-HIFU system with integrated cooling. A honeycomb pattern of seven overlapping ablation cells (4  ×  4  ×  10 mm3, 450 W, <30 s) was ablated successively in the cortex of the porcine kidney. Both MR thermometry and acoustic energy delivery were respiratory gated using a pencil beam navigator on the contralateral kidney. The non-perfused volume (NPV) was visualized after the last sonication by contrast-enhanced (CE) T 1-weighted MR (T 1 w) imaging. Cell viability staining was performed to visualize the extent of necrosis. Results: a median NPV of 0.62 ml was observed on CE-T 1 w images (IQR 0.58-1.57 ml, range 0.33-2.75 ml). Cell viability staining showed a median damaged volume of 0.59 ml (IQR 0.24-1.35 ml, range 0-4.1 ml). Overlooking of the false rib, shivering of the pig, and too large depth combined with a large heat-sink effect resulted in insufficient heating in 4 cases. The NPV and necrosed volume were confluent in all cases in which an ablated volume could be observed. Our

  7. The Feasibility of HIFU Liver Ablation Through the Ribcage and Cartilage in a Rodent Model

    NASA Astrophysics Data System (ADS)

    King, Randy; Rieke, Viola; Pauly, Kim Butts

    2009-04-01

    We examined the feasibility of the rat model for the study of HIFU treatment of liver cancer. Significance: HIFU is being developed for the minimally invasive treatment of primary and metastatic liver cancer. In patients, obstruction of the ultrasound by the ribs poses a significant problem, and current studies are under way which investigate the efficacy of focusing around or sonicating between the ribs. Such techniques show promise for patient treatments, but are not feasible when using rodent models. Results: Six recently euthanized (within the hour) Sprague-Dewey rats were used. The hair over the anterior surface was removed. Sonications were performed with the InSightec ExAblate system at 0.95 MHz, 1.1 MHz, and 1.35MHz through the rib cage. Temperature rise was monitored with MRI-based thermometry. Lesions were created in the livers of 5/6 rats. In the five rats, energy levels between 572-1194 Joules produced lesions every time. With energies greater than 1393 Joules, skin damaged was observed which prevented the ultrasound from propagating to the liver on subsequent sonications, accounting for the one study that failed to produce lesions. No thermal damage was observed at the skin with sonications that resulted in liver lesions, and no significant heating was observed at or near the skin in the MRI temperature maps. Conclusions: It is possible to ignore the effect of ribs and sternum in rodents and create lesions within the rat liver. This technique opens the door to using hepatocellular carcinoma rodent models in HIFU studies.

  8. Localized Ablation of Thyroid Tissue by High-Intensity Focused Ultrasound: an Alternative to Surgery?

    NASA Astrophysics Data System (ADS)

    Esnault, Olivier; Franc, Brigitte; Chapelon, Jean-Yves; Lacoste, Francois

    2006-05-01

    PURPOSE: The aim of this study was to evaluate the feasibility of using a High-intensity focused ultrasound (HIFU) device to obtain a localised destruction of the thyroid with no damage to adjacent tissues. MATERIALS AND METHODS: The ewe model was used because its thyroid gland is easily accessible with ultrasound. The animals were anaesthetised with 10 mg / kg IV injection of Penthothal. The HIFU pulses were generated by a 3-MHz spherical transducer under ultrasound guidance. Macroscopic and microscopic tissue lesions were identified after formalin fixation of the anterior part of the ewe's neck. RESULTS: After determining the optimal instrument settings to obtain localized thyroid ablation, the repeatability of the method was evaluated using a HIFU prototype designed specifically for human use: in 13 ewes (26 treated lobes), an average of 20 (range: 14-27) ultrasound pulses (pulse duration: 3 s) per lobe covering a mean volume of 0.5 cm3 (range: 0.3-0.7 cm3) were delivered. The ewes were sacrificed 2-5 weeks after treatment delivery. No damage to the nerves, trachea, esophagus or muscle was observed. Only 3 ewes suffered superficial skin burns. The desired thyroid lesions were obtained in 25/26 treated lobes, as demonstrated by fibrotic tissues, which replaced necrotic areas. CONCLUSION: These results obtained in the ewe model show that thyroid lesions of defined volume can be induced safely and suggest that the HIFU device is now ready for human trials.

  9. Prediction and Measurement of Temperature Rise Induced by High Intensity Focused Ultrasound in a Tissue-Mimicking Phantom

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2018-06-01

    The present study aims to predict the temperature rise induced by high intensity focused ultrasound (HIFU) in soft tissues to assess tissue damage during HIFU thermal therapies. With the help of a MATLAB-based software package developed for HIFU simulation, the HIFU field was simulated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective, and the HIFU-induced temperature rise in a tissue-mimicking phantom was simulated by solving Pennes' bioheat transfer (BHT) equation. In order to verify the simulation results, we performed in-vitro heating experiments on a tissue-mimicking phantom by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The temperature rise near the focal spot obtained from the HIFU simulator was in good agreement with that from the in-vitro experiments. This confirms that the HIFU simulator based on the KZK and the BHT equations captures the HIFU-induced temperature rise in soft tissues well enough to make it suitable for HIFU treatment planning.

  10. Spatiotemporal filtering of MR-temperature artifacts arising from bowel motion during transurethral MR-HIFU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Alain, E-mail: aschmitt@sri.utoronto.ca; Mougenot, Charles; Chopra, Rajiv

    2014-11-01

    Purpose: Transurethral MR-HIFU is a minimally invasive image-guided treatment for localized prostate cancer that enables precise targeting of tissue within the gland. The treatment is performed within a clinical MRI to obtain real-time MR thermometry used as an active feedback to control the spatial heating pattern in the prostate and to monitor for potential damage to surrounding tissues. This requires that the MR thermometry measurements are an accurate representation of the true tissue temperature. The proton resonance frequency shift thermometry method used is sensitive to tissue motion and changes in the local magnetic susceptibility that can be caused by themore » motion of air bubbles in the rectum, which can impact the performance of transurethral MR-HIFU in these regions of the gland. Methods: A method is proposed for filtering of temperature artifacts based on the temporal variance of the temperature, using empirical and dynamic positional knowledge of the ultrasonic heating beam, and an estimation of the measurement noise. A two-step correction strategy is introduced which eliminates artifact-detected temperature variations while keeping the noise level low through spatial averaging. Results: The filter has been evaluated by postprocessing data from five human transurethral ultrasound treatments. The two-step correction process led to reduced final temperature standard deviation in the prostate and rectum areas where the artifact was located, without negatively affecting areas distal to the artifact. The performance of the filter was also found to be consistent across all six of the data sets evaluated. The evaluation of the detection criterion parameter M determined that a value of M = 3 achieves a conservative filter with minimal loss of spatial resolution during the process. Conclusions: The filter was able to remove most artifacts due to the presence of moving air bubbles in the rectum during transurethral MR-HIFU. A quantitative estimation of the

  11. Distribution of temperature elevation caused by moving high-intensity focused ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Jung, Jihee; Kim, Moojoon; Ha, Kanglyeol; Lee, Eunghwa; Lee, Ilkwon

    2015-07-01

    Ultrasonic thermal treatment for dermatology has been developed using a small high-intensity focused ultrasound (HIFU) transducer. The transducer moves horizontally at a constant while it emits focused ultrasound because the treatment needs a high-temperature area in skin tissue over a wide range of depths. In this paper, a tissue-mimicking phantom made of carrageenan and a thermochromic film were adopted to examine the temperature distribution in the phantom noninvasively when the focused ultrasound was irradiated from the moving transducer. The dependence of the high-temperature area on the irradiated acoustic energy and on the movement interval of the HIFU was analyzed experimentally. The results will be useful in ensuring safety and estimating the remedial value of the treatment.

  12. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology.

    PubMed

    Hoogenboom, Martijn; Eikelenboom, Dylan; den Brok, Martijn H; Veltien, Andor; Wassink, Melissa; Wesseling, Pieter; Dumont, Erik; Fütterer, Jurgen J; Adema, Gosse J; Heerschap, Arend

    2016-06-01

    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2 w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (<200 µm) containing many apoptotic cells was present between disintegrated and vital tumor tissue. A high level of agreement was found between T2 w imaging and H&E stained sections, making T2 w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2 w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).

    PubMed

    Wang, Mingjun; Zhou, Yufeng

    2016-08-01

    HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.

  14. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    PubMed

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P < .01) but were smaller at a DC of 5%. The necrosis volume was negatively related to the perfusion rate in the pulsed HIFU at a DC of 50% for exposure durations of 4 and 6 s, while the perfusion flow rate did not affect the necrosis volume for exposure durations of 1, 2 and 3 s. For increased perfusion flow rates, there was no significant decrease in the cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  15. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  16. In vivo optimisation study for multi-baseline MR-based thermometry in the context of hyperthermia using MR-guided high intensity focused ultrasound for head and neck applications.

    PubMed

    Pichardo, Samuel; Köhler, Max; Lee, Justin; Hynnyen, Kullervo

    2014-12-01

    In this in vivo study, the feasibility to perform hyperthermia treatments in the head and neck using magnetic resonance image-guided high intensity focused ultrasound (MRgHIFU) was established using a porcine acute model. Porcine specimens with a weight between 17 and 18 kg were treated in the omohyoid muscle in the neck. Hyperthermia was applied with a target temperature of 41 °C for 30 min using a Sonalleve MRgHIFU system. MR-based thermometry was calculated using water-proton resonance frequency shift and multi-baseline look-up tables indexed by peak-to-peak displacement (Dpp) measurements using a pencil-beam navigator. Three hyperthermia experiments were conducted at different Dpp values of 0.2, 1.0 and 3.0 mm. An optimisation study was carried out to establish the optimal parameters controlling the multi-baseline method that ensured a minimisation of spatial-average peak-to-peak temperature (TSA-pp) and temperature direct current bias (TSA-DC). The multi-baseline technique reduced considerably the noise on both TSA-pp and TSA-DC. The reduction of noise was more important when Dpp was higher. For Dpp = 3 mm the average (±standard deviation (SD)) of TSA-pp and TSA-DC was reduced from 4.5 (± 2.5) and 2.5 (±0.6) °C, respectively, to 0.8 (± 0.7) and 0.09 (± 0.2) °C. This in vivo study showed the level of noise in PRFS-based thermometry introduced by respiratory motion in the context of MRgHIFU hyperthermia treatment for head and neck and the feasibility of reducing this noise using a multi-baseline technique.

  17. Measurement and numerical simulation of high intensity focused ultrasound field in water

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  18. Accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints.

    PubMed

    Siegenthaler, Andreas; Mlekusch, Sabine; Trelle, Sven; Schliessbach, Juerg; Curatolo, Michele; Eichenberger, Urs

    2012-08-01

    Cervical zygapophysial joint nerve blocks typically are performed with fluoroscopic needle guidance. Descriptions of ultrasound-guided block of these nerves are available, but only one small study compared ultrasound with fluoroscopy, and only for the third occipital nerve. To evaluate the potential usefulness of ultrasound-guidance in clinical practice, studies that determine the accuracy of this technique using a validated control are essential. The aim of this study was to determine the accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints using fluoroscopy as control. Sixty volunteers were studied. Ultrasound-imaging was used to place the needle to the bony target of cervical zygapophysial joint nerve blocks. The levels of needle placement were determined randomly (three levels per volunteer). After ultrasound-guided needle placement and application of 0.2 ml contrast dye, fluoroscopic imaging was performed for later evaluation by a blinded pain physician and considered as gold standard. Raw agreement, chance-corrected agreement κ, and chance-independent agreement Φ between the ultrasound-guided placement and the assessment using fluoroscopy were calculated to quantify accuracy. One hundred eighty needles were placed in 60 volunteers. Raw agreement was 87% (95% CI 81-91%), κ was 0.74 (0.64-0.83), and Φ 0.99 (0.99-0.99). Accuracy varied significantly between the different cervical nerves: it was low for the C7 medial branch, whereas all other levels showed very good accuracy. Ultrasound-imaging is an accurate technique for performing cervical zygapophysial joint nerve blocks in volunteers, except for the medial branch blocks of C7.

  19. Ultrasound-guided supraclavicular block: outcome of 510 consecutive cases.

    PubMed

    Perlas, Anahi; Lobo, Giovanni; Lo, Nick; Brull, Richard; Chan, Vincent W S; Karkhanis, Reena

    2009-01-01

    Supraclavicular brachial plexus block provides consistently effective anesthesia to the upper extremity. However, traditional nerve localization techniques may be associated with a high risk of pneumothorax. In the present study, we report block success and clinical outcome data from 510 consecutive patients who received an ultrasound-guided supraclavicular block for upper extremity surgery. After institutional review board approval, the outcome of 510 consecutive patients who received an ultrasound-guided supraclavicular block for upper extremity surgery was reviewed. Real-time ultrasound guidance was used with a high-frequency linear probe. The neurovascular structures were imaged on short axis, and the needle was inserted using an in-plane technique with either a medial-to-lateral or lateral-to-medial orientation. Five hundred ten ultrasound-guided supraclavicular blocks were performed (50 inpatients, 460 outpatients) by 47 different operators at different levels of training over a 24-month period. Successful surgical anesthesia was achieved in 94.6% of patients after a single attempt; 2.8% required local anesthetic supplementation of a single peripheral nerve territory; and 2.6% received an unplanned general anesthetic. No cases of clinically symptomatic pneumothorax developed. Complications included symptomatic hemidiaphragmatic paresis (1%), Horner syndrome (1%), unintended vascular punctures (0.4%), and transient sensory deficits (0.4%). Ultrasound-guided supraclavicular block is associated with a high rate of successful surgical anesthesia and a low rate of complications and thus may be a safe alternative for both inpatients and outpatients. Severe underlying respiratory disease and coagulopathy should remain a contraindication for this brachial plexus approach.

