Sample records for ultrasound pressure variation

  1. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    PubMed

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  2. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  3. Ultrasound pressure distributions generated by high frequency transducers in large reactors.

    PubMed

    Leong, Thomas; Coventry, Michael; Swiergon, Piotr; Knoerzer, Kai; Juliano, Pablo

    2015-11-01

    The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber's vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Nonlocal Total-Variation-Based Speckle Filtering for Ultrasound Images.

    PubMed

    Wen, Tiexiang; Gu, Jia; Li, Ling; Qin, Wenjian; Wang, Lei; Xie, Yaoqin

    2016-07-01

    Ultrasound is one of the most important medical imaging modalities for its real-time and portable imaging advantages. However, the contrast resolution and important details are degraded by the speckle in ultrasound images. Many speckle filtering methods have been developed, but they are suffered from several limitations, difficult to reach a balance between speckle reduction and edge preservation. In this paper, an adaptation of the nonlocal total variation (NLTV) filter is proposed for speckle reduction in ultrasound images. The speckle is modeled via a signal-dependent noise distribution for the log-compressed ultrasound images. Instead of the Euclidian distance, the statistical Pearson distance is introduced in this study for the similarity calculation between image patches via the Bayesian framework. And the Split-Bregman fast algorithm is used to solve the adapted NLTV despeckling functional. Experimental results on synthetic and clinical ultrasound images and comparisons with some classical and recent algorithms are used to demonstrate its improvements in both speckle noise reduction and tissue boundary preservation for ultrasound images. © The Author(s) 2015.

  5. Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.

    PubMed

    Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng

    2018-06-06

    Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. [Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma].

    PubMed

    Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi

    2014-10-01

    We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p < 0.001). Central corneal thickness was correlated with the large variation group (odds ratio = 1.04; 95% confidence interval, 1.01-1.07 ; p = 0.02). No particular tendencies in intraocular pressure variations were found after visual field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.

  7. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  8. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  9. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  10. Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound.

    PubMed

    Hoshi, T; Takahashi, M; Iwamoto, T; Shinoda, H

    2010-01-01

    This paper describes a tactile display which provides unrestricted tactile feedback in air without any mechanical contact. It controls ultrasound and produces a stress field in a 3D space. The principle is based on a nonlinear phenomenon of ultrasound: Acoustic radiation pressure. The fabricated prototype consists of 324 airborne ultrasound transducers, and the phase and intensity of each transducer are controlled individually to generate a focal point. The DC output force at the focal point is 16 mN and the diameter of the focal point is 20 mm. The prototype produces vibrations up to 1 kHz. An interaction system including the prototype is also introduced, which enables users to see and touch virtual objects.

  11. Effect of mild pressure applied by the ultrasound transducer on fetal cephalic measurements at 20-24 weeks' gestation.

    PubMed

    Kliper, Yael; Ben-Ami, Moshe; Perlitz, Yuri

    2014-01-01

    The aim of this study was to assess the effect of mild pressure applied on the abdominal wall by the ultrasound transducer on fetal cephalic indices. We examined by ultrasound 60 fetuses of healthy women, at 20-24 weeks of pregnancy, during routine prenatal evaluation. For every fetus biparietal diameter and head circumference were measured, with and without applying mild pressure by the ultrasound transducer. The weight and gestational age (GA) were calculated. The pressure applied by the transducer had a significant effect on the cephalic indices and on the weight and GA evaluations (p < 0.001). Fetal positioning significantly affected the impact that applied pressure had on head circumference and on the weight evaluation derived from it (p < 0.05). Applied pressure by an abdominal ultrasound probe affects cephalic indices and the derived weight and GA estimations. This may lead to incorrect diagnoses or hide pathological findings. The effect of applied pressure depends on fetal positioning. The examiner must be aware of this effect when evaluating the results of the measurements.

  12. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    PubMed

    Li, Xue; Song, Zhengxiang

    2015-04-09

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.

  13. Arterial blood pressure estimation using ultrasound: Clinical results on healthy volunteers and a medicated hypertensive volunteer.

    PubMed

    Zakrzewski, Aaron M; Anthony, Brian W

    2017-07-01

    This study presents a non-occlusive and non-invasive ultrasound-based technique to measure blood pressure. Most popular clinically-used arterial blood pressure measurement techniques suffer from important weaknesses including being inaccurate, invasive, or occlusive. In the proposed technique, an ultrasound probe is placed on the patient's carotid artery and the contact force between the probe and the tissue is slowly increased while ultrasound images and contact force data are recorded. From this data, the artery is segmented and the segmentation data is sent into an optimization procedure; after post-processing, blood pressure is displayed to the user. This technique was applied to 24 healthy single-visit volunteers, one multi-visit healthy volunteer, and one multi-visit medicated hypertensive volunteer. Compared to the oscillometric cuff, the accuracy and precision of the algorithm-reported systolic pressure is -2.4 ± 10.2 mmHg, and for diastolic pressure is -0.3 ± 8.2 mmHg. This method has the potential to occupy a clinical middle-ground between the arterial catheter and the oscillometric cuff.

  14. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage.

    PubMed

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-06-01

    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day  - 1 , respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.

  15. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization

    PubMed Central

    2011-01-01

    Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032

  16. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Variations in pressure. 195.104 Section 195.104... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more...

  17. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Variations in pressure. 195.104 Section 195.104... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more...

  18. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Variations in pressure. 195.104 Section 195.104... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more...

  19. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Variations in pressure. 195.104 Section 195.104... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more...

  20. 49 CFR 195.104 - Variations in pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Variations in pressure. 195.104 Section 195.104... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Design Requirements § 195.104 Variations in pressure. If, within a pipeline system, two or more...

  1. Noninvasive Ambient Pressure Estimation using Ultrasound Contrast Agents -- Invoking Subharmonics for Cardiac and Hepatic Applications

    NASA Astrophysics Data System (ADS)

    Dave, Jaydev K.

    Ultrasound contrast agents (UCAs) are encapsulated microbubbles that provide a source for acoustic impedance mismatch with the blood, due to difference in compressibility between the gas contained within these microbubbles and the blood. When insonified by an ultrasound beam, these UCAs act as nonlinear scatterers and enhance the echoes of the incident pulse, resulting in scattering of the incident ultrasound beam and emission of fundamental (f0), subharmonic (f0/2), harmonic (n*f0; n ∈ N) and ultraharmonic (((2n-1)/2)*f0; n ∈ N & n > 1) components in the echo response. A promising approach to monitor in vivo pressures revolves around the fact that the ultrasound transmit and receive parameters can be selected to induce an ambient pressure amplitude dependent subharmonic signal. This subharmonic signal may be used to estimate ambient pressure amplitude; such technique of estimating ambient pressure amplitude is referred to as subharmonic aided pressure estimation or SHAPE. This project develops and evaluates the feasibility of SHAPE to noninvasively monitor cardiac and hepatic pressures (using commercially available ultrasound scanners and UCAs) because invasive catheter based pressure measurements are used currently for these applications. Invasive catheter based pressure measurements pose risk of introducing infection while the catheter is guided towards the region of interest in the body through a percutaneous incision, pose risk of death due to structural or mechanical failure of the catheter (which has also triggered product recalls by the USA Food and Drug Administration) and may potentially modulate the pressures that are being measured. Also, catheterization procedures require fluoroscopic guidance to advance the catheter to the site of pressure measurements and such catheterization procedures are not performed in all clinical centers. Thus, a noninvasive technique to obtain ambient pressure values without the catheterization process is clinically

  2. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  3. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  4. On pressure measurement and seasonal pressure variations during the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Taylor, Peter A.; Kahanpää, Henrik; Weng, Wensong; Akingunola, Ayodeji; Cook, Clive; Daly, Mike; Dickinson, Cameron; Harri, Ari-Matti; Hill, Darren; Hipkin, Victoria; Polkko, Jouni; Whiteway, Jim

    2010-03-01

    In situ surface pressures measured at 2 s intervals during the 150 sol Phoenix mission are presented and seasonal variations discussed. The lightweight Barocap®/Thermocap® pressure sensor system performed moderately well. However, the original data processing routine had problems because the thermal environment of the sensor was subject to more rapid variations than had been expected. Hence, the data processing routine was updated after Phoenix landed. Further evaluation and the development of a correction are needed since the temperature dependences of the Barocap sensor heads have drifted after the calibration of the sensor. The inaccuracy caused by this appears when the temperature of the unit rises above 0°C. This frequently affects data in the afternoons and precludes a full study of diurnal pressure variations at this time. Short-term fluctuations, on time scales of order 20 s are unaffected and are reported in a separate paper in this issue. Seasonal variations are not significantly affected by this problem and show general agreement with previous measurements from Mars. During the 151 sol mission the surface pressure dropped from around 860 Pa to a minimum (daily average) of 724 Pa on sol 140 (Ls 143). This local minimum occurred several sols earlier than expected based on GCM studies and Viking data. Since battery power was lost on sol 151 we are not sure if the timing of the minimum that we saw could have been advanced by a low-pressure meteorological event. On sol 95 (Ls 122), we also saw a relatively low-pressure feature. This was accompanied by a large number of vertical vortex events, characterized by short, localized (in time), low-pressure perturbations.

  5. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    PubMed

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  6. Assessing the blood pressure waveform of the carotid artery using an ultrasound image processing method

    PubMed Central

    Fatouraee, Nasser; Saberi, Hazhir

    2017-01-01

    Purpose The aim of this study was to introduce and implement a noninvasive method to derive the carotid artery pressure waveform directly by processing diagnostic sonograms of the carotid artery. Methods Ultrasound image sequences of 20 healthy male subjects (age, 36±9 years) were recorded during three cardiac cycles. The internal diameter and blood velocity waveforms were extracted from consecutive sonograms over the cardiac cycles by using custom analysis programs written in MATLAB. Finally, the application of a mathematical equation resulted in time changes of the arterial pressure. The resulting pressures were calibrated using the mean and the diastolic pressure of the radial artery. Results A good correlation was found between the mean carotid blood pressure obtained from the ultrasound image processing and the mean radial blood pressure obtained using a standard digital sphygmomanometer (R=0.91). The mean absolute difference between the carotid calibrated pulse pressures and those measured clinically was -1.333±6.548 mm Hg. Conclusion The results of this study suggest that consecutive sonograms of the carotid artery can be used for estimating a blood pressure waveform. We believe that our results promote a noninvasive technique for clinical applications that overcomes the reproducibility problems of common carotid artery tonometry with technical and anatomical causes. PMID:27776401

  7. Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome.

    PubMed

    Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C

    2015-01-01

    PURPOSE OF THE STUDY Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. MATERIAL AND METHODS In an in-vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intracompartmental pressures (p) were raised subsequently up to 80 mm Hg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mm Hg) upon the surface resulting in a linear compartmental displacement (Δd). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. RESULTS With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mm Hg) occurred. The Pearson's coefficient showed a high correlation (r2 = -0.960). The intraobserver reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). CONCLUSIONS Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete

  8. Ultrasound coefficient of nonlinearity imaging.

    PubMed

    van Sloun, Ruud; Demi, Libertario; Shan, Caifeng; Mischi, Massimo

    2015-07-01

    Imaging the acoustical coefficient of nonlinearity, β, is of interest in several healthcare interventional applications. It is an important feature that can be used for discriminating tissues. In this paper, we propose a nonlinearity characterization method with the goal of locally estimating the coefficient of nonlinearity. The proposed method is based on a 1-D solution of the nonlinear lossy Westerfelt equation, thereby deriving a local relation between β and the pressure wave field. Based on several assumptions, a β imaging method is then presented that is based on the ratio between the harmonic and fundamental fields, thereby reducing the effect of spatial amplitude variations of the speckle pattern. By testing the method on simulated ultrasound pressure fields and an in vitro B-mode ultrasound acquisition, we show that the designed algorithm is able to estimate the coefficient of nonlinearity, and that the tissue types of interest are well discriminable. The proposed imaging method provides a new approach to β estimation, not requiring a special measurement setup or transducer, that seems particularly promising for in vivo imaging.

  9. The effect of adjunctive noncontact low frequency ultrasound on deep tissue pressure injury.

    PubMed

    Honaker, Jeremy S; Forston, Michael R; Davis, Emily A; Weisner, Michelle M; Morgan, Jennifer A; Sacca, Emily

    2016-11-01

    The optimal treatment for deep tissue pressure injuries has not been determined. Deep tissue pressure injuries represent a more ominous early stage pressure injury that may evolve into full thickness ulceration despite implementing the standard of care for pressure injury. A longitudinal prospective historical case control study design was used to determine the effectiveness of noncontact low frequency ultrasound plus standard of care (treatment group) in comparison to standard of care (control group) in reducing deep tissue pressure injury severity, total surface area, and final pressure injury stage. The Honaker Suspected Deep Tissue Injury Severity Scale (range 3-18[more severe]) was used to determine deep tissue pressure injury severity at enrollment (Time 1) and discharge (Time 2). A total of 60 subjects (Treatment = 30; Control= 30) were enrolled in the study. In comparison to the control group mean deep tissue pressure injury total surface area change at Time 2 (0.3 cm 2 ), the treatment group had a greater decrease (8.8 cm 2 ) that was significant (t = 2.41, p = 0.014, r 2  = 0.10). In regards to the Honaker Suspected Deep Tissue Injury Severity Scale scores, the treatment group had a significantly lower score (7.6) in comparison to the control group (11.9) at time 2, with a mean difference of 4.6 (t = 6.146, p = 0.0001, r 2  = 0.39). When considering the final pressure ulcer stage at Time 2, the control group were mostly composed of unstageable pressure ulcer (57%) and deep tissue pressure injury severity (27%). In contrast, the treatment group final pressure ulcer stages were less severe and were mostly composed of stage 2 pressure injury (50%) and deep tissue pressure injury severity (23%) were the most common at time 2. The results of this study have shown that deep tissue pressure injury severity treated with noncontact low frequency ultrasound within 5 days of onset and in conjunction with standard of care may improve

  10. Modes of elastic plates and shells in water driven by modulated radiation pressure of focused ultrasound

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars

    2015-11-01

    The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.

  11. Modeling systolic pressure variation due to positive pressure ventilation.

    PubMed

    Messerges, Joanne

    2006-01-01

    Although many clinical techniques have been proposed to assess blood volume none have been established as an undisputed standard practice, Volume studies suggest systolic pressure variation (SPV) as a promising volume indicator but underlying influences on SPV are not well understood. Successful modeling of SPV will reveal the major SPV influencers, guide algorithm development to accommodate these influencers, and potentially lead to a more clinically relevant interpretation of SPV values, thus improving upon current clinical methods for assessing blood volume. This study takes a first step towards identifying SPV influencers by investigating three variations of an existing pressure-flow cardiovascular model. Each successive version introduces an additional modification in attempt to model SPV under normovolemic and hypovolemic conditions, where the last model accounts for positive pressure ventilation, venous compression, and a rightward septum shift. Under normovolemic conditions, each model yields SPV values of 5.8, 6.4, and 6.7 mmHg, respectively. Under hypovolemic conditions the results do not agree with clinical findings, suggesting these three mechanisms alone do not dictate the clinical SPV response to a decrease in volume. Model results are used to suggest improvements for future work.

  12. Intradiscal pressure variation under spontaneous ventilation

    NASA Astrophysics Data System (ADS)

    Roriz, Paulo; Ferreira, J.; Potes, J. C.; Oliveira, M. T.; Santos, J. L.; Simões, J. A.; Frazão, O.

    2014-05-01

    The pressure measured in the intervertebral discs is a response to the loads acting on the spine. External loads, such as the reaction forces resulting from locomotion, manual handling and collisions are probably the most relevant in studying spine trauma. However, the physiological functions such as breathing and hearth rate also participate in subtle variations of intradiscal pressure that can be observed only in vivo at resting. Present work is an effort to measure the effect of breathing on intradiscal pressure of an anesthetized sheep.

  13. National variation in preoperative imaging, carotid duplex ultrasound criteria, and threshold for surgery for asymptomatic carotid artery stenosis.

    PubMed

    Arous, Edward J; Simons, Jessica P; Flahive, Julie M; Beck, Adam W; Stone, David H; Hoel, Andrew W; Messina, Louis M; Schanzer, Andres

    2015-10-01

    Carotid endarterectomy (CEA) for asymptomatic carotid artery stenosis is among the most common procedures performed in the United States. However, consensus is lacking regarding optimal preoperative imaging, carotid duplex ultrasound criteria, and ultimately, the threshold for surgery. We sought to characterize national variation in preoperative imaging, carotid duplex ultrasound criteria, and threshold for surgery for asymptomatic CEA. The Society for Vascular Surgery Vascular Quality Initiative (VQI) database was used to identify all CEA procedures performed for asymptomatic carotid artery stenosis between 2003 and 2014. VQI currently captures 100% of CEA procedures performed at >300 centers by >2000 physicians nationwide. Three analyses were performed to quantify the variation in (1) preoperative imaging, (2) carotid duplex ultrasound criteria, and (3) threshold for surgery. Of 35,695 CEA procedures in 33,488 patients, the study cohort was limited to 19,610 CEA procedures (55%) performed for asymptomatic disease. The preoperative imaging modality used before CEA varied widely, with 57% of patients receiving a single preoperative imaging study (duplex ultrasound imaging, 46%; computed tomography angiography, 7.5%; magnetic resonance angiography, 2.0%; cerebral angiography, 1.3%) and 43% of patients receiving multiple preoperative imaging studies. Of the 16,452 asymptomatic patients (89%) who underwent preoperative duplex ultrasound imaging, there was significant variability between centers in the degree of stenosis (50%-69%, 70%-79%, 80%-99%) designated for a given peak systolic velocity, end diastolic velocity, and internal carotid artery-to-common carotid artery ratio. Although 68% of CEA procedures in asymptomatic patients were performed for an 80% to 99% stenosis, 26% were performed for a 70% to 79% stenosis, and 4.1% were performed for a 50% to 69% stenosis. At the surgeon level, the range in the percentage of CEA procedures performed for a <80% asymptomatic

  14. Shape calibration of a conformal ultrasound therapy array.

    PubMed

    McGough, R J; Cindric, D; Samulski, T V

    2001-03-01

    A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.

  15. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  16. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation

    NASA Astrophysics Data System (ADS)

    Hwan Lee, Seok; Park, Mi-ae; Yoh, Jack J.; Song, Hyelynn; Yun Jang, Eui; Hyup Kim, Yong; Kang, Sungchan; Seop Yoon, Yong

    2012-12-01

    We demonstrate that reduced graphene oxide (rGO) coated thin aluminum film is an effective optoacoustic transmitter for generating high pressure and high frequency ultrasound previously unattainable by other techniques. The rGO layer of different thickness is deposited between a 100 nm-thick aluminum film and a glass substrate. Under a pulsed laser excitation, the transmitter generates enhanced optoacoustic pressure of 64 times the aluminum-alone transmitter. A promising optoacoustic wave generation is possible by optimizing thermoelasticity of metal film and thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound applications.

  17. Focused ultrasound and microbubbles for enhanced extravasation.

    PubMed

    Böhmer, M R; Chlon, C H T; Raju, B I; Chin, C T; Shevchenko, T; Klibanov, A L

    2010-11-20

    The permeability of blood vessels for albumin can be altered by using ultrasound and polymer or lipid-shelled microbubbles. The region in which the microbubbles were destroyed with focused ultrasound was quantified in gel phantoms as a function of pressure, number of cycles and type of microbubble. At 2MPa the destruction took place in a fairly wide area for a lipid-shelled agent, while for polymer-shelled agents at this setting, distinct destruction spots with a radius of only 1mm were obtained. When microbubbles with a thicker shell were used, the pressure above which the bubbles were destroyed shifts to higher values. In vivo both lipid and polymer microbubbles increased the extravasation of the albumin binding dye Evans Blue, especially in muscle leading to about 6-8% of the injected dose to extravasate per gram muscle tissue 30 min after start of the treatment, while no Evans Blue could be detected in muscle in the absence of microbubbles. Variation in the time between ultrasound treatment and Evans Blue injection, demonstrated that the time window for promoting extravasation is at least an hour at the settings used. In MC38 tumors, extravasation already occurred without ultrasound and only a trend towards enhancement with about a factor of 2 could be established with a maximum percentage injected dose per gram of 3%. Ultrasound mediated microbubble destruction especially enhances the extravasation in the highly vascularized outer part of the MC38 tumor and adjacent muscle and would, therefore, be most useful for release of, for instance, anti-angiogenic drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Ultrasound for the Anesthesiologists: Present and Future

    PubMed Central

    Terkawi, Abdullah S.; Karakitsos, Dimitrios; Elbarbary, Mahmoud; Blaivas, Michael; Durieux, Marcel E.

    2013-01-01

    Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD) measurement and transcranial color coded duplex (TCCD) are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE) and transesophageal (TEE) echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum. PMID:24348179

  19. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  1. Compartment elasticity measured by pressure-related ultrasound to determine patients "at risk" for compartment syndrome: an experimental in vitro study.

    PubMed

    Sellei, Richard Martin; Hingmann, Simon Johannes; Kobbe, Philipp; Weber, Christian; Grice, John Edward; Zimmerman, Frauke; Jeromin, Sabine; Hildebrand, Frank; Pape, Hans-Christoph

    2015-01-01

    Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. In an in vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intra-compartmental pressures (p) were raised subsequently up to 80 mmHg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mmHg) upon the surface resulting in a linear compartmental displacement (∆d). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mmHg) occurred. The Pearson coefficient showed a high correlation (r(2) = -0.960). The intra-observer reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete compartmental elasticity by ultrasound

  2. Noninvasive measurement of pulsatile intracranial pressure using ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Cantrell, J. H.; Yost, W. T.; Hargens, A. R.

    1998-01-01

    The present study was designed to validate our noninvasive ultrasonic technique (pulse phase locked loop: PPLL) for measuring intracranial pressure (ICP) waveforms. The technique is based upon detecting skull movements which are known to occur in conjunction with altered intracranial pressure. In bench model studies, PPLL output was highly correlated with changes in the distance between a transducer and a reflecting target (R2 = 0.977). In cadaver studies, transcranial distance was measured while pulsations of ICP (amplitudes of zero to 10 mmHg) were generated by rhythmic injections of saline. Frequency analyses (fast Fourier transformation) clearly demonstrate the correspondence between the PPLL output and ICP pulse cycles. Although theoretically there is a slight possibility that changes in the PPLL output are caused by changes in the ultrasonic velocity of brain tissue, the decreased amplitudes of the PPLL output as the external compression of the head was increased indicates that the PPLL output represents substantial skull movement associated with altered ICP. In conclusion, the ultrasound device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. Our technique makes it possible to analyze ICP waveforms noninvasively and will be helpful for understanding intracranial compliance and cerebrovascular circulation.

  3. Non-invasive assessment of negative pressure wound therapy using high frequency diagnostic ultrasound: oedema reduction and new tissue accumulation.

    PubMed

    Young, Stephen R; Hampton, Sylvie; Martin, Robin

    2013-08-01

    Tissue oedema plays an important role in the pathology of chronic and traumatic wounds. Negative pressure wound therapy (NPWT) is thought to contribute to active oedema reduction, yet few studies have showed this effect. In this study, high frequency diagnostic ultrasound at 20 MHz with an axial resolution of 60 µm was used to assess the effect of NPWT at - 80 mmHg on pressure ulcers and the surrounding tissue. Wounds were monitored in four patients over a 3-month period during which changes in oedema and wound bed thickness (granulation tissue) were measured non-invasively. The results showed a rapid reduction of periwound tissue oedema in all patients with levels falling by a mean of 43% after 4 days of therapy. A 20% increase in the thickness of the wound bed was observed after 7 days due to new granulation tissue formation. Ultrasound scans through the in situ gauze NPWT filler also revealed the existence of macrodeformation in the tissue produced by the negative pressure. These preliminary studies suggest that non-invasive assessment using high frequency diagnostic ultrasound could be a valuable tool in clinical studies of NPWT. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  4. Diurnal blood pressure variation in quadriplegic chronic spinal cord injury patients.

    PubMed

    Krum, H; Louis, W J; Brown, D J; Jackman, G P; Howes, L G

    1991-03-01

    1. Measurement of blood pressure and heart rate over a 24 h period was performed in 10 quadriplegic spinal cord injury patients and 10 immobilized, neurologically intact orthopaedic subjects by using the Spacelabs 90207 automated ambulatory monitoring system. 2. Systolic and diastolic blood pressure fell significantly at night in orthopaedic subjects but not in quadriplegic patients, and night-time blood pressures were similar in both groups. 3. Cumulative summation of differences from a reference value (cusum analysis) confirmed a markedly diminished diurnal blood pressure variation in the quadriplegic patients. 4. These findings could not be accounted for on the basis of blood pressure variations during chronic postural change. 5. Heart rate fell significantly at night in both groups. 6. The findings suggest that the increase in blood pressure during waking hours in neurologically intact subjects is a consequence of a diurnal variation in sympathetic activity (absent in quadriplegic patients with sympathetic decentralization) which is independent of changes in physical activity.

  5. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  6. Pressure Variations in Metamorphic Rocks: Implications for the Interpretation of Petrographic Observations

    NASA Astrophysics Data System (ADS)

    Tajčmanová, Lucie

    2014-05-01

    Metamorphic petrologists and structural geologists, using direct measurements, bring the only direct observational constrains for validating geodynamic models. Therefore, petrological and structural geological observations are essential for the quality and reproducibility of geodynamic reconstructions and models. One of the important assumptions for geodynamic reconstructions arises from the pressure and temperature estimates in the petrology analysis. Pressure is commonly converted to depth through the equation for lithostatic pressure and so the original position of the rock sample within the Earth's interior can be constrained. The current assumption that the studied sample corresponds to uniform pressure may not be correct, and if so, it has serious implications. Increasing evidence from analytical data shows that pressure is not constant even on a grain scale, posing new challenges because, if ignored, it leads to an incorrect use of petrology data in constraining geodynamic models. Well known examples of the preservation of coesite and diamond in a host mineral like garnet show that high pressure inclusions are preserved during decompression. Tajčmanová et al. (2014) has shown that grain-scale pressure variations can develop and that these pressure variations allow compositional zoning in minerals preserved over geological time scales. A new unconventional barometric method based on equilibrium under pressure variations has been developed . Such pressure variations are also connected with differences in fluid pressure in open systems and can be thus observed at all scales. Tajčmanová L., Podladchikov Y., Powell R., Moulas E., Vrijmoed J. and Connolly J. (2014). Grain scale pressure variations and chemical equilibrium in high-grade metamorphic rocks.Journal of Metamorphic Geology, doi:10.1111/jmg.12066 This work was supported by ERC starting grant 335577 to Lucie Tajcmanova

  7. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery – Part 1

    PubMed Central

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H2 storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1st hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body. PMID:22423175

  8. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    PubMed Central

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-01-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery. PMID:27295608

  9. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination

    NASA Astrophysics Data System (ADS)

    Xia, Jingjing; Tsui, Po-Hsiang; Liu, Hao-Li

    2016-06-01

    Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5-2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.

  10. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    PubMed

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  11. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Different nerve ultrasound patterns in charcot-marie-tooth types and hereditary neuropathy with liability to pressure palsies.

    PubMed

    Padua, Luca; Coraci, Daniele; Lucchetta, Marta; Paolasso, Ilaria; Pazzaglia, Costanza; Granata, Giuseppe; Cacciavillani, Mario; Luigetti, Marco; Manganelli, Fiore; Pisciotta, Chiara; Piscosquito, Giuseppe; Pareyson, Davide; Briani, Chiara

    2018-01-01

    Nerve ultrasound in Charcot-Marie-Tooth (CMT) disease has focused mostly on the upper limbs. We performed an evaluation of a large cohort of CMT patients in which we sonographically characterized nerve abnormalities in different disease types, ages, and nerves. Seventy patients affected by different CMT types and hereditary neuropathy with liability to pressure palsies (HNPP) were evaluated, assessing median, ulnar, fibular, tibial, and sural nerves bilaterally. Data were correlated with age. Nerve dimensions were correlated with CMT type, age, and nerve site. Nerves were larger in demyelinating than in axonal neuropathies. Nerve involvement was symmetric. CMT1 patients had larger nerves than did patients with other CMT types. Patients with HNPP showed enlargement at entrapment sites. Our study confirms the general symmetry of ultrasound nerve patterns in CMT. When compared with ultrasound studies of nerves of the upper limbs, evaluation of the lower limbs did not provide additional information. Muscle Nerve 57: E18-E23, 2018. © 2017 Wiley Periodicals, Inc.

  13. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges.

    PubMed

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-06-01

    In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries

  14. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges

    PubMed Central

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-01-01

    Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors’ method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can

  15. Neighborhood Disadvantage and Variations in Blood Pressure

    ERIC Educational Resources Information Center

    Cathorall, Michelle L.; Xin, Huaibo; Peachey, Andrew; Bibeau, Daniel L.; Schulz, Mark; Aronson, Robert

    2015-01-01

    Purpose: To examine the extent to which neighborhood disadvantage accounts for variation in blood pressure. Methods: Demographic, biometric, and self-reported data from 19,261 health screenings were used. Addresses of participants were geocoded and located within census block groups (n = 14,510, 75.3%). Three hierarchical linear models were…

  16. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  17. Ultrasound as a Noninvasive Method to Assess Changes of Intracranial Volume and Pressure During Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Yost, W. T.; Ballard, R. E.; Watenpaugh, D. E.; Kawai, Y.; Hargens, A. R.

    1994-01-01

    Headaches are commonly experienced by astronauts in microgravity and by subjects undergoing head-down tilt (simulated microgravity on Earth). Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP) and in turn cause headache. Due to the slightly compliant nature of the cranial vault and the encasement of brain and its vasculature within this vault, any increase of ICV will increase ICP and slightly distend the cranium. Previous studies document perivascular edema and increased ICP in rhesus monkeys during head-down tilt. Elevated ICP has also been reported in humans during head-down tilt. ICP measurements in healthy humans are rare because of the invasiveness of currently-available measurement techniques. Therefore, we proposed a noninvasive ultrasound technique to assess changes of ICV and JCP. The ultrasound principle is based on compliance of the cranial vault. A 450 kHz ultrasound stimulus is transmitted through the cranium by a transducer every 7.5-10 msec. The ultrasound wave enters the brain tissue, reflects off the opposite side of the cranium and is received by the same transducer. The detected wave is compared for phase quadrature (90 deg.to transmitted wave). Because the electronic circuitry of the device maintains a 90 deg. phase (phi), any alterations in the detected wave caused by an increase of ICV and ICP will be reflected as a change in the wave frequency. Phase shift is directly proportional to path length of the wave, DELTA x, which is expressed as DELTA x = phi lambda/2 pi where lambda is wavelength. Elevated ICV and ICP expand the cranial vault and increase path length of the wave (a measure of intracranial distance). Increased path length equals reduced frequency of the detected wave. Reduced frequency is then related to elevated ICP. This technique has potential uses for ICP studies of astronauts in space and head trauma patients on Earth.

  18. A flamelet model for supersonic non-premixed combustion with pressure variation

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Yan; Sun, Ming-Bo; Wu, Jin-Shui; Wang, Hong-Bo

    2015-08-01

    A modified flamelet model is proposed for studying supersonic combustion with pressure variation considering that pressure is far from homogenous in a supersonic combustor. In this model, the flamelet database are tabulated at a reference pressure, while quantities at other pressure are obtained using a sixth-order polynomial in pressure. Attributed to merit of the modified model which compute coefficients for the expansion only. And they brought less requirements for memory and table lookup time, expensive cost is avoided. The performance of modified model is much better than the approach of using a flamelet model-based method with tabulation at different pressure values. Two types of hydrogen fueled scramjet combustors were introduced to validate the modified flamelet model. It was observed that the temperature is sensitive to the choice of model in combustion area, which in return will significantly affect the pressure. It was found that the results of modified model were in good agreement with the experimental data compared with the isobaric flamelet model, especially for temperature, whose value is more accurately predicted. It is concluded that the modified flamelet model was more effective for cases with a wide range of pressure variation.

  19. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound.

    PubMed

    Webb, Sara Jane; Garrison, Michelle M; Bernier, Raphael; McClintic, Abbi M; King, Bryan H; Mourad, Pierre D

    2017-03-01

    Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  20. Biliary lithotripsy can be enhanced with proper ultrasound probe position.

    PubMed

    Affronti, J; Flournoy, T; Akers, S; Baillie, J

    1992-04-01

    We have demonstrated in our in vitro system that an extracorporeal lithotripter utilizing a movable ultrasound probe can fragment gallstones more effectively when the ultrasound probe is not partially blocking shock waves. Using a pressure transducer we measured the pressures in the focal volume of a Wolf Piezolith 2300 lithotripter with the ultrasound probe fully extended and fully retracted. We also chose 12 pairs of twin gallstones, each taken from the same gallbladder. One stone from each pair was subjected to shock waves while the ultrasound probe was fully extended and the other treated while the probe was fully retracted. Shock wave pressures (which are converted to a measurable voltage output by our transducer) were clearly lower when the ultrasound probe was extended (5.45 volts; SEM = 0.10 volts) as compared to when the ultrasound scanner was retracted (6.7 volts: SEM = 0.08 volts). Significantly more shock waves were required to completely fragment stones when the ultrasound scanner was extended than when it was retracted (p = 0.01 using the nonparametric Wilcoxon's signed rank test). These results show that, in the lithotripter tested, an extended in-line ultrasound scanner can partially block shock waves. Retraction of an extendible ultrasound probe may enhance stone fragmentation when operating at the highest shock wave intensity.

  1. [Basics of emergency ultrasound].

    PubMed

    Schellhaas, S; Breitkreutz, R

    2012-09-05

    Focused ultrasound is a key methodology of critical care medicine. By referencing few ultrasound differential diagnosis, it is possible to identifying in real-time the reason of the critical state of a patient. Therefore typical focused ultrasound protocols were developed. The well known Focused Assessment with Sonography for trauma (FAST) was incorporated into the Advanced Trauma Life Support (ATLS) for shock room. Focused echocardiographic evaluation in life support (FEEL) has been designed to be conformed with the universal Advanced Life Support (ALS) algorithm and to identify treatable conditions such as acute right ventricular pressure overload in pulmonary embolism, hypovolemia, or pericardial effusion/tamponade. Using lung ultrasound one can differentiate pulmonary edema, pleural effusion or pneumothorax.

  2. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure.

    PubMed

    Miller, Douglas L

    2016-12-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  4. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor.

    PubMed

    Stens, Jurre; Oeben, Jeroen; Van Dusseldorp, Ab A; Boer, Christa

    2016-10-01

    Nexfin beat-to-beat arterial blood pressure monitoring enables continuous assessment of hemodynamic indices like cardiac index (CI), pulse pressure variation (PPV) and stroke volume variation (SVV) in the perioperative setting. In this study we investigated whether Nexfin adequately reflects alterations in these hemodynamic parameters during a provoked fluid shift in anesthetized and mechanically ventilated patients. The study included 54 patients undergoing non-thoracic surgery with positive pressure mechanical ventilation. The provoked fluid shift comprised 15° Trendelenburg positioning, and fluid responsiveness was defined as a concomitant increase in stroke volume (SV) >10 %. Nexfin blood pressure measurements were performed during supine steady state, Trendelenburg and supine repositioning. Hemodynamic parameters included arterial blood pressure (MAP), CI, PPV and SVV. Trendelenburg positioning did not affect MAP or CI, but induced a decrease in PPV and SVV by 3.3 ± 2.8 and 3.4 ± 2.7 %, respectively. PPV and SVV returned back to baseline values after repositioning of the patient to baseline. Bland-Altman analysis of SVV and PPV showed a bias of -0.3 ± 3.0 % with limits of agreement ranging from -5.6 to 6.2 %. The SVV was more superior in predicting fluid responsiveness (AUC 0.728) than the PVV (AUC 0.636), respectively. The median bias between PPV and SVV was different for patients younger [-1.5 % (-3 to 0)] or older [+2 % (0-4.75)] than 55 years (P < 0.001), while there were no gender differences in the bias between PPV and SVV. The Nexfin monitor adequately reflects alterations in PPV and SVV during a provoked fluid shift, but the level of agreement between PPV and SVV was low. The SVV tended to be superior over PPV or Eadyn in predicting fluid responsiveness in our population.

  5. Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound

    NASA Astrophysics Data System (ADS)

    Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.

    2014-02-01

    Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.

  6. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 1: Computational Modeling.

    PubMed

    Ganguly, Arnab; Varma, Nikhil; Sane, Pooja; Bogner, Robin; Pikal, Michael; Alexeenko, Alina

    2017-04-01

    The flow physics in the product chamber of a freeze dryer involves coupled heat and mass transfer at different length and time scales. The low-pressure environment and the relatively small flow velocities make it difficult to quantify the flow structure experimentally. The current work presents the three-dimensional computational fluid dynamics (CFD) modeling for vapor flow in a laboratory scale freeze dryer validated with experimental data and theory. The model accounts for the presence of a non-condensable gas such as nitrogen or air using a continuum multi-species model. The flow structure at different sublimation rates, chamber pressures, and shelf-gaps are systematically investigated. Emphasis has been placed on accurately predicting the pressure variation across the subliming front. At a chamber set pressure of 115 mtorr and a sublimation rate of 1.3 kg/h/m 2 , the pressure variation reaches about 9 mtorr. The pressure variation increased linearly with sublimation rate in the range of 0.5 to 1.3 kg/h/m 2 . The dependence of pressure variation on the shelf-gap was also studied both computationally and experimentally. The CFD modeling results are found to agree within 10% with the experimental measurements. The computational model was also compared to analytical solution valid for small shelf-gaps. Thus, the current work presents validation study motivating broader use of CFD in optimizing freeze-drying process and equipment design.

  7. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  8. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure

    PubMed Central

    Miller, Douglas L.

    2016-01-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustic radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds, and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiological conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. PMID:27649878

  9. Observation of pressure variation in the cavitation region of submerged journal bearings

    NASA Technical Reports Server (NTRS)

    Etsion, I.; Ludwig, L. P.

    1980-01-01

    Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests were performed at various shaft speeds and ambient pressure levels. Some photographs of the cavitation region are presented showing strong reverse flow at the downstream end of the region. Pressure profiles are presented showing significant pressure variations inside the cavitation zone, contrary to common assumptions of constant cavitation pressure.

  10. Preliminary investigation of foot pressure distribution variation in men and women adults while standing.

    PubMed

    Periyasamy, R; Mishra, A; Anand, Sneh; Ammini, A C

    2011-09-01

    Women and men are anatomically and physiologically different in a number of ways. They differ in both shape and size. These differences could potentially mean foot pressure distribution variation in men and women. The purpose of this study was to analyze standing foot pressure image to obtain the foot pressure distribution parameter - power ratio variation between men and women using image processing in frequency domain. We examined 28 healthy adult subjects (14 men and 14 women) aged between 20 and 45 years was recruited for our study. Foot pressure distribution patterns while standing are obtained by using a PedoPowerGraph plantar pressure measurement system for foot image formation, a digital camera for image capturing, a TV tuner PC-add on card, a WinDvr software for still capture and Matlab software with dedicated image processing algorithms have been developed. Various PedoPowerGraphic parameters such as percentage medial impulse (PMI), fore foot to hind foot pressure distribution ratio (F/H), big toe to fore foot pressure distribution ratio (B/F) and power ratio (PR) were evaluated. In men, contact area was significantly larger in all regions of the foot compared with women. There were significant differences in plantar pressure distribution but there was no significant difference in F/H and B/F ratio. Mean PR value was significantly greater in men than women under the hind foot and fore foot. PMI value was greater in women than men. As compared to men, women have maximum PR variations in the mid foot. Hence there is significant difference at level p<0.05 in medial mid foot and mid foot PR of women as compared to men. There was variation in plantar pressure distribution because the contact area of the men foot was larger than that of women foot. Hence knowledge of pressure distributions variation of both feet can provide suitable guidelines to biomedical engineers and doctor for designing orthotic devices for reliving the area of excessively high pressure

  11. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  12. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  14. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  15. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging

    PubMed Central

    Liang, Yizhi; Jin, Long; Wang, Lidai; Bai, Xue; Cheng, Linghao; Guan, Bai-Ou

    2017-01-01

    Photoacoustic imaging, especially for intravascular and endoscopic applications, requires ultrasound probes with miniature size and high sensitivity. In this paper, we present a new photoacoustic sensor based on a small-sized fiber laser. Incident ultrasound waves exert pressures on the optical fiber laser and induce harmonic vibrations of the fiber, which is detected by the frequency shift of the beating signal between the two orthogonal polarization modes in the fiber laser. This ultrasound sensor presents a noise-equivalent pressure of 40 Pa over a 50-MHz bandwidth. We demonstrate this new ultrasound sensor on an optical-resolution photoacoustic microscope. The axial and lateral resolutions are 48 μm and 3.3 μm. The field of view is up to 1.57 mm2. The sensor exhibits strong resistance to environmental perturbations, such as temperature changes, due to common-mode cancellation between the two orthogonal modes. The present fiber laser ultrasound sensor offers a new tool for all-optical photoacoustic imaging. PMID:28098201

  16. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  17. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  18. Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Anastasio, Mark A.

    2017-12-01

    The initial pressure and speed of sound (SOS) distributions cannot both be stably recovered from photoacoustic computed tomography (PACT) measurements alone. Adjunct ultrasound computed tomography (USCT) measurements can be employed to estimate the SOS distribution. Under the conventional image reconstruction approach for combined PACT/USCT systems, the SOS is estimated from the USCT measurements alone and the initial pressure is estimated from the PACT measurements by use of the previously estimated SOS. This approach ignores the acoustic information in the PACT measurements and may require many USCT measurements to accurately reconstruct the SOS. In this work, a joint reconstruction method where the SOS and initial pressure distributions are simultaneously estimated from combined PACT/USCT measurements is proposed. This approach allows accurate estimation of both the initial pressure distribution and the SOS distribution while requiring few USCT measurements.

  19. Modeling of patient's blood pressure variation during ambulance transportation

    NASA Astrophysics Data System (ADS)

    Sakatani, Kenji; Ono, Takahiko; Kobayasi, Yasuhide; Hikita, Shinichi; Saito, Mitsuyuki

    2007-12-01

    In an emergency transportation by ambulance, a patient is transported in a supine position. In this position, a patient's blood pressure (BP) variation depending on an inertial force which occurs when an ambulance accelerates or decelerates. This BP variation causes a critical damage for a patent with brain disorder. In order to keep a patient stable during transportation, it is required to maintain small BP variation. To analyze the BP variation during transportation, a model of the BP variation has so far been made. But, it can estimate the BP variation only in braking. The purpose of this paper is to make a dynamical model of the BP variation which can simulate it in both braking and accelerating. First, to obtain the data to construct the model, we used a tilting bed to measure a head-to-foot acceleration and BP of fingertip. Based on this data, we build a mathematical model whose input is the head-to-foot acceleration and output is the Mean BP variation. It is a switched model which switches two models depending on the jerk. We add baroreceptor reflex to the model as a offset value.

  20. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. © 2015 by the American Institute of

  1. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  2. Modes of targets in water excited and identified using radiation pressure of modulated focused ultrasound

    NASA Astrophysics Data System (ADS)

    Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip

    2016-11-01

    The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.

  3. Ultrasound in gas-liquid systems: effects on solubility and mass transfer.

    PubMed

    Laugier, F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2008-09-01

    The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gas-liquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gas-liquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gas-liquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323 K, 1100 rpm, 10 bar, k(L).a is multiplied by 11 with ultrasound (20 kHz/62.6 W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.

  4. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-21

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  5. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  6. Ultrasound-enhanced drug delivery for cancer.

    PubMed

    Mo, Steven; Coussios, Constantin-C; Seymour, Len; Carlisle, Robert

    2012-12-01

    Ultrasound, which has traditionally been used as a diagnostic tool, is increasingly being used in non-invasive therapy and drug delivery. Of particular interest to this review is the rapidly accumulating evidence that ultrasound may have a key role to play both in improving the targeting and the efficacy of drug delivery for cancer. Currently available ultrasound-triggerable vehicles are first described, with particular reference to the ultrasonic mechanism that can activate release and the suitability of the size range of the vehicle used for drug delivery. Further mechanical and thermal effects of ultrasound that can enhance extravasation and drug distribution following release are then critically reviewed. Acoustic cavitation is found to play a potentially key role both in achieving targeted drug release and enhanced extravasation at modest pressure amplitudes and acoustic energies, whilst simultaneously enabling real-time monitoring of the drug delivery process. The next challenge in ultrasound-enhanced drug delivery will thus be to develop a new generation of drug-carrying nanoparticles which are of the right size range for delivery to tumours, yet still capable of achieving initiation of cavitation activity and drug release at modest acoustic pressures and energies that have no safety implications for the patient.