  20. Disinfection of a probe used in ultrasound-guided prostate biopsy.

    PubMed

    Rutala, William A; Gergen, Maria F; Weber, David J

    2007-08-01

    Transrectal ultrasound (TRUS)-guided prostate biopsies are among the most common outpatient diagnostic procedures in urology clinics and carry the risk of introducing pathogens that may lead to infection. To investigate the effectiveness of procedures for disinfecting a probe used in ultrasound-guided prostate biopsy. The effectiveness of disinfection was determined by inoculating 10(7) colony forming units (cfu) of Pseudomonas aeruginosa at the following 3 sites on the probe: the interior lumen of the biopsy needle guide, the outside surface of the biopsy needle guide, and the interior lumen of the ultrasound probe where the needle guide passes through the transducer. Each site was investigated separately. After inoculation, the probe was immersed in 2% glutaraldehyde for 20 minutes and then assessed for the level of microbial contamination. The results demonstrated that disinfection (ie, a reduction in bacterial load of greater than 7 log(10) cfu) could be achieved if the needle guide was removed from the probe. However, if the needle guide was left in the probe channel during immersion in 2% glutaraldehyde, disinfection was not achieved (ie, the reduction was approximately 1 log(10) cfu). Recommendations for probe disinfection are provided and include disassembling the device and immersing the probe and the needle guide separately in a high-level disinfectant.

  1. Nonlinear absorption in biological tissue for high intensity focused ultrasound.

    PubMed

    Liu, Xiaozhou; Li, Junlun; Gong, Xiufen; Zhang, Dong

    2006-12-22

    In recent years the propagation of the high intensity focused ultrasound (HIFU) in biological tissue is an interesting area due to its potential applications in non-invasive treatment of disease. The base principle of these applications is the heat effect generated by ultrasound absorption. In order to control therapeutic efficiency, it is important to evaluate the heat generation in biological tissue irradiated by ultrasound. In his paper, based on the Khokhlov-Zabolotkaya-Kuznetsov (KZK) equation in frequency-domain, the numerical simulations of nonlinear absorption in biological tissues for high intensity focused ultrasound are performed. We find that ultrasound thermal transfer effect will be enhanced with the increasing of initial acoustic intensity due to the high harmonic generation. The concept of extra absorption factor is introduced to describe nonlinear absorption in biological tissue for HIFU. The theoretical results show that the heat deposition induced by the nonlinear theory can be nearly two times as large as that predicated by linear theory. Then, the influence of the diffraction effect on the position of the focus in HIFU is investigated. It is shown that the sound focus moves toward the transducer compared with the geometry focus because of the diffraction of the sound wave. The position of the maximum heat deposition is shifted to the geometry focus with the increase of initial acoustic intensity because the high harmonics are less diffraction. Finally, the temperature in the porcine fat tissue changing with the time is predicated by Pennes' equation and the experimental results verify the nonlinear theoretical prediction.

  2. Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy.

    PubMed

    Zhang, Man; Fabiilli, Mario; Carson, Paul; Padilla, Frederic; Swanson, Scott; Kripfgans, Oliver; Fowlkes, Brian

    2010-10-11

    Acoustic droplet vaporization (ADV) is an ultrasound method for converting biocompatible microdroplets into microbubbles. The objective is to demonstrate that ADV bubbles can enhance high intensity focused ultrasound (HIFU) therapy by controlling and increasing energy absorption at the focus. Thermal phantoms were made with or without droplets. Compound lesions were formed in the phantoms by 5-second exposures with 5-second delays. Center to center spacing of individual lesions was 5.5 mm in either a linear pattern or a spiral pattern. Prior to the HIFU, 10 cycle tone bursts with 0.25% duty cycle were used to vaporize the droplets, forming an "acoustic trench" within 30 seconds. The transducer was then focused in the middle of the back bubble wall to form thermal lesions in the trench. All lesions were imaged optically and with 2T MRI. With the use of ADV and the acoustic trench, a uniform thermal ablation volume of 15 cm(3) was achieved in 4 minutes; without ADV only less than 15% of this volume was filled. The commonly seen tadpole shape characteristic of bubble-enhanced HIFU lesions was not evident with the acoustic trench. In conclusion, ADV shows promise for the spatial control and dramatic acceleration of thermal lesion production by HIFU.

  3. Controllable in vivo hyperthermia effect induced by pulsed high intensity focused ultrasound with low duty cycles

    PubMed Central

    Tu, Juan; Ha Hwang, Joo; Chen, Tao; Fan, Tingbo; Guo, Xiasheng; Crum, Lawrence A.; Zhang, Dong

    2012-01-01

    High intensity focused ultrasound (HIFU)-induced hyperthermia is a promising tool for cancer therapy. Three-dimensional nonlinear acoustic-bioheat transfer-blood flow-coupling model simulations and in vivo thermocouple measurements were performed to study hyperthermia effects in rabbit auricular vein exposed to pulsed HIFU (pHIFU) at varied duty cycles (DCs). pHIFU-induced temperature elevations are shown to increase with increasing DC. A critical DC of 6.9% is estimated for temperature at distal vessel wall exceeding 44 °C, although different tissue depths and inclusions could affect the DC threshold. The results demonstrate clinic potentials of achieving controllable hyperthermia by adjusting pHIFU DCs, while minimizing perivascular thermal injury. PMID:23112347

  4. Screening Magnetic Resonance Imaging-Based Prediction Model for Assessing Immediate Therapeutic Response to Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids.

    PubMed

    Kim, Young-sun; Lim, Hyo Keun; Park, Min Jung; Rhim, Hyunchul; Jung, Sin-Ho; Sohn, Insuk; Kim, Tae-Joong; Keserci, Bilgin

    2016-01-01

    The aim of this study was to fit and validate screening magnetic resonance imaging (MRI)-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation. Informed consent from all subjects was obtained for our institutional review board-approved study. A total of 240 symptomatic uterine fibroids (mean diameter, 6.9 cm) in 152 women (mean age, 43.3 years) treated with MR-HIFU ablation were retrospectively analyzed (160 fibroids for training, 80 fibroids for validation). Screening MRI parameters (subcutaneous fat thickness [mm], x1; relative peak enhancement [%] in semiquantitative perfusion MRI, x2; T2 signal intensity ratio of fibroid to skeletal muscle, x3) were used to fit prediction models with regard to ablation efficiency (nonperfused volume/treatment cell volume, y1) and ablation quality (grade 1-5, poor to excellent, y2), respectively, using the generalized estimating equation method. Cutoff values for achievement of treatment intent (efficiency >1.0; quality grade 4/5) were determined based on receiver operating characteristic curve analysis. Prediction performances were validated by calculating positive and negative predictive values. Generalized estimating equation analyses yielded models of y1 = 2.2637 - 0.0415x1 - 0.0011x2 - 0.0772x3 and y2 = 6.8148 - 0.1070x1 - 0.0050x2 - 0.2163x3. Cutoff values were 1.312 for ablation efficiency (area under the curve, 0.7236; sensitivity, 0.6882; specificity, 0.6866) and 4.019 for ablation quality (0.8794; 0.7156; 0.9020). Positive and negative predictive values were 0.917 and 0.500 for ablation efficiency and 0.978 and 0.600 for ablation quality, respectively. Screening MRI-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MR-HIFU ablation were fitted and validated, which may reduce the risk of unsuccessful treatment.

  5. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery.

    PubMed

    Chen, Yu; Chen, Hangrong; Shi, Jianlin

    2015-01-07

    The successful cancer eradication in a noninvasive manner is the ultimate objective in the fight against cancer. As a "bloodless scalpel," high-intensity focused ultrasound (HIFU) is regarded as one of the most promising and representative noninvasive therapeutic modalities for cancer surgery. However, large-scale clinical applications of HIFU are still in their infancy because of critical efficiency and safety issues which remain to be solved. Fortunately, recently developed nanobiotechnology provides an alternative efficient approach to improve such important issues in HIFU, especially for cancer therapy. This Research News presents the very recent exciting progresses on the elaborate design and fabrication of organic, inorganic, and organic/inorganic hybrid nanoparticles for enhancing the HIFU ablation efficiency against tumor tissues. It is highly expected that this Research News can arouse more extensive research enthusiasm on the development of functional nanomaterials for highly efficient HIFU-based synergistic therapy, which will give a promising noninvasive therapeutic modality for the successful cancer therapy with minimal damage to surrounding normal tissues, due to the noninvasive and site-specific therapeutic features of HIFU. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ex-vivo HIFU experiments using a 32 × 32-element CMUT array

    PubMed Central

    Yoon, Hyo-Seon; Chang, Chienliu; Jang, Ji Hoon; Bhuyan, Anshuman; Choe, Jung Woo; Nikoozadeh, Amin; Watkins, Ronald D.; Stephens, Douglas N.; Pauly, Kim Butts; Khuri-Yakub, Butrus T.

    2016-01-01

    High-intensity focused ultrasound (HIFU) has been used as noninvasive treatment for various diseases. For these therapeutic applications, capacitive micromachined ultrasonic transducers (CMUTs) have advantages that make them potentially preferred transducers over traditional piezoelectric transducers. In this paper, we present the design and the fabrication process of an 8 × 8-mm2, 32 × 32-element 2-D CMUT array for HIFU applications. To reduce the system complexity for addressing the 1024 transducer elements, we propose to group the CMUT array elements into eight HIFU channels based on the phase delay from the CMUT element to the targeted focal point. Designed to focus at an 8-mm depth with a 5-MHz exciting frequency, this grouping scheme was realized using a custom application-specific integrated circuit (ASIC). With a 40-V DC bias and a 60-V peak-to-peak AC excitation, the surface pressure was measured 1.2 MPa peak-to-peak and stayed stable for a long enough time to create a lesion. With this DC and AC voltage combination, the measured peak-to-peak output pressure at the focus was 8.5 MPa, which is expected to generate a lesion in a minute according to the temperature simulation. Following ex-vivo tissue experiments successfully demonstrated its capability to make lesions in both bovine muscle and liver tissue. PMID:27913330

  7. Ultrasound-guided fine needle aspiration versus core needle biopsy: comparison of post-biopsy hematoma rates and risk factors.

    PubMed

    Chae, In Hye; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young

    2017-07-01

    To compare post-biopsy hematoma rates between ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy, and to investigate risk factors for post-biopsy hematoma. A total of 5304 thyroid nodules which underwent ultrasound guided biopsy were included in this retrospective study. We compared clinical and US features between patients with and without post-biopsy hematoma. Associations between these features and post-biopsy hematoma were analyzed. Post-biopsy hematoma rate was 0.8% (43/5121) for ultrasound guided-fine needle aspiration and 4.9% (9/183) for ultrasound guided-core needle biopsy (P < 0.001). For ultrasound guided-fine needle aspiration, gender, age, size, presence of vascularity, and suspicious US features were not associated with post-biopsy hematoma according to experience level. Post-biopsy hematoma occurred significantly more with ultrasound guided-core needle biopsy (9/179, 5.0%) than with ultrasound guided-fine needle aspiration (9/1138, 0.8%) (P < 0.001) in experienced performers and ultrasound guided-core needle biopsy was the only significant risk factor for post-biopsy hematoma (adjusted Odds Ratio, 6.458, P < 0.001). Post-biopsy hematoma occurred significantly more in ultrasound guided-core needle biopsy than in ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy was the only independent factor of post-biopsy hematoma in thyroid nodules.

  8. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system

    PubMed Central

    Eranki, Avinash; Farr, Navid; Partanen, Ari; V. Sharma, Karun; Chen, Hong; Rossi, Christopher T.; Kothapalli, Satya V. V. N.; Oetgen, Matthew; Kim, AeRang; H. Negussie, Ayele; Woods, David; J. Wood, Bradford; C. W. Kim, Peter; S. Yarmolenko, Pavel

    2017-01-01

    Purpose High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized. In this work, lesion volume, temperature distribution, and area of lethal thermal dose were characterized for varying BH sonication parameters in tissue-mimicking phantoms (TMP) and demonstrated in ex vivo tissues. Methods The following BH sonication parameters were varied using a clinical MR-HIFU system (Sonalleve V2, Philips, Vantaa, Finland): acoustic power, number of cycles/pulse, total sonication time, and pulse repetition frequency (PRF). A 3×3×3 pattern was sonicated inside TMP’s and ex vivo tissues. Post sonication, lesion volumes were quantified using 3D ultrasonography and temperature and thermal dose distributions were analyzed offline. Ex vivo tissues were sectioned and stained with H&E post sonication to assess tissue damage. Results Significant increase in lesion volume was observed while increasing the number of cycles/pulse and PRF. Other sonication parameters had no significant effect on lesion volume. Temperature full width at half maximum at the end of sonication increased significantly with all parameters except total sonication time. Positive correlation was also found between lethal thermal dose and lesion volume for all parameters except number of cycles/pulse. Gross pathology of ex vivo tissues post sonication displayed either completely or partially damaged tissue at the focal region. Surrounding tissues presented sharp boundaries, with little or no structural damage to adjacent critical structures such as bile duct and nerves. Conclusion Our characterization of effects of HIFU sonication parameters on the resulting lesion demonstrates the ability to control lesion morphologic and thermal characteristics with a

  9. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  10. Pregnancies following ultrasound-guided drainage of tubo-ovarian abscess.

    PubMed

    Gjelland, Knut; Granberg, Seth; Kiserud, Torvid; Wentzel-Larsen, Tore; Ekerhovd, Erling

    2012-07-01

    To study fertility among women treated by means of ultrasound-guided drainage and antibiotics for tubo-ovarian abscess (TOA). Retrospective cohort study. A tertiary referral center. One hundred women of reproductive age treated for TOA between June 1986 and July 2003. Transvaginal ultrasound-guided drainage of TOA was performed in all patients. The procedure was repeated if a substantial amount of pus was seen using ultrasonography 2-5 days after the initial aspiration, and repeated later if necessary. Frequency of naturally conceived pregnancies. Twenty of 38 (52.6%; 95% CI 36.5-68.9%) women who intended to have a child achieved pregnancy naturally and became mothers. In addition, 7 (50%) of 14 women who were not on birth control on a regular basis became pregnant. No ectopic pregnancies were registered. Ultrasound-guided drainage of TOA in combination with antibiotics seems to preserve fertility in approximately half of the patients. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Transurethral ultrasound-guided laser-induced prostatectomy

    NASA Astrophysics Data System (ADS)

    Babayan, Richard K.; Roth, Robert A.

    1991-07-01

    A transurethral ultrasound-guided Nd:YAG laser delivery system has been developed for use as an alternative approach to the treatment of benign prostatic hyperplasia. The TULIP system has been extensively tested in canine models and is currently undergoing FDA trials in humans.

  12. Focused ultrasound guided relocation of kidney stones.

    PubMed

    Abrol, Nitin; Kekre, Nitin S

    2015-01-01

    Complete removal of all fragments is the goal of any intervention for urinary stones. This is more important in lower pole stones where gravity and spatial orientation of lower pole infundibulum may hinder spontaneous passage of fragments. Various adjuvant therapies (inversion, diuresis, percussion, oral citrate, etc.) are described to enhance stone-free rate but are not widely accepted. Focused ultrasound-guided relocation of fragments is a recently described technique aimed at improving results of intervention for stone disease. Purpose of this review is to discuss development of this technology and its potential clinical applications. Pubmed search was made using key words "Focused ultrasound" and "kidney stone". All English language articles were reviewed by title. Relevant studies describing development and application of focused ultrasound in renal stones were selected for review. Focused ultrasound has proven its efficacy in successfully relocating up to 8 mm stone fragments in vitro and in pigs. Relocation is independent of stone composition. The latest model allows imaging and therapy with a single handheld probe facilitating its use by single operator. The acoustic energy delivered by the new prototype is even less than that used for extracorporeal shock wave lithotripsy. Therapeutic exposure has not caused thermal injury in pig kidneys. Focused ultrasound-guided relocation of stones is feasible. Though it is safe in application in pigs, technology is awaiting approval for clinical testing in human beings. This technology has many potential clinical applications in the management of stone disease.

  13. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  14. Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model.

    PubMed

    Dupré, Aurélien; Melodelima, David; Pflieger, Hannah; Chen, Yao; Vincenot, Jérémy; Kocot, Anthony; Langonnet, Stéphan; Rivoire, Michel

    2017-02-01

    New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.

  15. Ultrasound- versus Palpation-Guided Injection of Corticosteroid for Plantar Fasciitis: A Meta-Analysis

    PubMed Central

    Yu, Aixi; Qi, Baiwen

    2014-01-01

    Background It is controversial whether ultrasound-guided injection of corticosteroid is superior to palpation-guided injection for plantar fasciitis. This meta-analysis was performed to compare the effectiveness of ultrasound-guided and palpation-guided injection of corticosteroid for the treatment of plantar fasciitis. Methods Databases (MEDLINE, Cochrane library and EMBASE) and reference lists were searched from their establishment to August 30, 2013 for randomized controlled trials (RCTs) comparing ultrasound-guided with palpation-guided injection for plantar fasciitis. The Cochrane risk of bias (ROB) tool was used to assess the methodological quality. Outcome measurements were visual analogue scale (VAS), tenderness threshold (TT), heel tenderness index (HTI), response rate, plantar fascia thickness (PFT), hypoechogenicity and heel pad thickness (HPT). The statistical analysis was performed with software RevMan 5.2 and Stata 12.0. When I2<50%, the fixed-effects model was adopted. Otherwise the randomized-effects model was adopted. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to assess the quality of evidence. Results Five RCTs with 149 patients were identified and analyzed. Compared with palpation-guided injection, ultrasound-guided injection was superior with regard to VAS, TT, response rate, PFT and hypoechogenicity. However, there was no statistical significance between the two groups for HPT and HTI. Conclusion Ultrasound-guided injection of corticosteroid tends to be more effective than palpation-guided injection. However, it needs to be confirmed by further research. PMID:24658102

  16. Guiding intramuscular diaphragm injections using real-time ultrasound and electromyography.

    PubMed

    Sarwal, Aarti; Cartwright, Michael S; Mitchell, Erin; Williams, Koudy; Walker, Francis O; Childers, Martin K

    2015-02-01

    We describe a unique method that combines ultrasound and electromyography to guide intramuscular diaphragm injections in anesthetized large animals. Ultrasound was used to visualize the diaphragm on each side of spontaneously breathing, anesthetized beagle dogs and cynomolgus macaques. An electromyography (EMG) needle was introduced and directed by ultrasound to confirm that the needle entered the muscular portion of the diaphragm, and methylene blue was injected. Injection accuracy was confirmed upon necropsy by tracking the spread of methylene blue. All methylene blue injections were confirmed to have been placed appropriately into the diaphragm. This study demonstrates the feasibility and accuracy of using ultrasound and EMG to guide injections and to reduce complications associated with conventional blind techniques. Ultrasound guidance can be used for clinical EMG of the diaphragm. Future applications may include targeted diaphragm injections with gene replacement therapy in neuromuscular diseases. © 2014 Wiley Periodicals, Inc.

  17. Clinical Utility and Pitfalls of Ultrasound Guided Foreign Body Removal in War Fighters

    DTIC Science & Technology

    2015-12-01

    1 AD_________________ AWARD NUMBER: W81XWH-08-2-0162 TITLE: Clinical Utility and Pitfalls of Ultrasound Guided Foreign Body Removal in War...Clinical Utility and Pitfalls of Ultrasound Guided Foreign Body Removal in War Fighters 5a. CONTRACT NUMBER 5b. GRANT NUMBER: W81XWH-08-2-0162 5c...Purpose: To demonstrate that 1) ultrasound guided foreign body removal (USFBR) is superior to conventional surgery in the cadaver model, 2) USFBR can be

  18. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    PubMed

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  19. Ultrasound-guided, percutaneous peripheral nerve stimulation: technical note.

    PubMed

    Chan, Isaac; Brown, Anthony R; Park, Kenneth; Winfree, Christopher J

    2010-09-01

    Peripheral nerve stimulation is a form of neuromodulation that applies electric current to peripheral nerves to induce stimulation paresthesias within the painful areas. To report a method of ultrasound-guided, percutaneous peripheral nerve stimulation. This technique utilizes real-time imaging to avoid injury to adjacent vascular structures during minimally invasive placement of peripheral nerve stimulator electrodes. We describe a patient that presented with chronic, bilateral foot pain following multiple foot surgeries, for whom a comprehensive, pain management treatment strategy had failed. We utilized ultrasound-guided, percutaneous tibial nerve stimulation at a thigh level to provide durable pain relief on the right side, and open peripheral nerve stimulation on the left. The patient experienced appropriate stimulation paresthesias and excellent pain relief on the plantar aspect of the right foot with the percutaneous electrode. On the left side, we were unable to direct the stimulation paresthesias to the sole of the foot, despite multiple electrode repositionings. A subsequent, open placement of a left tibial nerve stimulator was performed. This revealed that the correct electrode position against the tibial nerve was immediately adjacent to the popliteal artery, and was thus not appropriate for percutaneous placement. We describe a method of ultrasound-guided peripheral nerve stimulation that avoids the invasiveness of electrode placement via an open procedure while providing excellent pain relief. We further describe limitations of the percutaneous approach when navigating close to large blood vessels, a situation more appropriately managed with open peripheral nerve stimulator placement. Ultrasound-guided placement may be considered for patients receiving peripheral nerve stimulators placed within the deep tissues, and not easily placed in a blind fashion.

  20. Ultrasound-guided suprascapular nerve block: a correlation with fluoroscopic and cadaveric findings.

    PubMed

    Peng, Philip W H; Wiley, Michael J; Liang, James; Bellingham, Geoff A

    2010-02-01

    Previous work on the ultrasound-guided injection technique and the sonoanatomy of the suprascapular region relevant to the suprascapular nerve (SSN) block suggested that the ultrasound scan showed the presence of the suprascapular notch and transverse ligament. The intended target of the ultrasound-guided injection was the notch. The objective of this case report and the subsequent cadaver dissection findings is to reassess the interpretation of the ultrasound images when locating structures for SSN block. A 45-yr-old man with chronic shoulder pain received an ultrasound-guided SSN block using the suprascapular notch as the intended target. The position of the needle was verified by fluoroscopy, which showed the tip of the needle well outside the suprascapular notch. Similar ultrasound-guided SSN blocks were performed in two cadavers. Dissections were performed which showed that the needle tips were not at the suprascapular notch but, more accurately, were close to the SSN but at the floor of the suprascapular fossa between the suprascapular and spinoglenoid notch. Our fluoroscopic and cadaver dissection findings both suggest that the ultrasound image of the SSN block shown by the well-described technique is actually targeting the nerve on the floor of the suprascapular spine between the suprascapular and spinoglenoid notches rather than the suprascapular notch itself. The structure previously identified as the transverse ligament is actually the fascia layer of the supraspinatus muscle.

  1. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    PubMed

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  2. The role of T1 perfusion-based classification in magnetic resonance-guided high-intensity focused ultrasound ablation of uterine fibroids.

    PubMed

    Keserci, Bilgin; Duc, Nguyen Minh

    2017-12-01

    To comparatively evaluate the role of magnetic resonance (MR) T1 perfusion-based time-signal intensity (SI) curves of fibroid tissue and the myometrium in classification of fibroids for predicting treatment outcomes of high-intensity focused ultrasound (HIFU) treatment. The fibroids of 74 women who underwent MR-HIFU treatment were classified into group A (time-SI curve of fibroid lower than that of the myometrium) and group B (time-SI curve of fibroid equal to or higher than that of the myometrium). Non-perfused volume (NPV) ratios immediately after treatment and fibroid volume reduction ratios and symptom severity scores (SSS) at the 6-month follow-up were retrospectively assessed. The immediate NPV ratios in groups A and B were 95.3 ± 6.3% (n = 62) and 63.8 ± 11% (n = 12), respectively. At the 6-month follow-up, the fibroid volume reduction ratios in groups A and B were 0.52 ± 0.14 (n = 50) and 0.07 ± 0.14 (n = 11), with the corresponding improvement in mean transformed SSS being 0.86 ± 0.14 and 0.19 ± 0.3, respectively. No serious adverse effects were reported. Our novel classification method could play an important role in classifying fibroids for predicting the immediate outcomes of HIFU treatment. • MRI is an important modality for outcome prediction in HIFU treatment • Patient selection is a significant factor for achieving high NPV ratio • NPV ratio is very strongly correlated with T1 perfusion-based classification • T1 perfusion-based classification is a strong predictor of treatment outcome.

  3. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  4. Intraprocedure contrast enhanced ultrasound: the value in assessing the effect of ultrasound-guided high intensity focused ultrasound ablation for uterine fibroids.

    PubMed

    Peng, Song; Hu, Liang; Chen, Wenzhi; Chen, Jinyun; Yang, Caiyong; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Zhang, Lian

    2015-04-01

    To investigate the value of microbubble contrast-enhanced ultrasound (CEUS) in evaluating the treatment response of uterine fibroids to HIFU ablation. Sixty-eight patients with a solitary uterine fibroid from the First Affiliated Hospital of Chongqing Medical University were included and analyzed. All patients underwent pre- and post-treatment magnetic resonance imaging (MRI) with a standardized protocol, as well as pre-evaluation, intraprocedure, and immediate post-treatment CEUS. CEUS and MRI were compared by different radiologists. In comparison with MRI, CEUS showed that the size of fibroids, volume of fibroids, size of non-perfused regions, non-perfused volume (NPV) or fractional ablation (NPV ratio) was similar to that of MRI. In terms of CEUS examination results, the median volume of fibroids was 75.2 (interquartile range, 34.2-127.3) cm(3), the median non-perfused volume was 54.9 (interquartile range, 28.0-98.1) cm(3), the mean fractional ablation was 83.7±13.6 (range, 30.0-100.0)%. In terms of MRI examination results, the median volume of fibroids was 74.1 (interquartile range, 33.4-116.2) cm(3). On the basis of contrast-enhanced T1-weighted images immediately after HIFU treatment, the median non-perfused volume was 58.5 (interquartile range, 27.7-100.0) cm(3), the average fractional ablation was 84.2±14.2 (range, 40.0-100.0)%. CEUS clearly showed the size of fibroids and the non-perfused areas of the fibroid. Results from CEUS correlated well with results obtained from MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays

    PubMed Central

    Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera

    2015-01-01

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345

  6. Transvaginal Ultrasound-Guided Biopsy of Deep Pelvic Masses: How We Do It.

    PubMed

    Plett, Sara K; Poder, Liina; Brooks, Rebecca A; Morgan, Tara A

    2016-06-01

    The purpose of this review is to discuss the rationale and indications for transvaginal ultrasound-guided biopsy. Transvaginal ultrasound-guided biopsy can be a helpful tool for diagnosis and treatment planning in the evaluation of pelvic masses, particularly when the anatomy precludes a transabdominal or posterior transgluteal percutaneous biopsy approach. A step-by-step summary of the technique with preprocedure and postprocedure considerations is included. © 2016 by the American Institute of Ultrasound in Medicine.

  7. Comparison of Noninvasive High-Intensity Focused Ultrasound with Radiofrequency Ablation of Osteoid Osteoma.

    PubMed

    Sharma, Karun V; Yarmolenko, Pavel S; Celik, Haydar; Eranki, Avinash; Partanen, Ari; Smitthimedhin, Anilawan; Kim, Aerang; Oetgen, Matthew; Santos, Domiciano; Patel, Janish; Kim, Peter

    2017-11-01

    To evaluate clinical feasibility and safety of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) treatment of symptomatic osteoid osteoma and to compare clinical response with standard of care treatment. Nine subjects with radiologically confirmed, symptomatic osteoid osteoma were treated with MR-HIFU in an institutional review board-approved clinical trial. Treatment feasibility and safety were assessed. Clinical response was evaluated in terms of analgesic requirement, visual analog scale pain score, and sleep quality. Anesthesia, procedure, and recovery times were recorded. This MR-HIFU group was compared with a historical control group of 9 consecutive patients treated with radiofrequency ablation. Nine subjects (7 male, 2 female; 16 ± 6 years) were treated with MR-HIFU without technical difficulties or any serious adverse events. There was significant decrease in their median pain scores 4 weeks within treatment (6 vs 0, P < .01). Total pain resolution and cessation of analgesics were achieved in 8 of 9 patients after 4 weeks. In the radiofrequency ablation group, 9 patients (8 male, 1 female; 10 ± 6 years) were treated in routine clinical practice. All 9 demonstrated complete pain resolution and cessation of medications by 4 weeks with a significant decrease in median pain scores (9 vs 0, P < .001). One developed a second-degree skin burn, but there were no other adverse events. Procedure times and treatment charges were comparable between the 2 groups. This pilot study shows that MR-HIFU treatment of osteoid osteoma refractory to medical therapy is feasible and can be performed safely in pediatric patients. Clinical response is comparable with standard of care treatment but without any incisions or exposure to ionizing radiation. ClinicalTrials.govNCT02349971. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of nonlinearity on lesion formation for high-intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Vecchio, Christopher J.