  7. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study

    PubMed Central

    Cardim, Danilo; Tajsic, Tamara; Bulman, Michael; Lavinio, Andrea; Gupta, Arun; Hutchinson, Peter J. A.; Czosnyka, Marek

    2017-01-01

    Background The invasive nature of the current methods for monitoring of intracranial pressure (ICP) has prevented their use in many clinical situations. Several attempts have been made to develop methods to monitor ICP non-invasively. The aim of this study is to assess the relationship between ultrasound-based non-invasive ICP (nICP) and invasive ICP measurement in neurocritical care patients. Methods and findings This was a prospective, single-cohort observational study of patients admitted to a tertiary neurocritical care unit. Patients with brain injury requiring invasive ICP monitoring were considered for inclusion. nICP was assessed using optic nerve sheath diameter (ONSD), venous transcranial Doppler (vTCD) of straight sinus systolic flow velocity (FVsv), and methods derived from arterial transcranial Doppler (aTCD) on the middle cerebral artery (MCA): MCA pulsatility index (PIa) and an estimator based on diastolic flow velocity (FVd). A total of 445 ultrasound examinations from 64 patients performed from 1 January to 1 November 2016 were included. The median age of the patients was 53 years (range 37–64). Median Glasgow Coma Scale at admission was 7 (range 3–14), and median Glasgow Outcome Scale was 3 (range 1–5). The mortality rate was 20%. ONSD and FVsv demonstrated the strongest correlation with ICP (R = 0.76 for ONSD versus ICP; R = 0.72 for FVsv versus ICP), whereas PIa and the estimator based on FVd did not correlate with ICP significantly. Combining the 2 strongest nICP predictors (ONSD and FVsv) resulted in an even stronger correlation with ICP (R = 0.80). The ability to detect intracranial hypertension (ICP ≥ 20 mm Hg) was highest for ONSD (area under the curve [AUC] 0.91, 95% CI 0.88–0.95). The combination of ONSD and FVsv methods showed a statistically significant improvement of AUC values compared with the ONSD method alone (0.93, 95% CI 0.90–0.97, p = 0.01). Major limitations are the heterogeneity and small number of patients

  8. Effects of periodic atmospheric pressure variation on radon entry into buildings

    NASA Astrophysics Data System (ADS)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10

  9. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2017-12-01

    Objective. Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. Approach. Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. Main results. Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. Significance. Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to

  10. Improvement of Diurnal Blood Pressure Variation by Azilsartan

    PubMed Central

    Okamura, Keisuke; Shirai, Kazuyuki; Okuda, Tetsu; Urata, Hidenori

    2018-01-01

    Background Azilsartan is an angiotensin II receptor blocker with a potent antihypertensive effect. Methods In a multicenter, prospective, open-label study, 265 patients with poor blood pressure control despite treatment with other angiotensin II receptor blockers were switched to 20 mg/day of azilsartan (patients on standard dosages) or 40 mg/day of azilsartan (patients on high dosages). Results Blood pressure was 149/83 mm Hg before switching and was significantly reduced from 1 month after switching until final assessment (132/76 mm Hg, P < 0.001). The pulse rate was 72/min before switching and increased significantly from 3 months after switching until final assessment (74/min, P < 0.005). A significant decrease of home morning systolic and diastolic pressure was observed from 1 and 3 months, respectively. Home morning blood pressure was 143/82 mm Hg before switching and 130/76 mm Hg at final assessment (P < 0.01). The morning-evening difference of systolic blood pressure decreased from 14.6 to 6.6 mm Hg after switching (P = 0.09). The estimated glomerular filtration rate was significantly decreased at 3, 6, and 12 months after switching, and serum uric acid was significantly increased at 12 months. No serious adverse events occurred. Conclusion Azilsartan significantly reduced the blood pressure and decreased diurnal variation in patients responding poorly to other angiotensin II receptor blockers. PMID:29238433

  11. Improvement of Diurnal Blood Pressure Variation by Azilsartan.

    PubMed

    Okamura, Keisuke; Shirai, Kazuyuki; Okuda, Tetsu; Urata, Hidenori

    2018-01-01

    Azilsartan is an angiotensin II receptor blocker with a potent antihypertensive effect. In a multicenter, prospective, open-label study, 265 patients with poor blood pressure control despite treatment with other angiotensin II receptor blockers were switched to 20 mg/day of azilsartan (patients on standard dosages) or 40 mg/day of azilsartan (patients on high dosages). Blood pressure was 149/83 mm Hg before switching and was significantly reduced from 1 month after switching until final assessment (132/76 mm Hg, P < 0.001). The pulse rate was 72/min before switching and increased significantly from 3 months after switching until final assessment (74/min, P < 0.005). A significant decrease of home morning systolic and diastolic pressure was observed from 1 and 3 months, respectively. Home morning blood pressure was 143/82 mm Hg before switching and 130/76 mm Hg at final assessment (P < 0.01). The morning-evening difference of systolic blood pressure decreased from 14.6 to 6.6 mm Hg after switching (P = 0.09). The estimated glomerular filtration rate was significantly decreased at 3, 6, and 12 months after switching, and serum uric acid was significantly increased at 12 months. No serious adverse events occurred. Azilsartan significantly reduced the blood pressure and decreased diurnal variation in patients responding poorly to other angiotensin II receptor blockers.

  12. Subharmonic Imaging and Pressure Estimation for Monitoring Neoadjuvant Chemotherapy

    DTIC Science & Technology

    2015-11-01

    ultrasound contrast agents to improve the monitoring of breast cancer treatment response to neoadjuvant therapies in women diagnosed with LABC by imaging...estimation (SHAPE). Software for analyzing RF data from a Logiq 9 ultrasound scanner (GE Healthcare, Milwauke, WI) to produce 3D SHAPE pressure...responders; albeit not statistically significant (p > 0.19). 14. SUBJECT TERMS Breast Cancer, Ultrasound Imaging, Ultrasound Contrast Agent, Pressure

  13. The effectiveness of intensive nursing care on seasonal variation of blood pressure in patients on peritoneal dialysis.

    PubMed

    Quan, Lei; Dong, Jie; Li, Yanjun; Zuo, Li

    2012-06-01

      This article is a report of a study to reduce the seasonal variation of blood pressure in patients on peritoneal dialysis through an intensive programme of nursing care.   The seasonal variation of blood pressure is a common phenomenon in patients on maintenance dialysis. Whether or not this variation can be reduced through a given intervention is unknown.   The programme of intensive nursing care including education on volume control, home blood pressure monitoring and intensified antihypertensive treatment, was implemented from December 2006. The blood pressure, fluid and sodium removal and defined daily doses of antihypertensive agents were measured at 1-monthly intervals and averagely quarterly for seasonal values for spring, summer, autumn and winter, respectively, before (December 2005-November 2006) and after intervention (December 2006-November 2007).   A total of 76 clinically stable patients on peritoneal dialysis were enrolled and finally analysed. The mean age was 60·6 years, and dialysis duration was 23·2 months. Before intervention, there were important seasonal variations in systolic and diastolic blood pressure. After intensive nursing care was implemented, the seasonal variation of systolic blood pressure disappeared. The diastolic blood pressure still represented a season pattern, but the discrepancy between winter and summer decreased. There were no seasonal patterns of total fluid and sodium removal before and after intervention.   Intensive nursing care reduced the seasonal variation of blood pressure in patients on peritoneal dialysis. These data provided an evidence for implementing nurse-centred interventions in this population. © 2011 Blackwell Publishing Ltd.

  14. Heart rate and blood pressure variations after transvascular patent ductus arteriosus occlusion in dogs.

    PubMed

    De Monte, Valentina; Staffieri, Francesco; Caivano, Domenico; Nannarone, Sara; Birettoni, Francesco; Porciello, Francesco; Di Meo, Antonio; Bufalari, Antonello

    2017-08-01

    The objective of the study was to retrospectively analyse the cardiovascular effects that occurs following the transvascular occlusion of patent ductus arteriosus in dogs. Sixteen anaesthesia records were included. Variables were recorded at the time of placing the arterial introducer, occlusion of the ductus, and from 5 to 60min thereafter, including, among the other, heart rate, systolic, diastolic and mean arterial blood pressure. The maximal percentage variation of the aforementioned physiological parameters within 60min of occlusion, compared with the values recorded at the introducer placing, was calculated. The time at which maximal variation occurred was also computed. Correlations between maximal percentage variation of physiological parameters and the diameter of the ductus and systolic and diastolic flow velocity through it were evaluated with linear regression analysis. Heart rate decreased after occlusion of the ductus with a mean maximal percentage variation of 41.0±14.8% after 21.2±13.7min. Mean and diastolic arterial blood pressure increased after occlusion with a mean maximal percentage variation of 30.6±18.1 and 55.4±27.1% after 19.6±12.1 and 15.7±10.8min, respectively. Mean arterial blood pressure variation had a significant and moderate inverse correlation with diastolic and systolic flow velocity through the ductus. Transvascular patent ductus arteriosus occlusion in anaesthetised dogs causes a significant reduction in heart rate and an increase in diastolic and mean blood arterial pressure within 20min of closure of the ductus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of a Pressure Sensitive Paint System with Correction for Temperature Variation

    NASA Technical Reports Server (NTRS)

    Simmons, Kantis A.

    1995-01-01

    Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.

  16. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hazards, risks and safety of diagnostic ultrasound.

    PubMed

    Duck, Francis A

    2008-12-01

    The safety of exposure to diagnostic ultrasound is evaluated using a structured approach to risk assessment, based on the acoustic output of present ultrasound scanners. Thermal hazard is described, the magnitude and probability of temperature rise is reviewed, and the severity of harm from any outcome is reviewed. Similar assessments are made separately for acoustic cavitation and gas-body effects, which have previously been considered together. Finally, radiation pressure is considered in a similar manner. In each case, means to minimize the risk are suggested where appropriate. The highest risks are associated with the use of gas-bubble contrast agents. It is concluded that there is a medium risk associated with trans-cranial Doppler use, and that this use of ultrasound deserves more detailed safety review. The risks associated with the current practice of obstetric ultrasound are low. Whilst the severity of radiation pressure as a hazard is low, it is always present. Little is known about any associated cell responses and so the associated risk cannot be evaluated.

  18. Longitudinal variation in pressure injury incidence among long-term aged care facilities.

    PubMed

    Jorgensen, Mikaela; Siette, Joyce; Georgiou, Andrew; Westbrook, Johanna I

    2018-05-04

    To examine variation in pressure injury (PI) incidence among long-term aged care facilities and identify resident- and facility-level factors that explain this variation. Longitudinal incidence study using routinely-collected electronic care management data. A large aged care service provider in New South Wales and the Australian Capital Territory, Australia. About 6556 people aged 65 years and older who were permanent residents in 60 long-term care facilities between December 2014 and November 2016. Risk-adjusted PI incidence rates over eight study quarters. Incidence density over the study period was 1.33 pressure injuries per 1000 resident days (95% confidence interval (CI) = 1.29-1.37). Funnel plots were used to identify variation among facilities. On average, 14% of facilities had risk-adjusted PI rates that were higher than expected in each quarter (above 95% funnel plot control limits). Ten percent of facilities had persistently high rates in any three or more consecutive quarters (n = 6). The variation between facilities was only partly explained by resident characteristics in multilevel regression models. Residents were more likely to have higher-pressure injury rates in facilities in regional areas compared with major city areas (adjusted incidence rate ratio = 1.25, 95% CI = 1.04-1.51), and facilities with persistently high rates were more likely to be located in areas with low socioeconomic status (P = 0.038). There is considerable variation among facilities in PI incidence. This study demonstrates the potential of routinely-collected care management data to monitor PI incidence and to identify facilities that may benefit from targeted intervention.

  19. Relationship between ultrasonically detected phasic antral contractions and antral pressure.

    PubMed

    Hveem, K; Sun, W M; Hebbard, G; Horowitz, M; Doran, S; Dent, J

    2001-07-01

    The relationships between gastric wall motion and intraluminal pressure are believed to be major determinants of flows within and from the stomach. Gastric antral wall motion and intraluminal pressures were monitored in five healthy subjects by concurrent antropyloroduodenal manometry and transabdominal ultrasound for 60 min after subjects drank 500 ml of clear soup. We found that 99% of antral contractions detected by ultrasound were propagated aborally, and 68% of contractions became lumen occlusive at the site of the ultrasound marker. Of the 203 contractions detected by ultrasound, 53% were associated with pressure events in the manometric reference channel; 86% of contractions had corresponding pressure events detectable somewhere in the antrum. Contractions that occluded the lumen were more likely to be associated with a pressure event in the manometric reference channel (P < 0.01) and to be of greater amplitude (P < 0.01) than non-lumen-occlusive contractions. We conclude that heterogeneous pressure event patterns in the antrum occur despite a stereotyped pattern of contraction propagation seen on ultrasound. Lumen occlusion is more likely to be associated with higher peak antral pressure events.

  20. Development of ultrasound focusing discrete array for air-coupled ultrasound generation

    NASA Astrophysics Data System (ADS)

    Korobov, Alexander I.; Izosimova, Maria Y.; Toschov, Sergey A.

    2010-01-01

    The technique and results of synthesis of ultrasound focusing discrete arrays for air-coupled ultrasound generation are presented. One of the arrays is an antenna 22 cm in diameter. It consists of 60 transmitters of Murata Company. The resonant frequency of each transmitter is 40 kHz, diameter is 16 mm. The transmitters were placed in first four Fresnel zones. Each of the zones was emitting with anti-phases. Position data and pressure field in focus were calculated using Rayleigh integral. Parameters of made array were measured using method of air-coupled vibrometry with laser scanning vibrometer. Measured parameters (operating frequency is 40 ± 1 kHz, focal distance is 308 mm, size of focal spot is 16.3 mm, and pressure in focus is about 150 dB) are in good agreement with calculated data. The examples of use of designed arrays for noncontact non-destructive diagnostics of some structural materials are reported. Work supported by RFBR.

  1. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Functional assessment of the diaphragm by speckle tracking ultrasound during inspiratory loading.

    PubMed

    Oppersma, Eline; Hatam, Nima; Doorduin, Jonne; van der Hoeven, Johannes G; Marx, Gernot; Goetzenich, Andreas; Fritsch, Sebastian; Heunks, Leo M A; Bruells, Christian S

    2017-11-01

    Assessment of diaphragmatic effort is challenging, especially in critically ill patients in the phase of weaning. Fractional thickening during inspiration assessed by ultrasound has been used to estimate diaphragm effort. It is unknown whether more sophisticated ultrasound techniques such as speckle tracking are superior in the quantification of inspiratory effort. This study evaluates the validity of speckle tracking ultrasound to quantify diaphragm contractility. Thirteen healthy volunteers underwent a randomized stepwise threshold loading protocol of 0-50% of the maximal inspiratory pressure. Electric activity of the diaphragm and transdiaphragmatic pressures were recorded. Speckle tracking ultrasound was used to assess strain and strain rate as measures of diaphragm tissue deformation and deformation velocity, respectively. Fractional thickening was assessed by measurement of diaphragm thickness at end-inspiration and end-expiration. Strain and strain rate increased with progressive loading of the diaphragm. Both strain and strain rate were highly correlated to transdiaphragmatic pressure (strain r 2  = 0.72; strain rate r 2  = 0.80) and diaphragm electric activity (strain r 2  = 0.60; strain rate r 2  = 0.66). We conclude that speckle tracking ultrasound is superior to conventional ultrasound techniques to estimate diaphragm contractility under inspiratory threshold loading. NEW & NOTEWORTHY Transdiaphragmatic pressure using esophageal and gastric balloons is the gold standard to assess diaphragm effort. However, this technique is invasive and requires expertise, and the interpretation may be complex. We report that speckle tracking ultrasound can be used to detect stepwise increases in diaphragmatic effort. Strain and strain rate were highly correlated with transdiaphragmatic pressure, and therefore, diaphragm electric activity and speckle tracking might serve as reliable tools to quantify diaphragm effort in the future. Copyright © 2017 the

  3. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability.

    PubMed

    Mooney, Skyler J; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier.

  4. Variations in plantar pressure variables across five cardiovascular exercises.

    PubMed

    Burnfield, Judith M; Jorde, Amy G; Augustin, Tanner R; Augustin, Tate A; Bashford, Gregory R

    2007-11-01

    To quantify variations in plantar pressure variables in healthy adults across five cardiovascular exercises. Ten young (19-35 yr old) and 10 middle-aged (45-60 yr old) individuals participated. After equipment familiarization, plantar pressure data were recorded during walking, running, elliptical training, stair climbing, and recumbent biking. Separate one-way analyses of variance with repeated measures identified significant differences in pressure variables across exercises and between age groups under the forefoot, arch, and heel. Forefoot: Peak pressures were higher during walking (253 kPa), running (251 kPa), and elliptical training (213 kPa) than stair climbing (130 kPa) and recumbent biking (41 kPa; P < or = 0.001). Biking pressures were lower than all other conditions (P < 0.001). Arch: Pressures were higher during running (144 kPa) compared with all other conditions (P < or = 0.001). Intermediate-level pressures during walking (119 kPa) and elliptical training (102 kPa) exceeded those during stair climbing (80 kPa; P < or = 0.002). Pressures were lowest during recumbent biking (33 kPa; P < 0.001). Heel: Pressures were highest during walking (215 kPa) and running (188 kPa), exceeding those recorded during all other activities (P < 0.001). Moderate elliptical training pressures (94 kPa) surpassed stair climbing values (66 kPa; P = 0.014). Pressures were lowest during recumbent biking (25 kPa; P < 0.001). The only significant difference identified between age groups was a larger arch contact area in the young compared with middle-aged, when averaged across exercises (P = 0.011). When protection of the forefoot is important (e.g., diabetic foot neuropathies), biking and stair climbing offer optimal pressure reductions. If protecting the heel from high pressures and forces is warranted, recumbent biking, stair climbing, and elliptical training provide greater relief.

  5. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.

    2011-04-01

    Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.

  6. Noninvasive Evaluation of Varying Pulse Pressures in vivo Using Brachial Sphymomanometry, Applanation Tonometry, and Pulse Wave Ultrasound Manometry.

    PubMed

    Li, Ronny X; Ip, Ada; Sanz-Miralles, Elena; Konofagou, Elisa E

    2017-06-01

    The routine assessment and monitoring of hypertension may benefit from the evaluation of arterial pulse pressure (PP) at more central locations (e.g. the aorta) rather solely at the brachial artery. Pulse Wave Ultrasound Manometry (PWUM) was previously developed by our group to provide direct, noninvasive aortic PP measurements using ultrasound elasticity imaging. Using PWUM, radial applanation tonometry, and brachial sphygmomanometry, this study investigated the feasibility of noninvasively obtaining direct PP measurements at multiple arterial locations in normotensive, pre-hypertensive, and hypertensive human subjects. Two-way ANOVA indicated a significantly higher aortic PP in the hypertensive subjects, while radial and brachial PP were not significantly different among the subject groups. No strong correlation (r 2 < 0.45) was observed between aortic and radial/brachial PP in normal and pre-hypertensive subjects, suggesting that increases in PP throughout the arterial tree may not be uniform in relatively compliant arteries. However, there was a relatively strong positive correlation between aortic PP and both radial and brachial PP in hypertensive subjects (r 2 = 0.68 and 0.87, respectively). PWUM provides a low-cost, non-invasive, and direct means of measuring the pulse pressure in large central arteries such as the aorta. When used in conjunction with peripheral measurement devices, PWUM allows for the routine screening of hypertension and monitoring of BP-lowering drugs based on the PP from multiple arterial sites.

  7. Reproducibility of blood pressure variation in older ambulatory and bedridden subjects.

    PubMed

    Tsuchihashi, Takuya; Kawakami, Yasunobu; Imamura, Tsuyoshi; Abe, Isao

    2002-06-01

    We investigated the influence of ambulation on the reproducibility of circadian blood pressure variation in older nursing home residents. Ambulatory blood pressure monitoring was performed twice in 37 older nursing home residents. Nursing home in Japan. Subjects included 18 ambulatory nursing home residents who had no limitation on physical activity and 19 bedridden residents who did not participate in physical activity. Twenty-four-hour, daytime, and nighttime blood pressure levels and their variability. The 24-hour and daytime variability of systolic blood pressure (SBP) was significantly greater in ambulatory than in bedridden subjects, whereas nighttime variability was similar. Significant correlations in SBP averaged for the whole day, daytime, and nighttime were observed between the two examinations in ambulatory (r =.80-.83) and bedridden (r =.83-.91) subjects, but the variabilities of SBP for the whole day and during the daytime of the first measurement were correlated with those of the second measurement in bedridden (r =.67 and r =.47, respectively) but not in ambulatory (r =.39 and r =.28, respectively) subjects. Significant correlations were found between the nocturnal SBP changes at two occasions in both ambulatory (r =.50) and bedridden (r =.51) subjects, but the dipper versus nondipper profiles, defined as reduction in SBP of greater than 10% versus not, showed low reproducibility in ambulatory subjects; five ambulatory (28%) and one bedridden (5%) subjects showed divergent profiles between the two examinations. The reproducibility of blood pressure variation in nursing home residents is influenced by ambulation.

  8. [Doppler ultrasound evaluation of aortic insufficiency using half-pressure time. Absence of arterial rigidity influence].

    PubMed

    Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y

    1989-02-01

    In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.

  9. Observation of pressure variation in the cavitation region of submerged journal bearings

    NASA Technical Reports Server (NTRS)

    Etsion, I.; Ludwig, L. P.

    1981-01-01

    Visual observations and pressure measurements in the cavitation zone of a submerged journal bearing are described. Tests are run at speeds of 1840 and 3000 rpm, and at each speed, four different levels of the ambient supply pressure are applied, ranging from 13.6 KPa to 54.4 KPa. A strong reverse flow is detected inside the cavitation area adjacent to its downstream end, and significant pressure variations on the order of 50 KPa are found inside the cavitation region at the downstream portion of its circumferential extent. Results indicate that the assumption of a constant cavitation pressure is incorrect in the case of enclosed cavitations, and it is postulated that oil which is saturated with air under atmospheric pressure becomes oversaturated in the subcavity pressure loop.

  10. Analysis of variation in oil pressure in lubricating system

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Upreti, Mritunjay; Sharma, Bharat; Poddar, Keshav

    2018-05-01

    Automotive Maintenance for an engine contributes to its reliability, energy efficiency and repair cost reduction. Modeling of engine performance and fault detection require large amount of data, which are usually obtained on test benches. This report presents a methodical study on analysis of variation in lubrication system of various medium speed engines. Further this study is limited to the influence of Engine Oil Pressure on frictional losses, Torque analysis for various Oil Pressures and an analytical analysis of engine Lubrication System. The data collected from various Engines under diagnostics is represented graphically. Finally the illustrated results were used as a viable source for detection and troubleshooting of faults in Lubrication System of regular passenger vehicle.

  11. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.

    PubMed

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-10-21

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  12. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Poduval, Radhika K.; Noimark, Sacha; Colchester, Richard J.; Macdonald, Thomas J.; Parkin, Ivan P.; Desjardins, Adrien E.; Papakonstantinou, Ioannis

    2017-05-01

    All-optical ultrasound transducers are promising for imaging applications in minimally invasive surgery. In these devices, ultrasound is transmitted and received through laser modulation, and they can be readily miniaturized using optical fibers for light delivery. Here, we report optical ultrasound transmitters fabricated by electrospinning an absorbing polymer composite directly onto the end-face of optical fibers. The composite coating consisting of an aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) in polyvinyl alcohol was directly electrospun onto the cleaved surface of a multimode optical fiber and subsequently dip-coated with polydimethylsiloxane (PDMS). This formed a uniform nanofibrous absorbing mesh over the optical fiber end-face wherein the constituent MWCNTs were aligned preferentially along individual nanofibers. Infiltration of the PDMS through this nanofibrous mesh onto the underlying substrate was observed and the resulting composites exhibited high optical absorption (>97%). Thickness control from 2.3 μm to 41.4 μm was obtained by varying the electrospinning time. Under laser excitation with 11 μJ pulse energy, ultrasound pressures of 1.59 MPa were achieved at 1.5 mm from the coatings. On comparing the electrospun ultrasound transmitters with a dip-coated reference fabricated using the same constituent materials and possessing identical optical absorption, a five-fold increase in the generated pressure and wider bandwidth was observed. The electrospun transmitters exhibited high optical absorption, good elastomer infiltration, and ultrasound generation capability in the range of pressures used for clinical pulse-echo imaging. All-optical ultrasound probes with such transmitters fabricated by electrospinning could be well-suited for incorporation into catheters and needles for diagnostics and therapeutic applications.

  13. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  14. Carbon nanomaterials as broadband airborne ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Harrer, A.; Prager, J.; Kreutzbruck, M.; Guderian, M.; Meyer-Plath, A.

    2012-05-01

    A method has been developed for the generation of airborne ultrasound using the thermoacoustic principle applied to carbon materials at the micro- and nanoscale. Such materials are shown to be capable to emitting the ultrasound. We tested the acoustic performance of electrospun polyacrylonitrile-derived carbon nanofibers tissues and determined the sound pressure for frequencies up to 350 kHz. The experimental results are compared to analytic calculations.

  15. Dependence of thresholds for pulmonary capillary hemorrhage on diagnostic ultrasound frequency.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan

    2015-06-01

    Pulmonary ultrasound examination has become routine for diagnosis in many clinical and point-of-care medical settings. However, the phenomenon of pulmonary capillary hemorrhage (PCH) induction during diagnostic ultrasound imaging presents a poorly understood risk factor. PCH was observed in anesthetized rats exposed to 1.5-, 4.5- and 12.0-MHz diagnostic ultrasound to investigate the frequency dependence of PCH thresholds. PCH was detected in the ultrasound images as growing comet tail artifacts and was assessed using photographs of the surface of excised lungs. Previous photographs acquired after exposure to 7.6-MHz diagnostic ultrasound were included for analysis. In addition, at each frequency we measured dosimetric parameters, including peak rarefactional pressure amplitude and spatial peak, pulse average intensity attenuated by rat chest wall samples. Peak rarefactional pressure amplitude thresholds determined at each frequency, based on the proportion of PCH in groups of five rats, were 1.03 ± 0.02, 1.28 ± 0.14, 1.18 ± 0.12 and 1.36 ± 0.15 MPa at 1.5, 4.5, 7.6 and 12.0 MHz, respectively. Although the PCH lesions decreased in size with increasing ultrasonic frequency, owing to the smaller beam widths and scan lengths, the peak rarefactional pressure amplitude thresholds remained approximately constant. This dependence was different from that of the mechanical index, which indicates a need for a specific dosimetric parameter for safety guidance in pulmonary ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  17. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  18. Ultrasound internal tattooing.

    PubMed

    Couture, Olivier; Faivre, Magalie; Pannacci, Nicolas; Babataheri, Avin; Servois, Vincent; Tabeling, Patrick; Tanter, Mickael

    2011-02-01

    The ability of remotely tagging tissues in a controlled and three-dimensional manner during preoperative imaging could greatly help surgeons to identify targets for resection. The authors' objective is to selectively and noninvasively deposit markers under image guidance for such internal tattooing. This study describes the production of new ultrasound-inducible droplets carrying large payloads of fluorescent markers and the in vivo proof of concept of their remote and controlled deposition via focused ultrasound. The droplets are monodispersed multiple emulsions produced in a microfluidic system, consisting of aqueous fluorescein in perfluorocarbon in water. Their conversion (either by vaporization or cavitation) is performed remotely using a clinical ultrasonic imaging probe. When submitted to 5 MHz imaging pulses, the droplets vaporize in vitro at 1.4 MPa peak-negative pressure and eject their content. After several seconds, a brightly fluorescent spot (0.5 mm diameter) is observed at the focus of the transducer. Experiments in the chorioallantoique membrane of chicken eggs and chicken embryo demonstrate that the spot is stable and is easily seen by naked eye. These ultrasound-inducible multiple emulsions could be used to deliver large amounts of contrast agents, chemotherapy, and genetic materials in vivo using a conventional ultrasound scanner.

  19. Sports Ultrasound: Applications Beyond the Musculoskeletal System.

    PubMed

    Finnoff, Jonathan T; Ray, Jeremiah; Corrado, Gianmichael; Kerkhof, Deanna; Hill, John

    2016-09-01

    Traditionally, ultrasound has been used to evaluate musculoskeletal injuries in athletes; however, ultrasound applications extend well beyond musculoskeletal conditions, many of which are pertinent to athletes. Articles were identified in PubMed using the search terms ultrasound, echocardiogram, preparticipation physical examination, glycogen, focused assessment with sonography of trauma, optic nerve, and vocal cord dysfunction. No date restrictions were placed on the literature search. Clinical review. Level 4. Several potential applications of nonmusculoskeletal ultrasound in sports medicine are presented, including extended Focused Assessment with Sonography for Trauma (eFAST), limited echocardiographic screening during preparticipation physical examinations, assessment of muscle glycogen stores, optic nerve sheath diameter measurements in athletes with increased intracranial pressure, and assessment of vocal cord dysfunction in athletes. Ultrasound can potentially be used to assist athletes with monitoring their muscle glycogen stores and the diagnosis of multiple nonmusculoskeletal conditions within sports medicine. © 2016 The Author(s).

  20. Ultrasound imaging of the thenar motor branch of the median nerve: a cadaveric study.

    PubMed

    Petrover, David; Bellity, Jonathan; Vigan, Marie; Nizard, Remy; Hakime, Antoine

    2017-11-01

    Anatomic variations of the median nerve (MN) increase the risk of iatrogenic injury during carpal tunnel release surgery. We investigated whether high-frequency ultrasonography could identify anatomic variations of the MN and its thenar motor branch (MBMN) in the carpal tunnel. For each volar wrist of healthy non-embalmed cadavers, the type of MN variant (Lanz classification), course and orientation of the MBMN, and presence of hypertrophic muscles were scored by 18-MHz ultrasound and then by dissection. MBMN was identified by ultrasound in all 30 wrists (15 subjects). By dissection, type 1, 2 and 3 variants were found in 84%, 3%, and 13% of wrists, respectively. Ultrasound had good agreement with dissection in identifying the variant type (kappa =0.9). With both techniques, extra-, sub-, and transligamentous courses were recorded in 65%, 31%, and 4% of cases, respectively. With both techniques, the bifid nerve, hypertrophic muscles, and bilateral symmetry for variant type were identified in 13.3%, 13.3%, and 86.7% of wrists, respectively. Agreement between ultrasound and dissection was excellent for the MBMN course and orientation (kappa =1). Ultrasound can be used reliably to identify anatomic variations of the MN and MBMN. It could be a useful tool before carpal tunnel release surgery. • Ultrasound can identify variations of the motor branch of the median nerve. • Ultrasound mapping should be used prior to carpal tunnel release surgery. • All sub-, extra-, and transligamentous courses were accurately identified. • Type 3 variants (bifid nerve), hypertrophic muscles, and bilateral symmetry were accurately identified.

  1. Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans.

    PubMed

    Elstad, Maja; Walløe, Lars; Holme, Nathalie L A; Maes, Elke; Thoresen, Marianne

    2015-03-01

    Arterial blood pressure variations are an independent risk factor for end organ failure. Respiratory sinus arrhythmia (RSA) is a sign of a healthy cardiovascular system. However, whether RSA counteracts arterial blood pressure variations during the respiratory cycle remains controversial. We restricted normal RSA with non-invasive intermittent positive pressure ventilation (IPPV) to test the hypothesis that RSA normally functions to stabilize mean arterial blood pressure. Ten young volunteers were investigated during metronome-paced breathing and IPPV. Heart rate (ECG), mean arterial blood pressure and left stroke volume (finger arterial pressure curve) and right stroke volume (pulsed ultrasound Doppler) were recorded, while systemic and pulmonary blood flow were calculated beat-by-beat. Respiratory variations (high-frequency power, 0.15-0.40 Hz) in cardiovascular variables were estimated by spectral analysis. Phase angles and correlation were calculated by cross-spectral analysis. The magnitude of RSA was reduced from 4.9 bpm(2) (95% CI 3.0, 6.2) during metronome breathing to 2.8 bpm(2) (95% CI 1.1, 5.0) during IPPV (p = 0.03). Variations in mean arterial blood pressure were greater (2.3 mmHg(2) (95% CI 1.4, 3.9) during IPPV than during metronome breathing (1.0 mmHg(2) [95% CI 0.7, 1.3]) (p = 0.014). Respiratory variations in right and left stroke volumes were inversely related in the respiratory cycle during both metronome breathing and IPPV. RSA magnitude is lower and mean arterial blood pressure variability is greater during IPPV than during metronome breathing. We conclude that in healthy humans, RSA stabilizes mean arterial blood pressure at respiratory frequency.

  2. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.

    PubMed

    Sanok, Sandra; Mendolia, Franco; Wittkowski, Martin; Rooney, Daniel; Putzke, Matthias; Aeschbach, Daniel

    2015-01-01

    When passing through a tunnel, aerodynamic effects on high-speed trains may impair passenger comfort. These variations in atmospheric pressure are accompanied by transient increases in sound pressure level. To date, it is unclear whether the latter influences the perceived discomfort associated with the variations in atmospheric pressure. In a pressure chamber of the DLR-Institute of Aerospace Medicine, 71 participants (M = 28.3 years ± 8.1 SD) rated randomised pressure changes during two conditions according to a crossover design. The pressure changes were presented together with tunnel noise such that the sound pressure level was transiently elevated by either +6 dB (low noise condition) or +12 dB (high noise condition) above background noise level (65 dB(A)). Data were combined with those of a recent study, in which identical pressure changes were presented without tunnel noise (Schwanitz et al., 2013, 'Pressure Variations on a Train - Where is the Threshold to Railway Passenger Discomfort?' Applied Ergonomics 44 (2): 200-209). Exposure-response relationships for the combined data set comprising all three noise conditions show that pressure discomfort increases with the magnitude and speed of the pressure changes but decreases with increasing tunnel noise. Practitioner Summary: In a pressure chamber, we systematically examined how pressure discomfort, as it may be experienced by railway passengers, is affected by the presence of tunnel noise during pressure changes. It is shown that across three conditions (no noise, low noise (+6 dB), high noise (+12 dB)) pressure discomfort decreases with increasing tunnel noise.

  3. [Circadian blood pressure variation under several pathophysiological conditions including secondary hypertension].

    PubMed

    Imai, Yutaka; Hosaka, Miki; Satoh, Michihiro

    2014-08-01

    Abnormality of circadian blood pressure (BP) variation, i.e. non-dipper, riser, nocturnal hypertension etc, is brought by several pathophysiological conditions especially by secondary hypertension. These pathophysiological conditions are classified into several categories, i.e. disturbance of autonomic nervous system, metabolic disorder, endocrine disorder, disorder of Na and water excretion (e.g. sodium sensitivity), severe target organ damage and ischemia, cardiovascular complications and drug induced hypertension. Each pathophysiological condition which brings disturbance of circadian BP variation is included in several categories, e.g. diabetes mellitus is included in metabolic disorder, autonomic imbalance, sodium sensitivity and endocrine disorder. However, it seems that unified principle of the genesis of disturbance of circadian BP variation in many pathophysiological conditions is autonomic imbalance. Thus, it is concluded that disturbance of circadian BP variation is not purposive biological behavior but the result of autonomic imbalance which looks as if compensatory reaction such as exaggerated Na-water excretion during night in patient with Na-water retention who reveals disturbed circadian BP variation.

  4. Agreement between central corneal thickness measured using Pentacam, ultrasound pachymetry, specular microscopy and optic biometer Lenstar LS 900 and the influence of intraocular pressure.

    PubMed

    Borrego-Sanz, L; Sáenz-Francés, F; Bermudez-Vallecilla, M; Morales-Fernández, L; Martínez-de-la-Casa, J M; Santos-Bueso, E; Jañez, L; García-Feijoo, J

    2014-01-01

    To compare central corneal thickness (CCT) values obtained by Lenstar (LE), Pentacam (PC), specular microscopy (SM) and ultrasound pachymetry (UP) in healthy corneas and study their influence on intraocular pressure (IOP) readings determined by Goldmann applanation tonometry (GAT). CCT was measured in 76 healthy subjects by LE, PC, SM and UP. We established Lin's concordance correlation coefficient (ρ-C) between different techniques. The influence of CCT on GAT was established through univariate linear regression models, IOP being the dependent variable. The highest ρ-C was found between LE and SM at 0.94 (95% CI: 0.91-0.96) and between LE and UP at 0.95 (95% CI: 0.94-0.97). IOP readings showed less variability when CCT was determined using LE (7.7%, B = 0.16; 95% CI: 0.004-0.28). Although CCT values obtained with UP, PC, SM and LE show good correlation, these methods are not completely interchangeable. The amount of IOP variation differs when CCT is determined using LE or SM. © 2014 S. Karger AG, Basel.

  5. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field.

    PubMed

    Qiao, Yangzi; Cao, Hua; Zhang, Shusheng; Yin, Hui; Wan, Mingxi

    2013-01-01

    Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    PubMed

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  7. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  8. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  9. Prefraction displacement and intrafraction drift of the prostate due to perineal ultrasound probe pressure.

    PubMed

    Li, Minglun; Hegemann, Nina-Sophie; Manapov, Farkhad; Kolberg, Anne; Thum, Patrick Dominik; Ganswindt, Ute; Belka, Claus; Ballhausen, Hendrik

    2017-06-01

    In image-guided EBRT of the prostate, transperineal ultrasound (US) probes exert pressure on the perineum both during planning and treatment. Through tissue deformation and relaxation, this causes target and risk organ displacement and drift. In this study, prefraction shift and intrafraction drift of the prostate are quantified during robotic transperineal 4DUS. The position of the prostate was recorded for different positions of the probe before treatment in 10 patients (16 series of measurements). During treatment (15 patients, 273 fractions), intrafraction motion of the prostate was tracked (total of 27 h and 24 min) with the transperineal probe in place. Per 1 mm shift of the US probe in the cranial direction, a displacement of the prostate by 0.42 ± 0.09 mm in the cranial direction was detected. The relationship was found to be linear (R² = 0.97) and highly significant (p < 0.0001). After initial contact of the probe and the perineum (no pressure), a shift of the probe of about 5-10 mm was typically necessary to achieve good image quality, corresponding to a shift of the prostate of about 2-4 mm in the cranial direction. Tissue compression and prostate displacement were well visible. During treatment, the prostate drifted at an average rate of 0.075 mm/min in the cranial direction (p = 0.0014). The pressure applied by a perineal US probe has a quantitatively similar impact on prostate displacement as transabdominal pressure. Shifts are predominantly in the cranial direction (typically 2-4 mm) with some component in the anterior direction (typically <1 mm). Slight probe pressure can improve image quality, but excessive probe pressure can distort the surrounding anatomy and potentially move risk organs closer to the high-dose area.

  10. Ultrasound in Enzyme Activation and Inactivation

    NASA Astrophysics Data System (ADS)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  11. Influence of inward pressure of the transducer on lateral abdominal muscle thickness during ultrasound imaging.

    PubMed

    Ishida, Hiroshi; Watanabe, Sususmu

    2012-09-01

    Controlled laboratory study, technical note. The purpose of this study was to quantify changes in the thickness of the transversus abdominis, internal oblique, and external oblique muscles induced by different inward pressures of the transducer during ultrasound imaging (USI). USI of the lateral abdominal muscles is increasingly used in managing musculoskeletal dysfunction. However, to the best of our knowledge, no study has evaluated the influence of different inward pressures of the transducer on the lateral abdominal muscle thickness during USI. Thirty healthy male volunteers participated in this study. The thickness of the transversus abdominis, internal oblique, and external oblique muscles was measured with USI by the same rater in 4 conditions of inward pressures of 0.5, 1.0, 2.0, and 4.0 N. Intraclass correlation coefficients (ICC1,1), with 95% confidence intervals, were calculated, and a repeated-measures analysis of variance was used to assess the influence of inward pressure on the thickness of the lateral abdominal muscles. The thickness of the transversus abdominis, internal oblique, and external oblique muscles was significantly different among the 4 conditions (P<.038). The mean difference between the 0.5-N and 4.0-N conditions was greater than the minimal detectable change of the 0.5-N condition in the lateral abdominal muscles. The difference in magnitude produced by the forces under different conditions was meaningful. When using a technique that involves a handheld transducer, the examiner should attempt to maintain consistent inward pressure of the transducer during USI to quantify the thickness of lateral abdominal muscles. J Orthop Sports Phys Ther 2012;42(9):815-818, Epub 19 April 2012. doi:10.2519/jospt.2012.4064.

  12. Studies on the foundation and development of diagnostic ultrasound

    PubMed Central

    Wagai, Toshio

    2007-01-01

    In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150

  13. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    PubMed

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  14. Comparison of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study and conventional contrast radiographic colostography in children with anorectal malformation

    PubMed Central

    Ekwunife, Okechukwu Hyginus; Umeh, Eric Okechukwu; Ugwu, Jideofor Okechukwu; Ebubedike, Uzoamaka Rufina; Okoli, Chinedu Christian; Modekwe, Victor Ifeanyichukwu; Elendu, Kelechi Collins

    2016-01-01

    Background: In children with high and intermediate anorectal malformation, distal colostography is an important investigation done to determine the relationship between the position of the rectal pouch and the probable site of the neo-anus as well as the presence or absence of a fistula. Conventionally, this is done using contrast with fluoroscopy or still X-ray imaging. This, however, has the challenges of irradiation, availability and affordability, especially in developing countries. This study compared the accuracy of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study (SCDS) with conventional contrast distal colostography (CCDC) in the determination of the precise location of the distal rectal pouch and in detecting the presence and site of fistulous communication between the rectum and the urogenital tract was studied. Materials and Methods: Trans-perineal ultrasound-guided pressure augmented SCDS, CCDC and intra-operative measurements were done sequentially for qualified infants with anorectal malformation and colostomy. Pouch skin distance and presence or absence of recto urinary or genital fistula was measured prospectively in each case. Statistical significance was inferred at P-value of <0.01. Results: There were thirteen infants, 9 males and 4 females. The age at onset of investigation ranged from 2 to 12 months with a median value of 9 months. Using paired t-test at a confidence interval of 95%, the P value when SCDS values are compared with CCDC is 0.19; and 0.06 when SCDS was compared with intra-operative measurements. Hence, there is no statistical difference as P > 0.01. On its ability to detect presence or absence of a fistula: SCDS had a sensitivity of 50.0%, specificity of 100.0%, accuracy of 69.2%, negative predictive value of fistulas of 55.6% and a positive predictive value of fistulas of 100.0%. Conclusion: Ultrasound-guided pressure augmented SCDS can safely and reliably be used to assess the distal colonic

  15. Comparison of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study and conventional contrast radiographic colostography in children with anorectal malformation.

    PubMed

    Ekwunife, Okechukwu Hyginus; Umeh, Eric Okechukwu; Ugwu, Jideofor Okechukwu; Ebubedike, Uzoamaka Rufina; Okoli, Chinedu Christian; Modekwe, Victor Ifeanyichukwu; Elendu, Kelechi Collins

    2016-01-01

    In children with high and intermediate anorectal malformation, distal colostography is an important investigation done to determine the relationship between the position of the rectal pouch and the probable site of the neo-anus as well as the presence or absence of a fistula. Conventionally, this is done using contrast with fluoroscopy or still X-ray imaging. This, however, has the challenges of irradiation, availability and affordability, especially in developing countries. This study compared the accuracy of trans-perineal ultrasound-guided pressure augmented saline colostomy distension study (SCDS) with conventional contrast distal colostography (CCDC) in the determination of the precise location of the distal rectal pouch and in detecting the presence and site of fistulous communication between the rectum and the urogenital tract was studied. Trans-perineal ultrasound-guided pressure augmented SCDS, CCDC and intra-operative measurements were done sequentially for qualified infants with anorectal malformation and colostomy. Pouch skin distance and presence or absence of recto urinary or genital fistula was measured prospectively in each case. Statistical significance was inferred at P-value of <0.01. There were thirteen infants, 9 males and 4 females. The age at onset of investigation ranged from 2 to 12 months with a median value of 9 months. Using paired t-test at a confidence interval of 95%, the P value when SCDS values are compared with CCDC is 0.19; and 0.06 when SCDS was compared with intra-operative measurements. Hence, there is no statistical difference as P > 0.01. On its ability to detect presence or absence of a fistula: SCDS had a sensitivity of 50.0%, specificity of 100.0%, accuracy of 69.2%, negative predictive value of fistulas of 55.6% and a positive predictive value of fistulas of 100.0%. Ultrasound-guided pressure augmented SCDS can safely and reliably be used to assess the distal colonic anatomy and the presence of fistula in infants with

  16. Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Li, Jing; Allen, Thomas J.; Colchester, Richard J.; Noimark, Sacha; Ogunlade, Olumide; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.; Zhang, Edward Z.; Beard, Paul C.

    2017-11-01

    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques.

  17. Site-specific ultrasound reflection properties and superficial collagen content of bovine knee articular cartilage

    NASA Astrophysics Data System (ADS)

    Laasanen, Mikko S.; Saarakkala, Simo; Töyräs, Juha; Rieppo, Jarno; Jurvelin, Jukka S.

    2005-07-01

    Previous quantitative 2D-ultrasound imaging studies have demonstrated that the ultrasound reflection measurement of articular cartilage surface sensitively detects degradation of the collagen network, whereas digestion of cartilage proteoglycans has no significant effect on the ultrasound reflection. In this study, the first aim was to characterize the ability of quantitative 2D-ultrasound imaging to detect site-specific differences in ultrasound reflection and backscattering properties of cartilage surface and cartilage-bone interface at visually healthy bovine knee (n = 30). As a second aim, we studied factors controlling ultrasound reflection properties of an intact cartilage surface. The ultrasound reflection coefficient was determined in time (R) and frequency domains (IRC) at medial femoral condyle, lateral patello-femoral groove, medial tibial plateau and patella using a 20 MHz ultrasound imaging instrument. Furthermore, cartilage surface roughness was quantified by calculating the ultrasound roughness index (URI). The superficial collagen content of the cartilage was determined using a FT-IRIS-technique. A significant site-dependent variation was shown in cartilage thickness, ultrasound reflection parameters, URI and superficial collagen content. As compared to R and IRC, URI was a more sensitive parameter in detecting differences between the measurement sites. Ultrasound reflection parameters were not significantly related to superficial collagen content, whereas the correlation between R and URI was high. Ultrasound reflection at the cartilage-bone interface showed insignificant site-dependent variation. The current results suggest that ultrasound reflection from the intact cartilage surface is mainly dependent on the cartilage surface roughness and the collagen content has a less significant role.

  18. Characterization of piezocrystals for practical configurations with temperature- and pressure-dependent electrical impedance spectroscopy.

    PubMed

    Qiu, Zhen; Sadiq, Muhammad R; Démoré, Christine; Parker, Michelle F; Marin, Pablo; Mayne, Keith; Cochran, Sandy

    2011-09-01

    Piezoelectric single crystal materials such as (x)Pb(Mg(1/3)Nb(2/3))O(3-)(1-x)PbTiO(3) (PMN-PT) have, by some measures, significantly better performance than established piezoelectric ceramics for ultrasound applications. However, they are also subject to phase transitions affecting their behavior at temperatures and pressures encountered in underwater sonar and actuator applications and in non-destructive testing at elevated temperatures. Materials with modified compositions to reduce these problems are now under development, but application-oriented characterization techniques need further attention. Characterization with temperature variation has been reported extensively, but the range of parameters measured is often limited and the effects of pressure variation have received almost no attention. Furthermore, variation in properties between samples is now rarely reported. The focus of this paper is an experimental system set up with commercially available equipment and software to carry out characterization of piezoelectric single crystals with variation in temperature, pressure, and electrical bias fields found in typical practical use. We illustrate its use with data from bulk thickness-mode PMN-29%PT samples, demonstrating variation among nominally identical samples and showing not only the commonly reported changes in permittivity with temperature for bulk material but also significant and complicated changes with pressure and bias field and additional ultrasonic modes which are attributed to material phase changes. The insight this provides may allow the transducer engineer to accelerate new material adoption in devices.

  19. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  20. Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents

    PubMed Central

    Zhang, Qimei; Morgan, Stephen P.; O’Shea, Paul; Mather, Melissa L.

    2016-01-01

    A new imaging contrast agent is reported that provides an increased fluorescent signal upon application of ultrasound (US). Liposomes containing lipids labelled with pyrene were optically excited and the excimer fluorescence emission intensity was detected in the absence and presence of an ultrasound field using an acousto-fluorescence setup. The acousto-fluorescence dynamics of liposomes containing lipids with pyrene labelled on the fatty acid tail group (PyPC) and the head group (PyPE) were compared. An increase in excimer emission intensity following exposure to US was observed for both cases studied. The increased intensity and time constants were found to be different for the PyPC and PyPE systems, and dependent on the applied US pressure and exposure time. The greatest change in fluorescence intensity (130%) and smallest rise time constant (0.33 s) are achieved through the use of PyPC labelled liposomes. The mechanism underlying the observed increase of the excimer emission intensity in PyPC labelled liposomes is proposed to arise from the “wagging” of acyl chains which involves fast response and requires lower US pressure. This is accompanied by increased lipid lateral diffusivity at higher ultrasound pressures, a mechanism that is also active in the PyPE labelled liposomes. PMID:27467748

  1. Respiratory sinus arrhythmia: opposite effects on systolic and mean arterial pressure in supine humans

    NASA Technical Reports Server (NTRS)

    Elstad, M.; Toska, K.; Chon, K. H.; Raeder, E. A.; Cohen, R. J.

    2001-01-01

    1. Are arterial blood pressure fluctuations buffered or reinforced by respiratory sinus arrhythmia (RSA)? There is still considerable debate about this simple question. Different results have been obtained, triggering a discussion as to whether or not the baroreflexes are responsible for RSA. We suspected that the measurements of different aspects of arterial pressure (mean arterial pressure (MAP) and systolic pressure (SP)) can explain the conflicting results. 2. Simultaneous recordings of beat-to-beat MAP, SP, left cardiac stroke volume (SV, pulsed ultrasound Doppler), heart rate (HR) and respiration (RE) were obtained in 10 healthy young adults during spontaneous respiration. In order to eliminate HR variations at respiratory frequency we used propranolol and atropine administration in the supine and tilted positions. Respiration-synchronous variation in the recorded variables was quantified by spectral analysis of the recordings of each of these variables, and the phase relations between them were determined by cross-spectral analysis. 3. MAP fluctuations increased after removing heart rate variations in both supine and tilted position, whereas SP fluctuations decreased in the supine position and increased in the head-up tilted position. 4. RSA buffers respiration-synchronous fluctuations in MAP in both positions. However, fluctuations in SP were reinforced by RSA in the supine and buffered in the tilted position.

  2. Postural Effects on Intracranial Pressure as Assessed Noninvasively

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Hargens, Alan R.; Ballard, R. E.; Shuer, L. M.; Cantrell, J. H.; Yost, W. T.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    This study was designed to investigate effects of whole body tilting on intracranial compliance and pressure in six healthy volunteers by using a noninvasive ultrasonic device. Subjects were randomly tilted up or down sequentially at 60 degree, 30 degree head-up, supine, and 15 degree head-down position for one minute at each angle. We measured arterial blood pressure with a finger pressure cuff and changes in intracranial distance with an ultrasonic device. The device measures skull movement on the order of micro-meter. Our ultrasound technique demonstrates that skull movement is highly correlated (r$(circumflex){2}$=0.77) with intracranial pressure variations due to cerebral arterial pulsation. The amplitudes of arterial pressure (r$(circumflex){2}$=0.99 and those of intracranial distance changes (r$(circumflex){2}$=0.87) associated with one cardiac cycle were inversely correlated with the angle of tilt. The ratio of pulsation amplitudes for intracranial distance over arterial pressure also showed a significant increase as the angle of tilt was lowered (p=0.003). Thus, postural changes alter intracranial compliance in healthy volunteers and intracranial volume-buffering capacity is reduced in head-down position.

  3. Variations in the WNK1 gene modulates the effect of dietary intake of sodium and potassium on blood pressure determination.

    PubMed

    Osada, Yuko; Miyauchi, Rie; Goda, Toshinao; Kasezawa, Nobuhiko; Horiike, Hiromi; Iida, Mariko; Sasaki, Satoshi; Yamakawa-Kobayashi, Kimiko

    2009-08-01

    WNK lysine-deficient protein kinase 1 (WNK1) is a member of the WNK family of serine/threonine kinases with no lysine (K), and these kinases have been implicated as important modulators of salt homeostasis in the kidney. It is well known that high dietary sodium and low dietary potassium have been implicated in the etiology of increased blood pressure. However, the blood pressure response to dietary sodium and potassium intake varies considerably among individuals. In this study, we have detected that the haplotypes of the WNK1 gene are associated with blood pressure variations in the general Japanese population. In addition, we investigated the interactions between the haplotypes of the WNK1 gene and dietary sodium and potassium intake for determining inter-individual variations in blood pressure. Our data support the hypothesis that part of the variation in blood pressure response to dietary sodium and potassium intake among individuals can be explained by variations in the WNK1 gene.

  4. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  5. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for

  6. Effect of Ultrasound in Soybean Protein Extraction

    NASA Astrophysics Data System (ADS)

    Fukase, Hirokazu; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi; Ide, Masao

    1994-05-01

    Application of ultrasound for accelerating the extraction of nutriments in food processing has been attempted. However, conditions of exposure to ultrasound were not clear in previous studies. This paper reports on the relationship between the ultrasonic pressure and the amount of extracted protein from soybeans. Experiments were conducted using a beaker, in which the ultrasonic fields were precisely measured. Soybean flakes suspended in water were put in the beaker and placed in a water tank. The amount of extracted protein in water upon ultrasonic exposure was calculated by the Kjeldahl method. It was found that the amount of extracted protein increased in proportion to ultrasonic pressure up to the total amount of soybean protein soluble in water. Furthermore, this paper describes the denaturation of the protein produced by the ultrasonic cavitation.

  7. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis.

    PubMed

    Liu, Zheng; Gao, Shunji; Zhao, Yang; Li, Peijing; Liu, Jia; Li, Peng; Tan, Kaibin; Xie, Feng

    2012-02-01

    Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that acoustic cavitation combining high-pressure amplitude pulsed ultrasound (US) and circulating microbubble could potentially disrupt tumor vasculature. A high-pressure amplitude, pulsed ultrasound device was developed to induce inertial cavitation of circulating microbubbles. The tumor vasculature of rat Walker 256 was insonated percutaneously with two acoustic pressures, 2.6 MPa and 4.8 MPa, both with intravenous injection of a lipid microbubble. The controls were treated by the ultrasound only or sham ultrasound exposure. Contrast enhanced ultrasound (CEUS) and histology were performed to assess tumor circulation and pathological changes. The CEUS results showed that the circulation of Walker 256 tumors could be completely blocked off for 24 hours in 4.8 MPa treated tumors. The CEUS gray scale value (GSV) indicated that there was significant GSV drop-off in both of the two experimental groups but none in the controls. Histology showed that the tumor microvasculature was disrupted into diffuse hematomas accompanied by thrombosis, intercellular edema and multiple cysts formation. The 24 hours of tumor circulation blockage resulted in massive necrosis of the tumor. MEUS provides a new, simple physical method for anti-angiogenic therapy and may have great potential for clinical applications. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. High Resolution Anatomic and Elastographic Transrectal Ultrasound for Improved Diagnosis of Prostate Cancer

    DTIC Science & Technology

    2008-08-01

    Elastographic Transrectal Ultrasound for Improved Diagnosis of Prostate Cancer PRINCIPAL INVESTIGATOR: John A. Hossack, Ph.D...January 21, 2004 – July 20, 2008 4. Title and Subtitle High Resolution Anatomic and Elastographic Transrectal Ultrasound for Improved Diagnosis of...can cer. In this work, we perform ultrasound elasticity imaging, using a slightly inflated latex sheath (to provide a source of moderate pressure

  9. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.

    PubMed

    Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob

    2017-12-11

    We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).

  10. Carotid stiffness change over the cardiac cycle by ultrafast ultrasound imaging in healthy volunteers and vascular Ehlers-Danlos syndrome.

    PubMed

    Mirault, Tristan; Pernot, Mathieu; Frank, Michael; Couade, Mathieu; Niarra, Ralph; Azizi, Michel; Emmerich, Joseph; Jeunemaître, Xavier; Fink, Mathias; Tanter, Mickaël; Messas, Emmanuel

    2015-09-01

    Arterial stiffness is related to age and collagen properties of the arterial wall and can be indirectly evaluated by the pulse wave velocity (PWV). Ultrafast ultrasound imaging, a unique ultrahigh frame rate technique (>10, 000 images/s), recently emerged enabling direct measurement of carotid PWV and its variation over the cardiac cycle. Our goal was to characterize the carotid diastolic-systolic arterial stiffening using ultrafast ultrasound imaging in healthy individuals and in vascular Ehlers-Danlos syndrome (vEDS), in which collagen type III is defectuous. Ultrafast ultrasound imaging was performed on common carotids of 102 healthy individuals and 37 consecutive patients with vEDS. Results are mean ± standard deviation. Carotid ultrafast ultrasound imaging PWV in healthy individuals was 5.6 ± 1.2 in early systole and 7.3 ± 2.0  m/s in end systole, and correlated with age (r = 0.48; P < 0.0001 and r = 0.68; P < 0.0001, respectively). Difference between early and end-systole PWV increased with age independently of blood pressure (r = 0.54; P < 0.0001). In patients with vEDS, ultrafast ultrasound imaging PWV was 6.0 ± 1.5 in early systole and 6.7 ± 1.5  m/s in end systole. Carotid stiffness change over the cardiac cycle was lower than in healthy people (0.021 vs. 0.057  m/s per mmHg; P = 0.0035). Ultrafast ultrasound imaging can evaluate carotid PWV and its variation over the cardiac cycle. This allowed to demonstrate the age-induced increase of the arterial diastolic-systolic stiffening in healthy people and a lower stiffening in vEDS, both characterized by arterial complications. We believe that this easy-to-use technique could offer the opportunity to go beyond the diastolic PWV to better characterize arterial stiffness change with age or other collagen alterations.

  11. The Strong Effects Of On-Axis Focal Shift And Its Nonlinear Variation In Ultrasound Beams Radiated By Low Fresnel Number Transducers

    NASA Astrophysics Data System (ADS)

    Makov, Y. N.; Espinosa, V.; Sánchez-Morcillo, V. J.; Ramis, J.; Cruañes, J.; Camarena, F.

    2006-05-01

    On the basis of theoretical concepts, an accurate and complete experimental and numerical examination of the on-axis distribution and the corresponding temporal profiles for low-Fresnel-number focused ultrasound beams under increasing transducer input voltage has been performed. For a real focusing transducer with sufficiently small Fresnel number, a strong initial (linear) shift of the main on-axis pressure maximum from geometrical focal point towards the transducer, and its following displacement towards the focal point and backward motion as the driving transducer voltage increase until highly nonlinear regimes were fixed. The simultaneous monitoring of the temporal waveform modifications determines the real roles and interplay between different nonlinear effects (refraction and attenuation) in the observed dynamics of on-axis pressure maximum. The experimental results are in good agreement with numerical solutions of KZK equation, confirming that the observed dynamic shift of the maximum pressure point is related only to the interplay between diffraction, dissipation and nonlinearity of the acoustic wave.

  12. Reversible and irreversible vascular bioeffects induced by ultrasound and microbubbles in chorioallantoic membrane model

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kuebler, Wolfgang M.; Tabuchi, Arata; Karshafian, Raffi

    2017-03-01

    Background: The application of ultrasound and microbubbles at therapeutic conditions has been shown to improve delivery of molecules, cause vasoconstriction, modulate blood flow and induce a vascular shut down in in vivo cancerous tissues. The underlying mechanism has been associated with the interaction of ultrasonically-induced microbubble oscillation and cavitation with the blood vessel wall. In this study, the effect of ultrasound and microbubbles on blood flow and vascular architecture was studied using a fertilized chicken egg CAM (chorioallantoic membrane) model. Methods: CAM at day 12 of incubation (Hamburger-Hamilton stage 38-40) were exposed to ultrasound at varying acoustic pressures (160, 240 and 320 kPa peak negative pressure) in the presence of Definity microbubbles and 70 kDa FITC dextran fluorescent molecules. A volume of 50 µL Definity microbubbles were injected into a large anterior vein of the CAM prior to ultrasound exposure. The ultrasound treatment sequence consisted of 5 s exposure at 500 kHz frequency, 8 cycles and 1 kHz pulse repetition frequency with 5 s off for a total exposure of 2 minutes. Fluorescent videos and images of the CAM vasculature were acquired using intravital microscopy prior, during and following the ultrasound exposure. Perfusion was quantified by measuring the length of capillaries in a region of interest using Adobe Illustrator. Results and Discussion: The vascular bioeffects induced by USMB increased with acoustic peak negative pressure. At 160 kPa, no visible differences were observed compared to the control. At 240 kPa, a transient decrease in perfusion with subsequent recovery within 15 minutes was observed, whereas at 320 kPa, the fluorescent images showed an irreversible vascular damage. The study indicates that a potential mechanism for the transient decrease in perfusion may be related to blood coagulation. The results suggest that ultrasound and microbubbles can induce reversible and irreversible vascular

  13. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  14. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells

    PubMed Central

    2013-01-01

    Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective

  15. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple pregnancy - ultrasound; ...

  16. Effects of Ultrasound on Extraction of Saponin from Ginseng

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ohdaira, Etsuzo; Ide, Masao

    1994-05-01

    We performed a study of the effects of ultrasound on the extraction of saponin from Panax ginseng C. A. Meyer. In this study, the extraction of saponin was examined as functions of irradiation time (0.5 to 6 h) and acoustic pressure (0 to 90 kPa). It has been observed that the yields of both total extract and saponin are larger with ultrasonic irradiation than those without ultrasonic irradiation; the increase in yield of total extract is approximately 15 wt%, and that of saponin is approximately 30 wt% at an acoustic pressure 67 kPa. In addition, the yield increases with the acoustic pressure. It is also demonstrated that saponin was not resolved in the acoustic intensity range of this experiment. The enhancement in liquid-solid extraction caused by ultrasound can be attributed to the phenomenon of cavitation.

  17. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  18. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  19. [The development of obstetric ultrasound in Switzerland].

    PubMed

    Zimmermann, Roland

    2005-04-01

    Ultrasound has conquered obstetrics during the last 40 years. Today it is an integral part of antenatal care. Its broad use as a screening method has pushed critics who found open doors at health authorities facing short resources. In Switzerland in early 1996, routine ultrasound as a health technology was temporarily excluded from reimbursement by the health insurances. Under the pressure of the public, the health authorities had to reintroduce reimbursement within a few months. However, reimbursement was linked with several conditions: the ultrasound examination has to be performed by physicians with adequate training and experience; routine ultrasound needs a strict informed consent, and its benefit has to be evidenced. This decision has had a positive impact on quality. After 7 years, Switzerland has a good training program; guidelines for prenatal ultrasound already exist in their second edition, and spot checks of performance showed that quality in Switzerland meets international standards. Ultrasound mainly has a positive cost-effectiveness ratio due to the detection of fetal malformations with consecutive termination of pregnancy. Since termination of pregnancy is ethically questionable, the discussion with respect to reimbursement will most probably go on. In this light, a comprehensive informed consent of the pregnant women is essential.

  20. Hydrodynamic Forces on Microbubbles under Ultrasound Excitation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2014-11-01

    Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.

  1. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis.

    PubMed

    Akyildiz, Ali C; Hansen, Hendrik H G; Nieuwstadt, Harm A; Speelman, Lambert; De Korte, Chris L; van der Steen, Antonius F W; Gijsen, Frank J H

    2016-04-01

    Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental-numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.

  2. Transvaginal ultrasound

    MedlinePlus

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  3. Petroleum Jelly: A Novel Medium for Ocular Ultrasound.

    PubMed

    Engelbert, Patrick R; Palma, James K

    2015-08-01

    Ocular ultrasound is a useful emergency department imaging modality for evaluation of many conditions, such as retinal detachment, vitreous detachment, vitreous hemorrhage, and elevated intracranial pressure. Obtaining satisfactory ocular ultrasound images requires the use of a medium that eliminates the air interface between the patient's eye and the transducer. Ultrasound gel is most commonly used; however, the use of a transparent dressing applied to the closed eye prior to the application of gel has also been described as a suitable technique. Ocular ultrasound is performed with the high-frequency linear array transducer using a medium to eliminate the air interface between the eye and the transducer. Although ultrasound gel is most frequently used, it can cause minor eye irritation. Placing a transparent dressing over a closed eye prior to application of gel can eliminate the eye irritation. However, our experience in training >500 students in ocular ultrasound has shown that air is frequently introduced underneath the dressing, which leads to poor-quality images. This article introduces petroleum jelly as a medium for ocular ultrasound. By applying a layer of petroleum jelly over the closed eye and allowing it to warm via body heat for 30 to 45 s, this medium can both minimize patient discomfort and provide easily obtainable, high-quality ocular ultrasound images. This article introduces petroleum jelly as a safe, comfortable, and effective medium for ocular ultrasound examination. Published by Elsevier Inc.

  4. Ultrasound active nanoscaled lipid formulations for thrombus lysis.

    PubMed

    Becker, Andreas; Marxer, Elena; Brüssler, Jana; Hoormann, Anne Sophia; Kuhnt, Daniela; Bakowsky, Udo; Nimsky, Christopher

    2011-04-01

    In the present study, we investigated the sonothrombolytic effect of new nanoscaled lipid formulations in human blood clots, using diagnostic ultrasound. Human blood clots of 1 ml were incubated with 1 μl of the different lipid dispersions DPPC/CH, DPPC/PEG40S, DSPC/PEG40S and the commercially available ultrasound contrast agent SonoVue®. Clots were stored for 3 days at 5 °C to obtain maximal clot retraction and lytic resistance. Each clot weight was determined before and after continuous insonation for 1h of insonation at 1.4 MHz. The pressure in the insonation chamber was 80 mm Hg to mimic middle arterial blood pressure. There were no significant differences in thrombus weight before insonation. All nanoscaled formulations and SonoVue® were able to reduce thrombus weight compared to the weight loss of clots that were not insonated but kept under pressure for one hour (p < 0.001). We found a highly significant weight reduction with DSPC/PEG40S compared to SonoVue® (p = 0.007). Nanoscaled DSPC/PEG40S dispersion could be a promising formulation in ultrasound enhanced thrombolysis even without thrombolytic drugs. Stable cavitation is a crucial parameter in fragmentation of thrombus architecture. Further studies of physicochemical properties of DSPC/PEG40S are necessary to corroborate our hypothesis. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.

    PubMed

    Acconcia, Christopher; Leung, Ben Y C; Manjunath, Anoop; Goertz, David E

    2014-09-01

    The use of ultrasound-stimulated microbubbles (USMBs) to promote thrombolysis is well established, but there remains considerable uncertainty about the mechanisms of this process. Here we examine the microscale interactions between individual USMBs and fibrin clots as a function of bubble size, exposure conditions and clot type. Microbubbles (n = 185) were placed adjacent to clot boundaries ("coarse" or "fine") using optical tweezers and exposed to 1-MHz ultrasound as a function of pressure (0.1-0.39 MPa). High-speed (10 kfps) imaging was employed, and clots were subsequently assessed with 2-photon microscopy. For fine clots, 46% of bubbles "embedded" within 10 μm of the clot boundary at pressures of 0.1 and 0.2 MPa, whereas at 0.39 MPa, 53% of bubbles penetrated and transited into the clots with an incidence inversely related to their diameter. A substantial fraction of penetrating bubbles induced fibrin network damage and promoted the uptake of nanobeads. In coarse clots, penetration occurred more readily and at lower pressures than in fine clots. The results therefore provide direct evidence of therapeutically relevant effects of USMBs and indicate their dependence on size, exposure conditions and clot properties. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. The Application of Ultrasound in 3D Bio-Printing.

    PubMed

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  7. Atmospheric Pressure Variation is a Delayed Trigger for Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    van Donkelaar, Carlina E; Potgieser, Adriaan R E; Groen, Henk; Foumani, Mahrouz; Abdulrahman, Herrer; Sluijter, Rob; van Dijk, J Marc C; Groen, Rob J M

    2018-04-01

    There is an ongoing search for conditions that induce spontaneous subarachnoid hemorrhage (SAH). The seasonal pattern of SAH is shown in a large meta-analysis of the literature, but its explanation remains undecided. There is a clear need for sound meteorologic data to further elucidate the seasonal influence on SAH. Because of the stable and densely monitored atmospheric situation in the north of the Netherlands, we reviewed our unique cohort on the seasonal incidence of SAH and the association between SAH and local atmospheric changes. Our observational cohort study included 1535 patients with spontaneous SAH admitted to our neurovascular center in the north of the Netherlands between 2000 and 2015. Meteorologic data could be linked to the day of the ictus. To compare SAH incidences over the year and to test the association with meteorologic conditions, incidence rate ratios (IRRs) with corresponding 95% confidence intervals (CIs) were used, calculated by Poisson regression analyses. Atmospheric pressure variations were significantly associated with aneurysmal SAH. In particular, the pressure change on the second and third day before the ictus was independently correlated to a higher incidence of aneurysmal SAH (IRR, 1.11; 95% CI, 1.00-1.23). The IRR for aneurysmal SAH in July was calculated 0.67 (95% CI, 0.49-0.92) after adjustment for temperature and atmospheric pressure changes. Atmospheric pressure variations are a delayed trigger for aneurysmal SAH. Also, a significantly decreased incidence of aneurysmal SAH was noted in July. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Ultrasound

    MedlinePlus

    ... community Home > Pregnancy > Prenatal care > Ultrasound during pregnancy Ultrasound during pregnancy E-mail to a friend Please ... you. What are some reasons for having an ultrasound? Your provider uses ultrasound to do several things, ...

  9. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    PubMed

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  10. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda

    1993-01-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  11. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer.

    PubMed

    Wang, Tzu-Yin; Choe, Jung Woo; Pu, Kanyi; Devulapally, Rammohan; Bachawal, Sunitha; Machtaler, Steven; Chowdhury, Sayan Mullick; Luong, Richard; Tian, Lu; Khuri-Yakub, Butrus; Rao, Jianghong; Paulmurugan, Ramasamy; Willmann, Jürgen K

    2015-04-10

    Ultrasound induced microbubble cavitation can cause enhanced permeability across natural barriers of tumors such as vessel walls or cellular membranes, allowing for enhanced therapeutic delivery into the target tissues. While enhanced delivery of small (<1nm) molecules has been shown at acoustic pressures below 1MPa both in vitro and in vivo, the delivery efficiency of larger (>100nm) therapeutic carriers into cancer remains unclear and may require a higher pressure for sufficient delivery. Enhanced delivery of larger therapeutic carriers such as FDA approved pegylated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NP) has significant clinical value because these nanoparticles have been shown to protect encapsulated drugs from degradation in the blood circulation and allow for slow and prolonged release of encapsulated drugs at the target location. In this study, various acoustic parameters were investigated to facilitate the successful delivery of two nanocarriers, a fluorescent semiconducting polymer model drug nanoparticle as well as PLGA-PEG-NP into human colon cancer xenografts in mice. We first measured the cavitation dose produced by various acoustic parameters (pressure, pulse length, and pulse repetition frequency) and microbubble concentration in a tissue mimicking phantom. Next, in vivo studies were performed to evaluate the penetration depth of nanocarriers using various acoustic pressures, ranging between 1.7 and 6.9MPa. Finally, a therapeutic microRNA, miR-122, was loaded into PLGA-PEG-NP and the amount of delivered miR-122 was assessed using quantitative RT-PCR. Our results show that acoustic pressures had the strongest effect on cavitation. An increase of the pressure from 0.8 to 6.9MPa resulted in a nearly 50-fold increase in cavitation in phantom experiments. In vivo, as the pressures increased from 1.7 to 6.9MPa, the amount of nanoparticles deposited in cancer xenografts was increased from 4- to 14-fold, and the median penetration depth of

  12. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  13. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.

  14. Temperature and pressure effects on elastic properties of relaxor ferroelectrics and thermoelectrics: A resonant ultrasound spectroscopy study

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu P.

    Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K

  15. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment.

    PubMed

    Gai, Yanzhe; Wang, Wucong; Xiao, Ding; Zhao, Yaping

    2018-03-01

    Ultrasound coupled with supercritical CO 2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8MPa to 16MPa, the ultrasonic power ranging from 12W to 240W and the frequency of 20kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339cm 3 to 8.074cm 3 with increasing ultrasonic power from 12W to 240W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12MPa. Thus, the maximum yield was obtained at 12MPa. The cavitation might be generated by ultrasound in supercritical CO 2 . But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO 2 technique for producing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High Energy Ultrasound As An Applicable Tool For Well Regeneration

    NASA Astrophysics Data System (ADS)

    Bott, W.; Hofmann, T.; Wilken, R.-D.

    Drinking water abstraction by groundwater wells is a main part of ground-water man- agement. During well operation ageing processes cause a decrease of permeability and productivity of these wells. The occurring processes are mainly a combination of chemical, physical and biological factors. This leads to the necessity of well regen- eration in order to maintain original well conditions and are linked to major invest- ments. The use of ultrasound as a well regeneration method is a new application for this purpose. In comparison to conventional regeneration methods, mainly mechan- ical and chemical procedures or a combination of both, high energy ultrasound can be called an environmentally "friendly" application because of the avoidance of any use of harmful chemicals within the well and the aquifer. In addition this method acts with consideration to the well building. But there are conflicting opinions on the effi- ciency of ultrasound. The goal of a current research project, financed by the German Foundation of Environment (DBU), is to answer the question, under which conditions high energy ultrasound is most effective for well regeneration. For this purpose an experimental station was constructed to carry out laboratory examinations on the in- fluence of different parameters on ultrasound efficiency, i.e. hydrostatic pressure, tem- perature, different filter gravel and well filter, duration of sonic, fre-quency and inten- sity. The whole instal-lation is stable regarding pressure up to 20 bar, to approximate con-ditions in real wells. First results show a clear dependence of sonic penetration on different materials of well filter and different size of filter gravel as well as on hydro- static pressure conditions within the well. The contribution presents the experimental setup and figures out further results of currently carried out investigations.

  17. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  18. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart

  19. WE-G-BRF-09: Force- and Image-Adaptive Strategies for Robotised Placement of 4D Ultrasound Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Life Science, University of Luebeck, Luebeck; Bruder, R

    2014-06-15

    Purpose: To allow continuous acquisition of high quality 4D ultrasound images for non-invasive live tracking of tumours for IGRT, image- and force-adaptive strategies for robotised placement of 4D ultrasound probes are developed and evaluated. Methods: The developed robotised ultrasound system is based on a 6-axes industrial robot (adept Viper s850) carrying a 4D ultrasound transducer with a mounted force-torque sensor. The force-adaptive placement strategies include probe position control using artificial potential fields and contact pressure regulation by a PD controller strategy. The basis for live target tracking is a continuous minimum contact pressure to ensure good image quality and highmore » patient comfort. This contact pressure can be significantly disturbed by respiratory movements and has to be compensated. All measurements were performed on human subjects under realistic conditions. When performing cardiac ultrasound, rib- and lung shadows are a common source of interference and can disrupt the tracking. To ensure continuous tracking, these artefacts had to be detected to automatically realign the probe. The detection is realised by multiple algorithms based on entropy calculations as well as a determination of the image quality. Results: Through active contact pressure regulation it was possible to reduce the variance of the contact pressure by 89.79% despite respiratory motion of the chest. The results regarding the image processing clearly demonstrate the feasibility to detect image artefacts like rib shadows in real-time. Conclusion: In all cases, it was possible to stabilise the image quality by active contact pressure control and automatically detected image artefacts. This fact enables the possibility to compensate for such interferences by realigning the probe and thus continuously optimising the ultrasound images. This is a huge step towards fully automated transducer positioning and opens the possibility for stable target tracking in

  20. Quantitative Contrast-Enhanced Ultrasound Parameters in Crohn Disease: Their Role in Disease Activity Determination With Ultrasound.

    PubMed

    Medellin-Kowalewski, Alexandra; Wilkens, Rune; Wilson, Alexandra; Ruan, Ji; Wilson, Stephanie R

    2016-01-01

    The primary objective of our study was to examine the association between contrast-enhanced ultrasound (CEUS) parameters and established gray-scale ultrasound with color Doppler imaging (CDI) for the determination of disease activity in patients with Crohn disease. Our secondary objective was to develop quantitative time-signal intensity curve thresholds for disease activity. One hundred twenty-seven patients with Crohn disease underwent ultrasound with CDI and CEUS. Reviewers graded wall thickness, inflammatory fat, and mural blood flow as showing remission or inflammation (mild, moderate, or severe). If both gray-scale ultrasound and CDI predicted equal levels of disease activity, the studies were considered concordant. If ultrasound images suggested active disease not supported by CDI findings, the ultrasound results for disease activity were indeterminate. Time-signal intensity curves from CEUS were acquired with calculation of peak enhancement (PE), and AUCs. Interobserver variation and associations between PE and ultrasound parameters were examined. Multiclass ROC analysis was used to develop CEUS thresholds for activity. Ninety-six (76%) studies were concordant, 19 of which showed severe disease, and 31 (24%) studies were indeterminate. Kappa analyses revealed good interobserver agreement on grades for CDI (κ = 0.76) and ultrasound (κ = 0.80) assessments. PE values on CEUS and wall thickness showed good association with the Spearman rank correlation coefficient for the entire population (ρ = 0.62, p < 0.01) and for the concordant group (ρ = 0.70, p < 0.01). Multiclass ROC analyses of the concordant group using wall thickness alone as the reference standard showed cutoff points of 18.2 dB for differentiating mild versus moderate activity (sensitivity, 89.0% and specificity, 87.0%) and 23.0 dB for differentiating moderate versus severe (sensitivity, 90% and specificity, 86.8%). Almost identical cutoff points were observed when using ultrasound global

  1. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    PubMed

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  2. Investigations on the destruction of ultrasound contrast agents: Fragmentation thresholds, inertial cavitation, and bioeffects

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang

    Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the

  3. A controlled variation scheme for convection treatment in pressure-based algorithm

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth; Tucker, Kevin

    1993-01-01

    Convection effect and source terms are two primary sources of difficulties in computing turbulent reacting flows typically encountered in propulsion devices. The present work intends to elucidate the individual as well as the collective roles of convection and source terms in the fluid flow equations, and to devise appropriate treatments and implementations to improve our current capability of predicting such flows. A controlled variation scheme (CVS) has been under development in the context of a pressure-based algorithm, which has the characteristics of adaptively regulating the amount of numerical diffusivity, relative to central difference scheme, according to the variation in local flow field. Both the basic concepts and a pragmatic assessment will be presented to highlight the status of this work.

  4. Micrometoric Impact Effects: Peak Pressure versus Spectral Variation

    NASA Technical Reports Server (NTRS)

    Jensen, Elizabeth; Lederer, S. M.; Wooden, D. H.; Lindsay, S. S.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2013-01-01

    At the Experimental Impact Laboratory at NASA Johnson Space Center, we have investigated the surface properties of asteroids caused by collisions in the mid-infrared (2.5 to 16 microns) by impacting forsterite and enstatite across a range of velocities (as predicted by the Nice Model) and at varying temperatures. The crystal structure in these minerals can be deformed by the shock wave from the impact as well as sheared into smaller particle sizes. Our current focus is on the differing effects between 2.3 and 2.6 km/sec, as well as the differences between a cold sample at -20C and a room temperature sample at 25C. We find that the spectral variation and crystal deformation varies non-linearly with the peak shock pressure.

  5. Acoustic cavitation of individual ultrasound contrast agent microbubbles confined in capillaries

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali; McIntyre, David; Ammi, Azzdine

    2011-10-01

    Ultrasound targeted therapies mainly rely on the inertial cavitation of ultrasound contrast agent (UCA) microbubbles. Our objective is to determine the cavitation acoustic pressure threshold for the destruction of UCA microbubbles inside cellulose capillaries. Acoustic emission from individual Optison microbubbles confined inside a 200-μm diameter capillary was detected using a passive cavitation detection system. Excitation signals from a 2.25 MHz transmitter were applied to the microbubbles while their acoustic emission was detected by a broadband 15 MHz receiver. Time traces were recorded (100 MHz sampling, 12- bit), and frequency-domain analysis of the received signals was performed to characterize microbubble cavitation. The cavitation acoustic pressure threshold was found to be 1 MPa inside the capillary in comparison with ˜0.7 MPa previously reported for unconfined UCA microbubbles. This work provides a clearer understanding of the role of ultrasound contrast agent dynamics inside a capillary.

  6. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  7. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.

  8. Nakagami-based total variation method for speckle reduction in thyroid ultrasound images.

    PubMed

    Koundal, Deepika; Gupta, Savita; Singh, Sukhwinder

    2016-02-01

    A good statistical model is necessary for the reduction in speckle noise. The Nakagami model is more general than the Rayleigh distribution for statistical modeling of speckle in ultrasound images. In this article, the Nakagami-based noise removal method is presented to enhance thyroid ultrasound images and to improve clinical diagnosis. The statistics of log-compressed image are derived from the Nakagami distribution following a maximum a posteriori estimation framework. The minimization problem is solved by optimizing an augmented Lagrange and Chambolle's projection method. The proposed method is evaluated on both artificial speckle-simulated and real ultrasound images. The experimental findings reveal the superiority of the proposed method both quantitatively and qualitatively in comparison with other speckle reduction methods reported in the literature. The proposed method yields an average signal-to-noise ratio gain of more than 2.16 dB over the non-convex regularizer-based speckle noise removal method, 3.83 dB over the Aubert-Aujol model, 1.71 dB over the Shi-Osher model and 3.21 dB over the Rudin-Lions-Osher model on speckle-simulated synthetic images. Furthermore, visual evaluation of the despeckled images shows that the proposed method suppresses speckle noise well while preserving the textures and fine details. © IMechE 2015.

  9. Effect of Power Ultrasound on Food Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hyoungill; Feng, Hao

    Recent food processing technology innovations have been centered around producing foods with fresh-like attributes through minimal processing or nonthermal processing technologies. Instead of using thermal energy to secure food safety that is often accompanied by quality degradation in processed foods, the newly developed processing modalities utilize other types of physical energy such as high pressure, pulsed electric field or magnetic field, ultraviolet light, or acoustic energy to process foods. An improvement in food quality by the new processing methods has been widely reported. In comparison with its low-energy (high-frequency) counterpart which finds applications in food quality inspection, the use of high-intensity ultrasound, also called power ultrasound, in food processing is a relatively new endeavor. To understand the effect of high-intensity ultrasound treatment on food quality, it is important to understand the interactions between acoustic energy and food ingredients, which is covered in Chapter 10. In this chapter, the focus will be on changes in overall food quality attributes that are caused by ultrasound, such as texture, color, flavor, and nutrients.

  10. Effects of ultrasound on polymeric foam porosity.

    PubMed

    Torres-Sanchez, C; Corney, J R

    2008-04-01

    A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements.

  11. Magnitude of long-term non-lithostatic pressure variations in lithospheric processes: insight from thermo-mechanical subduction/collision models

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2014-05-01

    On the one hand, the principle of lithostatic pressure is habitually used in metamorphic geology to calculate paleo-depths of metamorphism from mineralogical pressure estimates given by geobarometry. On the other hand, it is obvious that this lithostatic (hydrostatic) pressure principle should only be valid for an ideal case of negligible deviatoric stresses during the long-term development of the entire tectono-metamorphic system - the situation, which newer comes to existence in natural lithospheric processes. The question is therefore not "Do non-lithostatic pressure variations exist?" but " What is the magnitude of long-term non-lithostatic pressure variations in various lithospheric processes, which can be recorded by mineral equilibria of respective metamorphic rocks?". The later question is, in particular, relevant for various types of high-pressure (HP) and ultrahigh-pressure (UHP) rocks, which are often produced in convergent plate boundary settings (e.g., Hacker and Gerya, 2013). This question, can, in particular, be answered with the use of thermo-mechanical models of subduction/collision processes employing realistic P-T-stress-dependent visco-elasto-brittle/plastic rheology of rocks. These models suggest that magnitudes of pressure deviations from lithostatic values can range >50% underpressure to >100% overpressure, mainly in the regions of bending of rheologically strong mantle lithosphere (Burg and Gerya, 2005; Li et al., 2010). In particular, strong undepresures along normal faults forming within outer rise regions of subducting plates can be responsible for downward water suction and deep hydration of oceanic slabs (Faccenda et al., 2009). Weaker HP and UHP rocks of subduction/collision channels are typically subjected to lesser non-lithostatic pressure variations with characteristic magnitudes ranging within 10-20% from the lithostatic values (Burg and Gerya, 2005; Li et al., 2010). The strength of subducted crustal rocks and the degree of

  12. [Relation between ultrasound-measured diaphragm movement and partial pressure of carbon dioxide in blood from patients with acute hypercapnic respiratory failure after the start of noninvasive ventilation in an emergency department].

    PubMed

    Sánchez-Nicolás, José Andrés; Cinesi-Gómez, César; Villén-Villegas, Tomás; Piñera-Salmerón, Pascual; García-Pérez, Bartolo

    2016-10-01

    To evaluate the correlation between variations in ultrasound-measured diaphragm movement and changes in the arterial partial pressure of carbon dioxide (PCO2) after the start of noninvasive ventilation (NIV). RDescriptive study of a prospective case series comprised of nonconsecutive patients aged 18 years or older with hypercapnic respiratory failure who were placed on NIV in an emergency department. We recorded clinical data, blood gas measurements, and ultrasound measurements of diaphragm movement. Twenty-one patients with a mean (SD) age of 83 (13) years were studied; 11 (52.4%) were women. The mean (SD) range of diaphragm movement and PCO2 values at 4 moments were as follows: 1) at baseline: diaphragm movement, 13.90 (7.7) mm and PCO2, 71.75 (11.4) mm Hg; 2) after 15 minutes on NIV: diaphragm movement, 17.10 (9.1) mm; 3) at 1 hour: diaphragm movement, 22.40 (10.4) mm and PCO2, 63.45 (16.0) mm Hg; and 4) at 3 hours: diaphragm movement, 26.60 (19.5) mm and PCO2, 61.85 (13.0) mm Hg. We detected a statistically significant correlation between the difference in range of diaphragm movement at baseline and at 15 minutes and the decrease in PCO2 after 1 hour of NIV (r=-0.489, P=.035). In patients with hypercapnic respiratory failure, the increase in range of diaphragm movement 15 minutes after starting NIV is associated with a decrease in PCO2 after 1 hour.

  13. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC platemore » (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.« less

  14. Migration and geographic variations in blood pressure in Britain.

    PubMed Central

    Elford, J; Phillips, A; Thomson, A G; Shaper, A G

    1990-01-01

    OBJECTIVE--To evaluate the relative contributions of factors acting at different stages in life to regional differences in adult blood pressure. DESIGN--Prospective cohort study (British regional heart study). SETTING--One general practice in each of 24 towns in Britain. SUBJECTS--7735 Men aged 40-59 years when screened in 1978-80 whose geographic zone of birth and zone of examination were classified as south of England, midlands and Wales, north of England, and Scotland. Non-migrants (n = 3144) were born in the town where they were examined; internal migrants (n = 4147) were born in Great Britain but not in the town where they were examined; and international migrants (n = 422) were born outside Great Britain. MAIN OUTCOME MEASURES--Systolic and diastolic blood pressures and height. RESULTS--Regardless of where they were born, men living in the south of England had lower mean blood pressures than men living in Scotland (142.5/80.1 v 148.1/85.2 mm Hg). The effects of the place of birth and place of examination on adult blood pressure were examined in a multiple regression model. For internal migrants the modelled increase in mean systolic blood pressure across adjacent zones of examination was 2.1 mm Hg (95% confidence interval 1.3 to 2.9); for adjacent zones of birth the corresponding increase was 0.1 mm Hg (-0.7 to 0.7). The place of examination seemed to be a far more important determinant of mean adult blood pressure than the place of birth. Height is an accepted marker of genetic and early life influences. Regional differences in height were therefore analysed to test whether the multiple regression model could correctly distinguish between the influence of place of birth and place of examination. As expected, men born in Scotland were shorter on average than men born in the south of England irrespective of where they lived in Britain (172.6 cm v 175.1 cm for internal migrants). CONCLUSION--Regional variations in blood pressure were strongly influenced by

  15. Assessment of renal artery stenosis: side-by-side comparison of angiography and duplex ultrasound with pressure gradient measurements.

    PubMed

    Drieghe, Benny; Madaric, Juraj; Sarno, Giovanna; Manoharan, Ganesh; Bartunek, Jozef; Heyndrickx, Guy R; Pijls, Nico H J; De Bruyne, Bernard

    2008-02-01

    A ratio of distal renal pressure to aortic pressure (P(d)/P(a)) <0.90 can be considered a threshold for defining a significant renal artery stenosis (RAS). The aim of this study was to compare renal angiography (QRA) and colour duplex ultrasound (CDUS) to pressure measurements in assessing RAS. In 56 RAS, percent diameter stenosis (DS(angio)), minimal luminal diameter (MLD), Doppler-derived peak systolic velocity (PSV), end-diastolic velocity (EDV), and renal-to-aortic ratio (RAR) were obtained and compared with the P(d)/P(a) measured with a 0.014" pressure wire. P(d)/P(a) correlated with angiography- and CDUS-derived parameters. The best correlation was observed with EDV (R = -0.61). To identify stenosis associated with a P(d)/P(a) < 0.90, the diagnostic accuracy of DS(angio) > 50%, MLD < 2 mm, PSV > 180 cm/s, EDV > 90 cm/s and RAR > 3.5 were, respectively, 60%, 77%, 45%, 77% and 79%, yet, with a high proportion of false positives (38%, 15%, 55%, 11% and 15%, respectively) indicating an overestimation of the severity of the RAS by both QRA and CDUS. New cut-off values for QRA- and CDUS-derived indices were proposed. Generally accepted QRA and CDUS-derived indices of RAS severity overestimate the actual severity of RAS. This 'overdiagnosis' is likely the main cause of the disappointing results of renal angioplasty for renovascular hypertension.

  16. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  17. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.

    PubMed

    Maxwell, Adam D; Cain, Charles A; Hall, Timothy L; Fowlkes, J Brian; Xu, Zhen

    2013-03-01

    In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Using Advanced Tensiometers to Monitor Temporal Variations in Pore Pressure

    NASA Astrophysics Data System (ADS)

    Nichols, R. L.; Young, M. H.; Dixon, K. L.; Rossabi, J.; Hyde, W. K.; Holmes-Burns, H.

    2002-12-01

    The Savannah River Site has installed a comprehensive vadose zone monitoring system (VZMS) at it's low level radioactive waste disposal facility to collect the necessary information to calculate contaminant flux. The VZMS includes water content reflectometers, suction lysimeters, advanced tensiometers (ATs), water flux meters, access ports for neutron probes, and a tipping bucket rain gauge. Forty one ATs were installed from 1999 to 2001 at depths ranging from 2 to 60 feet and have been operated continuously. The installation depths were based on a hydrostatigraphic model developed from core logs, cone penetrometer logs, moisture content profiles, water retention curves model that were obtained during the phased installation of the VZMS. An AT consists of a porous cup installed at a prescribed depth with casing back to the surface and a pressure transducer that is lowered into the casing and connects with the porous cup. The pressure transducer transmits it's signal to a datalogger where the data is stored for future retrieval using a cellular phone communications package. Results from the 2 year operating period show that the AT calibrations are stable and t ATs are capable of extended monitoring of pore pressures in the 0 to 300 cm H2 O range. The ATs had sufficient resolution to detect the naturally occurring fluctuations in pore pressure (1 to 100 cm H2 O over 1 to 72 hours) that resulted from infiltration events at the site. The stable performance of the ATs combined with their ability to detect naturally occurring fluctuations in pore pressure make the ATs a useful tool in measuring temporal pore pressure variations for use in calibrating numerical models of fluid flow in variably saturated porous media.

  19. Endovascular ultrasound for renal sympathetic denervation in patients with therapy-resistant hypertension not responding to radiofrequency renal sympathetic denervation.

    PubMed

    Stiermaier, Thomas; Okon, Thomas; Fengler, Karl; Mueller, Ulrike; Hoellriegel, Robert; Schuler, Gerhard; Desch, Steffen; Lurz, Philipp

    2016-06-12

    Recent studies have reported a considerable number of non-responders after renal sympathetic de-nervation (RSD) with radiofrequency technology. Here we report our results of repeat RSD using ultrasound in these patients. A cohort study was performed in patients who underwent ultrasound RSD after non-response to RSD with radiofrequency. Non-response was defined as mean daytime systolic blood pressure ≥140 mmHg and/or a reduction of ≤10 mmHg in ambulatory blood pressure measurement (ABPM) ≥6 months after radiofrequency denervation. ABPM was recorded at baseline, post radiofrequency RSD as well as at three and six months post ultrasound RSD. A total of 24 non-responders underwent retreatment with the ultrasound device at a mean 15.3±8.2 months after radiofrequency RSD. Ultrasound RSD was performed successfully in all patients without severe adverse events. Mean daytime systolic blood pressure changed from 161.7±14.6 mmHg at baseline to 158.5±9.5 mmHg post radiofrequency RSD and to 150.5±10.4 mmHg and 151.6±11.0 mmHg at three and six months, respectively, post ultrasound RSD (p<0.01 with repeated measures analysis of variance). The main results of post hoc testing were as follows: baseline versus post radiofrequency RSD, p=0.83; baseline versus three months post ultrasound RSD, p=0.01; and baseline versus six months post ultrasound RSD, p=0.04. Ultrasound RSD appears to be safe and an effective therapeutic approach in patients not responding to previous RSD with radiofrequency technology.