    2004-05-01

    This study examined the effects of nonlinear propagation phenomena on two types of HIFU transducers (5 MHz) being used for thermal treatments of disease. The first transducer is a 5-element annular array. The second is a transducer with a 5-strip electrode; its multilobed focused beam is designed to efficiently produce broad, paddle-shaped lesions. The beam patterns of these transducers were computed using a variety of excitation patterns for electronic focusing of the annular array and variation of lesion size for the strip-electrode transducer. A range of intensities was studied to determine how nonlinear propagation affects the beam shape, constituent frequency content, grating lobes, etc. These 3D computations used a finite-amplitude beam propagation model that combined the angular spectrum method and Burger's equation to compute the diffraction and nonlinear effects, respectively. Computed beam patterns were compared with hydrophone measurements for each transducer. The linear and nonlinear beam patterns were used to compute the absorbed thermal dose, and the bioheat equation was evaluated to calculate 3D temperature rises and geometry of induced lesions. Computed lesion sizes and shapes were compared to in vitro lesions created by each HIFU transducer. [Work supported by NCI and NHLBI Grant 5R01 CA84588.

  9. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

    PubMed Central

    Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël

    2012-01-01

    Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong

  10. High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation.

    PubMed

    Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X

    2012-08-01

    The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.

  11. 3D ultrasound imaging in image-guided intervention.

    PubMed

    Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare

    2014-01-01

    Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.

  12. Comparison of Ultrasound-Guided and Fluoroscopy-Assisted Antegrade Common Femoral Artery Puncture Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, Michael M.; Goh, Gerard S.; Power, Sarah

    PurposeTo prospectively compare the procedural time and complication rates of ultrasound-guided and fluoroscopy-assisted antegrade common femoral artery (CFA) puncture techniques.Materials and MethodsHundred consecutive patients, undergoing a vascular procedure for which an antegrade approach was deemed necessary/desirable, were randomly assigned to undergo either ultrasound-guided or fluoroscopy-assisted CFA puncture. Time taken from administration of local anaesthetic to vascular sheath insertion in the superficial femoral artery (SFA), patients’ age, body mass index (BMI), fluoroscopy radiation dose, haemostasis method and immediate complications were recorded. Mean and median values were calculated and statistically analysed with unpaired t tests.ResultsSixty-nine male and 31 female patients underwent antegrademore » puncture (mean age 66.7 years). The mean BMI was 25.7 for the ultrasound-guided (n = 53) and 25.3 for the fluoroscopy-assisted (n = 47) groups. The mean time taken for the ultrasound-guided puncture was 7 min 46 s and for the fluoroscopy-assisted technique was 9 min 41 s (p = 0.021). Mean fluoroscopy dose area product in the fluoroscopy group was 199 cGy cm{sup 2}. Complications included two groin haematomas in the ultrasound-guided group and two retroperitoneal haematomas and one direct SFA puncture in the fluoroscopy-assisted group.ConclusionUltrasound-guided technique is faster and safer for antegrade CFA puncture when compared to the fluoroscopic-assisted technique alone.« less

  13. High-intensity focused ultrasound ablation: an effective and safe treatment for secondary hypersplenism.

    PubMed

    Zhu, J; Zhu, H; Mei, Z; Zhang, L; Jin, C; Ran, L; Zhou, K; Yang, W

    2014-11-01

    Hypersplenism is a common disease. The conventional treatment is splenectomy and partial splenic embolization; however, both of them have high complication rates and technical defects. Therefore, safer and more effective techniques should be considered for the treatment of hypersplenism. High-intensity focused ultrasound (HIFU) may provide an effective and safe way for treatment of hypersplenism. Therefore, we conducted this study to assess the safety and efficacy of HIFU in treatment of secondary hypersplenism. A total of 28 patients who suffered from secondary hypersplenism were treated with HIFU ablation. All patients who underwent HIFU were closely followed-up over a year. MRI scan was performed, and the spleens were observed. Blood counts and liver function tests were also carried out. In the follow-up process, the levels of white blood cells and platelets in the blood after HIFU were significantly higher than those before HIFU, liver function also improved after HIFU treatment. In addition, the symptoms were ameliorated significantly or even disappeared. The MRI showed that the ablation area had turned into a non-perfused volume, and after 12 months of HIFU ablation, the ablated area shrank evidently; the sunken spleen formed a lobulated shape and the splenic volume decreased. HIFU ablation is a safe, effective and non-invasive approach for secondary hypersplenism. For the first time we used HIFU ablation to treat secondary hypersplenism. It not only expands indications of HIFU but also provides better choice for the treatment of secondary hypersplenism.

  14. Ultrasound-guided central venous access using Google Glass.

    PubMed

    Wu, Teresa S; Dameff, Christian J; Tully, Jeffrey L

    2014-12-01

    The use of ultrasound during invasive bedside procedures is quickly becoming the standard of care. Ultrasound machine placement during procedures often requires the practitioner to turn their head during the procedure to view the screen. Such turning has been implicated in unintentional hand movements in novices. Google Glass is a head-mounted computer with a specialized screen capable of projecting images and video into the view of the wearer. Such technology may help decrease unintentional hand movements. Our aim was to evaluate whether or not medical practitioners at various levels of training could use Google Glass to perform an ultrasound-guided procedure, and to explore potential advantages of this technology. Forty participants of varying training levels were randomized into two groups. One group used Google Glass to perform an ultrasound-guided central line. The other group used traditional ultrasound during the procedure. Video recordings of eye and hand movements were analyzed. All participants from both groups were able to complete the procedure without difficulty. Google Glass wearers took longer to perform the procedure at all training levels (medical student year 1 [MS1]: 193 s vs. 77 s, p > 0.5; MS4: 197s vs. 91s, p ≤ 0.05; postgraduate year 1 [PGY1]: 288s vs. 125 s, p > 0.5; PGY3: 151 s vs. 52 s, p ≤ 0.05), and required more needle redirections (MS1: 4.4 vs. 2.0, p > 0.5; MS4: 4.8 vs. 2.8, p > 0.5; PGY1: 4.4 vs. 2.8, p > 0.5; PGY3: 2.0 vs. 1.0, p > 0.5). In this study, it was possible to perform ultrasound-guided procedures with Google Glass. Google Glass wearers, on average, took longer to gain access, and had more needle redirections, but less head movements were noted. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Harmonic Motion Imaging for Abdominal Tumor Detection and High-intensity Focused Ultrasound Ablation Monitoring: A Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer

    PubMed Central

    Chen, Hong; Hou, Gary Y.; Han, Yang; Payen, Thomas; Palermo, Carmine F.; Olive, Kenneth P.; Konofagou, Elisa E.

    2015-01-01

    Harmonic motion imaging (HMI) is a radiation force-based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess relative tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radiofrequency signals using a 1D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated with a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring. PMID:26415128

  16. Image-guided endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Zang, Xiaonan; Cheirsilp, Ronnarit; Byrnes, Patrick; Kuhlengel, Trevor; Bascom, Rebecca; Toth, Jennifer

    2016-03-01

    Endobronchial ultrasound (EBUS) is now recommended as a standard procedure for in vivo verification of extraluminal diagnostic sites during cancer-staging bronchoscopy. Yet, physicians vary considerably in their skills at using EBUS effectively. Regarding existing bronchoscopy guidance systems, studies have shown their effectiveness in the lung-cancer management process. With such a system, a patient's X-ray computed tomography (CT) scan is used to plan a procedure to regions of interest (ROIs). This plan is then used during follow-on guided bronchoscopy. Recent clinical guidelines for lung cancer, however, also dictate using positron emission tomography (PET) imaging for identifying suspicious ROIs and aiding in the cancer-staging process. While researchers have attempted to use guided bronchoscopy systems in tandem with PET imaging and EBUS, no true EBUS-centric guidance system exists. We now propose a full multimodal image-based methodology for guiding EBUS. The complete methodology involves two components: 1) a procedure planning protocol that gives bronchoscope movements appropriate for live EBUS positioning; and 2) a guidance strategy and associated system graphical user interface (GUI) designed for image-guided EBUS. We present results demonstrating the operation of the system.

  17. M-HIFU Inhibits Tumor Growth, Suppresses STAT3 Activity and Enhances Tumor Specific Immunity in a Transplant Tumor Model of Prostate Cancer

    PubMed Central

    Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L.; Robertson, Cary; Zhong, Pei

    2012-01-01

    Objective In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. Methods RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. Results No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. Conclusion Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers. PMID:22911830

  18. Ultrasound-guided percutaneous injection of methylene blue to identify nerve pathology and guide surgery.

    PubMed

    Osorio, Joseph A; Breshears, Jonathan D; Arnaout, Omar; Simon, Neil G; Hastings-Robinson, Ashley M; Aleshi, Pedram; Kliot, Michel

    2015-09-01

    OBJECT The objective of this study was to provide a technique that could be used in the preoperative period to facilitate the surgical exploration of peripheral nerve pathology. METHODS The authors describe a technique in which 1) ultrasonography is used in the immediate preoperative period to identify target peripheral nerves, 2) an ultrasound-guided needle electrode is used to stimulate peripheral nerves to confirm their position, and then 3) a methylene blue (MB) injection is performed to mark the peripheral nerve pathology to facilitate surgical exploration. RESULTS A cohort of 13 patients with varying indications for peripheral nerve surgery is presented in which ultrasound guidance, stimulation, and MB were used to localize and create a road map for surgeries. CONCLUSIONS Preoperative ultrasound-guided MB administration is a promising technique that peripheral nerve surgeons could use to plan and execute surgery.

  19. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An In vitro study

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie; Jin, Zhiyang; Jiang, Xiaoning; Dayton, Paul A.; Jing, Yun

    2017-01-01

    High intensity focused ultrasound (HIFU) has recently emerged as a promising alternative approach for thrombolysis. However, the high acoustic energy required by HIFU could elicit thermal damage bioeffects, impeding the clinical translation of this technique. This paper investigates the use of dual-frequency focused ultrasound (DFFU) mediated by microbubbles (MBs) to minimize the acoustic power required for thrombolysis in vitro. It was found that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). In addition, SFFU needs about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency is also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation is likely responsible for the improved thrombolysis under DFFU and MBs.

  20. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    PubMed

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus

  1. Effect of controlled offset of focal position in cavitation-enhanced high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Goto, Kota; Takagi, Ryo; Miyashita, Takuya; Jimbo, Hayato; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive treatment for tumors such as cancer. In this method, ultrasound is generated outside the body and focused to the target tissue. Therefore, physical and mental stresses on the patient are minimal. A drawback of the HIFU treatment is a long treatment time for a large tumor due to the small therapeutic volume by a single exposure. Enhancing the heating effect of ultrasound by cavitation bubbles may solve this problem. However, this is rather difficult because cavitation clouds tend to be formed backward from the focal point while ultrasonic intensity for heating is centered at the focal point. In this study, the focal points of the trigger pulses to generate cavitation were offset forward from those of the heating ultrasound to match the cavitation clouds with the heating patterns. Results suggest that the controlled offset of focal points makes the thermal coagulation more predictable.

  2. Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0461 TITLE: Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion PRINCIPAL...Sep 2014 - 28 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Guided Interventions for Prostate Cancer Using 3D- Transurethral Ultrasound and...Magnetic Resonance- Ultrasound (MR-US) fusion allows for specific targeting of the tumors in real-time during clinical interventions, outside of an MR

  3. A Disposable Microfluidic Device for Controlled Drug Release from Thermal-Sensitive Liposomes by High Intensity Focused Ultrasound.

    PubMed

    Meng, Long; Deng, Zhiting; Niu, Lili; Li, Fei; Yan, Fei; Wu, Junru; Cai, Feiyan; Zheng, Hairong

    2015-01-01

    The drug release triggered thermally by high intensity focused ultrasound (HIFU) has been considered a promising drug delivery strategy due to its localized energy and non-invasive characters. However, the mechanism underlying the HIFU-mediated drug delivery remains unclear due to its complexity at the cellular level. In this paper, micro-HIFU (MHIFU) generated by a microfluidic device is introduced which is able to control the drug release from temperature-sensitive liposomes (TSL) and evaluate the thermal and mechanical effects of ultrasound on the cellular drug uptake and apoptosis. By simply adjusting the input electrical signal to the device, the temperature of sample can be maintained at 37 °C, 42 °C and 50 °C with the deviation of ± 0.3 °C as desired. The flow cytometry results show that the drug delivery under MHIFU sonication leads to a significant increase in apoptosis compared to the drug release by incubation alone at elevated temperature of 42 °C. Furthermore, increased squamous and protruding structures on the surface membrane of cells were detected by atomic force microscopy (AFM) after MHIFU irradiation of TSL. We demonstrate that compared to the routine HIFU treatment, MHIFU enables monitoring of in situ interactions between the ultrasound and cell in real time. Furthermore, it can quantitatively analyze and characterize the alterations of the cell membrane as a function of the treatment time.