  20. Overview of Therapeutic Ultrasound Applications and Safety Considerations

    PubMed Central

    Miller, Douglas; Smith, Nadine; Bailey, Michael; Czarnota, Gregory; Hynynen, Kullervo; Makin, Inder

    2013-01-01

    Summary Applications of ultrasound in medicine for therapeutic purposes have been an accepted and beneficial use of ultrasonic biological effects for many years. Low power ultrasound of about 1 MHz frequency has been widely applied since the 1950s for physical therapy in conditions such as tendinitis or bursitis. In the 1980s, high pressure-amplitude shockwaves came into use for mechanically resolving kidney stones, and “lithotripsy” rapidly replaced surgery as the most frequent treatment choice. The use of ultrasonic energy for therapy continues to expand, and approved applications now include uterine fibroid ablation, cataract removal (phacoemulsification), surgical tissue cutting and hemostasis, transdermal drug delivery, and bone fracture healing, among others. Undesirable bioeffects can occur including burns for thermal-based therapies and significant hemorrhage for mechanical-based therapies (e. g. lithotripsy). In all these therapeutic applications for bioeffects of ultrasound, standardization, ultrasound dosimetry, benefits assurance and side-effects risk minimization must be carefully considered in order to insure an optimal benefit to risk ratio for the patient. Therapeutic ultrasound typically has well-defined benefits and risks, and therefore presents a tractable safety problem to the clinician. However, safety information can be scattered, confusing or subject to commercial conflict of interest. Of paramount importance for managing this problem is the communication of practical safety information by authoritative groups, such as the AIUM, to the medical ultrasound community. In this overview, the Bioeffects Committee outlines the wide range of therapeutic ultrasound methods, which are in clinical use or under study, and provides general guidance for assuring therapeutic ultrasound safety. PMID:22441920

  1. An inverse approach to determining spatially varying arterial compliance using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Mcgarry, Matthew; Li, Ronny; Apostolakis, Iason; Nauleau, Pierre; Konofagou, Elisa E.

    2016-08-01

    The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.

  2. Pulse pressure variation-guided fluid therapy after cardiac surgery: a pilot before-and-after trial.

    PubMed

    Suzuki, Satoshi; Woinarski, Nicholas C Z; Lipcsey, Miklos; Candal, Cristina Lluch; Schneider, Antoine G; Glassford, Neil J; Eastwood, Glenn M; Bellomo, Rinaldo

    2014-12-01

    The aim of this study is to study the feasibility, safety, and physiological effects of pulse pressure variation (PPV)-guided fluid therapy in patients after cardiac surgery. We conducted a pilot prospective before-and-after study during mandatory ventilation after cardiac surgery in a tertiary intensive care unit. We introduced a protocol to deliver a fluid bolus for a PPV≥13% for at least >10 minutes during the intervention period. We studied 45 control patients and 53 intervention patients. During the intervention period, clinicians administered a fluid bolus on 79% of the defined PPV trigger episodes. Median total fluid intake was similar between 2 groups during mandatory ventilation (1297 mL [interquartile range 549-1968] vs 1481 mL [807-2563]; P=.17) and the first 24 hours (3046 mL [interquartile range 2317-3982] vs 3017 mL [2192-4028]; P=.73). After adjusting for several baseline factors, PPV-guided fluid management significantly increased fluid intake during mandatory ventilation (P=.004) but not during the first 24 hours (P=.47). Pulse pressure variation-guided fluid therapy, however, did not significantly affect hemodynamic, renal, and metabolic variables. No serious adverse events were noted. Pulse pressure variation-guided fluid management was feasible and safe during mandatory ventilation after cardiac surgery. However, its advantages may be clinically small. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Experimental analysis of behavior in nanobubbles using echograms under ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Wada, Hikaru; Koido, Jun; Miyazawa, Shinya; Mochizuki, Takashi; Masuda, Kohji; Unga, Johan; Oda, Yusuke; Suzuki, Ryo; Maruyama, Kazuo

    2016-07-01

    Although we have reported our attempts to actively control microbubbles in flow using acoustic radiation force for future drug delivery systems, the microbubbles we used are not applicable for in vivo experiments. Thus, we examined two types of nanobubble with a drug-retaining function. Because the nanobubbles are invisible in a conventional optical observation, we observed the behavior of nanobubbles using ultrasound images (echograms). First, we found the optimal settings of echography to guarantee the relationship between the brightness variation and lipid concentration of nanobubbles. Then, we derived the destructive coefficient using two types of path under continuous ultrasound exposure of 5 MHz. Results indicate that the controllability is related to the construction of nanobubbles and the spatial distribution of the ultrasound field. We realized that the design of the ultrasound field is important with Bubble A, whereas the frequency of ultrasound emission needs to be discussed with Bubble B.

  4. Geographic Variation of Melanisation Patterns in a Hornet Species: Genetic Differences, Climatic Pressures or Aposematic Constraints?

    PubMed Central

    Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M.; Villemant, Claire

    2014-01-01

    Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism. PMID:24740142

  5. Geographic variation of melanisation patterns in a hornet species: genetic differences, climatic pressures or aposematic constraints?

    PubMed

    Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M; Villemant, Claire

    2014-01-01

    Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism.

  6. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.

    PubMed

    Chen, Xucai; Wang, Jianjun; Pacella, John J; Villanueva, Flordeliza S

    2016-02-01

    Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Reliability of laser Doppler flowmetry curve reading for measurement of toe and ankle pressures: intra- and inter-observer variation.

    PubMed

    Høyer, C; Paludan, J P D; Pavar, S; Biurrun Manresa, J A; Petersen, L J

    2014-03-01

    To assess the intra- and inter-observer variation in laser Doppler flowmetry curve reading for measurement of toe and ankle pressures. A prospective single blinded diagnostic accuracy study was conducted on 200 patients with known or suspected peripheral arterial disease (PAD), with a total of 760 curve sets produced. The first curve reading for this study was performed by laboratory technologists blinded to clinical clues and previous readings at least 3 months after the primary data sampling. The pressure curves were later reassessed following another period of at least 3 months. Observer agreement in diagnostic classification according to TASC-II criteria was quantified using Cohen's kappa. Reliability was quantified using intra-class correlation coefficients, coefficients of variance, and Bland-Altman analysis. The overall agreement in diagnostic classification (PAD/not PAD) was 173/200 (87%) for intra-observer (κ = .858) and 175/200 (88%) for inter-observer data (κ = .787). Reliability analysis confirmed excellent correlation for both intra- and inter-observer data (ICC all ≥.931). The coefficients of variance ranged from 2.27% to 6.44% for intra-observer and 2.39% to 8.42% for inter-observer data. Subgroup analysis showed lower observer-variation for reading of toe pressures in patients with diabetes and/or chronic kidney disease than patients not diagnosed with these conditions. Bland-Altman plots showed higher variation in toe pressure readings than ankle pressure readings. This study shows substantial intra- and inter-observer agreement in diagnostic classification and reading of absolute pressures when using laboratory technologists as observers. The study emphasises that observer variation for curve reading is an important factor concerning the overall reproducibility of the method. Our data suggest diabetes and chronic kidney disease have an influence on toe pressure reproducibility. Copyright © 2013 European Society for Vascular Surgery. Published

  8. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  9. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  10. Audible handheld Doppler ultrasound determines reliable and inexpensive exclusion of significant peripheral arterial disease.

    PubMed

    Alavi, Afsaneh; Sibbald, R Gary; Nabavizadeh, Reza; Valaei, Farnaz; Coutts, Pat; Mayer, Dieter

    2015-12-01

    To determine the accuracy of audible arterial foot signals with an audible handheld Doppler ultrasound for identification of significant peripheral arterial disease as a simple, quick, and readily available bedside screening tool. Two hundred consecutive patients referred to an interprofessional wound care clinic underwent audible handheld Doppler ultrasound of both legs. As a control and comparator, a formal bilateral lower leg vascular study including the calculation of Ankle Brachial Pressure Index and toe pressure (TP) was performed at the vascular lab. Diagnostic reliability of audible handheld Doppler ultrasound was calculated versus Ankle Brachial Pressure Index as the gold standard test. A sensitivity of 42.8%, a specificity of 97.5%, negative predictive value of 94.10%, positive predictive value of 65.22%, positive likelihood ratio of 17.52, and negative likelihood ratio of 0.59. The univariable logistic regression model had an area under the curve of 0.78. There was a statistically significant difference at the 5% level between univariable and multivariable area under the curves of the dorsalis pedis and posterior tibial models (p < 0.001). Audible handheld Doppler ultrasound proved to be a reliable, simple, rapid, and inexpensive bedside exclusion test of peripheral arterial disease in diabetic and nondiabetic patients. © The Author(s) 2015.

  11. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption.

    PubMed

    Wang, M; Yuan, W; Hale, Andy

    2016-03-01

    The three-dimensional distribution (x, y, and z) of ultrasound-induced microalgal cell disruption in a sonochemical reactor was predicted by solving the Helmholtz equation using a three-dimensional acoustic module in the COMSOL Multiphysics software. The simulated local ultrasound pressure at any given location (x, y, and z) was found to correlate with cell disruption of a freshwater alga, Scenedesmus dimorphus, represented by the change of algal cell particle/debris concentration, chlorophyll-a fluorescence density (CAFD), and Nile red stained lipid fluorescence density (LFD), which was also validated by the model reaction of potassium iodide oxidation (the Weissler reaction). Furthermore, the effect of ultrasound power intensity and processing duration on algal cell disruption was examined to address the limitation of the model.

  12. The effect of gravitational and pressure torques on Titan's length-of-day variations

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Rambaux, N.; Karatekin, Ö.; Baland, R.-M.

    2009-03-01

    Cassini radar observations show that Titan's spin is slightly faster than synchronous spin. Angular momentum exchange between Titan's surface and the atmosphere over seasonal time scales corresponding to Saturn's orbital period of 29.5 year is the most likely cause of the observed non-synchronous rotation. We study the effect of Saturn's gravitational torque and torques between internal layers on the length-of-day (LOD) variations driven by the atmosphere. Because static tides deform Titan into an ellipsoid with the long axis approximately in the direction to Saturn, non-zero gravitational and pressure torques exist that can change the rotation rate of Titan. For the torque calculation, we estimate the flattening of Titan and its interior layers under the assumption of hydrostatic equilibrium. The gravitational forcing by Saturn, due to misalignment of the long axis of Titan with the line joining the mass centers of Titan and Saturn, reduces the LOD variations with respect to those for a spherical Titan by an order of magnitude. Internal gravitational and pressure coupling between the ice shell and the interior beneath a putative ocean tends to reduce any differential rotation between shell and interior and reduces further the LOD variations by a few times. For the current estimate of the atmospheric torque, we obtain LOD variations of a hydrostatic Titan that are more than 100 times smaller than the observations indicate when Titan has no ocean as well as when a subsurface ocean exists. Moreover, Saturn's torque causes the rotation to be slower than synchronous in contrast to the Cassini observations. The calculated LOD variations could be increased if the atmospheric torque is larger than predicted and or if fast viscous relaxation of the ice shell could reduce the gravitational coupling, but it remains to be studied if a two order of magnitude increase is possible and if these effects can explain the phase difference of the predicted rotation variations

  13. Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound.

    PubMed

    Sikes, Anita L; Mawson, Raymond; Stark, Janet; Warner, Robyn

    2014-11-01

    The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600kHz at 48kPa and 65kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7days at 4°C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7days at 4°C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2MHz at 48kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3weeks at 0°C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  14. ULTRASOUND-ENHANCED rt-PA THROMBOLYSIS IN AN EX VIVO PORCINE CAROTID ARTERY MODEL

    PubMed Central

    Hitchcock, Kathryn E.; Ivancevich, Nikolas M.; Haworth, Kevin J.; Caudell Stamper, Danielle N.; Vela, Deborah C.; Sutton, Jonathan T.; Pyne-Geithman, Gail J.; Holland, Christy K.

    2014-01-01

    Ultrasound is known to enhance recombinant tissue plasminogen activator (rt-PA) thrombolysis. In this study, occlusive porcine whole blood clots were placed in flowing plasma within living porcine carotid arteries. Ultrasonically induced stable cavitation was investigated as an adjuvant to rt-PA thrombolysis. Aged, retracted clots were exposed to plasma alone, plasma containing rt-PA (7.1 ± 3.8 μg/mL) or plasma with rt-PA and Definity® ultrasound contrast agent (0.79 ± 0.47 μL/mL) with and without 120-kHz continuous wave ultrasound at a peak-to-peak pressure amplitude of 0.44 MPa. An insonation scheme was formulated to promote and maximize stable cavitation activity by incorporating ultrasound quiescent periods that allowed for the inflow of Definity®-rich plasma. Cavitation was measured with a passive acoustic detector throughout thrombolytic treatment. Thrombolytic efficacy was measured by comparing clot mass before and after treatment. Average mass loss for clots exposed to rt-PA and Definity® without ultrasound (n = 7) was 34%, and with ultrasound (n = 6) was 83%, which constituted a significant difference (p < 0.0001). Without Definity® there was no thrombolytic enhancement by ultrasound exposure alone at this pressure amplitude (n = 5, p < 0.0001). In the low-oxygen environment of the ischemic artery, significant loss of endothelium occurred but no correlation was observed between arterial tissue damage and treatment type. Acoustic stable cavitation nucleated by an infusion of Definity® enhances rt-PA thrombolysis without apparent treatment-related damage in this ex vivo porcine carotid artery model. PMID:21723448

  15. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.

    PubMed

    Sane, Pooja; Varma, Nikhil; Ganguly, Arnab; Pikal, Michael; Alexeenko, Alina; Bogner, Robin H

    2017-02-01

    Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h -1 ·m -2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h -1 ·m -2 , an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.

  16. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Ultrasound

    MedlinePlus Videos and Cool Tools

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  18. Disruption of Prostate Microvasculature by Combining Microbubble-Enhanced Ultrasound and Prothrombin

    PubMed Central

    Liu, Yongliang; Qiao, Lu; Gao, Wenhong; Zhang, Weiguo; Liu, Zheng

    2016-01-01

    Previous studies have shown a unique method to disrupt tumor vasculature using pulsed, high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study, we attempted to destroy the prostate vasculature of canine prostates using microbubble-enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using microbubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Prothrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection. Contrast-enhanced ultrasound was performed to assess the blood perfusion of the prostates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours later for pathological examination. The contrast-enhanced ultrasound peak value of the prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS group, but it remained unchanged in the other groups. Histological examination found severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-treated prostates immediately after treatment, while disruption in the PMEUS group was more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated that PMEUS disrupted the normal microvasculature of canine prostates and induced massive necrosis. PMEUS could potentially become a new noninvasive method used for the treatment of benign prostatic hyperplasia. PMID:27643992

  19. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    NASA Technical Reports Server (NTRS)

    Wood, S. E.; Paige, D. A.

    1993-01-01

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  20. Cavitation thresholds of contrast agents in an in vitro human clot model exposed to 120-kHz ultrasound.

    PubMed

    Gruber, Matthew J; Bader, Kenneth B; Holland, Christy K

    2014-02-01

    Ultrasound contrast agents (UCAs) can be employed to nucleate cavitation to achieve desired bioeffects, such as thrombolysis, in therapeutic ultrasound applications. Effective methods of enhancing thrombolysis with ultrasound have been examined at low frequencies (<1 MHz) and low amplitudes (<0.5 MPa). The objective of this study was to determine cavitation thresholds for two UCAs exposed to 120-kHz ultrasound. A commercial ultrasound contrast agent (Definity(®)) and echogenic liposomes were investigated to determine the acoustic pressure threshold for ultraharmonic (UH) and broadband (BB) generation using an in vitro flow model perfused with human plasma. Cavitation emissions were detected using two passive receivers over a narrow frequency bandwidth (540-900 kHz) and a broad frequency bandwidth (0.54-1.74 MHz). UH and BB cavitation thresholds occurred at the same acoustic pressure (0.3 ± 0.1 MPa, peak to peak) and were found to depend on the sensitivity of the cavitation detector but not on the nucleating contrast agent or ultrasound duty cycle.

  1. Point-of-care ultrasound in aerospace medicine: known and potential applications.

    PubMed

    Wagner, Michael S; Garcia, Kathleen; Martin, David S

    2014-07-01

    Since its initial introduction into the bedside assessment of the trauma patient via the Focused Assessment with Sonography for Trauma (FAST) exam, the use of point-of-care ultrasound has expanded rapidly. A growing body of literature demonstrates ultrasound can be used by nonradiologists as an extension of the physical exam to accurately diagnose or exclude a variety of conditions. These conditions include, but are not limited to, hemoperitoneum, pneumothorax, pulmonary edema, long-bone fracture, deep vein thrombosis, and elevated intracranial pressure. As ultrasound machines have become more compact and portable, their use has extended outside of hospitals to places where the physical exam and diagnostic capabilities may be limited, including the aviation environment. A number of studies using focused sonography have been performed to meet the diagnostic challenges of space medicine. The following article reviews the available literature on portable ultrasound use in aerospace medicine and highlights both known and potential applications of point-of-care ultrasound for the aeromedical clinician.

  2. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    NASA Astrophysics Data System (ADS)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  3. Comparative Analysis of Arterial Parameters Variations Associated with Inter-Individual Variations in Peripheral and Aortic Blood Pressure: Cross-Sectional Study in Healthy Subjects Aged 2-84 years.

    PubMed

    Zócalo, Yanina; Curcio, Santiago; García-Espinosa, Victoria; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel

    2017-12-01

    The association between arterial parameters and blood pressure (BP) interindividual variations could depend on the arterial segment, BP component (systolic, SBP; diastolic, DBP; pulse pressure, PP) and/or on whether central (cBP) or peripheral (pBP) BP variations are considered. To assess and compare arterial parameters variations associated with interindividual variations in cBP and pBP. Healthy subjects (n = 923; 488 males, 2-84 years) were included. pBP and cBP waves were obtained (Mobil-O-Graph; SphygmoCor). Arterial diameter, intima-media thickness, local elastic modulus (carotid, CEM; brachial, BEM; femoral, FEM) and regional (carotid-radial and carotid-femoral pulse wave velocity; crPWV and cfPWV) arterial stiffness were determined. Associations between BP and arterial parameters interindividual variations were analyzed and compared (correlations; linear regressions; slopes comparisons) considering data transformed into z-scores. Given a variation in z-cSBP or z-pSBP, z-CEM, z-FEM and z-cfPWV (stiffness indexes), were among the parameters with major BP-associated variations. z-crPWV and z-cfPWV, rather than local stiffness indexes were the parameters with major variations associated with z-DBP variations. z-cPP or z-pPP were associated with z-CEM and z-FEM variations, but not with brachial or regional stiffness variations. Most of the arterial parameters-BP slopes did not show significant differences when considering a variation in z-cSBP and z-pSBP. z-CEM and z-FEM were mainly associated with z-cPP and z-pPP variations, respectively. Disregard of age and sex, the variations in arterial parameters associated with BP interindividual variations showed differences depending on whether variations were central or peripheral; in SBP, DBP or PP and depending on the arterial segment considered.

  4. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  5. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    NASA Astrophysics Data System (ADS)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  6. New piezocrystal material in the development of a 96-element array transducer for MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy

    2012-11-01

    Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.

  7. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model.

    PubMed

    Hitchcock, Kathryn E; Ivancevich, Nikolas M; Haworth, Kevin J; Caudell Stamper, Danielle N; Vela, Deborah C; Sutton, Jonathan T; Pyne-Geithman, Gail J; Holland, Christy K

    2011-08-01

    Ultrasound is known to enhance recombinant tissue plasminogen activator (rt-PA) thrombolysis. In this study, occlusive porcine whole blood clots were placed in flowing plasma within living porcine carotid arteries. Ultrasonically induced stable cavitation was investigated as an adjuvant to rt-PA thrombolysis. Aged, retracted clots were exposed to plasma alone, plasma containing rt-PA (7.1 ± 3.8 μg/mL) or plasma with rt-PA and Definity® ultrasound contrast agent (0.79 ± 0.47 μL/mL) with and without 120-kHz continuous wave ultrasound at a peak-to-peak pressure amplitude of 0.44 MPa. An insonation scheme was formulated to promote and maximize stable cavitation activity by incorporating ultrasound quiescent periods that allowed for the inflow of Definity®-rich plasma. Cavitation was measured with a passive acoustic detector throughout thrombolytic treatment. Thrombolytic efficacy was measured by comparing clot mass before and after treatment. Average mass loss for clots exposed to rt-PA and Definity® without ultrasound (n = 7) was 34%, and with ultrasound (n = 6) was 83%, which constituted a significant difference (p < 0.0001). Without Definity® there was no thrombolytic enhancement by ultrasound exposure alone at this pressure amplitude (n = 5, p < 0.0001). In the low-oxygen environment of the ischemic artery, significant loss of endothelium occurred but no correlation was observed between arterial tissue damage and treatment type. Acoustic stable cavitation nucleated by an infusion of Definity® enhances rt-PA thrombolysis without apparent treatment-related damage in this ex vivo porcine carotid artery model. Copyright © 2011. Published by Elsevier Inc.

  8. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  9. Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation.

    PubMed

    Štengl, Václav; Henych, Jiří

    2013-04-21

    Intense ultrasound in a pressurized batch reactor was used for preparation of monolayered MoS2 nanosheets from natural mineral molybdenite. Exfoliation of bulk MoS2 using ultrasound is an attractive route to large-scale preparation of monolayered crystals. To evaluate the quality of delamination, methods like X-ray diffraction, Raman spectroscopy and microscopic techniques (TEM and AFM) were employed. From single- or few-layered products obtained from intense sonication, MoS2 quantum dots (MoSQDs) were prepared by a one-pot reaction by refluxing exfoliated nanosheets of MoS2 in ethylene glycol under atmospheric pressure. The synthesised MoSQDs were characterised by photoluminescence spectroscopy and laser-scattering particle size analysis. Our easy preparation leads to very strongly green luminescing quantum dots.

  10. Contrast-enhanced ultrasound for quantitative assessment of portal pressure in canine liver fibrosis.

    PubMed

    Zhai, Lin; Qiu, Lan-Yan; Zu, Yuan; Yan, Yan; Ren, Xiao-Zhuan; Zhao, Jun-Feng; Liu, Yu-Jiang; Liu, Ji-Bin; Qian, Lin-Xue

    2015-04-21

    To explore the feasibility of non-invasive quantitative estimation of portal venous pressure by contrast-enhanced ultrasound (CEUS) in a canine model. Liver fibrosis was established in adult canines (Beagles; n = 14) by subcutaneous injection of carbon tetrachloride (CCl4). CEUS parameters, including the area under the time-intensity curve and intensity at portal/arterial phases (Qp/Qa and Ip/Ia, respectively), were used to quantitatively assess the blood flow ratio of the portal vein/hepatic artery at multiple time points. The free portal venous pressures (FPP) were measured by a multi-channel baroreceptor using a percutaneous approach at baseline and 8, 16, and 24 wk after CCl4 injections in each canine. Liver biopsies were obtained at the end of 8, 16, and 24 wk from each animal, and the stage of the fibrosis was assessed according to the Metavir scoring system. A Pearson correlation test was performed to compare the FPP with Qp/Qa and Ip/Ia. Pathologic examination of 42 biopsies from the 14 canines at weeks 8, 16, and 24 revealed that liver fibrosis was induced by CCl4 and represented various stages of liver fibrosis, including F0 (n = 3), F1 (n = 12), F2 (n = 14), F3 (n = 11), and F4 (n = 2). There were significant differences in the measurements of Qp/Qa (19.85 ± 3.30 vs 10.43 ± 1.21, 9.63 ± 1.03, and 8.77 ± 0.96) and Ip/Ia (1.77 ± 0.37 vs 1.03 ± 0.12, 0.83 ± 0.10, and 0.69 ± 0.13) between control and canine fibrosis at 8, 16, and 24 wk, respectively (all P < 0.001). There were statistically significant negative correlations between FPP and Qp/Qa (r = -0.707, P < 0.001), and between FPP and Ip/Ia (r = -0.759, P < 0.001) in the canine fibrosis model. Prediction of elevated FPP based on Qp/Qa and Ip/Ia was highly sensitive, as assessed by the area under the receiver operating curve (0.866 and 0.895, respectively). CEUS is a potential method to accurately, but non-invasively, estimate portal venous pressure through measurement of Qp/Qa and Ip

  11. Meshless bubble filter using ultrasound for extracorporeal circulation and its effect on blood.

    PubMed

    Mino, Koji; Imura, Masato; Koyama, Daisuke; Omori, Masayoshi; Kawarabata, Shigeki; Sato, Masafumi; Watanabe, Yoshiaki

    2015-02-01

    A bubble filter with no mesh structure for extracorporeal circulation using ultrasound was developed. Hemolysis was evaluated by measuring free hemoglobin (FHb). FHb in 120 mL of bovine blood was measured in acoustic standing-wave fields. With a sound pressure amplitude of 60 kPa at driving frequencies of 1 MHz, 500 kHz and 27 kHz for 15 min. FHb values were 641.6, 2575 and 8903 mg/dL, respectively. Thus, hemolysis was inhibited with higher driving frequencies when the same sound pressure amplitude was applied. An ultrasound bubble filter with a resonance frequency of 1 MHz was designed. The filtering characteristics of the flowing microbubbles were investigated with a circulation system using bovine blood with a flow rate of 5.0 L/min. Approximately 99.1% of microbubbles were filtered with 250 kPa and a flow of 5.0 L/min. Hemolysis decreased as the sound pressure decreased; FHb values were 225.8 and 490.7 mg/dL when using 150 and 200 kPa, respectively. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Relationships of vascular function with measures of ambulatory blood pressure variation.

    PubMed

    Hodgson, Jonathan M; Woodman, Richard J; Croft, Kevin D; Ward, Natalie C; Bondonno, Catherine P; Puddey, Ian B; Lukoshkova, Elena V; Head, Geoffrey A

    2014-03-01

    Characteristics of short-term blood pressure (BP) variation may influence cardiovascular disease risk via effects on vascular function. In a cross-sectional study of a group of treated hypertensive and untreated largely normotensive subjects we investigated the relationships of measures of short-term BP variation with brachial artery vasodilator function. A total of 163 treated hypertensive (n = 91) and untreated largely normotensive (n = 72) men and women were recruited from the general population. Measures of systolic and diastolic BP variation were calculated from 24 h ambulatory BP assessments and included: (i) rate of measurement-to-measurement BP variation (SBP-var and DBP-var); and (ii) day-to-night BP dip (SBP-dip and DBP dip). Endothelium-dependent vasodilation was assessed as flow-mediated dilation (FMD) and endothelium-independent vasodilation was assessed in response to glyceryl trinitrate (GTN). Relationships were explored using univariate and multivariate linear regression. The relationships of brachial artery vasodilator function with BP variation were not significantly different between treated hypertensive and untreated subjects, therefore these groups were combined for analysis. In univariate analysis, higher SBP-var (P < 0.001) and lower DBP-dip (P = 0.004) were associated with lower FMD; and higher SBP-var (P = 0.002) and lower SBP-dip (P = 0.003) and DBP-dip (P = 0.001) were associated with lower GTN-mediated dilation. In multivariate analysis, lower SBP-dip (P = 0.007) and DBP-dip (P = 0.03) were independently associated with lower GTN response. Our results indicate that a lower day-to-night BP dip is independently associated with impaired smooth muscle cell function. Although rate of BP variation was associated with measures of endothelial and smooth muscle cell function, relationships were attenuated after accounting for age and BP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent.

    PubMed

    Datta, Saurabh; Coussios, Constantin-C; Ammi, Azzdine Y; Mast, T Douglas; de Courten-Myers, Gabrielle M; Holland, Christy K

    2008-09-01

    Ultrasound has been shown previously to act synergistically with a thrombolytic agent, such as recombinant tissue plasminogen activator (rt-PA) to accelerate thrombolysis. In this in vitro study, a commercial contrast agent, Definity, was used to promote and sustain the nucleation of cavitation during pulsed ultrasound exposure at 120 kHz. Ultraharmonic signals, broadband emissions and harmonics of the fundamental were measured acoustically by using a focused hydrophone as a passive cavitation detector and used to quantify the level of cavitation activity. Human whole blood clots suspended in human plasma were exposed to a combination of rt-PA, Definity and ultrasound at a range of ultrasound peak-to-peak pressure amplitudes, which were selected to expose clots to various degrees of cavitation activity. Thrombolytic efficacy was determined by measuring clot mass loss before and after the treatment and correlated with the degree of cavitation activity. The penetration depth of rt-PA and plasminogen was also evaluated in the presence of cavitating microbubbles using a dual-antibody fluorescence imaging technique. The largest mass loss (26.2%) was observed for clots treated with 120-kHz ultrasound (0.32-MPa peak-to-peak pressure amplitude), rt-PA and stable cavitation nucleated by Definity. A significant correlation was observed between mass loss and ultraharmonic signals (r = 0.85, p < 0.0001, n = 24). The largest mean penetration depth of rt-PA (222 microm) and plasminogen (241 microm) was observed in the presence of stable cavitation activity. Stable cavitation activity plays an important role in enhancement of thrombolysis and can be monitored to evaluate the efficacy of thrombolytic treatment.

  14. CAVITATION THRESHOLD OF MICROBUBBLES IN GEL TUNNELS BY FOCUSED ULTRASOUND

    PubMed Central

    Sassaroli, E.; Hynynen, K.

    2007-01-01

    The investigation of inertial cavitation in micro-tunnels has significant implications for the development of therapeutic applications of ultrasound such as ultrasound-mediated drug and gene delivery. The threshold for inertial cavitation was investigated using a passive cavitation detector with a center frequency of 1 MHz. Micro-tunnels of various diameters (90 to 800 μm) embedded in gel were fabricated and injected with a solution of Optison™ contrast agent of concentrations 1.2% and 0.2% diluted in water. An ultrasound pulse of duration 500 ms and center frequency 1.736 MHz was used to insonate the microbubbles. The acoustic pressure was increased at one second intervals until broadband noise emission was detected. The pressure threshold at which broadband noise emission was observed was found to be dependent on the diameter of the micro-tunnels, with an average increase of 1.2 to 1.5 between the smallest and the largest tunnels, depending on the microbubble concentration. The evaluation of inertial cavitation in gel tunnels rather than tubes provides a novel opportunity to investigate microbubble collapse in a situation that simulates in vivo blood vessels better than tubes with solid walls do. PMID:17590501

  15. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  16. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics.

    PubMed

    Chakraborty, Ranjay; Read, Scott A; Collins, Michael J

    2011-07-11

    To investigate the pattern of diurnal variations in axial length (AL), choroidal thickness, intraocular pressure (IOP), and ocular biometrics over 2 consecutive days. Measurements of ocular biometrics and IOP were collected for 30 young adult subjects (15 myopes, 15 emmetropes) at 10 different times over 2 consecutive days. Five sets of measurements were collected each day at approximately 3-hour intervals, with the first measurement taken at ~9 AM and final measurement at ~9 PM. AL underwent significant diurnal variation (P < 0.0001) that was consistently observed across the 2 measurement days. The longest AL was typically observed at the second measurement session (mean time, 12:26) and the shortest AL at the final session of each day (mean time, 21:06). The mean diurnal change in AL was 0.032 ± 0.018 mm. Choroidal thickness underwent significant diurnal variation (mean change, 0.029 ± 0.016 mm; P < 0.001) and varied approximately in antiphase to the AL changes. Significant diurnal variations were also found in vitreous chamber depth (VCD; mean change, 0.06 ± 0.029 mm; P < 0.0001) and IOP (mean change, 3.54 ± 0.84 mm Hg; P < 0.0001). A positive association was found between the variations of AL and IOP (r(2) = 0.17, P < 0.0001) and AL and VCD (r(2) = 0.31, P < 0.0001) and a negative association between AL and choroidal thickness (r(2) = 0.13, P < 0.0001). There were no significant differences in the magnitude and timing of diurnal variations associated with refractive error. Significant diurnal variations in AL, choroidal thickness, and IOP were consistently observed over 2 consecutive days of testing.

  17. Dynamics of encapsulated microbubbles for contrast ultrasound imaging and drug delivery: from pressure dependent subharmonic to collapsing jet and acoustic streaming

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik

    2016-11-01

    Intravenously injected microbubbles used as ultrasound contrast enhancing agents are encapsulated by a nanometer-thick layer of lipids, proteins or polymers to stabilize them against premature dissolution. Over the years, we have developed interfacial rheological models for the encapsulation and used them to characterize several contrast agents by acoustic means. We will present an overview of our research emphasizing recent efforts in two directions. The first is on using subharmonic signals from the contrast microbubbles for non-invasive pressure estimation. Experimental measurement and modeling show that the subharmonic signal can both increase or decrease with pressure depending on frequency. Secondly, we will discuss boundary element (BEM) simulation of the collapse of an encapsulated microbubbles forming a jet near a blood vessel wall. Different rheology models of the encapsulation have been rigorously implemented in the BEM formulation. We will discuss the resulting stresses and the acoustic streaming near the wall leading to sonoporation and other bioeffects. Partially supported by Natinal Science Foundation.

  18. Atmospheric pressure, density, temperature and wind variations between 50 and 200 km

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1972-01-01

    Data on atmospheric pressure, density, temperature and winds between 50 and 200 km were collected from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others. These data were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of the irregular atmospheric variations are presented. Time structures of the irregular variations were determined by the analysis of residuals from harmonic analysis of time series data. The observed height variations of irregular winds and densities are found to be in accord with a theoretical relation between these two quantities. The latitude variations (at 50 - 60 km height) show an increasing trend with latitude. A possible explanation of the unusually large irregular wind magnitudes of the White Sands MRN data is given in terms of mountain wave generation by the Sierra Nevada range about 1000 km west of White Sands. An analytical method is developed which, based on an analogy of the irregular motion field with axisymmetric turbulence, allows measured or model correlation or structure functions to be used to evaluate the effective frequency spectra of scalar and vector quantities of a spacecraft moving at any speed and at any trajectory elevation angle.

  19. Vertical laryngeal position and oral pressure variations during resonance tube phonation in water and in air. A pilot study.

    PubMed

    Wistbacka, Greta; Sundberg, Johan; Simberg, Susanna

    2016-10-01

    Resonance tube phonation in water (RTPW) is commonly used in voice therapy, particularly in Finland and Sweden. The method is believed to induce a lowering of the vertical laryngeal position (VLP) in phonation as well as variations of the oral pressure, possibly inducing a massage effect. This pilot study presents an attempt to measure VLP and oral pressure in two subjects during RTPW and during phonation with the free tube end in air. VLP is recorded by means of a dual-channel electroglottograph. RTPW was found to lower VLP in the subjects, while it increased during phonation with the tube end in air. RTPW caused an oral pressure modulation with a bubble frequency of 14-22 Hz, depending mainly on the depth of the tube end under the water surface. The results indicate that RTPW lowers the VLP instantly and creates oral pressure variations.

  20. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  1. Ultrasound of skeletal muscle injury.

    PubMed

    Koh, Eamon Su Chun; McNally, Eugene G

    2007-06-01

    The professional and recreational demands of modern society make the treatment of muscle injury an increasingly important clinical problem, particularly in the athletic population. In the elite athlete, significant financial and professional pressures may also exist that emphasize the need for accurate diagnosis and treatment. With new advances in ultrasound technology, images of exquisite detail allow diagnosis of muscle injury that matches the accuracy of magnetic resonance imaging (MRI). Furthermore, the benefits of real-time and Doppler imaging, ability to perform interventional procedures, and relative cost benefits compared with MRI place ultrasound at the forefront for investigation for these injuries in many circumstances. Muscle injury may be divided into acute and chronic pathology, with muscle strain injury the most common clinical problem presenting to sports physicians. This article reviews the spectrum of acute and chronic muscle injuries, with particular attention to clinical features and some common or important muscle strain injuries.

  2. The face of appearance-related social pressure: gender, age and body mass variations in peer and parental pressure during adolescence.

    PubMed

    Helfert, Susanne; Warschburger, Petra

    2013-05-17

    Appearance-related social pressure plays an important role in the development of a negative body image and self-esteem as well as severe mental disorders during adolescence (e.g. eating disorders, depression). Identifying who is particularly affected by social pressure can improve targeted prevention and intervention, but findings have either been lacking or controversial. Thus the aim of this study is to provide a detailed picture of gender, weight, and age-related variations in the perception of appearance-related social pressure by peers and parents. 1112 German students between grades 7 and 9 (mean age: M = 13.38, SD = .81) filled in the Appearance-Related Social Pressure Questionnaire (German: FASD), which considers different sources (peers, parents) as well as various kinds of social pressure (e.g. teasing, modeling, encouragement). Girls were more affected by peer pressure, while gender differences in parental pressure seemed negligible. Main effects of grade-level suggested a particular increase in indirect peer pressure (e.g. appearance-related school and class norms) from early to middle adolescence. Boys and girls with higher BMI were particularly affected by peer teasing and exclusion as well as by parental encouragement to control weight and shape. The results suggest that preventive efforts targeting body concerns and disordered eating should bring up the topic of appearance pressure in a school-based context and should strengthen those adolescents who are particularly at risk - in our study, girls and adolescents with higher weight status. Early adolescence and school transition appear to be crucial periods for these efforts. Moreover, the comprehensive assessment of appearance-related social pressure appears to be a fruitful way to further explore social risk-factors in the development of a negative body image.

  3. The face of appearance-related social pressure: gender, age and body mass variations in peer and parental pressure during adolescence

    PubMed Central

    2013-01-01

    Background Appearance-related social pressure plays an important role in the development of a negative body image and self-esteem as well as severe mental disorders during adolescence (e.g. eating disorders, depression). Identifying who is particularly affected by social pressure can improve targeted prevention and intervention, but findings have either been lacking or controversial. Thus the aim of this study is to provide a detailed picture of gender, weight, and age-related variations in the perception of appearance-related social pressure by peers and parents. Methods 1112 German students between grades 7 and 9 (mean age: M = 13.38, SD = .81) filled in the Appearance-Related Social Pressure Questionnaire (German: FASD), which considers different sources (peers, parents) as well as various kinds of social pressure (e.g. teasing, modeling, encouragement). Results Girls were more affected by peer pressure, while gender differences in parental pressure seemed negligible. Main effects of grade-level suggested a particular increase in indirect peer pressure (e.g. appearance-related school and class norms) from early to middle adolescence. Boys and girls with higher BMI were particularly affected by peer teasing and exclusion as well as by parental encouragement to control weight and shape. Conclusion The results suggest that preventive efforts targeting body concerns and disordered eating should bring up the topic of appearance pressure in a school-based context and should strengthen those adolescents who are particularly at risk - in our study, girls and adolescents with higher weight status. Early adolescence and school transition appear to be crucial periods for these efforts. Moreover, the comprehensive assessment of appearance-related social pressure appears to be a fruitful way to further explore social risk-factors in the development of a negative body image. PMID:23680225

  4. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  5. Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors

    PubMed Central

    Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.

    2014-01-01

    Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical

  6. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound

    PubMed Central

    Mercado, Karla P.; Helguera, María; Hocking, Denise C.

    2015-01-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13–47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices. PMID:25517512

  7. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    PubMed

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  8. Studies on the use of power ultrasound in leather dyeing.

    PubMed

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2003-03-01

    Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal

  9. Simulations of nonlinear continuous wave pressure fields in FOCUS

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  10. Modeling cost of ultrasound versus nerve stimulator guidance for nerve blocks with sensitivity analysis.

    PubMed

    Liu, Spencer S; John, Raymond S

    2010-01-01

    Ultrasound guidance for regional anesthesia has increased in popularity. However, the cost of ultrasound versus nerve stimulator guidance is controversial, as multiple and varying cost inputs are involved. Sensitivity analysis allows modeling of different scenarios and determination of the relative importance of each cost input for a given scenario. We modeled cost per patient of ultrasound versus nerve stimulator using single-factor sensitivity analysis for 4 different clinical scenarios designed to span the expected financial impact of ultrasound guidance. The primary cost factors for ultrasound were revenue from billing for ultrasound (85% of variation in final cost), number of patients examined per ultrasound machine (10%), and block success rate (2.6%). In contrast, the most important input factors for nerve stimulator were the success rate of the nerve stimulator block (89%) and the amount of liability payout for failed airway due to rescue general anesthesia (9%). Depending on clinical scenario, ultrasound was either a profit or cost center. If revenue is generated, then ultrasound-guided blocks consistently become a profit center regardless of clinical scenario in our model. Without revenue, the clinical scenario dictates the cost of ultrasound. In an ambulatory setting, ultrasound is highly competitive with nerve stimulator and requires at least a 96% success rate with nerve stimulator before becoming more expensive. In a hospitalized scenario, ultrasound is consistently more expensive as the uniform use of general anesthesia and hospitalization negate any positive cost effects from greater efficiency with ultrasound.

  11. Direct visualization of microalgae rupture by ultrasound-driven bubbles

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Harun, Irina; Pouliopoulos, Antonis; Choi, James J.; Hellgardt, Klaus; Garbin, Valeria

    2015-11-01

    Cell rupture induced by ultrasound is central to applications in biotechnology. For instance, cell disruption is required in the production of biofuels from microalgae (unicellular species of algae). Ultrasound-induced cavitation, bubble collapse and jetting are exploited to induce sufficiently large viscous stresses to cause rupture of the cell membranes. It has recently been shown that seeding the flow with bubbles that act as cavitation nuclei significantly reduces the energy cost for cell processing. However, a fundamental understanding of the conditions for rupture of microalgae in the complex flow fields generated by ultrasound-driven bubbles is currently lacking. We perform high-speed video microscopy to visualize the miscroscale details of the interaction of Chlamydomonas reinhardtii , microalgae of about 10 μm in size, with ultrasound-driven microbubbles of 2-200 μm in diameter. We investigate the efficiency of cell rupture depending on ultrasound frequency and pressure amplitude (from 10 kPa up to 1 MPa), and the resulting bubble dynamics regimes. In particular we compare the efficiency of membrane rupture in the acoustic microstreaming flow induced by linear oscillations, with the case of violent bubble collapse and jetting. V.G. acknowledges partial support from the European Commission (FP7-PEOPLE-2013-CIG), Grant No. 618333.

  12. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the

  13. Ultrasound measurement of transcranial distance during head-down tilt

    NASA Technical Reports Server (NTRS)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  14. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  15. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    NASA Astrophysics Data System (ADS)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  16. Variation of DNA Methylome of Zebrafish Cells under Cold Pressure

    PubMed Central

    Xu, Qiongqiong; Luo, Juntao; Shi, Yingdi; Li, Xiaoxia; Yan, Xiaonan; Zhang, Junfang

    2016-01-01

    DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure. PMID:27494266

  17. Evaluation of ultrasound techniques for brain injury detection

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  18. Pressure variations in the Monte Rosa nappe, Western Alps

    NASA Astrophysics Data System (ADS)

    Luisier, Cindy; Vaughan-Hammon, Joshua; Baumgartner, Lukas; Schmalholz, Stefan

    2017-04-01

    internally consistent thermodynamic database on whiteschists result in a minimum P of 2.2 GPa at T of 550 to 570˚C and a water activity close to 1, unlike previous water activities proposed (Le Bayon et al., 2006). Peak alpine pressures and temperatures calculated for the metagranite and associated whiteschists hence result in significant different pressure estimates, corroborating previous results from the literature. The possible explanations for such pressure variations are i) slight underestimation of the metagranite peak pressure, due to water-undersaturation conditions, however a pressure as high as 2 GPa is unlikely, or ii) heterogeneous stress conditions, due to rheologically contrasting lithologies, consisting of weak whiteschist inclusions within strong, undeformed metagranites. References Le Bayon et al., 2006: Contrib. Mineral. Petrol. 151, 395-412 Luisier et al., 2015: GSA conference abstract Massonne and Schreyer, 1987: Contrib. Mineral. Petrol. 96, 212-224 Pawlig, S. 2001: PhD thesis, University of Mainz (Germany) Pawlig and Baumgartner, 2001: SMPM 81,329-346

  19. The effect of regional sea level atmospheric pressure on sea level variations at globally distributed tide gauge stations with long records

    NASA Astrophysics Data System (ADS)

    Iz, H. Bâki

    2018-05-01

    This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.

  20. Ultrasound - Breast

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... perform an ultrasound-guided biopsy . Because ultrasound provides real-time images, it is often used to guide biopsy ...

  1. Obstetric Ultrasound

    PubMed Central

    Nicholson, Stuart F.; Nimrod, Carl A.

    1988-01-01

    This article addresses the current indications for an obstetric ultrasound and describes the findings that it is reasonable to expect when reading an ultrasound report. The authors discuss several common obstetrical problems focussing the attention on the usefulness of the imaging information. Finally, they provide a glimpse into the future direction of obstetric ultrasound by discussing vaginal scanning, Doppler assessment of fetal blood flow, and routine ultrasound in pregnancy. PMID:21253229

  2. Synthesis of monopolar ultrasound pulses for therapy: the frequency-compounding transducer.

    PubMed

    Lin, Kuang-Wei; Hall, Timothy L; McGough, Robert J; Xu, Zhen; Cain, Charles A

    2014-07-01

    In diagnostic ultrasound, broadband transducers capable of short acoustic pulse emission and reception can improve axial resolution and provide sufficient bandwidth for harmonic imaging and multi-frequency excitation techniques. In histotripsy, a cavitation-based ultrasound therapy, short acoustic pulses (<2 cycles) can produce precise tissue ablation wherein lesion formation only occurs when the applied peak negative pressure exceeds an intrinsic threshold of the medium. This paper investigates a frequency compounding technique to synthesize nearly monopolar (half-cycle) ultrasound pulses. More specifically, these pulses were generated using a custom transducer composed of 23 individual relatively-broadband piezoceramic elements with various resonant frequencies (0.5, 1, 1.5, 2, and 3 MHz). Each frequency component of the transducer was capable of generating 1.5-cycle pulses with only one high-amplitude negative half-cycle using a custom 23-channel high-voltage pulser. By varying time delays of individual frequency components to allow their principal peak negative peaks to arrive at the focus of the transducer constructively, destructive interference occurs elsewhere in time and space, resulting in a monopolar pulse approximation with a dominant negative phase (with measured peak negative pressure [P-]: peak positive pressure [P+] = 4.68: 1). By inverting the excitation pulses to individual elements, monopolar pulses with a dominant positive phase can also be generated (with measured P+: P- = 4.74: 1). Experiments in RBC phantoms indicated that monopolar pulses with a dominant negative phase were able to produce very precise histotripsy-type lesions using the intrinsic threshold mechanism. Monopolar pulses with a dominant negative phase can inhibit shock scattering during histotripsy, leading to more predictable lesion formation using the intrinsic threshold mechanism, while greatly reducing any constructive interference, and potential hot-spots elsewhere

  3. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    PubMed

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  5. Ultrasound contrast agents: an overview.

    PubMed

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  6. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    NASA Astrophysics Data System (ADS)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  7. Gaussian representation of high-intensity focused ultrasound beams.

    PubMed

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  8. Noncontact ultrasound imaging applied to cortical bone phantoms

    PubMed Central

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. Methods: A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm3 and in bone mineral density from 0 to 1.7 g/cm3. Results: Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16–20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%–2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within

  9. The Role of Ultrasound Simulation in Obstetrics and Gynecology Training: A UK Trainees' Perspective.

    PubMed

    Patel, Hersha; Chandrasekaran, Dhivya; Myriokefalitaki, Eva; Gebeh, Alpha; Jones, Kate; Jeve, Yadava B

    2016-10-01

    Ultrasonography is a core skill required by all obstetrics and gynecology trainees; however, training opportunities in clinical ultrasound are declining. Simulation ultrasound training has been proposed as a strategy to overcome this.The study aims were to determine the current availability of clinical and simulation ultrasound training in obstetrics and gynecology in the United Kingdom and to explore the trainees' perspective on the role of ultrasound simulation. All obstetrics and gynecology trainees within the East Midlands Local Education Training Board in the United Kingdom were asked to complete an anonymous web-based survey in July 2014. Of 140 trainees, 70 (50%) responded to the survey, and 69% reported rarely having dedicated clinical ultrasound sessions. Fifty percent had failed to achieve ultrasound competencies required for their stage of training, and 83% felt that the pressures of service provision limited their exposure to clinical ultrasound.Seventy-three percent of the trainees considered ultrasound simulation to be an essential component of training, and 69% agreed that it would help improve their clinical skills. Only 50% had access to an ultrasound simulator. Seventy-seven percent of the trainees thought that it would be useful to have ultrasound simulation integrated into training. Trainees are struggling to achieve minimal ultrasound competences with clinical ultrasound training alone. They believe that ultrasound simulation will shorten the learning curve and improve their clinical skills and knowledge. Despite the cost implications of simulation training, we propose that consideration is given to formal integration of ultrasound simulation into the curriculum as a possible way forward.

  10. Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles

    PubMed Central

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K.; Champaneri, Shivam A.; Taylor, Sarah; Davidson, Brian P.; Zhao, Yan; Klibanov, Alexander L.; Kuliszewski, Michael A.; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R.

    2013-01-01

    OBJECTIVES Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. BACKGROUND Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. METHODS Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)–stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. RESULTS Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm2). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1–targeted microbubbles and by ultrasound molecular imaging of P-selectin–targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin–targeted microbubbles but was associated with

  11. The baric probe: a novel long-term implantable intracranial pressure monitor with ultrasound-based interrogation.

    PubMed

    Limbrick, David D; Lake, Stephen; Talcott, Michael; Alexander, Benjamin; Wight, Samuel; Willie, Jon T; Richard, William D; Genin, Guy M; Leuthardt, Eric C

    2012-12-01

    Prompt diagnosis of shunt malfunction is critical in preventing neurological morbidity and death in individuals with hydrocephalus; however, diagnostic methods for this condition remain limited. For several decades, investigators have sought a long-term, implantable intracranial pressure (ICP) monitor to assist in the diagnosis of shunt malfunction, but efforts have been impeded by device complexity, marked measurement drift, and limited instrumentation lifespan. In the current report, the authors introduce an entirely novel, simple, compressible gas design that addresses each of these problems. The device described herein, termed the "baric probe," consists of a subdural fluid bladder and multichannel indicator that monitors the position of an air-fluid interface (AFI). A handheld ultrasound probe is used to interrogate the baric probe in vivo, permitting noninvasive ICP determination. To assess the function of device prototypes, ex vivo experiments were conducted using a water column, and short- and long-term in vivo experiments were performed using a porcine model with concurrent measurements of ICP via a fiberoptic monitor. Following a toe region of approximately 2 cm H(2)O, the baric probe's AFI demonstrated a predictable linear relationship to ICP in both ex vivo and in vivo models. After a 2-week implantation of the device, this linear relationship remained robust and reproducible. Further, changes in ICP were observed with the baric probe, on average, 3 seconds in advance of the fiberoptic ICP monitor reading. The authors demonstrate "proof-of-concept" and feasibility for the baric probe, a long-term implantable ICP monitor designed to facilitate the prompt and accurate diagnosis of shunt malfunction. The baric probe showed a consistent linear relationship between ICP and the device's AFI in ex vivo and short- and long-term in vivo models. With a low per-unit cost, a reduced need for radiography or CT, and an indicator that can be read with a handheld

  12. Analytical one-dimensional model for laser-induced ultrasound in planar optically absorbing layer.

    PubMed

    Svanström, Erika; Linder, Tomas; Löfqvist, Torbjörn

    2014-03-01

    Ultrasound generated by means of laser-based photoacoustic principles are in common use today and applications can be found both in biomedical diagnostics, non-destructive testing and materials characterisation. For certain measurement applications it could be beneficial to shape the generated ultrasound regarding spectral properties and temporal profile. To address this, we studied the generation and propagation of laser-induced ultrasound in a planar, layered structure. We derived an analytical expression for the induced pressure wave, including different physical and optical properties of each layer. A Laplace transform approach was employed in analytically solving the resulting set of photoacoustic wave equations. The results correspond to simulations and were compared to experimental results. To enable the comparison between recorded voltage from the experiments and the calculated pressure we employed a system identification procedure based on physical properties of the ultrasonic transducer to convert the calculated acoustic pressure to voltages. We found reasonable agreement between experimentally obtained voltages and the voltages determined from the calculated acoustic pressure, for the samples studied. The system identification procedure was found to be unstable, however, possibly from violations of material isotropy assumptions by film adhesives and coatings in the experiment. The presented analytical model can serve as a basis when addressing the inverse problem of shaping an acoustic pulse from absorption of a laser pulse in a planar layered structure of elastic materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (<100 um). However, the previous demonstration used cells and tissues cultured on glass substrates. The glass substrates were found to be critical to cavitation, because ultrasound amplitude doubles due to the reflection from the substrate, thus allowing for reaching pressure amplitude to cavitation threshold. In other words, without the sound reflecting substrate, pressure amplitude may not be strong enough to create cavitation, thus limiting its application to only cultured biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  14. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery.

    PubMed

    Beekers, Ines; van Rooij, Tom; Verweij, Martin D; Versluis, Michel; de Jong, Nico; Trietsch, Sebastiaan J; Kooiman, Klazina

    2018-04-01

    Ultrasound in the presence of gas-filled microbubbles can be used to enhance local uptake of drugs and genes. To study the drug delivery potential and its underlying physical and biological mechanisms, an in vitro vessel model should ideally include 3-D cell culture, perfusion flow, and membrane-free soft boundaries. Here, we propose an organ-on-a-chip microfluidic platform to study ultrasound-mediated drug delivery: the OrganoPlate. The acoustic propagation into the OrganoPlate was determined to assess the feasibility of controlled microbubble actuation, which is required to study the microbubble-cell interaction for drug delivery. The pressure field in the OrganoPlate was characterized non-invasively by studying experimentally the well-known response of microbubbles and by simulating the acoustic wave propagation in the system. Microbubble dynamics in the OrganoPlate were recorded with the Brandaris 128 ultrahigh-speed camera (17 million frames/s) and a control experiment was performed in an OptiCell, an in vitro monolayer cell culture chamber that is conventionally used to study ultrasound-mediated drug delivery. When insonified at frequencies between 1 and 2 MHz, microbubbles in the OrganoPlate experienced larger oscillation amplitudes resulting from higher local pressures. Microbubbles responded similarly in both systems when insonified at frequencies between 2 and 4 MHz. Numerical simulations performed with a 3-D finite-element model of ultrasound propagation into the OrganoPlate and the OptiCell showed the same frequency-dependent behavior. The predictable and homogeneous pressure field in the OrganoPlate demonstrates its potential to develop an in vitro 3-D cell culture model, well suited to study ultrasound-mediated drug delivery.

  15. Musculoskeletal ultrasound in rheumatology in Korea: targeted ultrasound initiative survey.

    PubMed

    Kang, Taeyoung; Wakefield, Richard J; Emery, Paul

    2016-04-01

    In collaboration with the Targeted Ultrasound Initiative (TUI), to conduct the first study in Korea to investigate current practices in ultrasound use among Korean rheumatologists. We translated the TUI Global Survey into Korean and added questions to better understand the specific challenges facing rheumatologists in Korea. To target as many rheumatologists in Korea as possible, we created an on-line version of this survey, which was conducted from March to April 2013. Rheumatologists are in charge of ultrasound in many Korean hospitals. Rheumatologists in hospitals and private clinics use ultrasound to examine between one and five patients daily; they use ultrasound for diagnosis more than monitoring and receive compensation of about US$30-50 per patient. There are marked differences in the rates of ultrasound usage between rheumatologists who work in private practice compared with tertiary hospitals. Korean rheumatologists not currently using ultrasound in their practice appear eager to do so. This survey provides important insights into the current status of ultrasound in rheumatology in Korea and highlights several priorities; specifically, greater provision of formal training, standardization of reporting and accrual of greater experience among ultrasound users. If these needs are addressed, all rheumatology departments in Korea are likely to use ultrasound or have access to it in the future. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  16. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena.

  17. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  18. Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2018-01-01

    Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

  19. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  20. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy.

    PubMed

    Schad, Kelly C; Hynynen, Kullervo

    2010-09-07

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 microm in diameter and diluted to a concentration of 8 x 10(6) droplets mL(-1). The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  1. Contrast-enhanced ultrasound for quantitative assessment of portal pressure in canine liver fibrosis

    PubMed Central

    Zhai, Lin; Qiu, Lan-Yan; Zu, Yuan; Yan, Yan; Ren, Xiao-Zhuan; Zhao, Jun-Feng; Liu, Yu-Jiang; Liu, Ji-Bin; Qian, Lin-Xue

    2015-01-01

    AIM: To explore the feasibility of non-invasive quantitative estimation of portal venous pressure by contrast-enhanced ultrasound (CEUS) in a canine model. METHODS: Liver fibrosis was established in adult canines (Beagles; n = 14) by subcutaneous injection of carbon tetrachloride (CCl4). CEUS parameters, including the area under the time-intensity curve and intensity at portal/arterial phases (Qp/Qa and Ip/Ia, respectively), were used to quantitatively assess the blood flow ratio of the portal vein/hepatic artery at multiple time points. The free portal venous pressures (FPP) were measured by a multi-channel baroreceptor using a percutaneous approach at baseline and 8, 16, and 24 wk after CCl4 injections in each canine. Liver biopsies were obtained at the end of 8, 16, and 24 wk from each animal, and the stage of the fibrosis was assessed according to the Metavir scoring system. A Pearson correlation test was performed to compare the FPP with Qp/Qa and Ip/Ia. RESULTS: Pathologic examination of 42 biopsies from the 14 canines at weeks 8, 16, and 24 revealed that liver fibrosis was induced by CCl4 and represented various stages of liver fibrosis, including F0 (n = 3), F1 (n = 12), F2 (n = 14), F3 (n = 11), and F4 (n = 2). There were significant differences in the measurements of Qp/Qa (19.85 ± 3.30 vs 10.43 ± 1.21, 9.63 ± 1.03, and 8.77 ± 0.96) and Ip/Ia (1.77 ± 0.37 vs 1.03 ± 0.12, 0.83 ± 0.10, and 0.69 ± 0.13) between control and canine fibrosis at 8, 16, and 24 wk, respectively (all P < 0.001). There were statistically significant negative correlations between FPP and Qp/Qa (r = -0.707, P < 0.001), and between FPP and Ip/Ia (r = -0.759, P < 0.001) in the canine fibrosis model. Prediction of elevated FPP based on Qp/Qa and Ip/Ia was highly sensitive, as assessed by the area under the receiver operating curve (0.866 and 0.895, respectively). CONCLUSION: CEUS is a potential method to accurately, but non-invasively, estimate portal venous pressure through

  2. Variation of the Korotkoff Stethoscope Sounds During Blood Pressure Measurement: Analysis Using a Convolutional Neural Network.

    PubMed

    Pan, Fan; He, Peiyu; Liu, Chengyu; Li, Taiyong; Murray, Alan; Zheng, Dingchang

    2017-11-01

    Korotkoff sounds are known to change their characteristics during blood pressure (BP) measurement, resulting in some uncertainties for systolic and diastolic pressure (SBP and DBP) determinations. The aim of this study was to assess the variation of Korotkoff sounds during BP measurement by examining all stethoscope sounds associated with each heartbeat from above systole to below diastole during linear cuff deflation. Three repeat BP measurements were taken from 140 healthy subjects (age 21 to 73 years; 62 female and 78 male) by a trained observer, giving 420 measurements. During the BP measurements, the cuff pressure and stethoscope signals were simultaneously recorded digitally to a computer for subsequent analysis. Heartbeats were identified from the oscillometric cuff pressure pulses. The presence of each beat was used to create a time window (1 s, 2000 samples) centered on the oscillometric pulse peak for extracting beat-by-beat stethoscope sounds. A time-frequency two-dimensional matrix was obtained for the stethoscope sounds associated with each beat, and all beats between the manually determined SBPs and DBPs were labeled as "Korotkoff." A convolutional neural network was then used to analyze consistency in sound patterns that were associated with Korotkoff sounds. A 10-fold cross-validation strategy was applied to the stethoscope sounds from all 140 subjects, with the data from ten groups of 14 subjects being analyzed separately, allowing consistency to be evaluated between groups. Next, within-subject variation of the Korotkoff sounds analyzed from the three repeats was quantified, separately for each stethoscope sound beat. There was consistency between folds with no significant differences between groups of 14 subjects (P = 0.09 to P = 0.62). Our results showed that 80.7% beats at SBP and 69.5% at DBP were analyzed as Korotkoff sounds, with significant differences between adjacent beats at systole (13.1%, P = 0.001) and diastole (17.4%, P < 0

  3. Integrated medical school ultrasound: development of an ultrasound vertical curriculum.

    PubMed

    Bahner, David P; Adkins, Eric J; Hughes, Daralee; Barrie, Michael; Boulger, Creagh T; Royall, Nelson A

    2013-07-02

    Physician-performed focused ultrasonography is a rapidly growing field with numerous clinical applications. Focused ultrasound is a clinically useful tool with relevant applications across most specialties. Ultrasound technology has outpaced the education, necessitating an early introduction to the technology within the medical education system. There are many challenges to integrating ultrasound into medical education including identifying appropriately trained faculty, access to adequate resources, and appropriate integration into existing medical education curricula. As focused ultrasonography increasingly penetrates academic and community practices, access to ultrasound equipment and trained faculty is improving. However, there has remained the major challenge of determining at which level is integrating ultrasound training within the medical training paradigm most appropriate. The Ohio State University College of Medicine has developed a novel vertical curriculum for focused ultrasonography which is concordant with the 4-year medical school curriculum. Given current evidenced-based practices, a curriculum was developed which provides medical students an exposure in focused ultrasonography. The curriculum utilizes focused ultrasonography as a teaching aid for students to gain a more thorough understanding of basic and clinical science within the medical school curriculum. The objectives of the course are to develop student understanding in indications for use, acquisition of images, interpretation of an ultrasound examination, and appropriate decision-making of ultrasound findings. Preliminary data indicate that a vertical ultrasound curriculum is a feasible and effective means of teaching focused ultrasonography. The foreseeable limitations include faculty skill level and training, initial cost of equipment, and incorporating additional information into an already saturated medical school curriculum. Focused ultrasonography is an evolving concept in medicine

  4. Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    McGrail, B. P.; Ahmed, S.; Schaef, H. T.; Owen, A. T.; Martin, P. F.; Zhu, T.

    2007-05-01

    Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L-38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P-T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.

  5. Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers.

    PubMed

    Maresca, David; Renaud, Guillaume; van Soest, Gijs; Li, Xiang; Zhou, Qifa; Shung, K Kirk; de Jong, Nico; van der Steen, Antonius F W

    2013-04-01

    We demonstrate two methods for vasa vasorum imaging using contrast-enhanced intravascular ultrasound, which can be performed using commercial catheters. Plaque neovascularization was recognized as an independent marker of coronary artery plaque vulnerability. IVUS-based methods to image the microvessels available to date require high bandwidth (-6 dB relative frequency bandwidth >70%), which are not routinely available commercially. We explored the potential of ultraharmonic imaging and chirp reversal imaging for vasa vasorum imaging. In vitro recordings were performed on a tissue-mimicking phantom using a commercial ultrasound contrast agent and a transducer with a center frequency of 34 MHz and a -6 dB relative bandwidth of 56%. Acoustic peak pressures <500 kPa were used. A tissue-mimicking phantom with channels down to 200 μm in diameter was successfully imaged by the two contrast detection sequences while the smallest channel stayed invisible in conventional intravascular ultrasound images. Ultraharmonic imaging provided the best contrast agent detection. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  6. Evaluation of eyes with relative pupillary block by indentation ultrasound biomicroscopy gonioscopy.

    PubMed

    Matsunaga, Koichi; Ito, Kunio; Esaki, Koji; Sugimoto, Kota; Sano, Toru; Miura, Katsuya; Sasoh, Mikio; Uji, Yukitaka

    2004-03-01

    To investigate changes in anterior chamber angle configuration with indentation ultrasound biomicroscopy gonioscopy of relative pupillary block (RPB). Cross-sectional study. This study included 26 eyes of 26 patients with RPB. We determined angle opening distance 500 and angle recess area using indentation ultrasound biomicroscopy gonioscopy and compared a small-sized standard eye cup with a new eye cup with an area for inducing pressure. Indentation ultrasound biomicroscopy images documented concavity of the iris in eyes with RPB. Both the new and the small standard eye cups widened the anterior chamber angle significantly (P <.0001) without causing corneal damage. Angle changes were significantly greater for the new eye cup design. Indentation ultrasound biomicroscopy gonioscopy is a useful technique for observation and diagnosis of RPB. Using a small standard or the newly designed eye cup, the procedure can be performed easily and without causing corneal damage.

  7. BBB disruption with unfocused ultrasound alone-A paradigm shift

    NASA Astrophysics Data System (ADS)

    Kyle, Al

    2012-10-01

    One paradigm for ultrasound-enabled blood brain barrier disruption uses image guided focused ultrasound and preformed microbubble agents to enable drug delivery to the brain. We propose an alternative approach: unguided, unfocused ultrasound with no adjunctive agent. Compared with the focused approach, the proposed method affects a larger region of the brain, and is aimed at treatment of regional neurological disease including glioblastoma multiforme (GBM). Avoidance of image guidance and focusing reduces cost for equipment and staff training. Avoidance of adjunctive agents also lowers cost and is enabled by a longer exposure time. Since 2004, our group has worked with two animal models, three investigators in four laboratories to safely deliver five compounds, increasing the concentration of large molecule markers in brain tissue two fold or more. Safety and effectiveness data for four studies have been presented at the Ultrasound Industry Association meetings in 2007 and 2010. This paper describes new safety and effectiveness results for a fifth study. We present evidence of delivery of large molecules - including Avastin-to the brains of a large animal model correlated with acoustic pressure, and summarize the advantages and disadvantages of this novel approach.

  8. Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging.

    PubMed

    Graf, Iulia M; Kim, Seungsoo; Wang, Bo; Smalling, Richard; Emelianov, Stanislav

    2012-03-01

    The structure, composition and mechanics of carotid artery are good indicators of early progressive atherosclerotic lesions. The combination of three imaging modalities (ultrasound, strain rate and photoacoustic imaging) which could provide corroborative information about the named arterial properties could enhance the characterization of intimal xanthoma. The experiments were performed using a New Zealand white rabbit model of atherosclerosis. The aorta excised from an atherosclerotic rabbit was scanned ex vivo using the three imaging techniques: (1) ultrasound imaging of the longitudinal section: standard ultrasound B-mode (74Hz frame rate); (2) strain rate imaging: the artery was flushed with blood and a 1.5Hz physiologic pulsation was induced, while the ultrasound data were recorded at higher frame rate (296Hz); (3) photoacoustic imaging: the artery was irradiated with nanosecond pulsed laser light of low fluence in the 1210-1230nm wavelength range and the photoacoustic data was recorded at 10Hz frame rate. Post processing algorithms based on cross-correlation and optical absorption variation were implemented to derive strain rate and spectroscopic photoacoustic images, respectively. Based on the spatio-temporal variation in displacement of different regions within the arterial wall, strain rate imaging reveals differences in tissue mechanical properties. Additionally, spectroscopic photoacoustic imaging can spatially resolve the optical absorption properties of arterial tissue and identify the location of lipid pools. The study demonstrates that ultrasound, strain rate and photoacoustic imaging can be used to simultaneously evaluate the structure, the mechanics and the composition of atherosclerotic lesions to improve the assessment of plaque vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  10. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies

    PubMed Central

    Arvanitis, Costas D.; McDannold, Nathan

    2013-01-01

    uncertainties in the PAM/MRTI registration. Although there was substantial variation, a nonlinear relationship between the average intensity of the cavitation maps, which was relatively constant during sonication, and the peak temperature rise was evident. A fit to the data to an exponential had a correlation coefficient (R2) of 0.62. The system was also found to be capable of visualizing cavitation activity with B-mode imaging and of passively mapping cavitation activity transcranially during cavitation-enhanced heating and during low-power sonication with an ultrasound contrast agent. Conclusions: The authors have demonstrated the feasibility of integrating an ultrasound imaging array into an MRgFUS system to simultaneously map localized cavitation activity and temperature. The authors anticipate that this integrated approach can be utilized to develop controllers for cavitation-enhanced ablation and facilitate the optimization and development of this and other ultrasound therapies. The integrated system may also provide a useful tool to study the bioeffects of acoustic cavitation. PMID:24320468

  11. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    PubMed

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    MRTI registration. Although there was substantial variation, a nonlinear relationship between the average intensity of the cavitation maps, which was relatively constant during sonication, and the peak temperature rise was evident. A fit to the data to an exponential had a correlation coefficient (R(2)) of 0.62. The system was also found to be capable of visualizing cavitation activity with B-mode imaging and of passively mapping cavitation activity transcranially during cavitation-enhanced heating and during low-power sonication with an ultrasound contrast agent. The authors have demonstrated the feasibility of integrating an ultrasound imaging array into an MRgFUS system to simultaneously map localized cavitation activity and temperature. The authors anticipate that this integrated approach can be utilized to develop controllers for cavitation-enhanced ablation and facilitate the optimization and development of this and other ultrasound therapies. The integrated system may also provide a useful tool to study the bioeffects of acoustic cavitation.

  12. Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck

    NASA Astrophysics Data System (ADS)

    Huenges, Ernst; Trautwein, Ute; Legarth, Björn; Zimmermann, Günter

    2006-10-01

    The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.

  13. Optical Micromachined Ultrasound Transducers (OMUT)-- A New Approach for High Frequency Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    Tadayon, Mohammad Amin

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays, however, in scaling the technology to sizes required for high frequency operation (> 20 MHz), it encounters substantial difficulties in fabrication and signal transduction efficiency. These limitations particularly affect the design of intravascular ultrasound (IVUS) imaging probes whose operating frequency can approach 60 MHz. Optical technology has been proposed and investigated for several decades as an alternative approach for high frequency ultrasound transducers. However, to apply this promising technology in guiding clinical operations such as in interventional cardiology, brain surgery, and laparoscopic surgery further raise in the sensitivity is required. Here, in order to achieve the required sensitivity for an intravascular ultrasound imaging probe, we introduce design changes making use of alternative receiver mechanisms. First, we present an air cavity detector that makes use of a polymer membrane for increased mechanical deflection. We have also significantly raised the thin film detector sensitivity by improving its optical characteristics. This can be achieved by inducing a refractive index feature inside the Fabry-Perot resonator that simply creates a waveguide between the two mirrors. This approach eliminates the loss in energy due to diffraction in the cavity, and therefore the Q-factor is only limited by mirror loss and absorption. To demonstrate this optical improvements, a waveguide Fabry-Perot resonator has been fabricated consisting of two dielectric Bragg reflectors with a layer of photosensitive polymer between them. The measured finesse of the fabricated resonator was 692, and the Q-factor was 55000. The fabrication process of this device has been modified to fabricate an ultrasonically testable waveguide Fabry-Perot resonator. By applying this method, we have achieved a noise equivalent pressure of 178 Pa over a bandwidth of 28 MHz or 0.03 Pa/Hz1/2 which

  14. Ultrasound in Arthritis.

    PubMed

    Sudoł-Szopińska, Iwona; Schueller-Weidekamm, Claudia; Plagou, Athena; Teh, James

    2017-09-01

    Ultrasound is currently performed in everyday rheumatologic practice. It is used for early diagnosis, to monitor treatment results, and to diagnose remission. The spectrum of pathologies seen in arthritis with ultrasound includes early inflammatory features and associated complications. This article discusses the spectrum of ultrasound features of arthritides seen in rheumatoid arthritis and other connective tissue diseases in adults, such as Sjögren syndrome, lupus erythematosus, dermatomyositis, polymyositis, and juvenile idiopathic arthritis. Ultrasound findings in spondyloarthritis, osteoarthritis, and crystal-induced diseases are presented. Ultrasound-guided interventions in patients with arthritis are listed, and the advantages and disadvantages of ultrasound are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Thermal Imaging of Convecting Opaque Fluids using Ultrasound

    NASA Technical Reports Server (NTRS)

    Xu, Hongzhou; Fife, Sean; Andereck, C. David

    2002-01-01

    An ultrasound technique has been developed to non-intrusively image temperature fields in small-scale systems of opaque fluids undergoing convection. Fluids such as molten metals, semiconductors, and polymers are central to many industrial processes, and are often found in situations where natural convection occurs, or where thermal gradients are otherwise important. However, typical thermal and velocimetric diagnostic techniques rely upon transparency of the fluid and container, or require the addition of seed particles, or require mounting probes inside the fluid, all of which either fail altogether in opaque fluids, or necessitate significant invasion of the flow and/or modification of the walls of the container to allow access to the fluid. The idea behind our work is to use the temperature dependence of sound velocity, and the ease of propagation of ultrasound through fluids and solids, to probe the thermal fields of convecting opaque fluids non-intrusively and without the use of seed particles. The technique involves the timing of the return echoes from ultrasound pulses, a variation on an approach used previously in large-scale systems.

  16. Mechanisms for microvascular damage induced by ultrasound-activated microbubbles

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Brayman, Andrew A.; Evan, Andrew P.; Matula, Thomas J.

    2012-10-01

    To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distention and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.

  17. Mechanisms for microvascular damage induced by ultrasound-activated microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hong; Brayman, Andrew A.; Evan, Andrew P.

    To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distentionmore » and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.« less

  18. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.

    PubMed

    Qin, Peng; Xu, Lin; Zhong, Wenjing; Yu, Alfred C H

    2012-06-01

    The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation.

    PubMed

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Shi, Dennis; Kumar, Kaushlendra; Goodwin, Andrew P

    2017-09-01

    The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL -1 (7 × 10 9 particles mL -1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Overview of ultrasound-induced lung hemorrhage

    NASA Astrophysics Data System (ADS)

    O'Brien, William D.; Simpson, Douglas G.; Frizzell, Leon A.; Oelze, Michael L.; Zachary, James F.

    2003-10-01

    It is well documented that ultrasound-induced lung hemorrhage can occur in mice, rats, rabbits, pigs, and monkeys. Our own experimental studies have focused on mice, rats, and pigs as animal models. The characteristics of the lesions produced in mice, rats and pigs were similar to those described in studies by our research group and others, suggesting a common pathogenesis for the initiation and propagation of the lesions at the macroscopic and microscopic levels. Five experimental in vivo studies have been conducted to evaluate whether cavitation is responsible for ultrasound-induced lung hemorrhage. The studies evaluated the dependencies of hydrostatic pressure, frequency, pulse polarity, contrast agents and lung inflation, and the results of each study appeared inconsistent with the hypothesis that the mechanism for the production of a lung hemorrhage was inertial cavitation. Other dependencies evaluated included beam width, pulse repetition frequency, pulse duration, exposure duration, and animal species and age. The thresholds for producing ultrasound-induced lung hemorrhage, in general, were less than the FDA's regulatory limit of a Mechanical Index (MI) of 1.9. Further, the MI does not appear to provide a risk-based index for lung hemorrhage. [Work supported by NIH Grant No. R01EB02641.

  1. Ultrasound imaging based on nonlinear pressure field properties

    NASA Astrophysics Data System (ADS)

    Bouakaz, Ayache; Frinking, Peter J. A.; de Jong, Nico

    2000-07-01

    Ultrasound image quality has experienced a significant improvement over the past years with the utilization of harmonic frequencies. This brings the need to understand the physical processes involved in the propagation of finite amplitude sound beams, and the issues for redesigning and optimizing the phased array transducers. New arrays with higher imaging performances are essential for tissue imaging and contrast imaging as well. This study presents measurements and simulations on a 4.6 MHz square transducer. The numerical scheme used solves the KZK equation in the time domain. Comparison of measured and computed data showed good agreement for low and high excitation levels. In a similar way, a numerical simulation was performed on a linear array with five elements. The simulation showed that the second harmonic beam is narrower than the fundamental with less energy in the near field. In addition, the grating lobes are significantly lower. Accordingly, selective harmonic imaging shows less near field artifacts and will lower the clutter, resulting in much cleaner images.

  2. SU-F-J-176: Development of a Patient-Specific 3D Couplant Pad for Ultrasound IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chang, A; Ye, S

    Purpose: to overcome the several issues of ultrasound image-guided radiation therapy (US IGRT) such as probe pressure and optical tracking disability by using a patient-specific three-dimensional couplant pad (CP) fabricated by a patient’s skin mold using a 3D printing technique. Methods: A CP was then fabricated by pouring gelatin solution into a fixed-shape container accommodating the patient skin mold fabricated by a 3D printer. A breast phantom was fabricated with the compound of gelatin and agarose and a phantom study was carried out. From four patients who underwent US IGRT, total 486 ultrasound images with and without a CP weremore » acquired before treatment. Effectiveness of the use of the CP was evaluated. Results: The positioning accuracies in the phantom study were 0.9 ± 0.3 mm and 1.3 ± 0.4 mm with and without the CP in 3D vector amplitude, respectively. In the patient study, the use of CP reduced the mean target shift from 4.7 mm to 3.7 mm in 3D vector amplitude and the one standard deviation from 2.2 mm to 1.7 mm. It also improved the image contrast around the treatment target by 10 %. The centroid offset of the target volume affected from the US scanning coverage and the target deformation due to the excessive probe pressure was decreased from 4.4 mm to 2.9 mm due to the use of CP. Its difference among three different users was statistically significant (p=0.020) without the use of CP but not significantly different (p=0.133) with the use of CP. Conclusion: Our patient-specific 3D CP using a mold by 3D printing technique is a promising strategy for improving tracking accuracy, image quality, and inter-observer variation for ultrasound-based image guided radiotherapy. In addition to its conventional advantage of non-invasiveness, US can be more facilitated in radiotherapy by the developed CP.« less

  3. Safety of Microbubbles and Transcranial Ultrasound in Rabbits

    NASA Astrophysics Data System (ADS)

    Culp, William C.; Brown, Aliza T.; Hennings, Leah; Lowery, John; Culp, Benjamin C.; Erdem, Eren; Roberson, Paula; Matsunaga, Terry O.

    2007-05-01

    The object of this study was to evaluate the safety of large doses of microbubbles and ultrasound administered to the head of rabbits as if they were receiving acute stroke therapy of a similar nature. Materials and Methods: Female New Zealand White rabbits were used, N=24, in three groups 1] n=4 control (no treatment), 2] n=10 bubble control (ultrasound plus aspirin), and 3] n=10 target group (ultrasound plus aspirin plus MRX-815 microbubbles). Group 3 was infused with IV bubbles over 1 hour at 0.16cc/kg. Ultrasound was delivered to the dehaired side of the head during bubble infusion and for 1 additional hour at 0.8 W/cm2 20% pulsed wave. Rabbits survived for 22 to 24 hours, were imaged with computerized tomography and 3 Tesla magnetic resonance imaging including contrast studies, and sacrificed. Tetrazolium (TTC) and Hematoxylin and Eosin (H&E) sections were made for pathological examination. Results: All 24 animals showed absence of bleeding, endothelial damage, EKG abnormalities, stroke, blood-brain-barrier breakdown, or other acute abnormalities. CT and MRI showed no bleeding or signs of stroke, but two animals had mild hydrocephalus. The EKGs showed normal variation in QTc. Rabbit behavior was normal in all. Minimal chronic inflammation unrelated to the study was seen in 5. Two animals were excluded because of protocol violations and replaced during the study. Conclusion: The administered dose of microbubbles and ultrasound demonstrated no detrimental effects on the healthy rabbit animal model.

  4. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2004-05-01

    This paper describes an automatic method for measuring the biparietal diameter (BPD) and head circumference (HC) in ultrasound fetal images. A total of 217 ultrasound images were segmented by using a K-Mean classifier, and the head skull was detected in 214 of the 217 cases by an iterative randomized Hough transform developed for detection of incomplete curves in images with strong noise without user intervention. The automatic measurements were compared with conventional manual measurements by sonographers and a trained panel. The inter-run variations and differences between the automatic and conventional measurements were small compared with published inter-observer variations. The results showed that the automated measurements were as reliable as the expert measurements and more consistent. This method has great potential in clinical applications.

  5. Effect of pressure variation on structural, elastic, mechanical, optoelectronic and thermodynamic properties of SrNaF3 fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-12-01

    The effect of pressure variation on structural, electronic, elastic, mechanical, optical and thermodynamic characteristics of cubic SrNaF3 fluoroperovskite have been investigated by employing first-principles method within the framework of gradient approximation (GGA). For the total energy calculations, we have used the full-potential linearized augmented plane wave (FP-LAPW) method. Thermodynamic properties are computed in terms of quasi-harmonic Debye model. The pressure effects are determined in the range of 0-25 GPa, in which mechanical stability of SrNaF3 fluoroperovskite remains valid. A prominent decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 25 GPa. The effect of increase in pressure on band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on set of isotropic elastic parameters and their related properties are numerically estimated for SrNaF3 polycrystalline aggregate. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is observed as pressure is increased from 0 to 25 GPa. We have successfully obtained variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities with pressure and temperature in the range of 0-25 GPa and 0-600 K. All the calculated optical properties such as the complex dielectric function ɛ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n(ω), reflectivity R(ω), and effective number of electrons n eff, via sum rules shift towards the higher energies under the application of pressure.

  6. Ocean Bottom Pressure Variation Associated with the Large Meander of the Kuroshio South of Japan in 2004-2005

    NASA Astrophysics Data System (ADS)

    Nagano, A.; Hasegawa, T.; Matsumoto, H.; Ariyoshi, K.

    2016-02-01

    The Kuroshio, the western boundary current of the North Pacific subtropical gyre, takes a stable meandering path off the southern coast of Japan, called the large meander (LM), on interannual to decadal timescales. The LM of the Kuroshio formed in July 2004 associated with the intensified anticyclonic recirculation gyre south of the Kuroshio, and gradually decayed in the latter half of 2005. The variations of the Kuroshio and the southern recirculating currents may be related to deep currents, which are expected to be associated with bottom pressure (BP) variation. In order to examine the variation of BP associated with the variations of the sea surface currents, we analyzed data of eleven pressure sensors equipped to inverted echo sounders deployed from July 2004 to October 2006. An abrupt enhancement of BP is found on the continental slope off Shikoku, lagging a few months behind an elevation of sea surface height (SSH) due to the onshore shift of the recirculation gyre associated with the LM formation. Subsequently, BP beneath the recirculation gyre dwindles, leading the gradual depression of SSH due to the decay of the LM. The relationship between BP and SSH may suggest that the occurrence and decay of the LM depend on the extension of the recirculation gyre current down to the ocean bottom.

  7. Characterization and destruction of Definity® microbubbles used for ultrasound imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik; Chatterjee, Dhiman; Jain, Pankaj

    2004-11-01

    Intravenously injected encapsulated microbubbles improve the contrast of an ultrasound image. Their destruction is used in measuring blood flow, stimulating arteriogenesis, and drug delivery. We measure attenuation and scattering of ultrasound through solution of contrast agent Definity (Bristol Meyer-Squibb Imaging, North Ballerina, MA). We have developed an interfacial rheology model for the stabilizing encapsulation of such microbubbles. By matching with attenuation data, we obtain the characteristic rheological parameters for Definity. We compare model predictions with measured scattering. We investigate microbubble destruction under acoustic excitation by measuring time-varying attenuation data. Three regions of acoustic pressure amplitudes are found: at low pressure, there is no destruction; at slightly higher pressure bubbles are destroyed, and the rate of destruction depends on a combination of PRF and amplitude. At a still higher pressure amplitude, the attenuation decreases catastrophically. The last two regimes correspond respectively to 1) slow destruction of bubbles due to increased gas diffusion and 2) complete bubble destruction leading to release of free bubbles. (Supported by DOD, NSF and University of Delaware Research Foundation)

  8. The cerebral hemodynamics of normotensive hypovolemia during lower-body negative pressure

    NASA Technical Reports Server (NTRS)

    Giller, C. A.; Levine, B. D.; Meyer, Y.; Buckey, J. C.; Lane, L. D.; Borchers, D. J.

    1992-01-01

    Although severe hypovolemia can lead to hypotension and neurological decline, many patients with neurosurgical disorders experience a significant hypovolemia while autonomic compensatory mechanisms maintain a normal blood pressure. To assess the effects of normotensive hypovolemia upon cerebral hemodynamics, transcranial Doppler ultrasound monitoring of 13 healthy volunteers was performed during graded lower-body negative pressure of up to -50 mm Hg, an accepted laboratory model for reproducing the physiological effects of hypovolemia. Middle cerebral artery flow velocity declined by 16% +/- 4% (mean +/- standard error of the mean) and the ratio between transcranial Doppler ultrasound pulsatility and systemic pulsatility rose 22% +/- 8%, suggesting cerebral small-vessel vasoconstriction in response to the sympathetic activation unmasked by lower-body negative pressure. This vasoconstriction may interfere with the autoregulatory response to a sudden fall in blood pressure, and may explain the common observation of neurological deficit during hypovolemia even with a normal blood pressure.

  9. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent.

    PubMed

    Jia, Jingfu; Wang, Wucong; Gao, Yahui; Zhao, Yaping

    2015-11-01

    Controllable morphology and size of crystal materials prepared by using a supercritical antisolvent (SAS) technique is still challenge. In this study, ultrasound was introduced into the SAS process to produce the particles of curcumin, a model compound. The effects of ultrasound power on the particle morphology and size were investigated in the range of 0 and 240 W at three different pressures. The observation of jet flow indicated ultrasound could accelerate the mixing speed between the liquid solution and the CO2, and thus reduced the gaseous region and the local saturation gradient. Mixed polymorphic and uniform particles of the curcumin were produced at a low and high mixing speed, respectively, confirmed by scanning electron microscopy. The needle- or rod-like particle, irregular lumpy particle and nano spherical particle were generated with the increase of the ultrasound power, attributed to the changes of the degree of supersaturation. Therefore, the ultrasound can be potentially applied to adjust the morphology and size of the crystal materials in supercritical CO2 antisolvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Seasonal variation in xylem pressure of walnut trees: root and stem pressures.

    PubMed

    Ewers, F W; Améglio, T; Cochard, H; Beaujard, F; Martignac, M; Vandame, M; Bodet, C; Cruiziat, P

    2001-09-01

    Measurements of air and soil temperatures and xylem pressure were made on 17-year-old orchard trees and on 5-year-old potted trees of walnut (Juglans regia L.). Cooling chambers were used to determine the relationships between temperature and sugar concentration ([glucose] + [fructose] + [sucrose], GFS) and seasonal changes in xylem pressure development. Pressure transducers were attached to twigs of intact plants, root stumps and excised shoots while the potted trees were subjected to various temperature regimes in autumn, winter and spring. Osmolarity and GFS of the xylem sap (apoplast) were measured before and after cooling or warming treatments. In autumn and spring, xylem pressures of up to 160 kPa were closely correlated with soil temperature but were not correlated with GFS in xylem sap. High root pressures were associated with uptake of mineral nutrients from soil, especially nitrate. In autumn and spring, xylem pressures were detected in root stumps as well as in intact plants, but not in excised stems. In contrast, in winter, 83% of the xylem sap osmolarity in both excised stems and intact plants could be accounted for by GFS, and both GFS and osmolarity were inversely proportional to temperature. Plants kept at 1.5 degrees C developed positive xylem pressures up to 35 kPa, xylem sap osmolarities up to 260 mosmol l(-1) and GFS concentrations up to 70 g l(-1). Autumn and spring xylem pressures, which appeared to be of root origin, were about 55% of the theoretical pressures predicted by osmolarity of the xylem sap. In contrast, winter pressures appeared to be of stem origin and were only 7% of the theoretical pressures, perhaps because of a lower stem water content during winter.

  11. Plate equations for piezoelectrically actuated flexural mode ultrasound transducers.

    PubMed

    Perçin, Gökhan

    2003-01-01

    This paper considers variational methods to derive two-dimensional plate equations for piezoelectrically actuated flexural mode ultrasound transducers. In the absence of analytical expressions for the equivalent circuit parameters of a flexural mode transducer, it is difficult to calculate its optimal parameters and dimensions, and to choose suitable materials. The influence of coupling between flexural and extensional deformation, and coupling between the structure and the acoustic volume on the dynamic response of piezoelectrically actuated flexural mode transducer is analyzed using variational methods. Variational methods are applied to derive two-dimensional plate equations for the transducer, and to calculate the coupled electromechanical field variables. In these methods, the variations across the thickness direction vanish by using the stress resultants. Thus, two-dimensional plate equations for a stepwise laminated circular plate are obtained.

  12. Temporal variation of the leak pressure of uncuffed endotracheal tubes following pediatric intubation: an observational study.

    PubMed

    Patel, Shreya; Lalwani, Kirk; Koh, Jeffrey; Wu, Lei; Fu, Rongwei

    2014-06-01

    Uncuffed endotracheal tubes are still preferred over cuffed tubes in certain situations in pediatric anesthesia. Inaccurately sized uncuffed endotracheal tubes may lead to inadequate ventilation or tracheal mucosal damage during anesthesia. Endotracheal tube size in children is usually assessed by measuring the audible leak pressure; if the fit of the tube and the leak pressure decrease significantly with time, reintubation during surgery as a result of inability to ventilate effectively may be challenging, and could lead to patient morbidity. There is no evidence to indicate whether leak pressure increases or decreases with time following endotracheal intubation with uncuffed tubes in children. We measured leak pressure for 30 min following tracheal intubation in 46 ASA I children age 0-7 years after excluding factors known to modify leak pressure. The largest mean change in leak pressure occurred between time points 0 and 15 min, an increase of 3.5 cmH2O. Endotracheal tube size and type of procedure were associated with the leak pressure. In the final linear mixed model, there were no statistically significant variations in leak pressure over time (P = 0.129) in this group of children. We did not identify a consistent change in leak pressure within 30 min following tracheal intubation with uncuffed endotracheal tubes in this group of children.

  13. Blood pressure variability in man: its relation to high blood pressure, age and baroreflex sensitivity.

    PubMed

    Mancia, G; Ferrari, A; Gregorini, L; Parati, G; Pomidossi, G; Bertinieri, G; Grassi, G; Zanchetti, A

    1980-12-01

    1. Intra-arterial blood pressure and heart rate were recorded for 24 h in ambulant hospitalized patients of variable age who had normal blood pressure or essential hypertension. Mean 24 h values, standard deviations and variation coefficient were obtained as the averages of values separately analysed for 48 consecutive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation aations and variation coefficient were obtained as the averages of values separately analysed for 48 consecurive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for heart rate were smaller. 3. In hypertensive subjects standard deviation for mean arterial pressure was greater than in normotensive subjects of similar ages, but this was not the case for variation coefficient, which was slightly smaller in the former than in the latter group. Normotensive and hypertensive subjects showed no difference in standard deviation and variation coefficient for heart rate. 4. In both normotensive and hypertensive subjects standard deviation and even more so variation coefficient were slightly or not related to arterial baroreflex sensitivity as measured by various methods (phenylephrine, neck suction etc.). 5. It is concluded that blood pressure variability increases and heart rate variability decreases with age, but that changes in variability are not so obvious in hypertension. Also, differences in variability among subjects are only marginally explained by differences in baroreflex function.