  4. Ultrasound guided double injection of blood into cisterna magna: a rabbit model for treatment of cerebral vasospasm.

    PubMed

    Chen, Yongchao; Zhu, Youzhi; Zhang, Yu; Zhang, Zixuan; Lian, Juan; Luo, Fucheng; Deng, Xuefei; Wong, Kelvin K L

    2016-02-06

    Double injection of blood into cisterna magna using a rabbit model results in cerebral vasospasm. An unacceptably high mortality rate tends to limit the application of model. Ultrasound guided puncture can provide real-time imaging guidance for operation. The aim of this paper is to establish a safe and effective rabbit model of cerebral vasospasm after subarachnoid hemorrhage with the assistance of ultrasound medical imaging. A total of 160 New Zealand white rabbits were randomly divided into four groups of 40 each: (1) manual control group, (2) manual model group, (3) ultrasound guided control group, and (4) ultrasound guided model group. The subarachnoid hemorrhage was intentionally caused by double injection of blood into their cisterna magna. Then, basilar artery diameters were measured using magnetic resonance angiography before modeling and 5 days after modeling. The depth of needle entering into cisterna magna was determined during the process of ultrasound guided puncture. The mortality rates in manual control group and model group were 15 and 23 %, respectively. No rabbits were sacrificed in those two ultrasound guided groups. We found that the mortality rate in ultrasound guided groups decreased significantly compared to manual groups. Compared with diameters before modeling, the basilar artery diameters after modeling were significantly lower in manual and ultrasound guided model groups. The vasospasm aggravated and the proportion of severe vasospasms was greater in ultrasound guided model group than that of manual group. In manual model group, no vasospasm was found in 8 % of rabbits. The ultrasound guided double injection of blood into cisterna magna is a safe and effective rabbit model for treatment of cerebral vasospasm.

  5. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer.

    PubMed

    Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E

    2015-09-01

    Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.

  6. Oncological and functional outcomes of elderly men treated with HIFU vs. minimally invasive radical prostatectomy: A propensity score analysis.

    PubMed

    Capogrosso, Paolo; Barret, Eric; Sanchez-Salas, Rafael; Nunes-Silva, Igor; Rozet, François; Galiano, Marc; Ventimiglia, Eugenio; Briganti, Alberto; Salonia, Andrea; Montorsi, Francesco; Cathelineau, Xavier

    2018-01-01

    To assess outcomes of whole gland high-intensity focused ultrasound (HIFU) as compared with minimally-invasive radical prostatectomy (MIRP) in elderly patients. Patients aged ≥70 years with, cT1-cT2 disease, biopsy Gleason score (GS) 3 + 3 or 3 + 4 and preoperative PSA ≤10 ng/mL were submitted to either whole-gland HIFU or MIRP. Propensity-score matching analysis was performed to ensure the baseline equivalence of groups. Follow-up visits were routinely performed assessing PSA and urinary function according to the International Continence Score (ICS) and the International Prostatic Symptoms Score (IPSS) questionnaires. Estimated rates of salvage-treatment free survival (SFS) overall-survival (OS), cancer-specific survival (CSS) and metastasis-free survival (MTS) were assessed and compared. Overall, 84 (33.3%) and 168 (66.7%) patients were treated with HIFU and MIRP, respectively. MIRP was associated with a 5-yrs SFS of 93.4% compared to 74.8% for HIFU (p < 0.01). The two groups did not differ in terms of OS and MTS. No cancer-related deaths were registered. Patients treated with HIFU showed better short-term (6-mos) continence outcomes [mean-ICS: 1.7 vs. 4.8; p = 0.005] but higher IPSS mean scores at 12-mos assessment. A comparable rate of patients experiencing post-treatment Clavien-Dindo grade ≥III complications was observed within the two groups. Whole-gland HIFU is a feasible treatment in elderly men with low-to intermediate-risk PCa and could be considered for patients either unfit for surgery, or willing a non-invasive treatment with a low morbidity burden, although a non-negligible risk of requiring subsequent treatment for recurrence should be expected. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  7. Musculoskeletal ultrasound: how to treat calcific tendinitis of the rotator cuff by ultrasound-guided single-needle lavage technique.

    PubMed

    Lee, Kenneth S; Rosas, Humberto G

    2010-09-01

    The purpose of this video article is to illustrate the ultrasound appearance of calcium deposition in the rotator cuff and provide a detailed step-by-step protocol for performing the ultrasound-guided single-needle lavage technique for the treatment of calcific tendinitis with emphasis on patient positioning, necessary supplies, real-time lavage technique, and steroid injection into the subacromial subdeltoid bursa. Musculoskeletal ultrasound is well established as a safe, cost-effective imaging tool in diagnosing and treating common musculoskeletal disorders. Calcific tendinitis of the rotator cuff is a common disabling cause of shoulder pain. Although most cases are self-limiting, a subset of patients is refractory to conservative therapy and requires treatment intervention. Ultrasound-guided lavage is an effective and safe minimally-invasive treatment not readily offered in the United States as an alternative to surgery, perhaps because of the limited prevalence of musculoskeletal ultrasound programs and limited training. On completion of this video article, the participant should be able to develop an appropriate diagnostic and therapeutic algorithm for the treatment of calcific tendinitis of the rotator cuff using ultrasound.

  8. High-intensity focused ultrasound ablation induced apoptosis in human hepatocellular carcinoma.

    PubMed

    Yi, Jiang; Wu, Liguo; Liu, Zhou; Zou, Haibo; Li, Ning; Chen, Heping; Liu, Jinheng; Li, Tao; Zhang, Gang

    2014-01-01

    To evaluate the effect of high-intensity ultrasound (HIFU) ablation on human hepatocellular carcinoma tissues and apoptotic proteins (bcl-2 and p-53). Patients with hepatocellular carcinoma at stage B were treated with HIFU ablation. Levels of bcl-2 and p53 protein and the apoptosis rate were evaluated both in the pre-treatment and post-treatment tissue specimens using immunochemistry and TUNEL methods, respectively. After HIFU ablation, p53 protein levels were significantly increased around the coagulation necrosis area, whereas, the level of bcl-2 was significantly decreased. More apoptosis cells were found post ablation compared with those in the pretreatment tissues. Additionally, no significant correlation was found between p53/bcl-2 levels and apoptotic index. HIFU ablation may exert promote the apoptosis of hepatocellular carcinoma cells and the effect has a closely association with the change of p53 and bcl-2 expression.

  9. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.

    PubMed

    Wang, Chung-Hsin; Kang, Shih-Tsung; Lee, Ya-Hsuan; Luo, Yun-Ling; Huang, Yu-Fen; Yeh, Chih-Kuang

    2012-02-01

    Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Efficacy of ultrasound-guided percutaneous needle treatment of calcific tendinitis.

    PubMed

    Vignesh, K Nithin; McDowall, Adam; Simunovic, Nicole; Bhandari, Mohit; Choudur, Hema N

    2015-01-01

    The purpose of this study was to conduct a systematic review of the efficacy of ultrasound-guided needle lavage in treating calcific tendinitis. Two independent assessors searched medical databases and screened studies for eligibility. Eleven articles were included. Heterogeneity among included studies precluded meta-analysis. Results of randomized controlled trials suggested no difference in pain relief between needle lavage and other interventions, but the studies were of low quality. Additional high-quality evidence is required to determine the relative efficacy of ultrasound-guided needle lavage in the management of calcific tendinitis of the rotator cuff.

  11. MR compatible positioning device for guiding a focused ultrasound system for the treatment of brain deseases.

    PubMed

    Mylonas, N; Damianou, C

    2014-03-01

    A prototype magnetic resonance imaging (MRI)-compatible positioning device that navigates a high intensity focused ultrasound (HIFU) transducer is presented. The positioning device has three user-controlled degrees of freedom that allow access to brain targets using a lateral coupling approach. The positioning device can be used for the treatment of brain cancer (thermal mode ultrasound) or ischemic stroke (mechanical mode ultrasound). The positioning device incorporates only MRI compatible materials such as piezoelectric motors, ABS plastic, brass screws, and brass rack and pinion. The robot has the ability to accurately move the transducer thus creating overlapping lesions in rabbit brain in vivo. The registration and repeatability of the system was evaluated using tissues in vitro and gel phantom and was also tested in vivo in the brain of a rabbit. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be placed on the table of the MRI scanner. This system can be used to treat in the future patients with brain cancer and ischemic stroke. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Endoscopic ultrasound-guided transmural drainage of postoperative pancreatic collections.

    PubMed

    Tilara, Amy; Gerdes, Hans; Allen, Peter; Jarnagin, William; Kingham, Peter; Fong, Yuman; DeMatteo, Ronald; D'Angelica, Michael; Schattner, Mark

    2014-01-01

    Pancreatic leak is a major cause of morbidity after pancreatectomy. Traditionally, peripancreatic fluid collections have been managed by percutaneous or operative drainage. Data for endoscopic ultrasound (EUS)-guided drainage of postoperative fluid collections are limited. Here we report on the safety, efficacy, and timing of EUS-guided drainage of postoperative peripancreatic collections. This is a retrospective review of 31 patients who underwent EUS-guided drainage of fluid collections after pancreatic resection. Technical success was defined as successful transgastric deployment of at least one double pigtail plastic stent. Clinical success was defined as resolution of the fluid collection on follow-up CT scan and resolution of symptoms. Early drainage was defined as initial transmural stent placement within 30 days after surgery. Endoscopic ultrasound-guided drainage was performed effectively with a technical success rate of 100%. Clinical success was achieved in 29 of 31 patients (93%). Nineteen of the 29 patients (65%) had complete resolution of their symptoms and collection with the first endoscopic procedure. Repeat drainage procedures, including some with necrosectomy, were required in the remaining 10 patients, with eventual resolution of collection and symptoms. Two patients who did not achieve durable clinical success required percutaneous drainage by interventional radiology. Seventeen (55%) of 31 patients had successful early drainage completed within 30 days of their operation. Endoscopic ultrasound-guided drainage of fluid collections after pancreatic resection is safe and effective. Early drainage (<30 days) of postoperative pancreatic fluid collections was not associated with increased complications in this series. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Minimally Invasive Ultrasound-Guided Carpal Tunnel Release: Preliminary Clinical Results.

    PubMed

    Henning, P Troy; Yang, Lynda; Awan, Tariq; Lueders, Daniel; Pourcho, Adam M

    2018-04-02

    Ultrasound-guided carpal tunnel release was performed on 14 patients (18 wrists) using dynamic expansion of the transverse safe zone. Our patient population included able-bodied patients and those with impairments. The first 8 cases (12 wrists) underwent the procedure in an operating room, the remainder in an outpatient setting. No complications occurred, and all patients were able to immediately resume use of their hands without therapy. Improvements in the Quick Form of the Disabilities of the Arm, Shoulder, and Hand Index and Boston Carpal Tunnel Questionnaire at 3 months were comparable to results reported with mini-open and endoscopic release. Our results show that ultrasound-guided carpal tunnel release can be safely and effectively performed in an outpatient setting. © 2018 by the American Institute of Ultrasound in Medicine.

  14. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    DTIC Science & Technology

    2013-07-01

    ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Non-thermal high-intensity focused ultrasound for breast cancer therapy 5b. GRANT NUMBER W81XWH-11-1-0341...treatment systems for small animal models. Advanced imaging systems will be required to determine the gross tumor volume, to plan the HIFU treatment, to

  15. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    PubMed Central

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  16. X-ray–free Ultrasound-guided Percutaneous Nephrolithotomy: How to Select the Right Patient?

    PubMed Central

    Usawachintachit, Manint; Tzou, David T.; Hu, Weiguo; Li, Jianxing; Chi, Thomas

    2017-01-01

    OBJECTIVE To identify factors associated with successful ultrasound guidance for each surgical step of ultrasound-guided percutaneous nephrolithotomy (PCNL). PATIENTS AND METHODS Consecutive patients undergoing PCNL between March 2015 and June 2016 were prospectively enrolled. An attempt was made to use ultrasound guidance in renal access, tract dilation, and nephrostomy tube placement for each patient. For steps during which ultrasound guidance was unsuccessful, fluoroscopic screening was applied. Regression analysis identified patient characteristics associated with successful use of ultrasound guidance. RESULTS A total of 96 patients composed this cohort, with a mean body mass index of 28.7 kg/m2. Mean stone size was 33.1 ± 18.9 mm, and no hydronephrosis was found in 63.5% of cases. Fluoroscopic screening was required for renal access in 27 cases (28.1%), tract dilation in 38 (39.6%), and nephrostomy tube placement in 80 (83.3%). Multivariate analysis demonstrated that successful ultrasound guidance was significantly associated with the presence of hydronephrosis for renal access and the absence of staghorn calculi for tract dilation. Ultrasound-guided nephrostomy tube placement appeared linked to surgeon experience. CONCLUSION To achieve completely x-ray–free ultrasound-guided PCNL, the ideal patient should have a hydronephrotic collecting system with no staghorn stone present. For practitioners looking to adopt ultrasound guidance into their PCNL practice, these represent the most appropriate patients to safely initiate a surgical experience. PMID:27720776

  17. TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  18. Acoustic Droplet Vaporization for Enhancement of Thermal Ablation by High Intensity Focused Ultrasound

    PubMed Central

    Zhang, Man; Fabiilli, Mario L.; Haworth, Kevin J.; Padilla, Frederic; Swanson, Scott D.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2011-01-01

    Rationale and Objectives Acoustic droplet vaporization (ADV) shows promise for spatial control and acceleration of thermal lesion production. Our hypothesis was that microbubbles generated by ADV could enhance high intensity focused ultrasound (HIFU) thermal ablation by controlling and increasing local energy absorption. Materials and Methods Thermal lesions were produced in tissue-mimicking phantoms using focused ultrasound (1.44 MHz) with a focal intensity of 4000 W·cm-2 in degassed water at 37°C. The average lesion volume was measured by visible change in optical opacity and by T2-weighted MRI. In addition, in vivo HIFU lesions were generated in a canine liver before and after an intravenous injection of droplets with a similar acoustic setup. Results Thermal lesions were seven-fold larger in phantoms containing droplets (3×105 droplets/mL) compared to phantoms without droplets. The mean lesion volume with a 2 s HIFU exposure in droplet-containing phantoms was comparable to that made by a 5 s exposure in phantoms without droplets. In the in vivo study, the average lesion volumes without and with droplets were 0.017 ± 0.006 cm3 (n = 4, 5 s exposure) and 0.265 ± 0.005 cm3 (n = 3, 5 s exposure), respectively – a factor of 15 difference. The shape of ADV bubbles imaged with B-mode ultrasound was very similar to the actual lesion shape as measured optically and by MRI. Conclusion ADV bubbles may facilitate clinical HIFU ablation by reducing treatment time or requisite in situ total acoustic power, and provide ultrasonic imaging feedback of the thermal therapy. PMID:21703883

  19. Ultrasound-Guided Intervention for Treatment of Trigeminal Neuralgia: An Updated Review of Anatomy and Techniques

    PubMed Central

    Allam, Abdallah El-Sayed; Khalil, Adham Aboul Fotouh; Eltawab, Basma Aly; Wu, Wei-Ting

    2018-01-01

    Orofacial myofascial pain is prevalent and most often results from entrapment of branches of the trigeminal nerves. It is challenging to inject branches of the trigeminal nerve, a large portion of which are shielded by the facial bones. Bony landmarks of the cranium serve as important guides for palpation-guided injections and can be delineated using ultrasound. Ultrasound also provides real-time images of the adjacent muscles and accompanying arteries and can be used to guide the needle to the target region. Most importantly, ultrasound guidance significantly reduces the risk of collateral injury to vital neurovascular structures. In this review, we aimed to summarize the regional anatomy and ultrasound-guided injection techniques for the trigeminal nerve and its branches, including the supraorbital, infraorbital, mental, auriculotemporal, maxillary, and mandibular nerves. PMID:29808105

  20. High-intensity focused ultrasound ablation around the tubing.

    PubMed

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  1. Ultrasound-Guided Percutaneous Tenotomy of Biceps Tendon: Technical Feasibility on Cadavers.

    PubMed

    Sconfienza, Luca Maria; Mauri, Giovanni; Messina, Carmelo; Aliprandi, Alberto; Secchi, Francesco; Sardanelli, Francesco; Randelli, Pietro Simone

    2016-10-01

    We tested the technical feasibility of ultrasound-guided percutaneous tenotomy of the long head of the biceps tendon (LHBT) in cadavers. Both shoulders of two fresh cadavers were scanned anteriorly to evaluate the extra-articular portion of the LHBT. Under ultrasound monitoring, a scalpel was advanced obliquely up to touch the superficial medial side of the LHBT, cutting it until the tendon was not visible anymore. Ultrasound evaluation was repeated after the procedure, and anatomic dissection was performed. The procedure was 100% feasible: four cuts were made to completely sever the tendon; the duration was less than 1 min. Skin incision measured 5 mm in two cases and 6 mm in two cases. Anatomic dissection confirmed complete tendon cut in all cases with proximal and distal tendon stumps very close to each other. Ultrasound-guided percutaneous LHBT tenotomy was 100% technically feasible in cadavers with a quick procedure and minimal cutaneous incision. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Numerical Study on Focusing of Ultrasounds in Microbubble-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoichiro; Okita, Kohei; Takagi, Shu

    2011-11-01

    The injection of microbubbles into the target tissue enhances tissue heating in High-Intensity Focused Ultrasound therapy, via inertial cavitation. The control of the inertial cavitation is required to achieve the efficient tissue ablation. Microbubbles between a transducer and a target disturb the ultrasound propagation depending on the conditions. A method to clear such microbubbles has been proposed by Kajiyama et al. [Physics Procedia 3 (2010) 305-314]. In the method, the irradiation of intense ultrasounds with a burst waveform fragmentize microbubbles in the pathways before the irradiation of ultrasounds for tissue heating. The vitro experiment using a gel containing microbubbles has showed that the method enables to heat the target correctly by controlling the microbubble distribution. Following the experiment, we simulate the focusing of ultrasounds through a mixture containing microbubbles with considering the size and number density distributions in space. The numerical simulation shows that the movement of the heating region from the transducer side to the target by controlling the microbubble distributions. The numerical results elucidate well the experimental ones.

  3. Point-of-Care Ultrasonography Findings and Care Use Among Patients Undergoing Ultrasound-Guided Shoulder Injections.

    PubMed

    Lee, Se Won; Tiu, Timothy; Roberts, Jeremy; Lee, Brian; Bartels, Matthew N; Oh-Park, Mooyeon

    2018-01-01

    The aims of the study were to assess the overall reduction of pain in patients undergoing ultrasound-guided shoulder injections and to characterize the preinjection point-of-care ultrasound findings and use of clinical services postinjection including the use of magnetic resonance imaging and surgeries. Data of 172 patients who underwent ultrasound-guided subacromial subdeltoid injection or glenohumeral joint injection were reviewed for preinjection point-of-care ultrasound findings, change in pain intensity at 2 mos from baseline, and use of care at 6 mos' postinjection. Pain intensity was measured by the numeric rating scale and a dichotomous report of global impression of significant improvement in pain. Responders were defined as those with 50% or more reduction in numeric rating scale or those with global impression of 50% or more improvement. There were 141 responders among the 172 patients analyzed. Full-thickness rotator cuff tears were higher in the ultrasound-guided subacromial subdeltoid injection group when compared with the glenohumeral joint injection group (P = 0.038) and abnormal bicipital tendon findings higher in the glenohumeral joint injection group (P = 0.016). There were no significant differences in specific abnormal U findings between responders versus nonresponders. Twelve patients had a shoulder magnetic resonance imaging and four patients underwent operative interventions after the injection. Overall pain reduction after ultrasound-guided shoulder injections was favorable in the short term. There was no specific preinjection point-of-care ultrasound findings associated with clinical pain reduction after injection. Additional imaging and operative intervention after ultrasound-guided shoulder injections seemed to be relatively low.

  4. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-01-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812

  5. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  6. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics

    PubMed Central

    Napoli, Alessandro; Sacconi, Beatrice; Battista, Giuseppe; Guglielmi, Giuseppe; Catalano, Carlo; Albisinni, Ugo

    2016-01-01

    MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a “new” interventional technique and on its applications for MSK and allied sciences. PMID:26607640

  7. Casualty Evacuation in the Contemporary Operating Environment

    DTIC Science & Technology

    2002-05-20

    HIFU ), or Focused Ultrasound ( FUS ), can be used to rapidly kill tissue (directly applicable to cancer treatment, for example) and to stop internal...132 Peter Kaczkowski, Development of a High-Intensity Focused Ultrasound System for Image-guided Ultrasound Surgery...spatial dimension, with acquisition and display occurring nearly in real time.135 Recent research has shown that High Intensity Focused Ultrasound

  8. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    McLaughlan, J. R.; Cowell, D. M. J.; Freear, S.

    2018-01-01

    High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19  ±  0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71  ±  0.01 MPa at a fluence of 3.4 mJ cm-2 . Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of 1.5 × 103 a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as

  9. Non-invasive high-intensity focused ultrasound for UV-induced hyperpigmentation in Fitzpatrick skin types III and IV: a prospective, randomized, controlled, evaluator-blinded trial.

    PubMed

    Vachiramon, Vasanop; Jurairattanaporn, Natthachat; Harnchoowong, Sarawin; Chayavichitsilp, Pamela

    2018-02-01

    Skin hyperpigmentation is a frequently encountered problem, particularly in darker skin types. Unfortunately, standard treatments for this condition have shown disappointing results. High-intensity focused ultrasound (HIFU) is commonly indicated for skin laxity, but recently was used to treat UV-induced hyperpigmentation in animal models. This study is aimed to evaluate the efficacy and safety of high-intensity focused ultrasound for UVB-induced hyperpigmentation in human subjects. A randomized, evaluator-blinded pilot study was conducted on 20 subjects. Each subject was induced three hyperpigmentary spots by local broadband UVB. After 2 weeks, each spot was randomly allocated to control, low-energy, and high-energy HIFU. Subjects were instructed to follow up weekly for a duration of 1 month. Lightness index measurements, mean improvement scores, subjects' satisfaction, pain scores, and side effects were evaluated. All 20 subjects completed the study. Fourteen subjects had Fitzpatrick (FPT) skin type III and six subjects had FPT skin type IV. Twelve subjects showed greater improvement at control sites while eight subjects showed greater improvement at HIFU-treated sites. In FPT skin type III, HIFU appeared to be inferior to control in both lightness index and mean improvement scores, but in FPT skin type IV, HIFU had greater lightness index improvement and higher improvement scores than control. Side effects were more frequent in high-energy-treated areas. Focused ultrasound may be offered in some patients with hyperpigmentary conditions. More research is needed to determine proper energy settings for optimal outcome.

  10. A successful model to learn and implement ultrasound-guided venous catheterization in apheresis.

    PubMed

    Gopalasingam, Nigopan; Thomsen, Anna-Marie Eller; Folkersen, Lars; Juhl-Olsen, Peter; Sloth, Erik

    2017-12-01

    Apheresis treatments can be performed with peripheral venous catheters (PVC), although central venous catheters (CVC) are inserted when PVCs fail or patient with history of difficult vascular access prior to the apheresis. Ultrasound guidance for PVC has shown promising results in other settings. To investigate if ultrasound guidance for PVC could be implemented among apheresis nurses. Second, how implementation of ultrasound guidance affected the number of CVCs used for apheresis per patient. Apheresis nurses completed a systematic training program for ultrasound-guided vascular access. All independent catheterizations were registered during the implementation stage. The number of CVCs in the pre- and postimplementation stages of the ultrasound guidance was compared. Six nurses completed the training program within a median of 48 days (range 38-83 days). In 77 patients, 485 independent ultrasound-guided PVC placements were performed during the implementation stage. All apheresis treatments (485/485) were accomplished using PVCs without requiring CVC as rescue. During the preimplementation stage, 125 of 273 (45.8%) procedures required a CVC for completion of apheresis procedures; during the postimplementation stage only 30 of 227 (13.2%) procedures required a CVC (p < 0.001). In the postimplementation stage, no CVCs were placed as rescue caused by failed PVCs but were only placed for patients where the ultrasound machine was unavailable. It indicates an effective success rate of 100% for ultrasound-guided PVC use. This study showed that ultrasound guidance could be implemented among apheresis nurses as a routine tool eliminating the need of CVC as a rescue. © 2017 Wiley Periodicals, Inc.

  11. Ten-year Biochemical Disease-free Survival After High-intensity Focused Ultrasound (HIFU) for Localized Prostate Cancer: Comparison with Four Different Generation Devices

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Nakano, M.; Shoji, S.; Omata, T.; Harano, Y.; Nagata, Y.; Usui, Y.; Terachi, T.

    2010-03-01

    HIFU has been recognized as a minimally invasive treatment option for localized prostate cancer. The purpose of the study was to assess with a long-term outcome of HIFU for prostate cancer. From January 1999, a total of 657 patients who had HIFU with at least 2 year follow-up were treated with four different types of Sonablate® (Focus Surgery, Indianapolis, USA) devices. Thirty-three patients were treated with Sonablate® 200 (S200) from 1999 to 2001, 406 patients with Sonablate® 500 (S500) from 2001 to 2005, 200 patients with Sonablate® 500 version 4 (V4) from 2005-2008 and 19 patients with Sonablate® 500 TCM (TCM) from 2007. Biochemical disease-free survival rate (bDFS) in all patients was 59% in 8 years. bDFS in 8 years in patients with S200 and S500 groups were 55% and 56%, and bDFS in 4 and 2 years in patients with V4 and TCM group were 72% and 84%, respectively. bDFS in low, intermediate, and high risk groups were 75%, 54%, and 43% in S200/S500 and 93%, 72%, and 58% in V4/TCM group. Negative prostate biopsy rate after HIFU was 97% in S200, 79% in S500, 94% in V4 and 100% in TCM group. HIFU as primary therapy for prostate cancer is indicated in patients with low- and intermediate-risk (T1-T2b N0M0 disease, a Gleason score of ⩽7, a PSA level of <20 ng/mL) and a prostate volume of less than 40 mL. The rate of clinical outcome has significantly improved over the years due to technical improvements in the device.

  12. Intra-operative feedback and dynamic compensation for image-guided robotic focal ultrasound surgery.

    PubMed

    Chauhan, S; Amir, H; Chen, G; Hacker, A; Michel, M S; Koehrmann, K U

    2008-11-01

    This paper describes a non-invasive remote temperature measurement technique integrated with a biomechatronic surgery system devised in our laboratory and named FUSBOT (Focal Ultrasound Surgery RoBOT). FUSBOTs use High-Intensity Focused Ultrasound (HIFU) for ablation of cancers/tumors and targets accessible through various soft-tissue acoustic windows in the human body. The focused ultrasound beam parameters are chosen so that biologically significant temperature rises are achieved only within the focal volume. In this paper, FUSBOT(BS), a customized system for breast surgery, is taken as a representative example to demonstrate the implementation and the results of non-invasive feedback during ablation. An 8-axis PC-based controller controls various sub-sections of the system within a safe constrained work envelope. Temperature is a prime target parameter in ablative procedures, and it is of paramount importance that means should be devised for its measurement and control in order to design optimal dose protocols and judge the efficacy of FUS systems. A customized sensory interface is devised and integrated with FUSBOT(BS), and dedicated software algorithms are embedded for surgical planning based on real-time guidance and feedback. Variations in the physical parameters of the tissue interacting with the incident modality are used as surgical feedback. The use of real-time ultrasound imaging and data processed from various sensors to deduce lesion position and thermal feedback during surgery, as integrated with the robotic system for online surgical planning, is described. Dynamic registration algorithms are developed for compensation and re-registration of the robotic end-effector with respect to the target, and representative empirical outcomes for lesion tracking and online temperature estimation in various biological tissues are presented.

  13. Technical tips to perform safe and effective ultrasound guided steroid joint injections in children.

    PubMed

    Parra, Dimitri A

    2015-01-01

    The aim of this article is to describe the technique used to perform ultrasound guided steroid joint injections in children in a group of joints that can be injected using ultrasound as the only image guidance modality. The technique is described and didactic figures are provided to illustrate key technical concepts. It is very important to be familiar with the sonographic appearance of the pediatric joints and the developing bone when performing ultrasound-guided joint injections in children.