  14. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    PubMed

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa

  15. New method for remote and repeatable monitoring of intraocular pressure variations.

    PubMed

    Margalit, Israel; Beiderman, Yevgeny; Skaat, Alon; Rosenfeld, Elkanah; Belkin, Michael; Tornow, Ralf-Peter; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2014-02-01

    We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from the eye, data were recorded under various optical configurations to define and optimize the best experimental configuration for the IOP extraction. The association between the data provided by our proposed device and that resulting from controlled modification of the IOP was assessed, revealing high correlation (R2=0.98) and sensitivity and providing a high-precision measurement (5% estimated error) for the best experimental configuration. Future steps will be directed toward applying the proposed measurement principle in clinical trials for monitoring IOP with human subjects.

  16. Evaluation of chest ultrasound integrated teaching of respiratory system physiology to medical students.

    PubMed

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-12-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term concept retention. A lecture about respiratory physiology was integrated with ultrasound and delivered to third-year medical students. It included basic concepts of ultrasound imaging and the physiology of four anatomic sectors of the body of a male volunteer, shown with a portable ultrasound device (pleural sliding, diaphragmatic movement, inferior vena cava diameter variations, cardiac movements). Students' perceptions of the integrated lecture were assessed, and attendance recorded. After 4 mo, four multiple-choice questions about respiratory physiology were administered during the normal human physiology examinations, and the results of students who attended the lesson and those of who did not were compared. One hundred thirty-four students attended the lecture. Most of them showed encouragement for the study of the subject and considered the ultrasound integrated lecture more interesting than a traditional one and pertinent to the syllabus. Exposed students achieved a better score at the examination and committed less errors than did nonexposed students. The chest ultrasound integrated lecture was appreciated by students. A possible association between the exposure to the lecture and short-term concept retention is shown by better performances of the exposed cohort at the examination. A systematic introduction of ultrasound into physiology traditional teaching will be promoted by the Ultrasound-Based Medical Education movement. Copyright © 2017 the American Physiological Society.

  17. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Level of In Utero Cocaine Exposure and Neonatal Ultrasound Findings

    PubMed Central

    Frank, Deborah A.; McCarten, Kathleen M.; Robson, Caroline D.; Mirochnick, Mark; Cabral, Howard; Park, Henry; Zuckerman, Barry

    2008-01-01

    Objective To assess whether there is an association between the level of in utero cocaine exposure and findings on neonatal cranial ultrasound, controlling for potentially confounding variables. Study Design In a prospective longitudinal study, three cocaine exposure groups were defined by maternal report and infant meconium assay: unexposed, heavier cocaine exposure (>75th percentile self-reported days of use or of meconium benzoylecogonine concentration) or lighter cocaine exposure (all others). Neonatal ultrasounds from 241 well, term infants were read by a single radiologist who was masked to the exposure group. Results Infants with lighter cocaine exposure did not differ from the unexposed infants on any ultrasound findings. After controlling for infant gender, gestational age, and birth weight z scores and for maternal parity, blood pressure in labor, ethnicity, and use of cigarettes, alcohol, and marijuana during pregnancy, the more heavily cocaine-exposed infants were more likely than the unexposed infants to show subependymal hemorrhage in the caudothalamic groove (covariate adjusted odds ratio: 3.88; 95% confidence interval: 1.45, 10.35). Conclusions This is the first study to demonstrate that ultrasound findings suggestive of vascular injury to the neonatal central nervous system are related to the level of prenatal cocaine exposure. Inconsistency in previous research in identifying an association between prenatal cocaine exposure and neonatal cranial ultrasound findings may reflect failure to consider dose effects. PMID:10545554

  19. Diurnal blood pressure variations are associated with changes in distal-proximal skin temperature gradient.

    PubMed

    Kräuchi, Kurt; Gompper, Britta; Hauenstein, Daniela; Flammer, Josef; Pflüger, Marlon; Studerus, Erich; Schötzau, Andy; Orgül, Selim

    2012-11-01

    It is generally assumed that skin vascular resistance contributes only to a small extent to total peripheral resistance and hence to blood pressure (BP). However, little is known about the impact of skin blood flow (SBF) changes on the diurnal variations of BP under ambulatory conditions. The main aim of the study was to determine whether diurnal patterns of distal SBF are related to mean arterial BP (MAP). Twenty-four-hour ambulatory measurements of BP, heart rate (HR) and distal (mean of hands and feet) as well as proximal (mean of sternum and infraclavicular region) skin temperatures were carried out in 51 patients (men/women = 18/33) during a 2-d eye hospital investigation. The standardized ambulatory protocol allowed measurements with minimal interference from uncontrolled parameters and, hence, some conclusive interpretations. The distal minus proximal skin temperature gradient (DPG) provided a measure for distal SBF. Individual cross-correlation analyses revealed that the diurnal pattern of MAP was nearly a mirror image of DPG and hence of distal SBF. Scheduled lunch and dinner induced an increase in DPG and a decline in MAP, while HR increased. Low daytime DPG (i.e. low distal SBF) levels significantly predicted sleep-induced BP dipping (r = -.436, p = .0014). Preliminary path analysis suggested that outdoor air temperature and atmospheric pressure may act on MAP via changed distal SBF. Changes in distal SBF may contribute to diurnal variation in MAP, including sleep-induced BP dipping and changes related to food intake. This finding might have an impact on individual cardiovascular risk prediction with respect to diurnal, seasonal and weather variations; however, the underlying mechanisms remain to be discovered.

  20. Thresholds of Transient Cavitation Produced by Pulsed Ultrasound in a Controlled Nuclei Environment.

    NASA Astrophysics Data System (ADS)

    Holland, Christy Katherine Smith

    The possibility of hazardous bioeffects from medical ultrasound examinations and therapy, although not demonstrated in current epidemiologic data, is still of interest to the medical community. In particular, concern persists over the potential of damage at the cellular level due to transient cavitation produced by diagnostic and high intensity therapeutic ultrasound. Transient cavitation is a discrete phenomenon which relies on the existence of stabilized nuclei, or pockets of gas within a host fluid, for its genesis. A convenient descriptor for assessing the likelihood of transient cavitation is the threshold pressure, or the minimum acoustic pressure necessary to initiate bubble growth and subsequent collapse. Experimental measurements of cavitation thresholds are presented here which elucidate the importance of ultrasound host fluid and nuclei parameters in determining these thresholds. These results are interpreted in the context of an approximate theory, included as an appendix, describing the relationship between these parameters and cavitation threshold pressures. An automated experimental apparatus has been developed to determine thresholds for cavitation produced in a fluid by short tone bursts of ultrasound at 0.76, 0.99, and 2.30 MHz. A fluid jet was used to convect potential cavitation nuclei through the focal region of the insonifying transducer. Potential nuclei tested include 1mum polystyrene spheres, microbubbles in the 1-10 μm range that are stabilized with human serum albumin, and whole blood constituents. Cavitation was detected by a passive acoustical technique which is sensitive to sound scattered from cavitation bubbles. Measurements of the transient cavitation threshold in water, in a fluid of higher viscosity, and in diluted whole blood are presented. Results from these experiments which permit the control of nuclei and host fluid properties are compared to the approximate analytical theory for the prediction of the onset of cavitation.

  1. Quantification of residual limb skeletal muscle perfusion with contrast-enhanced ultrasound during application of a focal junctional tourniquet

    PubMed Central

    Davidson, Brian P.; Belcik, J. Todd; Mott, Brian H.; Landry, Gregory; Lindner, Jonathan R.

    2015-01-01

    Objective Focal junctional tourniquets (JTs) have been developed to control hemorrhage from proximal limb injuries. These devices may permit greater collateral perfusion than circumferential tourniquets. We hypothesized that JTs eliminate large-vessel pulse pressure yet allow a small amount of residual limb perfusion that could be useful for maintaining tissue viability. Methods Ten healthy control subjects were studied. Transthoracic echocardiography, Doppler ultrasound of the femoral artery (FA) and posterior tibial artery, and contrast-enhanced ultrasound (CEU) perfusion imaging of the anterior thigh extensor and calf plantar flexor muscles were performed at baseline and during application of a JT over the common FA. Intramuscular arterial pulsatility index was also measured from CEU intensity variation during the cardiac cycle. Results FA flow was eliminated by JTs in all subjects; posterior tibial flow was eliminated in all but one. Perfusion measured in the thigh and calf muscles was similar at baseline (0.33 ± 0.29 vs 0.29 ± 0.22 mL/min/g). Application of the JT resulted in a reduction of perfusion (P < .05) that was similar for the thigh and calf (0.08 ± 0.07 and 0.10 ± 0.03 mL/min/g). On CEU, microvascular flux rate was reduced by ≈55%, and functional microvascular blood volume was reduced by ≈35%. Arterial pulsatility index was reduced by ≈90% in the calf. JT inflation did not alter left ventricle dimensions, fractional shortening, cardiac output, or arterial elastance as a measure of total systolic load. Conclusions Application of a JT eliminates conduit arterial pulse and markedly reduces intramuscular pulse pressure, but thigh and calf skeletal muscle perfusion is maintained at 25% to 35% of basal levels. These data suggest that JTs that are used to control limb hemorrhage allow residual tissue perfusion even when pulse pressure is absent. PMID:25065582

  2. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery.

    PubMed

    Mannaris, Christophoros; Averkiou, Michalakis A

    2012-04-01

    In current drug delivery approaches, microbubbles and drugs can be co-administered while ultrasound is applied. The mechanism of microbubble interaction with ultrasound, the drug and the cells is not fully understood. The aim of this study was to investigate microbubble response to long ultrasonic pulses used in drug delivery approaches. Two different in vitro set-ups were considered: with the microbubbles diluted in an enclosure and with the microbubbles flowing in a capillary tube. Acoustic streaming, which influences the observed bubble response, was observed in "typical" drug delivery conditions in the first set-up. With the capillary set-up, streaming effects were avoided and accurate bubble responses were recorded. The diffraction pattern of the source greatly influences the bubble response and in different locations of the field different bubble responses are observed. At low nondestructive pressures, microbubbles can oscillate for thousands of cycles repeatedly. At high acoustic pressures (at 1 MHz), most bubble activity disappeared within about 100 μs despite the length of the pulse, mainly due to violent bubble destruction and subsequent accelerated diffusion. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  4. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  5. Ablation of benign prostatic hyperplasia using microbubble-mediated ultrasound cavitation.

    PubMed

    Li, Tao; Liu, Zheng

    2010-04-01

    Benign prostatic hyperplasia (BPH) is a world-wide common disease in elderly male patients. A number of invasive physiotherapies have been used to replace prostatectomy. In this article we report our hypothesis of using microbubbles-mediated ultrasound cavitation effects to ablate prostatic tissues. Microbubble ultrasound contrast agent is widely used contrast media in ultrasonography, yet it is also found to act as cavitation nuclei or enhancer. Once excited by a high peak pressure ultrasound pulse, the mechanical effects, like shock wave and microstream, released from cavitation could produce a series of bioeffects, contributing to sonoporation, microvascular rupture and hematoma. BPH is known to have hyperplastic neovasculature and this make it possible to be disrupted by the physical effects of cavitation under existing microbubbles in circulation. Mechanical ablation of prostatic capillary or small vessels could result in pathological alterations such as thrombosis, micro-circulation blockage, prostatic necrosis and atrophia. Thereupon it could effectively treat BPH by nontraumatic ways. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  7. Effects of different hydrostatic pressure on lesions in ex vivo bovine livers induced by high intensity focused ultrasound.

    PubMed

    He, Min; Zhong, Zhiqiang; Li, Xing; Gong, Xiaobo; Wang, Zhibiao; Li, Faqi

    2017-05-01

    It is well-known that acoustic cavitation associated with the high intensity focused ultrasound (HIFU) treatment often would change the morphology and size of lesions in its treatment. In most studies reported in literature, high ambient hydrostatic pressure was used to suppress the cavitation completely. Investigation of the effects by varying the ambient hydrostatic pressure (P stat ) is still lacking. In this paper, the effects of HIFU on lesions in ex vivo bovine liver specimens under various P stat are systematically investigated. A 1MHz HIFU transducer, with an aperture diameter of 70mm and a focal length of 55mm, was used to generate two groups US exposure of different acoustic intensities and exposure time (6095W/cm 2 ×8s and 9752W/cm 2 ×5s), while keeping the same acoustic energies per unit area (48760J/cm 2 ). The peak acoustic negative pressures (p - ) of the two groups were p 1 - =9.58MPa and p 2 - =10.82MPa, respectively, with the difference p d - =p 2 - -p 1 - =1.24MPa. A passive cavitation detection (PCD) was used to monitor the ultrasonic cavitation signal during exposure of the two groups. The US exposures were done under the following ambient hydrostatic pressures, P stat : atmospheric pressure, 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, 2.5MPa and3.0MPa, respectively. The result of PCD showed that there was a statistically significant increase above background noise level in broadband emissions at dose of 9752W/cm 2 ×5s, but not at dose of 6095W/cm 2 ×8s under atmospheric pressure; i.e., the acoustic cavitation took place for p 2 - but not for p 1 - when under atmospheric pressure. The results also showed that there was no statistically difference of the morphology and size of lesions for 6095W/cm 2 ×8s exposure under the aforementioned different ambient hydrostatic pressures. But the lesions generated at 9752W/cm 2 ×5s exposure under P stat =atmospheric pressure, 0.5MPa, 1.0MPa (all of them are less than p d - ), were larger than those under 1.5MPa

  8. Pressure ulcer image segmentation technique through synthetic frequencies generation and contrast variation using toroidal geometry.

    PubMed

    David, Ortiz P; Sierra-Sosa, Daniel; Zapirain, Begoña García

    2017-01-06

    Pressure ulcers have become subject of study in recent years due to the treatment high costs and decreased life quality from patients. These chronic wounds are related to the global life expectancy increment, being the geriatric and physical disable patients the principal affected by this condition. Injuries diagnosis and treatment usually takes weeks or even months by medical personel. Using non-invasive techniques, such as image processing techniques, it is possible to conduct an analysis from ulcers and aid in its diagnosis. This paper proposes a novel technique for image segmentation based on contrast changes by using synthetic frequencies obtained from the grayscale value available in each pixel of the image. These synthetic frequencies are calculated using the model of energy density over an electric field to describe a relation between a constant density and the image amplitude in a pixel. A toroidal geometry is used to decompose the image into different contrast levels by variating the synthetic frequencies. Then, the decomposed image is binarized applying Otsu's threshold allowing for obtaining the contours that describe the contrast variations. Morphological operations are used to obtain the desired segment of the image. The proposed technique is evaluated by synthesizing a Data Base with 51 images of pressure ulcers, provided by the Centre IGURCO. With the segmentation of these pressure ulcer images it is possible to aid in its diagnosis and treatment. To provide evidences of technique performance, digital image correlation was used as a measure, where the segments obtained using the methodology are compared with the real segments. The proposed technique is compared with two benchmarked algorithms. The results over the technique present an average correlation of 0.89 with a variation of ±0.1 and a computational time of 9.04 seconds. The methodology presents better segmentation results than the benchmarked algorithms using less computational time and

  9. Point-of-Care Ultrasound for Jugular Venous Pressure Assessment: Live and Online Learning Compared.

    PubMed

    Socransky, Steve; Lang, Eddy; Bryce, Rhonda; Betz, Martin

    2017-06-08

    Point-of-care ultrasound (POCUS) is a novel technique for the assessment of jugular venous pressure. Distance education may allow for efficient dissemination of this technique. We compared online learning to a live course for teaching ultrasonography jugular venous pressure (u-JVP) to determine if these teaching methods yielded different levels of comfort with and use of u-JVP. This was an interventional trial of Canadian emergency physicians who had taken a basic POCUS course. The participants were in one of three Groups: online learning (Group OL), live teaching (Group LT), control (Group C). Group LT participants also took an advanced course prior to the study that included instruction in u-JVP. The participants who took the basic course were randomized to Group OL or Group C. Group OL was subject to the intervention, online learning. Group C only received an article citation regarding u-JVP. Questionnaires were completed before and after the intervention. The primary outcome was physician self-reported use and comfort with the technique of u-JVP after online learning compared to live teaching. Of the 287 advanced course participants, 42 completed the questionnaires (Group LT). Of the 3303 basic course participants, 47 who were assigned to Group OL completed the questionnaires and 47 from Group C completed the questionnaires. Use of u-JVP increased significantly in Group OL (from 15% to 55%) and Group C (from 21% to 47%) with the intervention. The comfort with use did not differ between Group LT and Group OL (p=0.14). The frequency of use remained higher in Group LT than Group OL (p=0.07). Online learning increases the use and comfort with performing u-JVP for emergency physicians with prior POCUS experience. Although the comfort with use of u-JVP was similar in Groups LT and OL, online learning appears to yield levels of use that are less than those of a live course.

  10. Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models.

    PubMed

    Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin O

    2018-05-01

    High-intensity focused ultrasound (HIFU) therapy can be used for noninvasive treatment of kidney (renal) cancer, but the clinical outcomes have been variable. In this study, the efficacy of renal HIFU therapy was studied using nonlinear acoustic and thermal simulations in three patients. The acoustic simulations were conducted with and without refraction in order to investigate its effect on the shape, size, and pressure distribution at the focus. The values for the attenuation, sound speed, perfusion, and thermal conductivity of the kidney were varied over the reported ranges to determine the effect of variability on heating. Furthermore, the phase aberration was studied in order to quantify the underlying phase shifts using a second-order polynomial function. The ultrasound field intensity was found to drop on average 11.1 dB with refraction and 6.4 dB without refraction. Reflection at tissue interfaces was found to result in a loss less than 0.1 dB. Focal point splitting due to refraction significantly reduced the heating efficacy. Of all the tissue parameters, perfusion was found to affect the heating the most. Small changes in temperature were seen with varying attenuation and thermal conductivity, but no visible changes were present with sound speed variations. The aberration study revealed an underlying trend in the spatial distribution of the phase shifts. The results show that the efficacy of HIFU therapy in the kidney could be improved with aberration correction. A method is proposed by which patient specific pretreatment calculations could be used to overcome the aberration and therefore make ultrasound treatment possible.

  11. Modeling and Characterization of Encapsulated Microbubbles for Ultrasound Imaging and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik; Jain, Pankaj; Chatterjee, Dhiman

    2008-07-01

    Intravenously injected encapsulated microbubbles improve the contrast of an ultrasound image. Their destruction is used in measuring blood flow, stimulating arteriogenesis, and drug delivery. We measure attenuation and scattering of ultrasound through solution of commercial contrast agents such as Optison (GE Health Care, Princeton, NJ) and Definity (Bristol Meyer-Squibb Imaging, North Ballerina, MA). We have developed an interfacial rheology model for the encapsulation of such microbubbles. By matching with experimental data, we obtain the characteristic rheological parameters. We compare model predictions with other experiments. We also investigate microbubble destruction under acoustic excitation by measuring time-varying attenuation data. Three regions of acoustic pressure amplitudes are found: at low pressure, there is no destruction; at slightly higher pressure bubbles are destroyed, and the rate of destruction depends on a combination of PRF and amplitude. At a still higher pressure amplitude, the attenuation decreases catastrophically. The last two regimes correspond respectively to 1) slow destruction of bubbles due to increased gas diffusion and 2) complete bubble destruction leading to release of free bubbles. An analytical model for the bubble growth and dissolution will be presented. The effects of membrane permeability and elasticity on the stability of microbubbles are investigated. (Supported by DOD, NSF and NIH).

  12. Effects of ultrasound implementation on physical examination learning and teaching during the first year of medical education.

    PubMed

    Dinh, Vi Am; Frederick, Jon; Bartos, Rebekah; Shankel, Tamara M; Werner, Leonard

    2015-01-01

    Increasing emphasis has been placed on point-of-care ultrasound in medical school. The overall effects of ultrasound curriculum implementation on the traditional physical examination skills of medical students are still unknown. We studied the effects on the Objective Standardized Clinical Examination (OSCE) scores of year 1 medical students before and after ultrasound curriculum implementation. An ultrasound curriculum was incorporated into the physical diagnosis course for year 1 medical students in the 2012-2013 academic year. We performed a prospective observational study comparing traditional OSCE scores of year 1 medical students exposed to the ultrasound curriculum (post-ultrasound) versus historic year 1 medical student controls (pre-ultrasound) with no ultrasound exposure. Questionnaire data were also obtained from year 1 medical students and physical diagnosis faculty to assess attitudes toward ultrasound implementation. The final overall OSCE scores were graded with a 5-point Likert-type scale from unsatisfactory to outstanding. There was a significant increase in outstanding scores in the post-ultrasound compared to the pre-ultrasound group (27.0% versus 10.9%; P< .001). The post-ultrasound group had significantly (P< .05) increased first-time pass rates on blood pressure measurements, the abdominal examination, and professionalism. Student and physical diagnosis faculty questionnaire data showed an overall positive response, with most agreeing or strongly agreeing that ultrasound should be included in the future year 1 medical student curriculum. Ultrasound implementation into a physical diagnosis curriculum for year 1 medical students is feasible and may improve their overall traditional physical examination skills. © 2015 by the American Institute of Ultrasound in Medicine.

  13. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects.

    PubMed

    Padilla, Frédéric; Puts, Regina; Vico, Laurence; Raum, Kay

    2014-07-01

    In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture

  14. Ultrasound characterization of middle ear effusion.

    PubMed

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2013-01-01

    To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) were at least 94%. Mucoid effusions had higher measured viscosity values (P=.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=.048). The device sensitivity and specificity for fluid detection were 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Ultrasound Characterization of Middle Ear Effusion

    PubMed Central

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2012-01-01

    Purpose To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. Materials and Methods This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Results Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) was at least 94%. Mucoid effusions had higher measured viscosity values (P=0.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=0.048). Conclusion The device sensitivity and specificity for fluid detection was 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. PMID:23084430

  16. Compressed sensing for ultrasound computed tomography.

    PubMed

    van Sloun, Ruud; Pandharipande, Ashish; Mischi, Massimo; Demi, Libertario

    2015-06-01

    Ultrasound computed tomography (UCT) allows the reconstruction of quantitative tissue characteristics, such as speed of sound, mass density, and attenuation. Lowering its acquisition time would be beneficial; however, this is fundamentally limited by the physical time of flight and the number of transmission events. In this letter, we propose a compressed sensing solution for UCT. The adopted measurement scheme is based on compressed acquisitions, with concurrent randomised transmissions in a circular array configuration. Reconstruction of the image is then obtained by combining the born iterative method and total variation minimization, thereby exploiting variation sparsity in the image domain. Evaluation using simulated UCT scattering measurements shows that the proposed transmission scheme performs better than uniform undersampling, and is able to reduce acquisition time by almost one order of magnitude, while maintaining high spatial resolution.

  17. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) <1 MPa, with only a small increase (∼2-3 MPa) in the intrinsic threshold for tendon (E = 380 MPa). Additionally, results for all samples revealed only a small increase of ∼2-3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7 and 30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly affected by tissue stiffness or ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier

  18. Feasibility of recanalization of human coronary arteries using high-intensity ultrasound.

    PubMed

    Ernst, A; Schenk, E A; Woodlock, T J; Alliger, H; Gottlieb, S; Child, S Z; Meltzer, R S

    1994-01-15

    To investigate the feasibility of ultrasonic recanalization of obstructed human coronary arteries in vitro, high-intensity ultrasound was applied to 16 coronary arteries obtained at autopsy, using a prototype instrument enabling insonification through a catheter tip. It was a 119 cm long, 0.95 mm thick wire in an 8Fr catheter connected to an external ultrasonic transformer and power generator. A 5 MHz phased-array 2-dimensional echocardiography instrument was used to determine minimal luminal diameter and percent diameter narrowing before and after ultrasound application. The ultrasonic energy was delivered at 21.5 kHz and with a 52 +/- 19 micrometer average amplitude of tip displacement. The mean percent luminal diameter narrowing, flow rate and mean pressure gradient before ultrasound exposure were 74 +/- 11%, 97 +/- 61 ml/min, and 92 +/- 18 mm Hg, respectively. After recanalization, the mean percent luminal diameter narrowing decreased to 45 +/- 17% (p < 0.001), the mean flow rate increased to 84 +/- 92 ml/min (p < 0.001), and the mean pressure gradient was reduced to 45 +/- 24 mm Hg (p < 0.001). Of the debris particles, 95% had a diameter < 9 microns (range 5 to 12). Arterial perforation occurred in 5 of 16 arteries (31%) and all 5 occurred due to stiff wire manipulation and without ultrasound application. Mechanical fracture of the wire occurred in 8 cases (50%). No signs of thermal injury were found on histology. Thus, ultrasonic recanalization of human coronary arteries in vitro is feasible. It may reduce obstruction and improve blood flow. Debris sizes are sufficiently small to minimize the hazard of peripheral embolization.

  19. Variations in pulmonary artery occlusion pressure to estimate changes in pleural pressure.

    PubMed

    Bellemare, Patrick; Goldberg, Peter; Magder, Sheldon A

    2007-11-01

    A readily available assessment of changes in pleural pressure would be useful for ventilator and fluid management in critically ill patients. We examined whether changes in pulmonary artery occlusion pressure (Ppao) adequately reflect respiratory changes in pleural pressure as assessed by changes in intraesophageal balloon pressure (Peso). We studied patients who had a pulmonary catheter and esophageal balloon surrounding a nasogastric tube as part of their care (n=24). We compared changes in Ppao (dPpao) to changes in Peso (dPeso) by Bland-Altman and regression analysis. Adequacy of balloon placement was assessed by performing Mueller maneuvers and adjusting the position to achieve a ratio of dPeso to change in tracheal pressure (dPtr) of 0.85 or higher. This was achieved in only 14 of the 24 subjects. We also compared dCVP to dPeso. The dPpao during spontaneous breaths and positive pressure breaths gave a good estimate of Peso but generally underestimated dPeso (bias=2.2 +8.2 and -3.9 cmH2O for the whole group). The dCVP was not as good a predictor (bias=2.9 +10.3 and -4.6). In patients who have a pulmonary artery catheter in place dPpao gives a lower estimate of changes in pleural pressure and may be more reliable than dPeso. The dCVP is a less reliable predictor than changes in pleural pressure.

  20. Sterile working in ultrasonography: the use of dedicated ultrasound covers and sterile ultrasound gel.

    PubMed

    Marhofer, Peter; Fritsch, Gerhard

    2015-01-01

    Ultrasound is currently an important tool for diagnostic and interventional procedures. Ultrasound imaging provides significant advantages as compared to other imaging methods. The widespread use of ultrasound also carries the risk of drawbacks such as cross-infections. A large body of literature reports this possibly life-threatening side effect and specific patient populations are particularly at risk (e.g., neonates). Various methods of ultrasound probe disinfection are described; however, none of the mechanical or chemical probe disinfection procedures is optimal and, in particular, disinfection with high concentration of alcohol might be associated with ultrasound probe damage. The preparation of ultrasound probes with dedicated probe covers is a useful alternative for sterile working conditions. One ultrasound probe cover discussed in this paper is directly glued on to the ultrasound probe without the use of ultrasound coupling gel. By the use of sterile ultrasound coupling gel at the outer surface, additional effects on aseptic working conditions can be obtained.

  1. Identifying the Inertial Cavitation Pressure Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Choi, James J.; Konofagou, Elisa E.

    2010-03-01

    Using Focused Ultrasound (FUS) and microbubbles to open the blood-brain barrier (BBB) has been shown promising for brain drug delivery. However, the exact mechanism behind the opening remains unknown. Here, the effects of the murine skull on the threshold of inertial cavitation were investigated. In order to investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cylindrical vessel with a 610-μm diameter inside a polyacrylamide gel was generated within a polyacrylamide gel to simulate large blood vessels. Definity® (Lantheus Medical Imaging, MA, USA) microbubbles with a 1.1-3.3 μm in diameter at 2.5×107 bubbles/mL were injected into the channel before sonication (frequency: 1.525 MHz; pulse length: 100 cycles; PRF: 10 Hz; sonication duration: 2 s) through an excised mouse skull. A cylindrically focused hydrophone, confocal with the FUS transducer, acted as a passive cavitation detector (PCD) to identify the threshold. A 7.5 MHz linear array with the field-of-view perpendicular to the axial length of the FUS beam was also used to image the occurrence of bubble fragmentation. The broadband spectral response acquired at the passive cavitation detector (PCD) and the B-mode images identified the occurrence and location of the inertial cavitation, respectively. Findings indicated that the peak-rarefactional pressure threshold was approximately equal to 0.45 MPa at the presence or the absence of the skull. However, the skull induced 10-50% lower inertial cavitation dose. Mouse skulls did not affect the pressure threshold of inertial cavitation but resulted in a lower inertial cavitation dose. The broadband response could be captured through the murine skull, so the same PCD setup can be used in future in vivo applications.

  2. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  3. Random regression models for the prediction of days to weight, ultrasound rib eye area, and ultrasound back fat depth in beef cattle.

    PubMed

    Speidel, S E; Peel, R K; Crews, D H; Enns, R M

    2016-02-01

    Genetic evaluation research designed to reduce the required days to a specified end point has received very little attention in pertinent scientific literature, given that its economic importance was first discussed in 1957. There are many production scenarios in today's beef industry, making a prediction for the required number of days to a single end point a suboptimal option. Random regression is an attractive alternative to calculate days to weight (DTW), days to ultrasound back fat (DTUBF), and days to ultrasound rib eye area (DTUREA) genetic predictions that could overcome weaknesses of a single end point prediction. The objective of this study was to develop random regression approaches for the prediction of the DTW, DTUREA, and DTUBF. Data were obtained from the Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, Canada. Data consisted of records on 1,324 feedlot cattle spanning 1999 to 2007. Individual animals averaged 5.77 observations with weights, ultrasound rib eye area (UREA), ultrasound back fat depth (UBF), and ages ranging from 293 to 863 kg, 73.39 to 129.54 cm, 1.53 to 30.47 mm, and 276 to 519 d, respectively. Random regression models using Legendre polynomials were used to regress age of the individual on weight, UREA, and UBF. Fixed effects in the model included an overall fixed regression of age on end point (weight, UREA, and UBF) nested within breed to account for the mean relationship between age and weight as well as a contemporary group effect consisting of breed of the animal (Angus, Charolais, and Charolais sired), feedlot pen, and year of measure. Likelihood ratio tests were used to determine the appropriate random polynomial order. Use of the quadratic polynomial did not account for any additional genetic variation in days for DTW ( > 0.11), for DTUREA ( > 0.18), and for DTUBF ( > 0.20) when compared with the linear random polynomial. Heritability estimates from the linear random regression for DTW ranged from 0.54 to 0

  4. Endoscopic ultrasound

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  5. Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study.

    PubMed

    Baseri, Babak; Choi, James J; Tung, Yao-Sheng; Konofagou, Elisa E

    2010-09-01

    As a potentially viable method of brain drug delivery, the safety profile of blood-brain barrier (BBB) opening using focused ultrasound (FUS) and ultrasound contrast agents (UCA) needs to be established. In this study, we provide a short-term (30-min or 5-h survival) histological assessment of murine brains undergoing FUS-induced BBB opening. Forty-nine mice were intravenously injected with Definity microbubbles (0.05 microL/kg) and sonicated under the following parameters: frequency of 1.525 MHz, pulse length of 20 ms, pulse repetition frequency of 10 Hz, peak rarefactional acoustic pressures of 0.15-0.98 MPa and two 30-s sonication intervals with an intermittent 30-s delay. The BBB opening threshold was found to be 0.15-0.3 MPa based on fluorescence and magnetic resonance imaging of systemically injected tracers. Analysis of three histological measures in hematoxylin and eosin-stained sections revealed the safest acoustic pressure to be within the range of 0.3-0.46 MPa in all examined time periods post sonication. Across different pressure amplitudes, only the samples 30 min post opening showed significant difference (p < 0.05) in the average number of distinct damaged sites, microvacuolated sites, dark neurons and sites with extravasated erythrocytes. Enhanced fluorescence around severed microvessels was also noted and found to be associated with the largest tissue effects, whereas mildly diffuse BBB opening with uniform fluorescence in the parenchyma was associated with no or mild tissue injury. Region-specific areas of the sonicated brain (thalamus, hippocampal fissure, dentate gyrus and CA3 area of hippocampus) exhibited variation in fluorescence intensity based on the position, orientation and size of affected vessels. The results of this short-term histological analysis demonstrated the feasibility of a safe FUS-UCA-induced BBB opening under a specific set of sonication parameters and provided new insights on the mechanism of BBB opening.

  6. Comparison of Two Devices for Intraoperative Portal Venous Flow Measurement in Living-Donor Liver Transplantation: Transit Time Ultrasound and Conventional Doppler Ultrasound.

    PubMed

    Wang, H-K; Chen, C-Y; Lin, N-C; Liu, C-S; Loong, C-C; Lin, Y-H; Lai, Y-C; Chiou, H-J

    2018-05-01

    Intraoperative portal venous flow measurement provides surgeons with instant guidance for portal flow modulation during living-donor liver transplantation (LDLT). In this study, we compared the agreement of portal flow measurement obtained by 2 devices: transit time ultrasound (TTU) and conventional Doppler ultrasound (CDU). Fifty-four recipients of LDLT underwent intraoperative measurement of portal flow after completion of vascular anastomosis of the implanted partial liver graft. Both TTU and CDU were used concurrently. Agreement of TTU and CDU was assessed by intraclass correlation coefficient using a model of 2-way random effects, absolute agreement, and single measurement. A Bland-Altman plot was applied to assess the variability between the 2 devices. The mean, median, and range of portal venous flow was 1456, 1418, and 117 to 2776 mL/min according to TTU; and 1564, 1566, and 119 to 3216 mL/min according to CDU. The intraclass correlation coefficient of portal venous flow between TTU and CDU was 0.68 (95% confidence interval, 0.51-0.80). The Bland-Altman plots revealed an average variation of 4.8% between TTU and CDU but with a rather wide 95% confidence interval of variation ranging from -57.7% to 67.4%. Intraoperative TTU and CDU showed moderate agreement in portal flow measurement. However, a relatively wide range of variation exists between TTU and CDU, indicating that data obtained from the 2 devices may not be interchangeable. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The feasibility of non-contact ultrasound for medical imaging.

    PubMed

    Clement, G T; Nomura, H; Adachi, H; Kamakura, T

    2013-09-21

    High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration.

  8. Sonoanatomic Variation of Pes Anserine Bursa

    PubMed Central

    Imani, Farnad; Abolhasan Gharehdag, Farid; Faiz, Seyed Hamid Reza

    2013-01-01

    Background The pes anserine bursa lies beneath the pes anserine tendon, which is the insertional tendon of the sartorius, gracilis, and semitendinosus muscles on the medial side of the tibia, but it can lie in different sites in the medial knee. Accurate diagnosis of the position of the bursa is critical for diagnostic and therapeutic goals. The aim of this study was to evaluate sonoanatomic variations of the pes anserine bursa in the medial knee. Methods One hundred seventy asymptomatic volunteers were enrolled in this study. Using ultrasound imaging (transverse approach, 7-13 MHz linear array probe) the sonoanatomic position of the pes anserine bursa and its relation to the pes anserine tendon were evaluated. Additionally, we evaluated the sonoanatomic variation of the saphenous nerve. Results The position of the pes anserine bursa was between the medial collateral ligament and the pes anserine tendons in 21.2%/18.8% (males/females) of subjects; between the pes anserine tendons and the tibia in 67.1%/64.7% (m/f); and among the pes anserine tendons in 8.2%/12.9% (m/f). No significant differences in the position of the bursa existed between males and females. The saphenous nerve was found within the pes anserine tendons in 77.6%/74.1% (m/f) of subjects, but outside the pes anserine tendons in 18.8%/15.3% (m/f). Visibility of sonoanatomic structures was not related to either gender or BMI. Conclusions Ultrasound provides very accurate information about variations in the pes anserine bursa and the saphenous nerve. This suggests that our proposed ultrasound method can be a reliable guide to facilitate approaches to the medial knee for diagnostic and therapeutic objectives. PMID:23861998

  9. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model.

    PubMed

    Hitchcock, Kathryn E; Caudell, Danielle N; Sutton, Jonathan T; Klegerman, Melvin E; Vela, Deborah; Pyne-Geithman, Gail J; Abruzzo, Todd; Cyr, Peppar E P; Geng, Yong-Jian; McPherson, David D; Holland, Christy K

    2010-06-15

    The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1-MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n=8) and wild-type (n=8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and sub-endothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less

  11. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array.

    PubMed

    O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo

    2016-09-01

    Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.

  12. Registration of human skull computed tomography data to an ultrasound treatment space using a sparse high frequency ultrasound hemispherical array

    PubMed Central

    O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo

    2016-01-01

    Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036

  13. American Institute of Ultrasound in Medicine

    MedlinePlus

    ... Ultrasound Pediatric Ultrasound Point-of-Care Ultrasound Sonography Therapeutic Ultrasound Ultrasound in Global Health Ultrasound in Medical Education CME Center CME Tracker Annual Convention Journal Tests ...

  14. Reduction of pressure ulcer size with high-voltage pulsed current and high-frequency ultrasound: a randomised trial.

    PubMed

    Polak, A; Taradaj, J; Nawrat-Szoltysik, A; Stania, M; Dolibog, P; Blaszczak, E; Zarzeczny, R; Juras, G; Franek, A; Kucio, C

    2016-12-02

    International guidelines recommend the use of ultrasound (US) and electrical stimulation (ES) for treating chronic and recurrent pressure ulcers (PUs). The methodology of these procedures, however, still needs elaboration and confirmation by clinical studies. This parallel-group, randomised, single-blind, prospective, controlled clinical trial was conducted to determine whether by using high-frequency ultrasound (HFUS) and high-voltage monophasic pulsed current (HVMPC), the rate of change in the area of older patients' PUs can be accelerated. Patients were randomly assigned to receive either: standard wound care (SWC) involving supportive care and topical treatments; SWC+US (1MHz; 0.5 W/cm 2 ; 20%; 1-3 minutes/cm2); or SWC+ES (HVMPC, 154 µs, 100 pps, 100 V, 250 µC/sec, 50 minutes/day). US and ES were administered once a day, 5 days a week. The primary outcome was change in PU surface area measured against baseline after 6 weeks of treatment with SWC, SWC+US, and SWC+ES. We recruited 77 patients, aged 60-95 years (80% aged over 70 years of age), with 88 Category II, III and IV PUs were enrolled in the study. The percentage reduction in the surface area of PUs at the end of treatment was significantly greater in the SWC+US group (mean ± standard deviation, 77.48±11.59 %; p=0.024) and the SWC+ES group (76.19±32.83%; p=0.030) versus the control group (48.97±53.42%). The SWC+ES group also had a significantly greater proportion of PUs that decreased in area by at least 50% or closed than the control group (p=0.05 and 0.031, respectively). The SWC+US and SWC+ES groups were not statistically significant different regarding treatment results. Clinical side effects were not recorded. The results show that HFUS and HVMPC are comparable regarding their effectiveness in reducing the size of PUs in older people. The authors have nothing to disclose. All research activities were funded by the Academy of Physical Education, Katowice, Poland.

  15. Microvessel rupture induced by high-intensity therapeutic ultrasound-a study of parameter sensitivity in a simple in vivo model.

    PubMed

    Kim, Yeonho; Nabili, Marjan; Acharya, Priyanka; Lopez, Asis; Myers, Matthew R

    2017-01-01

    Safety analyses of transcranial therapeutic ultrasound procedures require knowledge of the dependence of the rupture probability and rupture time upon sonication parameters. As previous vessel-rupture studies have concentrated on a specific set of exposure conditions, there is a need for more comprehensive parametric studies. Probability of rupture and rupture times were measured by exposing the large blood vessel of a live earthworm to high-intensity focused ultrasound pulse trains of various characteristics. Pressures generated by the ultrasound transducers were estimated through numerical solutions to the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation. Three ultrasound frequencies (1.1, 2.5, and 3.3 MHz) were considered, as were three pulse repetition frequencies (1, 3, and 10 Hz), and two duty factors (0.0001, 0.001). The pressures produced ranged from 4 to 18 MPa. Exposures of up to 10 min in duration were employed. Trials were repeated an average of 11 times. No trends as a function of pulse repetition rate were identifiable, for either probability of rupture or rupture time. Rupture time was found to be a strong function of duty factor at the lower pressures; at 1.1 MHz the rupture time was an order of magnitude lower for the 0.001 duty factor than the 0.0001. At moderate pressures, the difference between the duty factors was less, and there was essentially no difference between duty factors at the highest pressure. Probability of rupture was not found to be a strong function of duty factor. Rupture thresholds were about 4 MPa for the 1.1 MHz frequency, 7 MPa at 3.3 MHz, and 11 MPa for the 2.5 MHz, though the pressure value at 2.5 MHz frequency will likely be reduced when steep-angle corrections are accounted for in the KZK model used to estimate pressures. Mechanical index provided a better collapse of the data (less separation of the curves pertaining to the different frequencies) than peak negative pressure, for both probability of rupture and

  16. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and

  17. Nonthermal ablation in the rat brain using focused ultrasound and an ultrasound contrast agent: long-term effects

    PubMed Central

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2016-01-01

    OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the “treatment envelope” for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 μl/kg). The rats were followed with MRI for 4–9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain. PMID:26848919

  18. Anthropomorphic cardiac ultrasound phantom.

    PubMed

    Smith, S W; Rinaldi, J E

    1989-10-01

    A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.

  19. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  20. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  1. Sequential extraction of flavonoids and pectin from yellow passion fruit rind using pressurized solvent or ultrasound.

    PubMed

    de Souza, Caroline G; Rodrigues, Tigressa Hs; E Silva, Lorena Ma; Ribeiro, Paulo Rv; de Brito, Edy S

    2018-03-01

    Passion fruit rind (PFR) represents 90% of the total fruit weight and is wasted during juice processing. Passion fruit rind is known to contain flavonoids and pectin. An alternative use for this fruit juice industrial residue is to obtain these compounds. This study aimed to verify the influence of pressurized solvent extraction (PSE) or ultrasound assisted extraction (UAE) of flavonoid and pectin in a sequential process. The PSE using ethanol at 60:40 (v/v) yielded a total polyphenol content of 4.67 g GAE kg -1 PFR, orientin-7-O-glucoside (1.57 g kg -1 PFR) and luteolin-6-C-glucoside (2.44 g kg -1 PFR). Pectin yield was 165 g kg -1 PFR, either in PSE or UAE. Pectin characterization indicates that the pectic structure has basically homogalacturonans and galacturonate followed by a galacturonic acid ester unit, with methylation degree of 70%. With this study it can be concluded that mixtures of alcohols with water favor the extraction of bioactive compounds of passion fruit peel. Both PSE and UAE were effective in sequentially extracting flavonoids and pectin. The preferred solvent is ethanol due to its lower toxicity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Numerical simulations of clinical focused ultrasound functional neurosurgery

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-04-01

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  3. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  4. Long-term observations of seafloor pressure variations at Lucky Strike volcano, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Ballu, V.; de Viron, O.; Crawford, W. C.; Cannat, M.; Escartin, J.

    2012-12-01

    Lucky Strike volcano is a segment-center volcano on the Mid-Atlantic Ridge at 37°N. Extensive faulting reveals an important tectonic component in its formation, while a seismically imaged axial magma chamber reflector and active high-temperature hydrothermal vents reveal an important present-day magmatic component. Lucky Strike volcano has been the subject of long-term multidisciplinary seafloor observations to understand relations between magmatism, tectonism, hydrothermal circulation, biology and chemistry as part of the MoMAR (Monitoring of the Mid-Atlantic Ridge) program. Absolute pressure gauges have been recording on the volcano since 2007, to identify deformations associated with tectonism or magmatism. Deformation measurements are one of the principal means of determining volcanic activity, but the amount of deformation associated with volcanic events varies greatly between different volcanos. We installed two sites: one in the volcano's summit "lava lake" (1700 m depth) and another on the volcano's flank (2000 m depth). Pressure is recorded every thirty seconds, giving a data set that constrains movements on the scale from minutes to years. No major deformation event has been detected by the instruments since their installation (nor has any significant tectonic event been detected by a seismic network in place since 2007), so we concentrate here on the detection limit of these instruments and on variations in the long-period ocean wave climate. Using the statistical characteristics of the pressure signal, modeled by an auto-regressive process, we determine that a movement between the sites of 1 cm over less than 10 days is detectable; the detection threshold decreases to about 0.2 cm for the shortest time periods and increases for longer time periods due to instrumental drift. We compare the statistical characteristics and short- and long-term sensitivity of three different types of gauges used during the experiment: Paroscientific standard

  5. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Effects of important parameters variations on computing eigenspace-based minimum variance weights for ultrasound tissue harmonic imaging

    NASA Astrophysics Data System (ADS)

    Haji Heidari, Mehdi; Mozaffarzadeh, Moein; Manwar, Rayyan; Nasiriavanaki, Mohammadreza

    2018-02-01

    In recent years, the minimum variance (MV) beamforming has been widely studied due to its high resolution and contrast in B-mode Ultrasound imaging (USI). However, the performance of the MV beamformer is degraded at the presence of noise, as a result of the inaccurate covariance matrix estimation which leads to a low quality image. Second harmonic imaging (SHI) provides many advantages over the conventional pulse-echo USI, such as enhanced axial and lateral resolutions. However, the low signal-to-noise ratio (SNR) is a major problem in SHI. In this paper, Eigenspace-based minimum variance (EIBMV) beamformer has been employed for second harmonic USI. The Tissue Harmonic Imaging (THI) is achieved by Pulse Inversion (PI) technique. Using the EIBMV weights, instead of the MV ones, would lead to reduced sidelobes and improved contrast, without compromising the high resolution of the MV beamformer (even at the presence of a strong noise). In addition, we have investigated the effects of variations of the important parameters in computing EIBMV weights, i.e., K, L, and δ, on the resolution and contrast obtained in SHI. The results are evaluated using numerical data (using point target and cyst phantoms), and the proper parameters of EIBMV are indicated for THI.