  14. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellens, N; Partanen, A; Ghoshal, G

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360°more » of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1

  15. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  16. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  17. Fluorine MR Imaging Monitoring of Tumor Inflammation after High-Intensity Focused Ultrasound Ablation.

    PubMed

    Shin, Soo Hyun; Park, Sang Hyun; Kim, Seung Won; Kim, Minsun; Kim, Daehong

    2018-05-01

    Purpose To investigate whether high-intensity focused ultrasound (HIFU)-induced macrophage infiltration could be longitudinally monitored with fluorine 19 ( 19 F) magnetic resonance (MR) imaging in a quantitative manner. Materials and Methods BALB/c mice were subcutaneously inoculated with 4T1 cells and were separated into three groups: untreated mice (control, n = 9), HIFU-treated mice (HIFU, n = 9), and HIFU- and clodronate-treated mice (HIFU+Clod, n = 9). Immediately after HIFU treatment, all mice were intravenously given perfluorocarbon (PFC) emulsion. MR imaging examinations were performed 2, 4, 7, 10, and 14 days after HIFU treatment. Two-way repeated measures analysis of variance was used to analyze the changes in 19 F signal over time and differences between groups. Histologic examinations were performed to confirm in vivo data. Results Fluorine 19 signals were detected at the rims of tumors and the peripheries of ablated lesions. Mean 19 F signal in tumors was significantly higher in HIFU-treated mice than in control mice up to day 4 (0.82 ± 0.26 vs 0.42 ± 0.17, P < .001). Fluorine 19 signals were higher in the HIFU+Clod group than in the control group from day 4 (0.82 ± 0.23, P < .001) to day 14 (0.55 ± 0.16 vs 0.28 ± 0.06, P < .05). Histologic examination revealed macrophage infiltration around ablated lesions. Immunofluorescence staining confirmed PFC labeling of macrophages. Conclusion Fluorine 19 MR imaging can longitudinally capture and quantify HIFU-induced macrophage infiltration in preclinical tumor models. © RSNA, 2018 Online supplemental material is available for this article.

  18. Ultrasound-guided thrombin injection of genicular artery pseudoaneurysm.

    PubMed

    Rachakonda, Aditya; Qato, Khalil; Khaddash, Tamim; Carroccio, Alfio; Pamoukian, Vicken; Giangola, Gary

    2015-07-01

    Pseudoaneurysm is a rare complication after arthroscopic procedures involving the knee. A 38-year-old man presented 1 month after right-knee arthroscopy with a 2-cm pulsating mass on the medial side of the right knee. Duplex ultrasound evaluation revealed 2.5 × 2.1-cm pseudoaneurysm just distal to the patella with arterialized flow communicating with the inferior medial genicular artery. Ultrasound-guided thrombin injection was performed in an office setting, and the resolution of active flow within the pseudoaneurysm was confirmed with duplex ultrasonography. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Ultrasound-Guided Regional Anesthesia Simulation Training: A Systematic Review.

    PubMed

    Chen, Xiao Xu; Trivedi, Vatsal; AlSaflan, AbdulHadi A; Todd, Suzanne Clare; Tricco, Andrea C; McCartney, Colin J L; Boet, Sylvain

    Ultrasound-guided regional anesthesia (UGRA) has become the criterion standard of regional anesthesia practice. Ultrasound-guided regional anesthesia teaching programs often use simulation, and guidelines have been published to help guide URGA education. This systematic review aimed to examine the effectiveness of simulation-based education for the acquisition and maintenance of competence in UGRA. Studies identified in MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, and ERIC were included if they assessed simulation-based UGRA teaching with outcomes measured at Kirkpatrick level 2 (knowledge and skills), 3 (transfer of learning to the workplace), or 4 (patient outcomes). Two authors independently reviewed all identified references for eligibility, abstracted data, and appraised quality. After screening 176 citations and 45 full-text articles, 12 studies were included. Simulation-enhanced training improved knowledge acquisition (Kirkpatrick level 2) when compared with nonsimulation training. Seven studies measuring skill acquisition (Kirkpatrick level 2) found that simulation-enhanced UGRA training was significantly more effective than alternative teaching methods or no intervention. One study measuring transfer of learning into the clinical setting (Kirkpatrick level 3) found no difference between simulation-enhanced UGRA training and non-simulation-based training. However, this study was discontinued early because of technical challenges. Two studies examined patient outcomes (Kirkpatrick level 4), and one of these found that simulation-based UGRA training improved patient outcomes compared with didactic teaching. Ultrasound-guided regional anesthesia knowledge and skills significantly improved with simulation training. The acquired UGRA skills may be transferred to the clinical setting; however, further studies are required to confirm these changes translate to improved patient outcomes.

  20. Endoscopic ultrasound-guided transesophageal thoracentesis for minimal pleural effusion.

    PubMed

    Rana, Surinder Singh; Sharma, Ravi; Gupta, Rajesh

    2018-06-19

    Pleural effusion is a common finding both in patients with benign and malignant diseases of pleura and lung with diagnostic thoracentesis establishing the diagnosis in the majority of cases. The diagnostic thoracentesis can be done either blindly or under the guidance of ultrasound or computed tomography. However, minimal pleural effusion is difficult to sample even under image guidance. Endoscopic ultrasound (EUS) is known to detect smaller volume of pleural effusion and, thus, can help in guiding thoracentesis. To analyze the safety and efficacy of EUS-guided diagnostic thoracentesis in patients with undiagnosed minimal pleural effusion retrospectively. Retrospective analysis of the data of patients with minimal pleural effusion, who underwent EUS-guided transesophageal diagnostic thoracentesis over last 2 years, was performed. Thirteen patients (11 male; mean age 46.7 ± 16.2 years) with undiagnosed minimal pleural effusion underwent successful EUS-guided transesophageal diagnostic thoracentesis using a 22-G needle. Seven (53%) patients had fever on presentation whereas two presented with cough and loss of appetite. Eight to 54 mL fluid was aspirated with an attempt to completely empty the pleural cavity. There were no complications of the procedure. EUS-guided diagnostic thoracentesis is a safe and effective alternative for evaluating patients with minimal pleural effusion.

  1. Real-time ultrasound-guided spinal anesthesia using the SonixGPS ultrasound guidance system: a feasibility study.

    PubMed

    Niazi, A U; Chin, K J; Jin, R; Chan, V W

    2014-08-01

    Real-time ultrasound-guided neuraxial blockade remains a largely experimental technique. SonixGPS® is a new needle tracking system that displays needle tip position on the ultrasound screen. We investigated if this novel technology might aid performance of real-time ultrasound-guided spinal anesthesia. Twenty patients with body mass index < 35 kg/m(2) undergoing elective total joint arthroplasty under spinal anesthesia were recruited. Patients with previous back surgery and spinal abnormalities were excluded. Following a pre-procedural ultrasound scan, a 17G proprietary needle-sensor assembly was inserted in-plane to the transducer in four patients and out-of-plane in 16 patients. In both approaches, the trajectory of insertion was adjusted in real-time until the needle tip lay just superficial to the ligamentum flavum-dura mater complex. At this point, a 25G 120 mm Whitacre spinal needle was inserted through the 17G SonixGPS® needle. Successful dural puncture was confirmed by backflow of cerebrospinal fluid from the spinal needle. An overall success rate of 14/20 (70%) was seen with two failures (50%) and four failures (25%) in the in-plane and out-of-plane groups respectively. Dural puncture was successful on the first skin puncture in 71% of patients and in a single needle pass in 57% of patients. The median total procedure time was 16.4 and 11.1 min in the in-plane and out-of-plane groups respectively. The SonixGPS® system simplifies real-time ultrasound-guided spinal anesthesia to a large extent, especially the out-of-plane approach. Nevertheless, it remains a complex multi-step procedure that requires time, specialized equipment, and a working knowledge of spinal sonoanatomy. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. 'X-ray'-free balloon dilation for totally ultrasound-guided percutaneous nephrolithotomy.

    PubMed

    Zhou, Tie; Chen, Guanghua; Gao, Xiaofeng; Zhang, Wei; Xu, Chuanliang; Li, Lei; Sun, Yinghao

    2015-04-01

    The objective of the study was to evaluate the feasibility and safety of balloon dilation for 'X-ray'-free ultrasound-guided percutaneous nephrolithotomy (PCNL). From January 2012 to December 2012, patients underwent 'X-ray'-free ultrasound-guided PCNL with Amplatz dilator (Group A). From January 2013 to April 2014, patients underwent 'X-ray'-free ultrasound-guided PCNL with balloon dilator (Group B). For balloon dilation, a 10 F fascial dilator was used to dilate the tract. Subsequently, the 6 F nephrostomy balloon (8 mm in diameter) was indwelled along the guidewire with a marked length equal to the dilation depth. Under the monitoring of ultrasound, the location of balloon was secured and disappearance of balloon waist was confirmed when the balloon was inflated at a pressure of 20 atm. A total of 163 patients were involved in this study. Of 81 procedures in Group A, 45 procedures were performed by a senior urologist while 36 procedures by a resident. Of 82 patients in Group B, 47 procedures were performed by the same senior urologist while 35 procedures by another resident. For the senior urologist, there was no statistically significant difference between two groups in calyx of entry, stone-free rate, decline of hemoglobin and hematocrit, operation time and hospitalization. But for the residents, there was less decline of hemoglobin and hematocrit, tract development time and hospitalization in Group B compared to Group A (0.6 vs. 1.7 g/dl, p = 0.001; 2.3% vs. 5.5%, p = 0.003; 10.1 vs. 11.0 min, p = 0.027; 7.8 vs. 13.9 days, p < 0.001). Balloon dilation method introduced in this study is compensable for tract development when 'X-ray'-free ultrasound-guided PCNL is performed. Modified techniques make totally ultrasound guidance for PCNL feasible, easy and safe. In addition, such a procedure is preferable for initial operators because of less hemorrhage complication.

  3. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  4. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    NASA Astrophysics Data System (ADS)

    Gélat, Pierre; ter Haar, Gail; Saffari, Nader

    2011-09-01

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  5. Ultrasound-guided synovial Tru-cut biopsy: indications, technique, and outcome in 111 cases.

    PubMed

    Sitt, Jacqueline C M; Griffith, James F; Lai, Fernand M; Hui, Mamie; Chiu, K H; Lee, Ryan K L; Ng, Alex W H; Leung, Jason

    2017-05-01

    To investigate the diagnostic performance of ultrasound-guided synovial biopsy. Clinical notes, pathology and microbiology reports, ultrasound and other imaging studies of 100 patients who underwent 111 ultrasound-guided synovial biopsies were reviewed. Biopsies were compared with the final clinical diagnosis established after synovectomy (n = 43) or clinical/imaging follow-up (n = 57) (mean 30 months). Other than a single vasovagal episode, no complication of synovial biopsy was encountered. One hundred and seven (96 %) of the 111 biopsies yielded synovium histologically. Pathology ± microbiology findings for these 107 conclusive biopsies comprised synovial tumour (n = 30, 28 %), synovial infection (n = 18, 17 %), synovial inflammation (n = 45, 42 %), including gouty arthritis (n = 3), and no abnormality (n = 14, 13 %). The accuracy, sensitivity, and specificity of synovial biopsy was 99 %, 97 %, and 100 % for synovial tumour; 100 %, 100 %, and 100 % for native joint infection; and 78 %, 45 %, and 100 % for prosthetic joint infection. False-negative synovial biopsy did not seem to be related to antibiotic therapy. Ultrasound-guided Tru-cut synovial biopsy is a safe and reliable technique with a high diagnostic yield for diagnosing synovial tumour and also, most likely, for joint infection. Regarding joint infection, synovial biopsy of native joints seems to have a higher diagnostic yield than that for infected prosthetic joints. • Ultrasound-guided Tru-cut synovial biopsy has high accuracy (99 %) for diagnosing synovial tumour. • It has good accuracy, sensitivity, and high specificity for diagnosis of joint infection. • Synovial biopsy of native joints works better than biopsy of prosthetic joints. • A negative synovial biopsy culture from a native joint largely excludes septic arthritis. • Ultrasound-guided Tru-cut synovial biopsy is a safe and well-tolerated procedure.

  6. Pathophysiological mechanisms of high-intensity focused ultrasound-mediated vascular occlusion and relevance to non-invasive fetal surgery

    PubMed Central

    Shaw, C. J.; ter Haar, G. R.; Rivens, I. H.; Giussani, D. A.; Lees, C. C.

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a non-invasive technology, which can be used occlude blood vessels in the body. Both the theory underlying and practical process of blood vessel occlusion are still under development and relatively sparse in vivo experimental and therapeutic data exist. HIFU would however provide an alternative to surgery, particularly in circumstances where serious complications inherent to surgery outweigh the potential benefits. Accordingly, the HIFU technique would be of particular utility for fetal and placental interventions, where open or endoscopic surgery is fraught with difficulty and likelihood of complications including premature delivery. This assumes that HIFU could be shown to safely and effectively occlude blood vessels in utero. To understand these mechanisms more fully, we present a review of relevant cross-specialty literature on the topic of vascular HIFU and suggest an integrative mechanism taking into account clinical, physical and engineering considerations through which HIFU may produce vascular occlusion. This model may aid in the design of HIFU protocols to further develop this area, and might be adapted to provide a non-invasive therapy for conditions in fetal medicine where vascular occlusion is beneficial. PMID:24671935

  7. Consistent evaluation of an ultrasound-guided surgical navigation system by utilizing an active validation platform

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Kim, Sungmin; Boctor, Emad M.

    2017-03-01

    An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.

  8. A new FPGA-driven P-HIFU system with harmonic cancellation technique

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Su, Zhiqiang; Chen, Yazhu

    2017-03-01

    This paper introduces a high intensity focused ultrasound system for ablation using switch-mode power amplifiers with harmonic cancellation technique eliminating the 3rdharmonic and all even harmonics. The efficiency of the amplifier is optimized by choosing different parameters of the harmonic cancellation technique. This technique requires double driving signals, and specific signal waveform because of the full-bridge topology. The new FPGA-driven P-HIFU system has 200 channels of phase signals that can form 100 output channels. An FPGA chip is used to generate these signals, and each channel has a phase resolution of 2 ns, less than one degree. The output waveform of the amplifier, voltage waveform across the transducer, shows fewer harmonic components.

  9. Ex Vivo Characterization of Canine Liver Tissue Viscoelasticity Following High Intensity Focused Ultrasound (HIFU) Ablation

    PubMed Central

    Shahmirzadi, Danial; Hou, Gary Y.; Chen, Jiangang; Konofagou, Elisa E.

    2014-01-01

    Elasticity imaging has shown great promise in detecting High Intensity Focused Ultrasound (HIFU) lesions based on their distinct biomechanical properties. However, quantitative mechanical properties of the tissue and the optimal intensity for obtaining the best contrast parameters remain scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm2 and time durations of 10 and 30 s ex vivo; leading to six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the post-ablation tissue viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared to the unablated cases, all six groups of ablated tissues showed statistically-significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm2 for 10 s, 7.16 kW/cm2 for 10 s, 9.07 kW/cm2 & 10 s, and 5.55 kW/cm2 & 30 s, respectively), but decrease in groups 5 and 6 (7.16 kW/cm2 for 30 s, and 9.07 kW/cm2 for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies are needed to estimate the tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation. PMID:24315395

  10. Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Lun; Li, Pai-Chi; Shih, Wen-Pin; Huang, Pei-Shin; Kuo, Po-Ling

    2013-10-01

    Pulsed high-intensity focused ultrasound (HIFU) is proposed as a new alternative treatment for contracture of dense fibrous tissue. It is hypothesized that the pulsed-HIFU can release the contracted tissues by attenuating tensile stiffness along the fiber axis, and that the stiffness reduction can be quantitatively monitored by change of B-mode images. Fresh porcine tendons and ligaments were adapted to an ex vivo model and insonated with pulsed-HIFU for durations ranging from 5 to 30 min. The pulse length was 91 µs with a repetition frequency of 500 Hz, and the peak rarefactional pressure was 6.36 MPa. The corresponding average intensities were kept around 1606 W cm-2 for ISPPA and 72.3 W cm-2 for ISPTA. B-mode images of the tissues were acquired before and after pulsed-HIFU exposure, and the changes in speckle intensity and organization were analyzed. The tensile stiffness of the HIFU-exposed tissues along the longitudinal axis was examined using a stretching machine. Histology examinations were performed by optical and transmission electron microscopy. Pulsed-HIFU exposure significantly decreased the tensile stiffness of the ligaments and tendons. The intensity and organization of tissue speckles in the exposed region were also decreased. The speckle changes correlated well with the degree of stiffness alteration. Histology examinations revealed that pulsed-HIFU exposure probably damages tissues via a cavitation-mediated mechanism. Our results suggest that pulsed-HIFU with a low duty factor is a promising tool for developing new treatment strategies for orthopedic disorders.

  11. Fundamental analysis and ex vivo validation of thermal lesion mapping using harmonic motion imaging for focused ultrasound (HMIFU)

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Luo, Jianwen; Maleke, Caroline; Vappou, Jonathan; Marquet, Fabrice; Konofagou, Elisa E.

    2012-10-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25-Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the estimated HMI displacement ratios were equal to 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  12. High-intensity focused ultrasound ablation around the tubing

    PubMed Central

    Siu, Jun Yang; Liu, Chenhui

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17–339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10–30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography. PMID:29161293

  13. Conventional Landmark-Guided Midline Versus Preprocedure Ultrasound-Guided Paramedian Techniques in Spinal Anesthesia.

    PubMed

    Kallidaikurichi Srinivasan, Karthikeyan; Iohom, Gabriella; Loughnane, Frank; Lee, Peter J

    2015-10-01

    Multiple passes and attempts while administering spinal anesthesia are associated with a greater incidence of postdural puncture headache, paraesthesia, and spinal hematoma. We hypothesized that the routine use of a preprocedural ultrasound-guided paramedian technique for spinal anesthesia would reduce the number of passes required to achieve entry into the subarachnoid space when compared with the conventional landmark-guided midline approach. One hundred consenting patients scheduled for elective total joint replacements (hip and knee) were randomized into group C (conventional) and group P (preprocedural ultrasound-guided paramedian technique) with 50 in each group. The patients were blinded to the study group. All spinal anesthetics were administered by a consultant anesthesiologist. In group C, spinal anesthetic was done via the midline approach using clinically palpated landmarks. In group P, a preprocedural ultrasound scan was used to mark the paramedian insertion site, and spinal anesthetic was performed via the paramedian approach. The average number of passes (defined as the number of forward advancements of the spinal needle in a given interspinous space, i.e., withdrawal and redirection of spinal needle without exiting the skin) in group P was approximately 0.34 times that in group C, a difference that was statistically significant (P = 0.01). Similarly, the average number of attempts (defined as the number of times the spinal needle was withdrawn from the skin and reinserted) in group P was approximately 0.25 times that of group C (P = 0.0021). In group P, on an average, it took 81.5 (99% confidence interval, 68.4-97 seconds) seconds longer to identify the landmarks than in group C (P = 0.0002). All other parameters, including grading of palpated landmarks, time taken for spinal anesthetic injection, periprocedural pain scores, periprocedural patient discomfort visual analog scale score, conversion to general anesthetic, paresthesia, and radicular pain

  14. Ultrasonographic percutaneous anatomy of the atlanto-occipital region and indirect ultrasound-guided cisternal puncture in the dog and the cat.

    PubMed

    Etienne, A-L; Audigié, F; Peeters, D; Gabriel, A; Busoni, V

    2015-04-01

    Cisternal puncture in dogs and cats is commonly carried out. This article describes the percutaneous ultrasound anatomy of the cisternal region in the dog and the cat and an indirect technique for ultrasound-guided cisternal puncture. Ultrasound images obtained ex vivo and in vivo were compared with anatomic sections and used to identify the landmarks for ultrasound-guided cisternal puncture. The ultrasound-guided procedure was established in cadavers and then applied in vivo in seven dogs and two cats. The anatomic landmarks for the ultrasound-guided puncture are the cisterna magna, the spinal cord, the two occipital condyles on transverse images, the external occipital crest and the dorsal arch of the first cervical vertebra on longitudinal images. Using these ultrasound anatomic landmarks, an indirect ultrasound-guided technique for cisternal puncture is applicable in the dog and the cat. © 2014 Blackwell Verlag GmbH.

  15. Application of high-intensity focused ultrasound for fetal therapy: experimental study using an animal model of lower urinary tract obstruction.

    PubMed

    Aoki, Hiroko; Ichizuka, Kiyotake; Ichihara, Mitsuyoshi; Matsuoka, Ryu; Hasegawa, Junichi; Okai, Takashi; Umemura, Shinichirou

    2013-04-01

    The purpose of this study is to investigate whether high-intensity focused ultrasound (HIFU) exposure is able to produce a fistula between the bladder and abdominal wall of a fetus with lower urinary tract obstruction (LUTO). We constructed a prototype HIFU transducer in combination with an imaging probe. HIFU was applied to the lower abdomen of a rabbit neonate that was complicated by LUTO as an experimental model to produce a fistula; HIFU was applied in a tank filled with degassed water. Exposed lesions were assessed by histological analysis at necropsy. When HIFU was applied at 5.5 kW/cm(2) of spatial-peak temporal average intensity (SPTA), a fistula was created between the lower abdominal wall and the urinary bladder; urine gushed out from the bladder through the fistula within 60 s after HIFU exposure. The findings suggest that fetal diseases such as LUTO can be non-invasively treated using HIFU exposure from even outside the maternal body, though this study was performed in a water tank.

  16. Experimental study on ablation of leiomyoma by combination high-intensity focused ultrasound and iodized oil in vitro.

    PubMed

    Liang, Zhi-Gang; Gao, Yi; Ren, Xiao-Yan; Sun, Cui; Gu, Heng-Fang; Mou, Meng; Xiao, Yan-Bing

    2017-10-01

    The aim of the current study was to investigate whether iodized oil (IO) enhances high-intensity focused ultrasound (HIFU) ablation of uterine leiomyoma and to determine the features of hyperechoic changes in the target region. Forty samples of uterine leiomyoma were randomly divided into an experimental group and a control group. In the experimental group, the leiomyoma was ablated by HIFU 30 min after 1 mL of iodized oil had been injected into the center of the myoma. The hyperechoic values and areas in the target region were observed by B-modal ultrasound after HIFU ablation. The samples were cut successively into slices and stained by triphenyltetrazolium chloride (TTC) solution within 1 h after HIFU ablation. The diameters of TTC-non-stained areas were measured and tissues in the borderline of the TTC-stained and -non-stained areas were observed pathologically. All procedures in the control group were the same as those in the experimental group except IO was replaced by physiological saline. The hyperechoic value in the target region in the experimental group was higher than that in the control group 4 min after HIFU ablation (P < 0.05). Hyperechoic areas in the target region as well as TTC-non-stained volumes in the experimental group were greater than those in the control group (P < 0.05). Routine pathologic observation showed that coagulation necrosis of leiomyoma occurred in the target region in both groups. IO causes coagulation necrosis, enlarges tissue damage, and postpones the attenuation of hyperechoic changes in the target region when HIFU ablation is carried out for leiomyoma in vitro. © 2017 Japan Society of Obstetrics and Gynecology.

  17. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    PubMed

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  18. Ultrasound-guided interventional therapy for recurrent ovarian chocolate cysts.

    PubMed

    Wang, Lu-Lu; Dong, Xiao-Qiu; Shao, Xiao-Hui; Wang, Si-Ming

    2011-10-01

    The aim of this study was to determine the effectiveness of ultrasound-guided interventional therapy in the treatment of postoperative recurrent chocolate cysts. The 198 patients enrolled in this study were divided into three groups. In group 1, the saline washing group, the cavity of the cyst was washed thoroughly with warm saline. In group 2, the ethanol short-time retention group, after washing with saline, the cyst was injected with 95% ethanol with a volume of half of the fluid aspirated from the cyst. Ten minutes later, the rest of the ethanol was aspirated. In group 3, the ethanol retention group, the procedures were the same as with the ethanol short-time retention group, except that 95% of the ethanol was retained in the cyst. An ultrasound examination was performed in the third, sixth and 12th months after therapy. The chocolate cyst cure rate was significantly higher in the ethanol retention group (96%, 66/69) than in the ethanol short-time retention group (82%, 56/68) and no case was cured in the first group (saline washing). We conclude that ultrasound-guided injection and 95% ethanol retention are an effective therapy for the treatment of postoperative recurrent chocolate cysts. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. In-line positioning of ultrasound images using wireless remote display system with tablet computer facilitates ultrasound-guided radial artery catheterization.

    PubMed

    Tsuchiya, Masahiko; Mizutani, Koh; Funai, Yusuke; Nakamoto, Tatsuo

    2016-02-01

    Ultrasound-guided procedures may be easier to perform when the operator's eye axis, needle puncture site, and ultrasound image display form a straight line in the puncture direction. However, such methods have not been well tested in clinical settings because that arrangement is often impossible due to limited space in the operating room. We developed a wireless remote display system for ultrasound devices using a tablet computer (iPad Mini), which allows easy display of images at nearly any location chosen by the operator. We hypothesized that the in-line layout of ultrasound images provided by this system would allow for secure and quick catheterization of the radial artery. We enrolled first-year medical interns (n = 20) who had no prior experience with ultrasound-guided radial artery catheterization to perform that using a short-axis out-of-plane approach with two different methods. With the conventional method, only the ultrasound machine placed at the side of the head of the patient across the targeted forearm was utilized. With the tablet method, the ultrasound images were displayed on an iPad Mini positioned on the arm in alignment with the operator's eye axis and needle puncture direction. The success rate and time required for catheterization were compared between the two methods. Success rate was significantly higher (100 vs. 70 %, P = 0.02) and catheterization time significantly shorter (28.5 ± 7.5 vs. 68.2 ± 14.3 s, P < 0.001) with the tablet method as compared to the conventional method. An ergonomic straight arrangement of the image display is crucial for successful and quick completion of ultrasound-guided arterial catheterization. The present remote display system is a practical method for providing such an arrangement.

  20. Success of ultrasound-guided versus landmark-guided arthrocentesis of hip, ankle, and wrist in a cadaver model.

    PubMed

    Berona, Kristin; Abdi, Amin; Menchine, Michael; Mailhot, Tom; Kang, Tarina; Seif, Dina; Chilstrom, Mikaela

    2017-02-01

    The objectives of this study were to evaluate emergency medicine resident-performed ultrasound for diagnosis of effusions, compare the success of a landmark-guided (LM) approach with an ultrasound-guided (US) technique for hip, ankle and wrist arthrocentesis, and compare change in provider confidence with LM and US arthrocentesis. After a brief video on LM and US arthrocentesis, residents were asked to identify artificially created effusions in the hip, ankle and wrist in a cadaver model and to perform US and LM arthrocentesis of the effusions. Outcomes included success of joint aspiration, time to aspiration, and number of attempts. Residents were surveyed regarding their confidence in identifying effusions with ultrasound and performing LM and US arthrocentesis. Eighteen residents completed the study. Sensitivity of ultrasound for detecting joint effusion was 86% and specificity was 90%. Residents were successful with ultrasound in 96% of attempts and with landmark 89% of attempts (p=0.257). Median number of attempts was 1 with ultrasound and 2 with landmarks (p=0.12). Median time to success with ultrasound was 38s and 51s with landmarks (p=0.23). After the session, confidence in both US and LM arthrocentesis improved significantly, however the post intervention confidence in US arthrocentesis was higher than LM (4.3 vs. 3.8, p<0.001). EM residents were able to successfully identify joint effusions with ultrasound, however we were unable to detect significant differences in actual procedural success between the two modalities. Further studies are needed to define the role of ultrasound for arthrocentesis in the emergency department. Copyright © 2016 Elsevier Inc. All rights reserved.