  7. Non-Invasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy – Histotripsy

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Duryea, Alexander P.; Yuan, Lingqian; Gurm, Hitinder S.; Xu, Zhen

    2009-01-01

    Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters), and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and non-invasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses. In-vitro blood clots formed from fresh canine blood were treated by histotripsy. The treatment was applied using a focused 1-MHz transducer, with 5-cycle pulses at a pulse repetition rate of 1 kHz. Acoustic pressures varying from 2 – 12 MPa peak negative pressure were tested. Our results show that histotripsy can perform effective thrombolysis with ultrasound energy alone. Histotripsy thrombolysis only occurred at peak negative pressure ≥6 MPa when initiation of a cavitating bubble cloud was detected using acoustic backscatter monitoring. Blood clots weighing 330 mg were completely broken down by histotripsy in 1.5 – 5 minutes. The clot was fractionated to debris with >96% weight smaller than 5 μm diameter. Histotripsy thrombolysis treatment remained effective under a fast, pulsating flow (a circulatory model) as well as in static saline. Additionally, we observed that fluid flow generated by a cavitation cloud can attract, trap, and further break down clot fragments. This phenomenon may provide a non-invasive method to filter and eliminate hazardous emboli during thrombolysis. PMID:19854563

  8. Loss of gas from echogenic liposomes exposed to pulsed ultrasound

    PubMed Central

    Raymond, Jason L.; Luan, Ying; Peng, Tao; Huang, Shao-Ling; McPherson, David D.; Versluis, Michel; de Jong, Nico; Holland, Christy K.

    2017-01-01

    The destruction of echogenic liposomes (ELIP) in response to pulsed ultrasound excitations has been studied acoustically previously. However, the mechanism underlying the loss of echogenicity due to cavitation of ELIP has not been fully clarified. In this study, an ultra-high speed imaging approach was employed to observe the destruction phenomena of single ELIP exposed to ultrasound bursts at a center frequency of 6- MHz. We observed a rapid size reduction during the ultrasound excitation in 139 out of 397 (35 %) ultra-high-speed recordings. The shell dilation rate, which is defined as the microbubble wall velocity divided by the instantaneous radius, Ṙ/R, was extracted from the radius versus time response of each ELIP, and was found to be correlated with the deflation. Fragmentation and surface mode vibrations were also observed and are shown to depend on the applied acoustic pressure and initial radius. Results from this study can be utilized to optimize the theranostic application of ELIP, e.g., by tuning the size distribution or the excitation frequency. PMID:27811382

  9. Physical cleaning by bubbly streaming flow in an ultrasound field

    NASA Astrophysics Data System (ADS)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  10. Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luettge, U.; Nobel, P.S.

    1984-07-01

    Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO/sub 2/ fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Juelich pressure probe where a smallmore » oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO/sub 2/ fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants. 13 references, 4 figures.« less

  11. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review.

    PubMed

    Ja'fari, Mahsa; Ebrahimi, Seyedeh Leila; Khosravi-Nikou, Mohammad Reza

    2018-01-01

    Nowadays, a continuously worldwide concern for development of process to produce ultra-low sulfur and nitrogen fuels have been emerged. Typical hydrodesulfurization and hydrodenitrogenation technology deals with important difficulties such as high pressure and temperature operating condition, failure to treat some recalcitrant compounds and limitations to meet the stringent environmental regulations. In contrary an advanced oxidation process that is ultrasound assisted oxidative desulfurization and denitrogenation satisfies latest environmental regulations in much milder conditions with more efficiency. The present work deals with a comprehensive review on findings and development in the ultrasound assisted oxidative desulfurization and denitrogenation (UAOD) during the last decades. The role of individual parameters namely temperature, residence time, ultrasound power and frequency, pH, initial concentration and types of sulfur and nitrogen compounds on the efficiency are described. What's more another treatment properties that is role of phase transfer agent (PTA) and solvents of extraction step, reaction kinetics, mechanism of the ultrasound, fuel properties and recovery in UAOD are reviewed. Finally, the required future works to mature this technology are suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Repeatability of Doppler ultrasound measurements of hindlimb blood flow in halothane anaesthetised horses.

    PubMed

    Raisis, A L; Young, L E; Meire, H; Walsh, K; Taylor, P M; Lekeux, P

    2000-05-01

    The purpose of this study was to determine the repeatability of femoral blood flow recorded using Doppler ultrasound in anaesthetised horses. Doppler ultrasound of the femoral artery and vein was performed in 6 horses anaesthetised with halothane and positioned in left lateral recumbency. Velocity spectra, recorded using low pulse repetition frequency, were used to calculate time-averaged mean velocity (TAV), velocity of component a (TaVa), velocity of component b (TaVb), volumetric flow, early diastolic deceleration slope (EDDS) and pulsatility index (PI). Within-patient variability was determined for sequential Doppler measurements recorded during a single standardised anaesthetic episode. Within-patient variability was also determined for Doppler and cardiovascular measurements recorded during 4 separate standardised anaesthetic episodes performed at intervals of at least one month. Within-patient variation during a single anaesthetic episode was small. Coefficients of variation (cv) were <12.5% for arterial measurements and <17% for venous measurements. Intraclass correlation coefficient was >0.75 for all measurements. No significant change was observed in measurements of cardiovascular function suggesting that within-patient variation observed during a single anaesthetic episode was due to measurement error. In contrast, within-patient variation during 4 separate anaesthetic episodes was marked (cv>17%) for most Doppler measurements obtained from arteries and veins. Variation in measurements of cardiovascular function were marked (cv>20%), suggesting that there is marked biological variation in central and peripheral observed. Further studies are warranted to determine the ability of this technique to detect differences in blood flow during administration of different anaesthetic agents.

  13. The relationship of age-adjusted Charlson comorbidity ındex and diurnal variation of blood pressure.

    PubMed

    Kalaycı, Belma; Erten, Yunus Turgay; Akgün, Tunahan; Karabag, Turgut; Kokturk, Furuzan

    2018-03-05

    Charlson Comorbidity index (CCI) is a scoring system to predict prognosis and mortality. It exhibits better utility when combined with age, age-adjusted Charlson Comorbidity Index (ACCI). The aim of this study was to evaluate the relationship between ACCI and diurnal variation of blood pressure parameters in hypertensive patients and normotensive patients. We enrolled 236 patients. All patients underwent a 24-h ambulatory blood pressure monitoring (ABPM) for evaluation of dipper or non-dipper pattern. We searched the correlation between ACCI and dipper or non-dipper pattern and other ABPM parameters. To further investigate the role of these parameters in predicting survival, a multivariate analysis using the Cox proportional hazard model was performed. 167 patients were in the hypertensive group (87 patients in non-dipper status) and 69 patients were in the normotensive group (41 patients in non-dipper status) of all study patients. We found a significant difference and negative correlation between AACI and 24-h diastolic blood pressure (DBP), awake DBP, awake mean blood pressure (MBP) and 24-h MBP and awake systolic blood pressure(SBP). Night decrease ratio of blood pressure had also a negative correlation with ACCI (p = 0.003, r = -0.233). However, we found a relationship with non-dipper pattern and ACCI in the hypertensive patients (p = 0.050). In multivariate Cox analysis sleep MBP was found related to mortality like ACCI (p = 0.023, HR = 1.086, %95 CI 1.012-1.165) Conclusion: ACCI was statistically significantly higher in non-dipper hypertensive patients than dipper hypertensive patients while ACCI had a negative correlation with blood pressure. Sleep MBP may predict mortality.

  14. Ultrasound skin tightening.

    PubMed

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  17. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR).

    PubMed

    Mehta, S; Antich, P

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  18. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  19. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.

    PubMed

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.

  20. Ultrasound: Bladder (For Parents)

    MedlinePlus

    ... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...

  1. Ultrasound: Pelvis (For Parents)

    MedlinePlus

    ... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...

  2. Ultrasound in regional anaesthesia.

    PubMed

    Griffin, J; Nicholls, B

    2010-04-01

    Ultrasound guidance is rapidly becoming the gold standard for regional anaesthesia. There is an ever growing weight of evidence, matched with improving technology, to show that the use of ultrasound has significant benefits over conventional techniques, such as nerve stimulation and loss of resistance. The improved safety and efficacy that ultrasound brings to regional anaesthesia will help promote its use and realise the benefits that regional anaesthesia has over general anaesthesia, such as decreased morbidity and mortality, superior postoperative analgesia, cost-effectiveness, decreased postoperative complications and an improved postoperative course. In this review we consider the evidence behind the improved safety and efficacy of ultrasound-guided regional anaesthesia, before discussing its use in pain medicine, paediatrics and in the facilitation of neuraxial blockade. The Achilles' heel of ultrasound-guided regional anaesthesia is that anaesthetists are far more familiar with providing general anaesthesia, which in most cases requires skills that are achieved faster and more reliably. To this ends we go on to provide practical advice on ultrasound-guided techniques and the introduction of ultrasound into a department.

  3. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    PubMed

    Kimura, Bruce J

    2017-07-01

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.

    PubMed

    Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo

    2015-10-01

    During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Applications of laser ultrasound NDT methods on composite structures in aerospace industry

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph

    2008-09-01

    Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.

  6. Basic Pressure Measurements at Transonic Speeds on a Thin 45 deg Sweptback Highly Tapered Wing With Systematic Spanwise Twist Variations

    NASA Technical Reports Server (NTRS)

    Mugler, John P., Jr.

    1959-01-01

    Pressure distributions obtained in the Langley 8-foot transonic pressure tunnel on a thin, highly tapered, twisted, 45 deg sweptback wing in combination with a body are presented. The wing has a linear span-wise twist variation from 0 deg at 10 percent of the semispan to 6 deg at the tip. The tip is at a lower angle of attack than the root. Tests were made at stagnation pressures of 1.0 and 0.5 atmosphere, at Mach numbers from 0.800 to 1.200, and at angles of attack from -4 to 12 deg.

  7. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis.

    PubMed

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-12-07

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  8. Acetylsalicylic acid does not reduce the intraocular pressure variation in ocular hypertension or glaucoma.

    PubMed

    Lindén, C; Alm, A

    2000-03-01

    The purpose of this study was to measure if intraocular pressure (IOP) and IOP variations in patients with ocular hypertension and glaucoma are decreased by acetylsalicylic acid (ASA). The hypothesis to be tested was that short-term fluctuations in the IOP are caused by breaks of the inner wall of Schlemm's canal that are repaired by platelets inducing a cycle of breaks and repair. Furthermore, prostaglandins affect uveoscleral outflow and ASA inhibits prostaglandin biosynthesis and platelet aggregation. This implies that ASA may have complex effects on the IOP and its variations.In 28 patients with ocular hypertension or glaucoma the IOP was measured seven times during 2 hr on two succeeding days. Five hundred mg ASA or placebo was administrated orally in a masked fashion 15 hr prior to the second session. After wash-out, this procedure was repeated with a cross-over design. The same study outline was used in 28 glaucoma patients except for the cross-over design. There were no statistically significant differences in the mean IOP or in the IOP variations between the placebo treated and the ASA treated eyes in either group, and there were no significant differences between the day before and after treatment in any group. The results suggest that ASA does not affect IOP variations in a clinically significant way and that a single dose of ASA has no significant effect on mean IOP. Copyright 2000 Academic Press.

  9. What is ultrasound?

    PubMed

    Leighton, Timothy G

    2007-01-01

    This paper is based on material presented at the start of a Health Protection Agency meeting on ultrasound and infrasound. In answering the question 'what is ultrasound?', it shows that the simple description of a wave which transports mechanical energy through the local vibration of particles at frequencies of 20 kHz or more, with no net transport of the particles themselves, can in every respect be misleading or even incorrect. To explain the complexities responsible for this, the description of ultrasound is first built up from the fundamental properties of these local particle vibrations. This progresses through an exposition of the characteristics of linear waves, in order to explain the propensity for, and properties of, the nonlinear propagation which occurs in many practical ultrasonic fields. Given the Health Protection environment which framed the original presentation, explanation and examples are given of how these complexities affect issues of practical importance. These issues include the measurement and description of fields and exposures, and the ability of ultrasound to affect tissue (through microstreaming, streaming, cavitation, heating, etc.). It is noted that there are two very distinct regimes, in terms of wave characteristics and potential for bioeffect. The first concerns the use of ultrasound in liquids/solids, for measurement or material processing. For biomedical applications (where these two processes are termed diagnosis and therapy, respectively), the issue of hazard has been studied in depth, although this has not been done to such a degree for industrial uses of ultrasound in liquids/solids (sonar, non-destructive testing, ultrasonic processing etc.). However, in the second regime, that of the use of ultrasound in air, although the waves in question tend to be of much lower intensities than those used in liquids/solids, there is a greater mismatch between the extent to which hazard has been studied, and the growth in commercial

  10. Uncertainty of High Intensity Therapeutic Ultrasound (HITU) Field Characterization with Hydrophones: Effects of Nonlinearity, Spatial Averaging, and Complex Sensitivity

    PubMed Central

    Liu, Yunbo; Wear, Keith A.; Harris, Gerald R.

    2017-01-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement uncertainty and signal analysis still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small PVDF capsule hydrophone and two different fiber-optic hydrophones. The focal waveform and beam distribution of a single element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveform. Compressional pressure, rarefactional pressure, and focal beam distribution were compared up to 10.6/−6.0 MPa (p+ and p−) (1.05 MHz) and 20.65/−7.20 MPa (3.3 MHz). In particular, the effects of spatial averaging, local nonlinear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed an uncertainty of no better than 10–15% on hydrophone-based HITU pressure characterization. PMID:28735734

  11. Ultrasound for Drug and Gene Delivery to the Brain

    PubMed Central

    Hynynen, Kullervo

    2008-01-01

    Noninvasive, transient, and local image-guided blood-brain barrier disruption (BBBD) has been demonstrated with focused ultrasound exposure in animal models. Most studies have combined low pressure amplitude and low time average acoustic power burst sonications with intra-vascular injection of pre-formed micro-bubbles to produce BBBD without damage to the neurons. The BBB has been shown to be healed within a few hours after the exposure. The combination of focused ultrasound beams with MR image guidance allows precise anatomical targeting as demonstrated by the delivery of several marker molecules in different animal models. This method may in the future have a significant impact on the diagnosis and treatment of central nervous system (CNS) disorders. Most notably, the delivery of the chemotherapy agents liposomal Doxorubicin and Herceptin has been shown in a rat model. PMID:18486271

  12. Experimental validation of a finite-difference model for the prediction of transcranial ultrasound fields based on CT images

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guillaume; Bader, Kenneth B.; Korfhagen, Joseph J.; Raymond, Jason L.; Shivashankar, Ravishankar; Abruzzo, Todd A.; Holland, Christy K.

    2012-12-01

    The prevalence of stroke worldwide and the paucity of effective therapies have triggered interest in the use of transcranial ultrasound as an adjuvant to thrombolytic therapy. Previous studies have shown that 120 kHz ultrasound enhanced thrombolysis and allowed efficient penetration through the temporal bone. The objective of our study was to develop an accurate finite-difference model of acoustic propagation through the skull based on computed tomography (CT) images. The computational approach, which neglected shear waves, was compared with a simple analytical model including shear waves. Acoustic pressure fields from a two-element annular array (120 and 60 kHz) were acquired in vitro in four human skulls. Simulations were performed using registered CT scans and a source term determined by acoustic holography. Mean errors below 14% were found between simulated pressure fields and corresponding measurements. Intracranial peak pressures were systematically underestimated and reflections from the contralateral bone were overestimated. Determination of the acoustic impedance of the bone from the CT images was the likely source of error. High correlation between predictions and measurements (R2 = 0.93 and R2 = 0.88 for transmitted and reflected waves amplitude, respectively) demonstrated that this model is suitable for a quantitative estimation of acoustic fields generated during 40-200 kHz ultrasound-enhanced ischemic stroke treatment.

  13. The effect of particle density on ultrasound-mediated transport of nanoparticles.

    PubMed

    Lea-Banks, Harriet; Teo, Boon; Stride, Eleanor; Coussios, Constantin C

    2016-11-21

    A significant barrier to successful drug delivery is the limited penetration of nanoscale therapeutics beyond the vasculature. Building on recent in vivo findings in the context of cancer drug delivery, the current study investigates whether modification of nanoparticle drug-carriers to increase their density can be used to enhance their penetration into viscoelastic materials under ultrasound exposure. A computational model is first presented to predict the transport of identically sized nanoparticles of different densities in an ultrasonic field in the presence of an oscillating microbubble, by a combination of primary and secondary acoustic radiation forces, acoustic streaming and microstreaming. Experiments are then described in which near monodisperse (polydispersity index  <0.2) nanoparticles of approximate mean diameter 200 nm and densities ranging from 1.01 g cm -3 to 5.58 g cm -3 were fabricated and delivered to a tissue-mimicking material in the presence or absence of a microbubble ultrasound contrast agent, at ultrasound frequencies of 0.5 MHz and 1.6 MHz and a peak negative pressure of 1 MPa. Both the theoretical and experimental results confirm that denser particles exhibit significantly greater ultrasound-mediated transport than their lower density counterparts, indicating that density is a key consideration in the design of nanoscale therapeutics.

  14. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  15. Superharmonic microbubble Doppler effect in ultrasound therapy

    PubMed Central

    Pouliopoulos, Antonios N; Choi, James J

    2016-01-01

    Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to

  16. Nitroglycerin mediated dilation evaluated by ultrasound is associated with sTWEAK in hemodialysis patients.

    PubMed

    Rusu, Crina Claudia; Ghervan, Liviu; Racasan, Simona; Kacsa, Ina; Moldovan, Diana; Potra, Alina; Bondor, Cosmina; Anton, Florin; Patiu, Ioan Mihai; Caprioara, Mirela Gherman

    2016-03-01

    The main cause of death in hemodialysis (HD) patients is cardiovascular disease. Ultrasound assessment of the brachial artery dysfunction is easily achievable and can non-invasively detect atherosclerosis in various stages. In HD patients the cardiovascular risk profile is different and the determinants of brachial arterial function can be distinct comparing with general population. The aim of the study is to assess the determinants of arterial brachial function (flow-mediated and nitroglycerin-mediated dilation) evaluated by ultrasound in HD patients and their relation with tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) described as atherosclerotic marker in chronic kidney disease patients. We conducted a cross-sectional observational study on 54 hemodialysis patients. We recorded clinical and biological data and we measured sTWEAK serum levels by ELISA. We evaluated the arterial brachial function by measurement of flow-mediated and nitroglycerin-mediated dilation, using B mode ultrasound. The determinants of flow-mediated dilation were: Kt/V (r=0.47, p<0.001), LDL-cholesterol (r=0.29, p=0.04), and total cholesterol (r=0.31, p=0.02). Flow-mediated dilation correlated with nitroglycerin-mediated dilation (r=0.70, p<0.001). In multivariate analysis kt/V was the only significant predictor for flow-mediated dilation (p=0.04). Nitroglycerin-mediated dilation correlates with sTWEAK (r=-0.30, p=0.03), systolic blood pressure (r=-0.28, p=0.04) and pulse pressure (r=-0.31, p=0.02). In multivariate analysis sTWEAK was the only significant predictor for nitroglycerin-mediated dilation (p=0.04). The main determinant of nitroglycerin-mediated dilation was sTWEAK. In addition, decreased nitroglycerin-mediated dilation was associated with higher systolic blood pressure and pulse pressure. The main determinant of FMD was Kt/V. Increased flow-mediated dilation was associated with better dialysis efficiency and high total cholesterol and LDL-cholesterol.

  17. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  18. A scalable variational inequality approach for flow through porous media models with pressure-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.

    2018-04-01

    Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select

  19. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    PubMed

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Effect of anisotropy on stress-induced electrical potentials in bovine bone using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Matsukawa, S.; Makino, T.; Mori, S.; Koyama, D.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.

    2017-04-01

    The bone fracture healing mechanism of the low-intensity pulsed ultrasound technique is not yet clearly understood. In our previous study, the electrical potentials induced in bone were successfully measured by focusing on piezoelectricity in the MHz range. Bone is composed of collagen and hydroxyapatite and has strong anisotropy. The purpose of this study is to investigate the effects of bone anisotropy on the electrical potentials induced by ultrasound irradiation. For this study, ultrasound bone transducers were fabricated using cortical bovine bone plates as piezoelectric devices. An ultrasound of 7.4 kPapeak-peak (i.e., the peak-to-peak pressure value) was used to irradiate the side surface of each bone plate. Electrical potentials induced in the bone plate were then measured by varying the wave propagation direction in the plate. The peak-to-peak values of these ultrasonically induced electrical potentials were found to vary with changes in the ultrasound propagation direction in the bone sample. The potential was maximized at an inclination of approximately 45° to the bone axis but was minimized around the three orthogonal directions. These maxima and minima ranged from 28 to 33 μVpeak-peak and from 5 to 12 μVpeak-peak, respectively. Additionally, our ultrasound results indicated a change in polarity due to bone anisotropy in the MHz range.

  1. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  2. Speed of Sound and Ultrasound Absorption in Ionic Liquids.

    PubMed

    Dzida, Marzena; Zorębski, Edward; Zorębski, Michał; Żarska, Monika; Geppert-Rybczyńska, Monika; Chorążewski, Mirosław; Jacquemin, Johan; Cibulka, Ivan

    2017-03-08

    A complete review of the literature data on the speed of sound and ultrasound absorption in pure ionic liquids (ILs) is presented. Apart of the analysis of data published to date, the significance of the speed of sound in ILs is regarded. An analysis of experimental methods described in the literature to determine the speed of sound in ILs as a function of temperature and pressure is reported, and the relevance of ultrasound absorption in acoustic investigations is discussed. Careful attention was paid to highlight possible artifacts, and side phenomena related to the absorption and relaxation present in such measurements. Then, an overview of existing data is depicted to describe the temperature and pressure dependences on the speed of sound in ILs, as well as the impact of impurities in ILs on this property. A relation between ions structure and speeds of sound is presented by highlighting existing correlation and evaluative methods described in the literature. Importantly, a critical analysis of speeds of sound in ILs vs those in classical molecular solvents is presented to compare these two classes of compounds. The last part presents the importance of acoustic investigations for chemical engineering design and possible industrial applications of ILs.

  3. Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Bosyj, Christopher

    An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.

  4. Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound.

    PubMed

    Wang, Songlin; Wu, Xiaohui; Wang, Yansong; Li, Qifen; Tao, Meijun

    2008-09-01

    Experiments on the removal of organic matters and ammonia nitrogen from landfill leachate by ultrasound irradiation were carried out. The effects of COD reduction and ammonia removal of power input, initial concentration, initial pH and aeration were studied. It was found that the sonolysis of organic matters proceeds via reaction with ()OH radicals; a thermal reaction also occurs with a small contribution. The rise of COD at some intervals could be explained by the complexity of organic pollutant sonolysis in landfill leachate. Ultrasonic irradiation was shown to be an effective method for the removal of ammonia nitrogen from landfill leachate. After 180 min ultrasound irradiation, up to 96% ammonia nitrogen removal efficiency can be obtained. It was found that the mechanism of ammonia nitrogen removal by ultrasound irradiation is largely that the free ammonia molecules in leachate enter into the cavitation bubbles and transform into nitrogen molecules and hydrogen molecules via pyrolysis under instant high temperature and high pressure in the cavitation bubbles.

  5. Simulation of Low-Intensity Ultrasound Propagating in a Beagle Dog Dentoalveolar Structure to Investigate the Relations between Ultrasonic Parameters and Cementum Regeneration.

    PubMed

    Vafaeian, Behzad; Al-Daghreer, Saleh; El-Rich, Marwan; Adeeb, Samer; El-Bialy, Tarek

    2015-08-01

    The therapeutic effect of low-intensity pulsed ultrasound on orthodontically induced inflammatory root resorption is believed to be brought about through mechanical signals induced by the low-intensity pulsed ultrasound. However, the stimulatory mechanism triggering dental cell response has not been clearly identified yet. The aim of this study was to evaluate possible relations between the amounts of new cementum regeneration and ultrasonic parameters such as pressure amplitude and time-averaged energy density. We used the finite-element method to simulate the previously published experiment on ultrasonic wave propagation in the dentoalveolar structure of beagle dogs. Qualitative relations between the thickness of the regenerated cementum in the experiment and the ultrasonic parameters were observed. Our results indicated that the areas of the root surface with greater ultrasonic pressure were associated with larger amounts of cementum regeneration. However, the establishment of reliable quantitative correlations between ultrasound parameters and cementum regeneration requires more experimental data and simulations. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Validation of an ultrasound dilution technology for cardiac output measurement and shunt detection in infants and children.

    PubMed

    Lindberg, Lars; Johansson, Sune; Perez-de-Sa, Valeria

    2014-02-01

    To validate cardiac output measurements by ultrasound dilution technology (COstatus monitor) against those obtained by a transit-time ultrasound technology with a perivascular flow probe and to investigate ultrasound dilution ability to estimate pulmonary to systemic blood flow ratio in children. Prospective observational clinical trial. Pediatric cardiac operating theater in a university hospital. In 21 children (6.1 ± 2.6 kg, mean ± SD) undergoing heart surgery, cardiac output was simultaneously recorded by ultrasound dilution (extracorporeal arteriovenous loop connected to existing arterial and central venous catheters) and a transit-time ultrasound probe applied to the ascending aorta, and when possible, the main pulmonary artery. The pulmonary to systemic blood flow ratio estimated from ultrasound dilution curve analysis was compared with that estimated from transit-time ultrasound technology. Bland-Altman analysis of the whole cohort (90 pairs, before and after surgery) showed a bias between transit-time ultrasound (1.01 ± 0.47 L/min) and ultrasound dilution technology (1.03 ± 0.51 L/min) of -0.02 L/min, limits of agreement -0.3 to 0.3 L/min, and percentage error of 31%. In children with no residual shunts, the bias was -0.04 L/min, limits of agreement -0.28 to 0.2 L/min, and percentage error 19%. The pooled co efficient of variation was for the whole cohort 3.5% (transit-time ultrasound) and 6.3% (ultrasound dilution), and in children without shunt, it was 2.9% (transit-time ultrasound) and 4% (ultrasound dilution), respectively. Ultrasound dilution identified the presence of shunts (pulmonary to systemic blood flow ≠ 1) with a sensitivity of 100% and a specificity of 92%. Mean pulmonary to systemic blood flow ratio by transit-time ultrasound was 2.6 ± 1.0 and by ultrasound dilution 2.2 ± 0.7 (not significant). The COstatus monitor is a reliable technique to measure cardiac output in children with high sensitivity and specificity for detecting the

  7. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junho; Hynynen, Kullervo; Medical Biophysics, University of Toronto, ON, M4N 3M5

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the backmore » of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.« less

  8. Spinal cord injury pressure ulcer treatment: an experience-based approach.

    PubMed

    Sunn, Gabriel

    2014-08-01

    Pressure ulcers continue to impact the lives of spinal cord injury patients severely. Pressure ulcers must be accurately staged according to National Pressure Ulcer Advisory recommendations before treatment design. The first priority in treatment of pressure ulcers is offloading. Intact skin ulcers may be treated with noncontact nonthermal low-frequency ultrasound. Superficial pressure ulcers may be treated with a combination of collagenase and foam dressings. Deeper pressure ulcers warrant negative-pressure wound therapy dressings along with biologic adjuncts to fill in wound depth. Discovery and treatment of osteomyelitis is a high priority when initially evaluating pressure ulcers. Surgical intervention must always be considered. Published by Elsevier Inc.

  9. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination.

    PubMed

    Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre

    2015-10-01

    Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.

  10. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  11. [Ultrasound findings in rhabdomyolysis].

    PubMed

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  12. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    NASA Astrophysics Data System (ADS)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  13. Nearfield of a piston source of ultrasound in an absorbing medium.

    PubMed

    Nyborg, W L; Steele, R B

    1985-11-01

    Approximate expressions are discussed which are applicable for acoustic quantities in the vicinity of a plane piston source of ultrasound which radiates into an absorbing medium. A particularly useful approach for nearfield calculations combines an expression valid near the axis with another, given by Pierce [Acoustics, An Introduction to Its Physical Principles and Applications (McGraw-Hill, New York, 1981), Chap. 5], which is valid elsewhere. This approach gives reasonable accuracy at relatively low computational cost. Computed plots are presented, showing spatial distributions of the square of the pressure amplitude. Most of the plots are for a source diameter of 1.2 cm, a frequency of 3 MHz, and an absorption coefficient of 0.15 Np/cm; these are representative of conditions for medical applications of ultrasound.

  14. Variation of brine compositions resulting from flow from matrix or fracture permeability, investigated by high pressure laboratory experiments

    NASA Astrophysics Data System (ADS)

    Poszwa, A. C.; Coleman, M. L.; Pouya, A.; Ader, M.; Bounenni, A.

    2003-04-01

    Planning oil production from a chalk reservoir oilfield is difficult because the matrix usually has low permeability despite its high porosity. Most oil is thought to come from fracture porosity but the matrix contribution should increase as compaction occurs during production. To better understand the respective contributions from matrix and fracture, we studied the geochemical characteristics of fluids using high-pressure brine flow experiments on chalk cores. During the experiment axial load was changed relative to confining pressure to induce fractures and to close them again. We used chlorine stable isotope variations to study fluid pathway, because chlorine is a chemically conservative element in sedimentary systems and its isotopes fractionate only with physical processes like diffusion or adsorption that could occur mainly in the chalk matrix. A first experiment was performed on a very porous chalk from Henley (on-shore UK) and using a low-salinity brine. Large variations of brine Cl isotope composition were observed (from -0.56 to +0.08 per mil). The variations were correlated positively with the brine flux through the chalk and the permeability of the rock, both parameters controlled by the rock fracturing. A second experiment used brine with salinity similar to that of seawater. In this case, chemical and isotopic variations were not significant. From the beginning, the chalk structure seems to have been destroyed very quickly (induced fracture porosity collapsed) possibly because of the fluid nature, so that whatever pressure was applied, the permeability did not change significantly. Using Valhall reservoir chalk (offshore Norwegian North Sea) and fluid half the salinity of seawater in a third experiment, we obtained a large range of permeabilities. Brine isotopic trends were very similar on average to those of the first experiment even though variations were smaller (Cl isotopes from -0.09 to +0.29 per mil) and not significantly correlated simply to

  15. Ultrasound Cyclo Plasty in Eyes with Glaucoma.

    PubMed

    Giannaccare, Giuseppe; Sebastiani, Stefano; Campos, Emilio C

    2018-01-26

    Glaucoma is a chronic disease caused by the progressive degeneration of the optical nerve fibers, resulting in decreased visual field that can lead to severe visual impairment, and eventually blindness. This manuscript describes a simple, surgeon-friendly, non-incisional technique, named Ultrasound Cyclo Plasty (UCP), for reducing intraocular pressure (IOP) in glaucoma patients. The technique determines a selective coagulation necrosis of the ciliary body; in addition, the stimulation of supra-choroidal and trans-scleral portions of the uveo-scleral outflow pathway has been recently proposed. UCP shows several technical improvements in ultrasound technology compared to previous techniques, providing more precise focusing on the target zone. The procedure is performed in the operating room under peribulbar anesthesia. Briefly, the coupling cone is put in contact with the eye and the ring probe, that contains six piezoelectric transducers which produce the ultrasound beams, is inserted inside it. Their proper centering over the ocular surface represents a crucial step for the correct targeting of the ciliary body. Sterile balanced salt solution is used to fill the empty spaces to ensure ultrasound acoustic propagation. Surgical treatment consists in the sequential automatic activation of each of the six transducers, for a total duration of less than 3 min. The patient leaves the hospital 1 h after the procedure with the treated eye patched. In the present study, 10 patients with open-angle glaucoma were followed-up during at least 12 months after the procedure. IOP was reduced at each interval compared to pre-operative, as well as the number of hypotensive medications. Twenty percent of patients did not respond to the treatment, and needed subsequent surgery to better control IOP. Treatment tolerability was good, with no cases of hypotony or phthisis. The UCP procedure is simpler, faster, safer, and less invasive than traditional cyclodestructive procedures with

  16. Ranges of diurnal variation and the pattern of body temperature, blood pressure and heart rate in laboratory beagle dogs.

    PubMed

    Miyazaki, Hiroyasu; Yoshida, Mutsumi; Samura, Keiji; Matsumoto, Hiroyoshi; Ikemoto, Fumihiko; Tagawa, Masahiro

    2002-01-01

    Ranges in diurnal variation and the patterns of body temperature (T), blood pressure (BP), heart rate (HR) and locomotor activity (LA) in 61 laboratory beagle dogs were analyzed using a telemetry system. Body temperature, BP, HR and LA increased remarkably at feeding time. Locomotor activity increased sporadically during the other periods. Body temperature was maintained at the higher value after feeding but had decreased by 0.2 C by early the next morning. Blood pressure fell to a lower value after feeding but had increased by 2.8% by early the next morning. Heart rate decreased progressively after feeding and was 14.5% lower the next morning. This study determined that in laboratory beagles the ranges of diurnal variation and patterns of T, BP and HR are significantly different from those reported in humans and rodents, and that over 24 hr these physiological changes were associated with their sporadic wake-sleep cycles of the dogs.

  17. The dynamic behavior of microbubbles during long ultrasound tone-burst excitation: mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection

    PubMed Central

    Pacella, John J.; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound (US)-microbubble (MB) mediated therapies have been shown to restore perfusion and enhance drug/gene delivery. Due to the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes utilize short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure, and then formed gas-filled clusters that continued to oscillate, break up, and form new clusters. Cavitation detection confirmed continued, albeit diminishing acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone-bursts may confer additional therapeutic effects. PMID:26603628

  18. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  19. Modification of a variational objective analysis model for new equations for pressure gradient and vertical velocity in the lower troposphere and for spatial resolution and accuracy of satellite data

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1986-01-01

    Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.

  20. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients.

    PubMed

    Hori, Daijiro; Hogue, Charles; Adachi, Hideo; Max, Laura; Price, Joel; Sciortino, Christopher; Zehr, Kenton; Conte, John; Cameron, Duke; Mandal, Kaushik

    2016-04-01

    Perioperative blood pressure management by targeting individualized optimal blood pressure, determined by cerebral blood flow autoregulation monitoring, may ensure sufficient renal perfusion. The purpose of this study was to evaluate changes in the optimal blood pressure for individual patients, determined during cardiopulmonary bypass (CPB) and during early postoperative period in intensive care unit (ICU). A secondary aim was to examine if excursions below optimal blood pressure in the ICU are associated with risk of cardiac surgery-associated acute kidney injury (CSA-AKI). One hundred and ten patients undergoing cardiac surgery had cerebral blood flow monitored with a novel technology using ultrasound tagged near infrared spectroscopy (UT-NIRS) during CPB and in the first 3 h after surgery in the ICU. The correlation flow index (CFx) was calculated as a moving, linear correlation coefficient between cerebral flow index measured using UT-NIRS and mean arterial pressure (MAP). Optimal blood pressure was defined as the MAP with the lowest CFx. Changes in optimal blood pressure in the perioperative period were observed and the association of blood pressure excursions (magnitude and duration) below the optimal blood pressure [area under the curve (AUC) < OptMAP mmHgxh] with incidence of CSA-AKI (defined using Kidney Disease: Improving Global Outcomes criteria) was examined. Optimal blood pressure during early ICU stay and CPB was correlated (r = 0.46, P < 0.0001), but was significantly higher in the ICU compared with during CPB (75 ± 8.7 vs 71 ± 10.3 mmHg, P = 0.0002). Thirty patients (27.3%) developed CSA-AKI within 48 h after the surgery. AUC < OptMAP was associated with CSA-AKI during CPB [median, 13.27 mmHgxh, interquartile range (IQR), 4.63-20.14 vs median, 6.05 mmHgxh, IQR 3.03-12.40, P = 0.008], and in the ICU (13.72 mmHgxh, IQR 5.09-25.54 vs 5.65 mmHgxh, IQR 1.71-13.07, P = 0.022). Optimal blood pressure during CPB and in the ICU was correlated. Excursions

  1. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients

    PubMed Central

    Hori, Daijiro; Hogue, Charles; Adachi, Hideo; Max, Laura; Price, Joel; Sciortino, Christopher; Zehr, Kenton; Conte, John; Cameron, Duke; Mandal, Kaushik

    2016-01-01

    OBJECTIVES Perioperative blood pressure management by targeting individualized optimal blood pressure, determined by cerebral blood flow autoregulation monitoring, may ensure sufficient renal perfusion. The purpose of this study was to evaluate changes in the optimal blood pressure for individual patients, determined during cardiopulmonary bypass (CPB) and during early postoperative period in intensive care unit (ICU). A secondary aim was to examine if excursions below optimal blood pressure in the ICU are associated with risk of cardiac surgery-associated acute kidney injury (CSA-AKI). METHODS One hundred and ten patients undergoing cardiac surgery had cerebral blood flow monitored with a novel technology using ultrasound tagged near infrared spectroscopy (UT-NIRS) during CPB and in the first 3 h after surgery in the ICU. The correlation flow index (CFx) was calculated as a moving, linear correlation coefficient between cerebral flow index measured using UT-NIRS and mean arterial pressure (MAP). Optimal blood pressure was defined as the MAP with the lowest CFx. Changes in optimal blood pressure in the perioperative period were observed and the association of blood pressure excursions (magnitude and duration) below the optimal blood pressure [area under the curve (AUC) < OptMAP mmHgxh] with incidence of CSA-AKI (defined using Kidney Disease: Improving Global Outcomes criteria) was examined. RESULTS Optimal blood pressure during early ICU stay and CPB was correlated (r = 0.46, P < 0.0001), but was significantly higher in the ICU compared with during CPB (75 ± 8.7 vs 71 ± 10.3 mmHg, P = 0.0002). Thirty patients (27.3%) developed CSA-AKI within 48 h after the surgery. AUC < OptMAP was associated with CSA-AKI during CPB [median, 13.27 mmHgxh, interquartile range (IQR), 4.63–20.14 vs median, 6.05 mmHgxh, IQR 3.03–12.40, P = 0.008], and in the ICU (13.72 mmHgxh, IQR 5.09–25.54 vs 5.65 mmHgxh, IQR 1.71–13.07, P = 0.022). CONCLUSIONS Optimal blood pressure during

  2. Circadian and estrous cycle-dependent variations in blood pressure and heart rate in female rats.

    PubMed

    Takezawa, H; Hayashi, H; Sano, H; Saito, H; Ebihara, S

    1994-11-01

    To determine whether cardiovascular functions are controlled by the endogenous circadian system and whether they change with the estrous cycle in female rats, we measured mean arterial pressure (MAP), heart rate (HR), and spontaneous activity (ACT) of female rats using an implantable radiotelemetry device and a computerized data-collecting system. Under a 12:12-h light-dark (LD) cycle, these parameters exhibited daily rhythms that were entrained to the photic cycle. The patterns of the daily rhythms varied with estrous cycles, and variations were particularly marked in the proestrous stage. During the dark period of this stage, ACT levels were significantly higher, but HR was significantly lower than in other stages. Although the peak MAP occurred within 2 h after the onset of the dark phase in three of the estrous stages, it occurred around midnight in the proestrous stage. Such estrous cycle-dependent variations were eliminated by ovariectomy. The implantation of 17 beta-estradiol produced a gradual increase in MAP and an abrupt decrease in HR. During constant darkness, all three parameters were free running, maintaining the same internal phase relationships with each other as during LD cycles. These results indicate that daily variations in these parameters were controlled by the endogenous circadian oscillating system, that they vary with the estrous cycle in female rats, and that estrogen may be responsible for these estrous cycle-dependent variations.

  3. Externally Delivered Focused Ultrasound for Renal Denervation.

    PubMed

    Neuzil, Petr; Ormiston, John; Brinton, Todd J; Starek, Zdenek; Esler, Murray; Dawood, Omar; Anderson, Thomas L; Gertner, Michael; Whitbourne, Rob; Schmieder, Roland E

    2016-06-27

    The aim of this study was to assess clinical safety and efficacy outcomes of renal denervation executed by an externally delivered, completely noninvasive focused therapeutic ultrasound device. Renal denervation has emerged as a potential treatment approach for resistant hypertension. Sixty-nine subjects received renal denervation with externally delivered focused ultrasound via the Kona Medical Surround Sound System. This approach was investigated across 3 consecutive studies to optimize targeting, tracking, and dosing. In the third study, treatments were performed in a completely noninvasive way using duplex ultrasound image guidance to target the therapy. Short- and long-term safety and efficacy were evaluated through use of clinical assessments, magnetic resonance imaging scans prior to and 3 and 24 weeks after renal denervation, and, in cases in which a targeting catheter was used to facilitate targeting, fluoroscopic angiography with contrast. All patients tolerated renal denervation using externally delivered focused ultrasound. Office blood pressure (BP) decreased by 24.6 ± 27.6/9.0 ± 15.0 mm Hg (from baseline BP of 180.0 ± 18.5/97.7 ± 13.7 mm Hg) in 69 patients after 6 months and 23.8 ± 24.1/10.3 ± 13.1 mm Hg in 64 patients with complete 1-year follow-up. The response rate (BP decrease >10 mm Hg) was 75% after 6 months and 77% after 1 year. The most common adverse event was post-treatment back pain, which was reported in 32 of 69 patients and resolved within 72 h in most cases. No intervention-related adverse events involving motor or sensory deficits were reported. Renal function was not altered, and vascular safety was established by magnetic resonance imaging (all patients), fluoroscopic angiography (n = 48), and optical coherence tomography (n = 5). Using externally delivered focused ultrasound and noninvasive duplex ultrasound, image-guided targeting was associated with substantial BP reduction without any major safety signals. Further

  4. Transient thermal driven bubble's surface and its potential ultrasound-induced damage

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya; Freund, Jonathan B.

    2017-11-01

    Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.

  5. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    Executive Summary Objective The aim of this review was to assess the clinical utility of portable bladder ultrasound. Clinical Need: Target Population and Condition Data from the National Population Health Survey indicate prevalence rates of urinary incontinence are 2.5% in women and 1.4 % in men in the general population. Prevalence of urinary incontinence is higher in women than men and prevalence increases with age. Identified risk factors for urinary incontinence include female gender, increasing age, urinary tract infections (UTI), poor mobility, dementia, smoking, obesity, consuming alcohol and caffeine beverages, physical activity, pregnancy, childbirth, forceps and vacuum-assisted births, episiotomy, abdominal resection for colorectal cancer, and hormone replacement therapy. For the purposes of this review, incontinence populations will be stratified into the following; the elderly, urology patients, postoperative patients, rehabilitation settings, and neurogenic bladder populations. Urinary incontinence is defined as any involuntary leakage of urine. Incontinence can be classified into diagnostic clinical types that are useful in planning evaluation and treatment. The major types of incontinence are stress (physical exertion), urge (overactive bladder), mixed (combined urge and stress urinary incontinence), reflex (neurological impairment of the central nervous system), overflow (leakage due to full bladder), continuous (urinary tract abnormalities), congenital incontinence, and transient incontinence (temporary incontinence). Postvoid residual (PVR) urine volume, which is the amount of urine in the bladder immediately after urination, represents an important component in continence assessment and bladder management to provide quantitative feedback to the patient and continence care team regarding the effectiveness of the voiding technique. Although there is no standardized definition of normal PVR urine volume, measurements greater than 100 mL to 150 m

  6. Potential use of an ultrasound antifouling technology as a ballast water treatment system

    NASA Astrophysics Data System (ADS)

    Estévez-Calvar, Noelia; Gambardella, Chiara; Miraglia, Francesco; Pavanello, Giovanni; Greco, Giuliano; Faimali, Marco; Garaventa, Francesca

    2018-03-01

    The aim of this study was to investigate, at a laboratory scale, the potentialities of an ultrasound-based treatment initially designed to eliminate fouling, as a ballast water treatment system. Therefore, early life stages of three different zooplanktonic species (Amphibalanus amphitrite, Brachionus plicatilis and Artemia salina) were exposed to ultrasound waves (20-22 kHz). The experimental set up included static assays with variations of time exposure (30 s, 60 s and 30 s on/60 s off/30 s on), material of tanks (stainless steel, galvanized steel and plastic) and position of the ultrasound source. Results showed that the treatment efficacy increased from 30 to 60 s and no differences were registered between 60 s-continuous exposure and pulse exposure. The highest efficacy was observed in Experiment I (metal-to-metal contact assay) with a mortality value of 93-95% for B. plicatilis and A. salina. It consisted of organisms located inside stainless steel tubes that were located in direct contact with the ultrasound source and treated for 60 s. Further, we found that, generally, A. amphitrite and B. plicatilis were the most resistant species to the ultrasound treatment whereas A. salina was the most sensitive. We further discuss that US may unlikely be used for commercial vessels, but may be used to treat ballast water in smaller ballast tanks as on board of mega yachts.

  7. Ultrasound physics and instrumentation for pathologists.

    PubMed

    Lieu, David

    2010-10-01

    Interest in pathologist-performed ultrasound-guided fine-needle aspiration is increasing. Educational courses discuss clinical ultrasound and biopsy techniques but not ultrasound physics and instrumentation. To review modern ultrasound physics and instrumentation to help pathologists understand the basis of modern ultrasound. A review of recent literature and textbooks was performed. Ultrasound physics and instrumentation are the foundations of clinical ultrasound. The key physical principle is the piezoelectric effect. When stimulated by an electric current, certain crystals vibrate and produce ultrasound. A hand-held transducer converts electricity into ultrasound, transmits it into tissue, and listens for reflected ultrasound to return. The returning echoes are converted into electrical signals and used to create a 2-dimensional gray-scale image. Scanning at a high frequency improves axial resolution but has low tissue penetration. Electronic focusing moves the long-axis focus to depth of the object of interest and improves lateral resolution. The short-axis focus in 1-dimensional transducers is fixed, which results in poor elevational resolution away from the focal zone. Using multiple foci improves lateral resolution but degrades temporal resolution. The sonographer can adjust the dynamic range to change contrast and bring out subtle masses. Contrast resolution is limited by processing speed, monitor resolution, and gray-scale perception of the human eye. Ultrasound is an evolving field. New technologies include miniaturization, spatial compound imaging, tissue harmonics, and multidimensional transducers. Clinical cytopathologists who understand ultrasound physics, instrumentation, and clinical ultrasound are ready for the challenges of cytopathologist-performed ultrasound-guided fine-needle aspiration and core-needle biopsy in the 21st century.

  8. Variation in Intracranial Pressure Monitoring and Outcomes in Pediatric Traumatic Brain Injury

    PubMed Central

    Bennett, Tellen D.; Riva-Cambrin, Jay; Keenan, Heather T.; Korgenski, E. Kent; Bratton, Susan L.

    2015-01-01

    Objectives In children with traumatic brain injury (TBI), to describe between-hospital and patient-level variation in intracranial pressure (ICP) monitoring, and to evaluate ICP monitoring in association with hospital features and outcome Design Retrospective cohort study Setting Children’s hospitals participating in the Pediatric Health Information System database, January, 2001 to June, 2011 Participants Children (age < 18 years) with TBI and head/neck Abbreviated Injury Scale (AIS) score ≥ 3 who were ventilated for ≥ 96 consecutive hours or died in the first 4 days after admission Interventions None Outcome Measures ICP monitoring Results 4,667 children met study criteria. Hospital mortality was 41% (1,919/4,667). Overall, 55% (2,586/4,667) of patients received ICP monitoring. Expected hospital ICP monitoring rates after adjustment for patient age, cardiac arrest, inflicted injury, craniotomy or craniectomy, head/neck AIS, and injury severity score (ISS) were 47-60%. Observed hospital ICP monitoring rates were 14-83%. Hospitals with more observed ICP monitoring, relative to expected, and hospitals with higher patient volumes had lower rates of mortality or severe disability. After adjustment for between-hospital variation and patient severity of injury, ICP monitoring was independently associated with age ≥ 1 year (odds ratio [OR] 3.1, 95% confidence interval 2.5-3.8) versus age < 1 year. Conclusions There was significant between-hospital variation in ICP monitoring that cannot be attributed solely to differences in case mix. Hospitals that monitor ICP more often and hospitals with higher patient volumes had better patient outcomes. Infants with TBI are less likely to receive ICP monitoring than older children. PMID:22751878

  9. Hospitalists' ability to use hand-carried ultrasound for central venous pressure estimation after a brief training intervention: a pilot study.

    PubMed

    Martin, L David; Ziegelstein, Roy C; Howell, Eric E; Martire, Carol; Hellmann, David B; Hirsch, Glenn A

    2013-12-01

    Access to hand-carried ultrasound technology for noncardiologists has increased significantly, yet development and evaluation of training programs are limited. We studied a focused program to teach hospitalists image acquisition of inferior vena cava (IVC) diameter and IVC collapsibility index with interpretation of estimated central venous pressure (CVP). Ten hospitalists completed an online educational module prior to attending a 1-day in-person training session that included directly supervised IVC imaging on volunteer subjects. In addition to making quantitative assessments, hospitalists were also asked to visually assess whether the IVC collapsed more than 50% during rapid inspiration or a sniff maneuver. Skills in image acquisition and interpretation were assessed immediately after training on volunteer patients and prerecorded images, and again on volunteer patients at least 6 weeks later. Eight of 10 hospitalists acquired adequate IVC images and interpreted them correctly on 5 of the 5 volunteer subjects and interpreted all 10 prerecorded images correctly at the end of the 1-day training session. At 7.4 ± 0.7 weeks (range, 6.9-8.6 weeks) follow-up, 9 of 10 hospitalists accurately acquired and interpreted all IVC images in 5 of 5 volunteers. Hospitalists were also able to accurately determine whether the IVC collapsibility index was more than 50% by visual assessment in 180 of 198 attempts (91% of the time). After a brief training program, hospitalists acquired adequate skills to perform and interpret hand-carried ultrasound IVC images and retained these skills in the near term. Though calculation of the IVC collapsibility index is more accurate, coupling a qualitative assessment with the IVC maximum diameter measurement may be acceptable in aiding bedside estimation of CVP. © 2013 Society of Hospital Medicine.

  10. Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography

    PubMed Central

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki

    2012-01-01

    Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified. PMID:23029231

  11. Modeling the dynamics of pressure propagation and diameter variation in tree sapwood.

    PubMed

    Perämäki, Martti; Vesala, Timo; Nikinmaa, Eero

    2005-09-01

    A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyytiälä, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.

  12. Focused Ultrasound Surgery for Uterine Fibroids

    MedlinePlus

    ... ultrasound surgery, your doctor may perform a pelvic magnetic resonance imaging (MRI) scan before treatment. Focused ultrasound surgery — also called magnetic resonance-guided focused ultrasound surgery or focused ultrasound ...

  13. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.

    PubMed

    Krasovitski, Boris; Frenkel, Victor; Shoham, Shy; Kimmel, Eitan

    2011-02-22

    The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational (<100 mW · cm(-2)) and therapeutic, potentially cavitational (>100 mW · cm(-2)) spatial peak temporal average intensity levels. The cellular-level model (termed "bilayer sonophore") combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood-brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency (ε A,max ∝ P(A)(0.8f - 0.5) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.

  14. Comparison possibilities of ultrasound and its combination with laser in surgery and therapy

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Menyaev, Yulian A.; Kabisov, Ruslan K.; Alkov, Sergey V.; Nesterov, A. V.; Loshchilov, Vladimir I.; Suen, James Y.

    2000-05-01

    This article presents the further developments of combined laser-ultrasound medical technologies with paying attention the possibility ultrasound in surgery and therapy. The analyses of main effects at the low frequency ultrasonic treatment of biotissues including cavitation, acoustic streams, acoustic pressure, mechanical influence etc are analyzed. The main promising areas of application of low frequency ultrasound are considered including bactericidal treatment of infections wounds, spray treatment of wounds in head and neck surgery, tumor treatment etc. In particular the clinical result of using ultrasonic devices based on imposing ultrasonic oscillations in a range of 22-66 kHz on a cutting instrument with a special form, radiation intensity up to 10 W/cm2 and oscillation amplitude up to 40-60 micrometers with respect to oncology for halt bleeding from a tumor, liquidating pain, acoustic denervation are presented. Some limitation of medical application of ultrasound are discussed and perspective combination with laser for increasing efficiency of new combined technologies are found. Among them: combination photodynamic therapy and ultrasonic treatment of tumors, laser-ultrasonic treatment of infections wounds including using spray, laser-ultrasonic drug delivery. The preliminary result of experimental study of some of above-mentioned technologies are presented.

  15. Ultrasound-guided high-intensity focused ultrasound ablation for treating uterine arteriovenous malformation.

    PubMed

    Yan, X; Zhao, C; Tian, C; Wen, S; He, X; Zhou, Y

    2017-08-01

    To explore HIFU treatment for uterine arteriovenous malformation. A case report. Gynaecological department in a university teaching hospital of China. A patient with uterine arteriovenous malformation. The diagnosis of uterine arteriovenous malformation was made through MRI. Ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation was performed. HIFU is effective in treating uterine arteriovenous malformation. The patient had reduction of the lesion volume and obvious symptom relief, without significant adverse effects. HIFU can be used as a new treatment option for uterine arteriovenous malformation. Ultrasound-guided high-intensity focused ultrasound ablation is effective in treating uterine arteriovenous malformation. © 2017 Royal College of Obstetricians and Gynaecologists.

  16. New heights in ultrasound: first report of spinal ultrasound from the international space station.

    PubMed

    Marshburn, Thomas H; Hadfield, Chris A; Sargsyan, Ashot E; Garcia, Kathleen; Ebert, Douglas; Dulchavsky, Scott A

    2014-01-01

    Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  18. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System.

    PubMed

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy

    2016-01-01

    This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi-center studies to

  19. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Ultrasound functional imaging in an ex vivo beating porcine heart platform

    NASA Astrophysics Data System (ADS)

    Petterson, Niels J.; Fixsen, Louis S.; Rutten, Marcel C. M.; Pijls, Nico H. J.; van de Vosse, Frans N.; Lopata, Richard G. P.

    2017-12-01

    In recent years, novel ultrasound functional imaging (UFI) techniques have been introduced to assess cardiac function by measuring, e.g. cardiac output (CO) and/or myocardial strain. Verification and reproducibility assessment in a realistic setting remain major issues. Simulations and phantoms are often unrealistic, whereas in vivo measurements often lack crucial hemodynamic parameters or ground truth data, or suffer from the large physiological and clinical variation between patients when attempting clinical validation. Controlled validation in certain pathologies is cumbersome and often requires the use of lab animals. In this study, an isolated beating pig heart setup was adapted and used for performance assessment of UFI techniques such as volume assessment and ultrasound strain imaging. The potential of performing verification and reproducibility studies was demonstrated. For proof-of-principle, validation of UFI in pathological hearts was examined. Ex vivo porcine hearts (n  =  6, slaughterhouse waste) were resuscitated and attached to a mock circulatory system. Radio frequency ultrasound data of the left ventricle were acquired in five short axis views and one long axis view. Based on these slices, the CO was measured, where verification was performed using flow sensor measurements in the aorta. Strain imaging was performed providing radial, circumferential and longitudinal strain to assess reproducibility and inter-subject variability under steady conditions. Finally, strains in healthy hearts were compared to a heart with an implanted left ventricular assist device, simulating a failing, supported heart. Good agreement between ultrasound and flow sensor based CO measurements was found. Strains were highly reproducible (intraclass correlation coefficients  >0.8). Differences were found due to biological variation and condition of the hearts. Strain magnitude and patterns in the assisted heart were available for different pump action, revealing

  1. Transvaginal ultrasound (image)

    MedlinePlus

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  2. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  3. Preoperative ultrasound still valuable for radio-cephalic arteriovenous fistula creation?

    PubMed

    Pajek, Jernej; Malovrh, Marko

    2017-03-06

    Radio-cephalic arteriovenous fistula is a prototype hemodialysis access with small incidences of infection and distal ischemia, it spares proximal veins for future access use and it helps in the maturation of veins that may be used for more proximal access creations. This access type is prone to higher early failure rates compared to more proximal fistulas and there are unsolved uncertainties regarding exact ultrasound parameters predictive of fistula outcome. Evolution of ultrasound use has yielded several functional parameters that can be measured in addition to anatomical lumen sizes, which remain core parameters on which the decision to construct fistula in radio-cephalic forearm position is based. We propose to use arterial hyperemic response and wall morphology to aid in this decision when radial artery diameter falls in the interval with predictive uncertainty of 1.6-1.9 mm and to use venous flow pattern, respiratory variation, radial artery status and possibly venous distensibility when cephalic vein augmented diameter lies in the borderline interval of 2-2.4 mm. Ultrasound preoperative mapping and planning should be followed by expert surgical technique and several technique modifications of the classical end-to-side approach are possible to enhance operation outcome and diminish the incidence of stenosis most often present at juxta-anastomotic location. In our experience radio-cephalic arteriovenous fistula remains the golden standard for hemodialysis access and preoperative ultrasound the single best imaging modality to plan the operation and predict its success.

  4. Subharmonic-Aided Pressure Estimation for Monitoring Interstitial Fluid Pressure in Tumors: Calibration and Treatment with Paclitaxel in Breast Cancer Xenografts.

    PubMed

    Halldorsdottir, Valgerdur G; Dave, Jaydev K; Marshall, Andrew; Forsberg, Anya I; Fox, Traci B; Eisenbrey, John R; Machado, Priscilla; Liu, Ji-Bin; Merton, Daniel A; Forsberg, Flemming

    2017-07-01

    Interstitial fluid pressure (IFP) in rats with breast cancer xenografts was non-invasively estimated using subharmonic-aided pressure estimation (SHAPE) versus an invasive pressure monitor. Moreover, monitoring of IFP changes after chemotherapy was assessed. Eighty-nine rats (calibration n = 25, treatment n = 64) were injected with 5 × 10 6 breast cancer cells (MDA-MB-231). Radiofrequency signals were acquired (39 rats successfully imaged) with a Sonix RP scanner (BK Ultrasound, Richmond, BC, Canada) using a linear array (L9-4, transmit/receive: 8/4 MHz) after administration of Definity (Lantheus Medical Imaging, North Billerica, MA, USA; 180 μL/kg) and compared with readings from an invasive pressure monitor (Stryker, Berkshire, UK). An inverse linear relationship was established between tumor IFP and SHAPE (y = -1.06x + 28.27, r = -0.69, p = 0.01) in the calibration group. Use of this relationship in the treatment group resulted in r = 0.74 (p < 0.05) between measured (pressure monitor) and SHAPE-estimated IFP (average error: 6.24 mmHg). No significant before/after differences were observed with respect to paclitaxel treatment (5 mg/kg, Mayne Pharma, Paramus, NJ, USA) with either method (p ≥ 0.15). Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  6. Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit

    2018-02-01

    Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.

  7. Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Konofagou, Elisa E.; Tung, Yao-Sheng; Choi, James; Deffieux, Thomas; Baseri, Babak; Vlachos, Fotios

    2014-01-01

    Over 4 million U.S. men and women suffer from Alzheimer's disease; 1 million from Parkinson's disease; 350,000 from multiple sclerosis (MS); and 20,000 from amyotrophic lateral sclerosis (ALS). Worldwide, these four diseases account for more than 20 million patients. In addition, aging greatly increases the risk of neurodegenerative disease. Although great progress has been made in recent years toward understanding of these diseases, few effective treatments and no cures are currently available. This is mainly due to the impermeability of the blood-brain barrier (BBB) that allows only 5% of the 7000 small-molecule drugs available to treat only a tiny fraction of these diseases. On the other hand, safe and localized opening of the BBB has been proven to present a significant challenge. Of the methods used for BBB disruption shown to be effective, Focused Ultrasound (FUS), in conjunction with microbubbles, is the only technique that can induce localized BBB opening noninvasively and regionally. FUS may thus have a huge impact in trans-BBB brain drug delivery. The primary objective in this paper is to elucidate the interactions between ultrasound, microbubbles and the local microenvironment during BBB opening with FUS, which are responsible for inducing the BBB disruption. The mechanism of the BBB opening in vivo is monitored through the MRI and passive cavitation detection (PCD), and the safety of BBB disruption is assessed using H&E histology at distinct pressures, pulse lengths and microbubble diameters. It is hereby shown that the BBB can be disrupted safely and transiently under specific acoustic pressures (under 0.45 MPa) and microbubble (diameter under 8 μm) conditions. PMID:22201586

  8. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    PubMed

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  9. [Abdominal ultrasound course an introduction to the ultrasound technique. Physical basis. Ultrasound language].

    PubMed

    Segura-Grau, A; Sáez-Fernández, A; Rodríguez-Lorenzo, A; Díaz-Rodríguez, N

    2014-01-01

    Ultrasound is a non-invasive, accessible, and versatile diagnostic technique that uses high frequency ultrasound waves to define outline the organs of the human body, with no ionising radiation, in real time and with the capacity to visual several planes. The high diagnostic yield of the technique, together with its ease of uses plus the previously mentioned characteristics, has currently made it a routine method in daily medical practice. It is for this reason that the multidisciplinary character of this technique is being strengthened every day. To be able to perform the technique correctly requires knowledge of the physical basis of ultrasound, the method and the equipment, as well as of the human anatomy, in order to have the maximum information possible to avoid diagnostic errors due to poor interpretation or lack of information. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  10. Significance of Dynamic Pore Pressure Variations - Comparison of Observations on Mud Volcanoes on the Costa Rica Margin and in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Brueckmann, W.; Linke, P.; Pieper, M.; Hensen, C.; Tuerk, M.

    2006-12-01

    Research in the cooperative research center (SFB) 574 "Volatiles and Fluids in Subduction Zones" at the University Kiel focuses on volatile and fluid exchange processes at subduction zones. These have a significant impact on the long-term geochemical evolution of the hydrosphere and atmosphere. In the SFB 574 working area off Central America more than 120 mud volcanoes, mud diapirs and cold seeps have been identified and sampled. To better understand the internal dynamics of these structures and the temporal variability of fluid expulsion an in-situ tool for monitoring shallow pore pressure variations was devised. The tool (PWPL) monitors pore pressure variations along a 2m profile in the shallow subsurface using a stinger with 4 pressure ports. Positioned with a video-guided lander the stinger is gently pushed into the seafloor where it remains for several weeks or months in autonomous mode before being retrieved. While particular emphasis was placed on the convergent margin of Central America, mud volcanoes in other tectonic settings suitable for long-term observations of fluid flux are used for comparison. Here we will present data and interpretations from two mud volcanoes off Costa Rica and in the Gulf of Cadiz where we have conducted successful tests. Pore pressure data from short-term tests on Mound 11 on the continental slope off Costa Rica are compared with new results from a long-term (3-month) campaign on the Captain Arutjunov deep water mud volcano in the Gulf of Cadiz. Rates of fluid flow at both structures have been thoroughly characterized and quantified with geochemical methods providing a frame of reference for judging the significance of dynamic pore pressure variations.

  11. Randomized, Double-Blind, Split-Face Study Evaluating Fractional Ablative Erbium:YAG Laser-Mediated Trans-Epidermal Delivery of Cosmetic Actives and a Novel Acoustic Pressure Wave Ultrasound Technology for the Treatment of Skin Aging, Melasma, and Acne Scars.

    PubMed

    Alexiades, Macrene

    2015-11-01

    Fractional laser resurfacing enhances trans-epidermal delivery (TED), however laser penetration depths >250- μm fail to substantively increase drug delivery. Evaluate the safety and efficacy of a novel acoustic pressure wave ultrasound device following fractional ablative Er:YAG 2940-nm laser (FELR) and topical agents for rhytids, melasma, and acne scars. Randomized, blinded, parallel group split-face side-by-side, controlled study evaluating FELR and topical anti-aging and anti-pigment agents to entire face succeeded by ultrasound to randomized side. Fifteen subjects were enrolled to three treatment arms:rhytids, melasma, and acne scars. Two monthly treatments were administered with 1, 3, and 6 month follow-up. Efficacy was assessed by Comprehensive Grading Scale of Rhytids, Laxity, and Photoaging by Investigator and two blinded physician evaluators. Subject assessments, digital photographs, and reflectance spectroscopic analyses were obtained. Rhytid severity was reduced from a mean of 3.25 to 2.60 on the 4-point grading scale. Spectrophotometric analysis demonstrated increases in lightness (L*) and reductions in redness (a*) and pigment (b*), with greater improvements on the ultrasound side as compared to FELR and topicals alone. Moderate erythema post-treatment resolved in 7 days and no serious adverse events were observed. In this randomized, paired split-face clinical study, FELR-facilitated TED of topical anti-aging actives with ultrasound treatment is safe and effective with improvement in rhytids, melasma, and acne scars. Statistically significant greater improvement in pigment levels was observed on the ultrasound side as compared to FELR-TED and topical agents alone.

  12. Self-contained image mapping of placental vasculature in 3D ultrasound-guided fetoscopy.

    PubMed

    Yang, Liangjing; Wang, Junchen; Ando, Takehiro; Kubota, Akihiro; Yamashita, Hiromasa; Sakuma, Ichiro; Chiba, Toshio; Kobayashi, Etsuko

    2016-09-01

    Surgical navigation technology directed at fetoscopic procedures is relatively underdeveloped compared with other forms of endoscopy. The narrow fetoscopic field of views and the vast vascular network on the placenta make examination and photocoagulation treatment of twin-to-twin transfusion syndrome challenging. Though ultrasonography is used for intraoperative guidance, its navigational ability is not fully exploited. This work aims to integrate 3D ultrasound imaging and endoscopic vision seamlessly for placental vasculature mapping through a self-contained framework without external navigational devices. This is achieved through development, integration, and experimentation of novel navigational modules. Firstly, a framework design that addresses the current limitations based on identified gaps is conceptualized. Secondly, integration of navigational modules including (1) ultrasound-based localization, (2) image alignment, and (3) vision-based tracking to update the scene texture map is implemented. This updated texture map is projected to an ultrasound-constructed 3D model for photorealistic texturing of the 3D scene creating a panoramic view of the moving fetoscope. In addition, a collaborative scheme for the integration of the modular workflow system is proposed to schedule updates in a systematic fashion. Finally, experiments are carried out to evaluate each modular variation and an integrated collaborative scheme of the framework. The modules and the collaborative scheme are evaluated through a series of phantom experiments with controlled trajectories for repeatability. The collaborative framework demonstrated the best accuracy (5.2 % RMS error) compared with all the three single-module variations during the experiment. Validation on an ex vivo monkey placenta shows visual continuity of the freehand fetoscopic panorama. The proposed developed collaborative framework and the evaluation study of the framework variations provide analytical insights for

  13. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  14. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  15. Treatment of great auricular neuralgia with real-time ultrasound-guided great auricular nerve block

    PubMed Central

    Jeon, Younghoon; Kim, Saeyoung

    2017-01-01

    Abstract Rationale: The great auricular nerve can be damaged by the neck surgery, tumor, and long-time pressure on the neck. But, great auricular neuralgia is very rare condition. It was managed by several medication and landmark-based great auricular nerve block with poor prognosis. Patient concerns: A 25-year-old man presented with a pain in the left lateral neck and auricle. Diagnosis: He was diagnosed with great auricular neuralgia. Interventions: His pain was not reduced by medication. Therefore, the great auricular nerve block with local anesthetics and steroid was performed under ultrasound guidance. Outcomes: Ultrasound guided great auricular nerve block alleviated great auricular neuralgia. Lessons: This medication-resistant great auricular neuralgia was treated by the ultrasound guided great auricular nerve block with local anesthetic agent and steroid. Therefore, great auricular nerve block can be a good treatment option of medication resistant great auricular neuralgia. PMID:28328811

  16. Interday variation and effect of transportation on indirect blood pressure measurements, plasma endothelin-1 and serum cortisol in Standardbred and Icelandic horses

    PubMed Central

    2012-01-01

    Background Systemic hypertension is a prominent feature in humans with metabolic syndrome (MS) and this is partly caused by an enhanced endothelin-1 (ET-1) mediated vasoconstriction. There are indications that systemic hypertension might be a feature in equine metabolic syndrome (EMS) but if ET-1 is involved in the development of hypertension in horses is not known. Increased levels of cortisol have also been found in humans with MS but there are no reports of this in horses. Before blood pressure, plasma ET-1 and serum cortisol can be evaluated in horses with EMS, it is necessary to investigate the interday variation of these parameters on clinically healthy horses. The aims of the present study were therefore to evaluate the interday variation and influence of transportation on systemic blood pressure, plasma ET-1 and serum cortisol in healthy Standardbred and Icelandic horses, and to detect potential breed differences. Methods Nine horses of each breed were included in the study. Blood pressure was measured and blood samples were collected between 6 and 9 am on two separate days. Eight of the horses (four of each breed) were transported to a new stable were they stayed overnight. The next morning, the sampling procedure was repeated. Results The interday variation was higher for plasma ET-1 (37%) than for indirect pressure measurements (8-21%) and serum cortisol (18%). There were no differences in systemic blood pressure between the two breeds. The Icelandic horses had significantly lower serum cortisol and significantly higher plasma ET-1 concentrations compared to the Standardbred horses. Plasma ET-1 was significantly elevated after transportation, but systemic blood pressure and serum cortisol did not differ from the values obtained in the home environment. Conclusions Indirect blood pressure, plasma ET-1 and serum cortisol are of interest as markers for cardiovascular dysfunction in horses with EMS. The elevated plasma ET-1 concentrations recorded after

  17. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability

    PubMed Central

    Tang, M.-X.; Mulvana, H.; Gauthier, T.; Lim, A. K. P.; Cosgrove, D. O.; Eckersley, R. J.; Stride, E.

    2011-01-01

    Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed. PMID:22866229

  18. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies.

    PubMed

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya; Vilathgamuwa, Mahinda; Ghosh, Arindam; Langton, Christian; Weber, Peter

    2017-02-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric transducer impedance has been discussed in different literatures, the trend of the nonlinearity at different frequencies with respect to excitation voltage variations has not been clearly investigated in practice. In this paper, to demonstrate how the nonlinearity behaves, a sandwich piezoceramic transducer was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30-200V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A motorized ultrasound system for MRI-ultrasound fusion guided prostatectomy

    NASA Astrophysics Data System (ADS)

    Seifabadi, Reza; Xu, Sheng; Pinto, Peter; Wood, Bradford J.

    2016-03-01

    Purpose: This study presents MoTRUS, a motorized transrectal ultrasound system, to enable remote navigation of a transrectal ultrasound (TRUS) probe during da Vinci assisted prostatectomy. MoTRUS not only provides a stable platform to the ultrasound probe, but also allows the physician to navigate it remotely while sitting on the da Vinci console. This study also presents phantom feasibility study with the goal being intraoperative MRI-US image fusion capability to bring preoperative MR images to the operating room for the best visualization of the gland, boundaries, nerves, etc. Method: A two degree-of-freedom probe holder is developed to insert and rotate a bi-plane transrectal ultrasound transducer. A custom joystick is made to enable remote navigation of MoTRUS. Safety features have been considered to avoid inadvertent risks (if any) to the patient. Custom design software has been developed to fuse pre-operative MR images to intraoperative ultrasound images acquired by MoTRUS. Results: Remote TRUS probe navigation was evaluated on a patient after taking required consents during prostatectomy using MoTRUS. It took 10 min to setup the system in OR. MoTRUS provided similar capability in addition to remote navigation and stable imaging. No complications were observed. Image fusion was evaluated on a commercial prostate phantom. Electromagnetic tracking was used for the fusion. Conclusions: Motorized navigation of the TRUS probe during prostatectomy is safe and feasible. Remote navigation provides physician with a more precise and easier control of the ultrasound image while removing the burden of manual manipulation of the probe. Image fusion improved visualization of the prostate and boundaries in a phantom study.

  20. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  1. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  2. Triplet ultrasound growth parameters.

    PubMed

    Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David

    2006-03-01

    To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.

  3. Research interface on a programmable ultrasound scanner.

    PubMed

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  4. [Association between two different types of strangling and intraocular pressure variation in jiu-jitsu athletes].

    PubMed

    Scarpi, Marinho Jorge; Conte, Marcelo; Rossin, Reginaldo Alexandre; Skubs, Renato; Lenk, Rudolf Eberhard; Brant, Rodrigo

    2009-01-01

    To verify the association between two different types of strangling with intraocular pressure variation in jiu-jitsu athletes. An observational study was performed on 9 athletes of jiu-jitsu, with at least 6 month of training, male, aged 20 to 30 years, without any physical and eyeball lesions. Associations between intraocular pressure and Cross Choke from the guard strangling (E1), and E2 - Cross Choke from mount strangling were gotten. Intraocular pressure was determined by using Perkins tonometer, at first in the absence of physical exercise over the last 24 hours and after each strangling. Then it was carried out the intraocular pressure measure at each 3 minutes, during 12 minutes of exercise recovery (R1, R2, R3, and R4) keeping the athletes lied down. Statistical analysis was done using ANOVA test and Bonferroni post-test. Meaningful reduction of both eyes intraocular pressure occurred at the E2 situation comparing to the E1 situation at all exercise recovery measures: R1 (OD: 8.22 +/- 1.39 vs.11.33 +/- 2.00 / OE: 8.55 +/- 1.23 vs. 11.88 +/- 1.90), R2 (OD: 8.44 +/- 1.87 vs.10.22 +/- 2.53 / OE: 9.00 +/- 1.80 vs. 10.44 +/- 2.35), R3 (OD: 8.44 +/- 1.74 vs.9.78 +/- 2.54 / OE: 8.55 +/- 1.42 vs. 10.33 +/- 1.93) all with p<0,01 e R4 (OD: 8.88 +/- 2.08 vs.9.55 +/- 2.87 / OE: 9.11 +/- 1.53 vs. 10.44 +/- 2.18) with p<0.05. Meaningful IOP reduction (p<0.05) was observed at the R1 moment of E2 strangling (OD: 10.77 +/- 1.92 vs.8.22 +/- 1.39 / OE: 11.44 +/- 1.94 vs. 8.55 +/- 1.23). There is association between intraocular pressure and jiu-jitsu strangling exercises, with intraocular pressure reduction.

  5. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

    PubMed

    Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu

    2013-11-01

    With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei.

    PubMed

    Ojha, K Shikha; Burgess, Catherine M; Duffy, Geraldine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-01-01

    The lethal effects of soundwaves on a range of microorganisms have been known for almost a century whereas, the use of ultrasound to promote or control their activity is much more recent. Moreover, the fundamental molecular mechanism influencing the behaviour of microorganisms subjected to ultrasonic waves is not well established. In this study, we investigated the influence of ultrasonic frequencies of 20, 45, 130 and 950 kHz on growth kinetics of Lactobacillus sakei. A significant increase in the growth rate of L. sakei was observed following ultrasound treatment at 20 kHz despite the treatment yielding a significant reduction of ca. 3 log cfu/mL in cells count. Scanning electron microscopy showed that ultrasound caused significant changes on the cell surface of L. sakei culture with the formation of pores "sonoporation". Phenotypic microarrays showed that all ultrasound treated L. sakei after exposure to various carbon, nitrogen, phosphorus and sulphur sources had significant variations in nutrient utilisation. Integration of this phenotypic data with the genome of L. sakei revealed that various metabolic pathways were being influenced by the ultrasound treatments. Results presented in this study showed that the physiological response of L. sakei in response to US is frequency dependent and that it can influence metabolic pathways. Hence, ultrasound treatments can be employed to modulate microbial activity for specialised applications.

  7. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei

    PubMed Central

    Ojha, K. Shikha; Burgess, Catherine M.; Duffy, Geraldine; Kerry, Joseph P.

    2018-01-01

    The lethal effects of soundwaves on a range of microorganisms have been known for almost a century whereas, the use of ultrasound to promote or control their activity is much more recent. Moreover, the fundamental molecular mechanism influencing the behaviour of microorganisms subjected to ultrasonic waves is not well established. In this study, we investigated the influence of ultrasonic frequencies of 20, 45, 130 and 950 kHz on growth kinetics of Lactobacillus sakei. A significant increase in the growth rate of L. sakei was observed following ultrasound treatment at 20 kHz despite the treatment yielding a significant reduction of ca. 3 log cfu/mL in cells count. Scanning electron microscopy showed that ultrasound caused significant changes on the cell surface of L. sakei culture with the formation of pores “sonoporation”. Phenotypic microarrays showed that all ultrasound treated L. sakei after exposure to various carbon, nitrogen, phosphorus and sulphur sources had significant variations in nutrient utilisation. Integration of this phenotypic data with the genome of L. sakei revealed that various metabolic pathways were being influenced by the ultrasound treatments. Results presented in this study showed that the physiological response of L. sakei in response to US is frequency dependent and that it can influence metabolic pathways. Hence, ultrasound treatments can be employed to modulate microbial activity for specialised applications. PMID:29370210

  8. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  9. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps

    NASA Astrophysics Data System (ADS)

    Robertson, James; Martin, Eleanor; Cox, Ben; Treeby, Bradley E.

    2017-04-01

    High intensity transcranial focused ultrasound is an FDA approved treatment for essential tremor, while low-intensity applications such as neurostimulation and opening the blood brain barrier are under active research. Simulations of transcranial ultrasound propagation are used both for focusing through the skull, and predicting intracranial fields. Maps of the skull acoustic properties are necessary for accurate simulations, and can be derived from medical images using a variety of methods. The skull maps range from segmented, homogeneous models, to fully heterogeneous models derived from medical image intensity. In the present work, the impact of uncertainties in the skull properties is examined using a model of transcranial propagation from a single element focused transducer. The impact of changes in bone layer geometry and the sound speed, density, and acoustic absorption values is quantified through a numerical sensitivity analysis. Sound speed is shown to be the most influential acoustic property, and must be defined with less than 4% error to obtain acceptable accuracy in simulated focus pressure, position, and volume. Changes in the skull thickness of as little as 0.1 mm can cause an error in peak intracranial pressure of greater than 5%, while smoothing with a 1 \\text{m}{{\\text{m}}3} kernel to imitate the effect of obtaining skull maps from low resolution images causes an increase of over 50% in peak pressure. The numerical results are confirmed experimentally through comparison with sonications made through 3D printed and resin cast skull bone phantoms.

  10. Indicator system provides complete data of engine cylinder pressure variation

    NASA Technical Reports Server (NTRS)

    Mc Jones, R. W.; Morgan, N. E.

    1966-01-01

    Varying reference pressure used together with a balanced pressure pickup /a diaphragm switch/ to switch the electric output of the pressure transducer in a reference pressure line obtains precise engine cylinder pressure data from a high speed internal combustion engine.

  11. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    PubMed

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  12. Variation of Azeotropic Composition and Temperature with Pressure

    ERIC Educational Resources Information Center

    Gibbard, H. Frank; Emptage, Michael R.

    1975-01-01

    Describes an undergraduate physical chemistry experiment in which an azeotropic mixture is studied using the vapor pressures of the components as functions of temperature and the azeotropic composition and temperature at one pressure. Discusses in detail the mathematical treatment of obtained thermodynamic data. (MLH)

  13. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Limited angle breast ultrasound tomography with a priori information and artifact removal

    NASA Astrophysics Data System (ADS)

    Jintamethasawat, Rungroj; Zhu, Yunhao; Kripfgans, Oliver D.; Yuan, Jie; Goodsitt, Mitchell M.; Carson, Paul L.

    2017-03-01

    In B-mode images from dual-sided ultrasound, it has been shown that by delineating structures suspected of being relatively homogeneous, one can enhance limited angle tomography to produce speed of sound images in the same view as X-ray Digital Breast Tomography (DBT). This could allow better breast cancer detection and discrimination, as well as improved registration of the ultrasound and X-ray images, because of the similarity of SOS and X-ray contrast in the breast. However, this speed of sound reconstruction method relies strongly on B-mode or other reflection mode segmentation. If that information is limited or incorrect, artifacts will appear in the reconstructed images. Therefore, the iterative speed of sound reconstruction algorithm has been modified in a manner of simultaneously utilizing the image segmentations and removing most artifacts. The first step of incorporating a priori information is solved by any nonlinearnonconvex optimization method while artifact removal is accomplished by employing the fast split Bregman method to perform total-variation (TV) regularization for image denoising. The proposed method was demonstrated in simplified simulations of our dual-sided ultrasound scanner. To speed these computations two opposed 40-element ultrasound linear arrays with 0.5 MHz center frequency were simulated for imaging objects in a uniform background. The proposed speed of sound reconstruction method worked well with both bent-ray and full-wave inversion methods. This is also the first demonstration of successful full-wave medical ultrasound tomography in the limited angle geometry. Presented results lend credibility to a possible translation of this method to clinical breast imaging.

  15. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  16. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  17. Determining Directions of Ultrasound in Solids

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1987-01-01

    Ultrasound shadows cast by grooves. Improved method for determining direction of ultrasound in materials is shadow method using Scanning laser acoustic microscopy (SLAM). Direction of ultrasound calculated from dimensions of groove and portion of surface groove shields from ultrasound. Method has variety of applications in nontraditional quality-control applications.

  18. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    PubMed

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  19. Pressure-dependent attenuation with microbubbles at low mechanical index.

    PubMed

    Tang, Meng-Xing; Eckersley, Robert J; Noble, J Alison

    2005-03-01

    It has previously been shown that the attenuation of ultrasound (US) by microbubble contrast agents is dependent on acoustic pressure (Chen et al. 2002). Although previous studies have modelled the pressure-dependence of attenuation in single bubbles, this paper investigates this subject by considering a bulk volume of bubbles together with other linear attenuators. Specifically, a new pressure-dependent attenuation model for an inhomogeneous volume of attenuators is proposed. In this model, the effect of the attenuation on US propagation is considered. The model was validated using experimental measurements on the US contrast agent Sonovue. The results indicate, at low acoustic pressures, a linear relationship between the attenuation of Sonovue, measured in dB, and the insonating acoustic pressure.

  20. Variation of plantar pressure in Chinese diabetes mellitus.

    PubMed

    Yang, Chuan; Xiao, Huisheng; Wang, Chuan; Mai, LiFang; Liu, Dan; Qi, Yiqing; Ren, Meng; Yan, Li

    2015-01-01

    To investigate dynamic changes in plantar pressure in Chinese diabetes mellitus patients and to provide a basis for further preventing diabetic foot. This is a cross-sectional investigation including 649 Chinese diabetes mellitus patients (diabetes group) and 808 "normal" Chinese persons (nondiabetes group) with normal blood glucose levels. All the subjects provided a complete medical history and underwent a physical examination and a 75-g oral glucose tolerance test. All subjects walked barefoot with their usual gait, and their dynamic plantar forces were measured using the one-step method with a plantar pressure measurement instrument; 5 measurements were performed for each foot. No significant differences were found in age, height, body weight, or body mass index between the two groups. The fasting blood glucose levels, plantar contact time, maximum force, pressure-time integrals and force-time integrals in the diabetes group were significantly higher than those in the nondiabetes group (p < 0.05). However, the maximum pressure was significantly higher in the nondiabetes group than in the diabetes group (p < 0.05). No difference was found in the contact areas between the two groups (p > 0.05). The maximum plantar force distributions were essentially the same, with the highest force found for the medial heel, followed by the medial forefoot and the first toe. The peak plantar pressure was located at the medial forefoot for the nondiabetes group and at the hallucis for the diabetes group. In the diabetes group, the momentum in each plantar region was higher than that in the nondiabetes group; this difference was especially apparent in the heel, the lateral forefoot and the hallucis. The dynamic plantar pressures in diabetic patients differ from those in nondiabetic people with increased maximum force and pressure, a different distribution pattern and significantly increased momentum, which may lead to the formation of foot ulcers. © 2015 by the Wound

  1. Abdominal ultrasound and medical education.

    PubMed

    García de Casasola Sánchez, G; Torres Macho, J; Casas Rojo, J M; Cubo Romano, P; Antón Santos, J M; Villena Garrido, V; Diez Lobato, R

    2014-04-01

    Ultrasound is a very versatile diagnostic modality that permits real-time visualization of multiple internal organs. It is of invaluable help for the physical examination of the patients. To assess if ultrasound can be incorporated into medical education and if the students can perform a basic abdominal ultrasound examination without the necessity of a long period of training. Twelve medical students were trained in basic abdominal ultrasound during a 15-h training program including a 5-h theoretical and practical course and supervised practice in 20 selected patients. Subsequently, we conducted an evaluation test that assessed the ability of students to obtain the ultrasound views and to detect various pathologies in five different patients. The students were able to correctly identify the abdominal views more than 90% of the times. This percentage was only lower (80%) in the right subcostal view to locate the gallbladder. The accuracy or global efficiency of the ultrasound for the diagnosis of relevant pathological findings of the patients was greater than 90% (91.1% gallstones, abdominal aortic aneurysm 100%; splenomegaly 98.3%, ascites 100%; dilated inferior vena cava 100%; acute urinary retention 100%). The ultrasound may be a feasible learning tool in medical education. Ultrasound can help students to improve the physical examination. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  2. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  3. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    PubMed

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  4. Noncontact measurement of vibration using airborne ultrasound.

    PubMed

    Mater, O B; Remenieras, J P; Bruneel, C; Roncin, A; Patat, F

    1998-01-01

    A noncontact ultrasonic method for measuring the surface normal vibration of objects was studied. The instrument consists of a pair of 420 kHz ultrasonic air transducers. One is used to emit ultrasounds toward the moving surface, and the other receives the ultrasound reflected from the object under test. Two effects induce a phase modulation on the received signal. The first effect results from the variation of the round trip time interval tau required for the wavefront to go from the emitter to the moving surface and back to the receiver. This is the Doppler effect directly proportional to the surface displacement. The second effect results from the nonlinear parametric interactions of the ultrasonic beams (forward and backward) with the low frequency sound field emitted in the air by the vibrating surface. This latter phenomenon, which is a volume effect, is proportional to the velocity of the vibrating surface and increases with the distance between the transducers and the surface under test. The relative contribution of the Doppler and parametric effects are evaluated, and both have to be taken into account for ultrasonic interferometry in air.

  5. Prolonging pulse duration in ultrasound-mediated gene delivery lowers acoustic pressure threshold for efficient gene transfer to cells and small animals.

    PubMed

    Tran, Dominic M; Harrang, James; Song, Shuxian; Chen, Jeremy; Smith, Bryn M; Miao, Carol H

    2018-06-10

    While ultrasound-mediated gene delivery (UMGD) has been accomplished using high peak negative pressures (PNPs) of 2 MPa or above, emerging research showed that this may not be a requirement for microbubble (MB) cavitation. Thus, we investigated lower-pressure conditions close to the MB inertial cavitation threshold and focused towards further increasing gene transfer efficiency and reducing associated cell damage. We created a matrix of 21 conditions (n = 3/cond.) to test in HEK293T cells using pulse durations spanning 18 μs-36 ms and PNPs spanning 0.5-2.5 MPa. Longer pulse duration conditions yielded significant increase in transgene expression relative to sham with local maxima between 20 J and 100 J energy curves. A similar set of 17 conditions (n = 4/cond.) was tested in mice using pulse durations spanning 18 μs-22 ms and PNPs spanning 0.5-2.5 MPa. We observed local maxima located between 1 J and 10 J energy curves in treated mice. Of these, several low pressure conditions showed a decrease in ALT and AST levels while maintaining better or comparable expression to our positive control, indicating a clear benefit to allow for effective transfection with minimized tissue damage versus the high-intensity control. Our data indicates that it is possible to eliminate the requirement of high PNPs by prolonging pulse durations for effective UMGD in vitro and in vivo, circumventing the peak power density limitations imposed by piezo-materials used in US transducers. Overall, these results demonstrate the advancement of UMGD technology for achieving efficient gene transfer and potential scalability to larger animal models and human application. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Reproducibility of ECG-gated ultrasound diameter assessment of small abdominal aortic aneurysms.

    PubMed

    Bredahl, K; Eldrup, N; Meyer, C; Eiberg, J E; Sillesen, H

    2013-03-01

    No standardised ultrasound procedure to obtain reliable growth estimates for abdominal aortic aneurysms (AAA) is currently available. We investigated the feasibility and reproducibility of a novel approach controlling for a combination of vessel wall delineation and cardiac cycle variation. Prospective comparative study. Consecutive patients (N = 27) with an AAA, attending their 6-month control as part of a medical treatment trial, were scanned twice by two ultrasound operators. Then, all ultrasound recordings were transferred to a core facility and analysed by a third person. The AAA diameter was determined in four different ways: from the leading edge of adventitia on the anterior wall to either the leading edge of the adventitia (method A) or leading edge of the intima (method B) on the posterior wall, with both measurements performed in systole and diastole. Inter-operator reproducibility was ± 3 mm for all methods applied. There was no difference in outcome between methods A and B; likewise, end-diastolic measurement did not improve reproducibility in preference to peak-systolic measurement. The use of a standardised ultrasound protocol including ECG-gating and subsequent off-line reading with minute calliper placement reduces variability. This may be of use in developing protocols to better detect even small AAA growth rates during clinical trials. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract.

    PubMed

    Fakhry, Mohamed A; El Shazly, Malak I

    2011-01-01

    To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used.

  8. Breast ultrasound tomography with two parallel transducer arrays

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Gao, Kai; Intrator, Miranda; Hanson, Kenneth

    2016-03-01

    Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and characterization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated vertically to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography prototype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images.

  9. Prostate ultrasound: back in business!

    PubMed

    Crisan, Nicolae; Andras, Iulia; Radu, Corina; Andras, David; Coman, Radu-Tudor; Tucan, Paul; Pisla, Doina; Crisan, Dana; Coman, Ioan

    2017-11-29

    The use of grey scale prostate ultrasound decreased after the implementation of magnetic resonance imaging (MRI) for the diagnosis and evaluation of prostate cancer. The new developments, such as multiparametric ultrasound and MRI-ultrasound fusion technology, renewed the interest for this imaging method in the assessment of prostate cancer. The purpose of this paper was to review the current role of prostate ultrasound in the setting of these new applications. A thorough reevaluation of the selection criteria of the patients is required to assess which patients would benefit from multiparametric ultrasound, who wouldbenefit from multiparametric MRI or the combination of both to assist prostate biopsy in order to ensure the balance between overdiagnosis and underdiagnosis of prostate cancer.

  10. Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Law. J.; Alexander, D.; Ryder, V. Myers; hide

    2016-01-01

    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis.

  11. Impact of baseline systolic blood pressure on visit-to-visit blood pressure variability: the Kailuan study.

    PubMed

    Wang, Anxin; Li, Zhifang; Yang, Yuling; Chen, Guojuan; Wang, Chunxue; Wu, Yuntao; Ruan, Chunyu; Liu, Yan; Wang, Yilong; Wu, Shouling

    2016-01-01

    To investigate the relationship between baseline systolic blood pressure (SBP) and visit-to-visit blood pressure variability in a general population. This is a prospective longitudinal cohort study on cardiovascular risk factors and cardiovascular or cerebrovascular events. Study participants attended a face-to-face interview every 2 years. Blood pressure variability was defined using the standard deviation and coefficient of variation of all SBP values at baseline and follow-up visits. The coefficient of variation is the ratio of the standard deviation to the mean SBP. We used multivariate linear regression models to test the relationships between SBP and standard deviation, and between SBP and coefficient of variation. Approximately 43,360 participants (mean age: 48.2±11.5 years) were selected. In multivariate analysis, after adjustment for potential confounders, baseline SBPs <120 mmHg were inversely related to standard deviation (P<0.001) and coefficient of variation (P<0.001). In contrast, baseline SBPs ≥140 mmHg were significantly positively associated with standard deviation (P<0.001) and coefficient of variation (P<0.001). Baseline SBPs of 120-140 mmHg were associated with the lowest standard deviation and coefficient of variation. The associations between baseline SBP and standard deviation, and between SBP and coefficient of variation during follow-ups showed a U curve. Both lower and higher baseline SBPs were associated with increased blood pressure variability. To control blood pressure variability, a good target SBP range for a general population might be 120-139 mmHg.

  12. Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound with Gas Body Contrast Agent

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.

    2009-01-01

    Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967

  13. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  14. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly

  15. Genetic variation in the ASIC3 gene influences blood pressure levels in Taiwanese.

    PubMed

    Ko, Yu-Lin; Hsu, Lung-An; Wu, Semon; Teng, Ming-Sheng; Chang, Hsien-Hsun; Chen, Chih-Cheng; Cheng, Ching-Feng

    2008-11-01

    The acid-sensing ion channel 3 (ASIC3) is a ligand-gated cation channel activated by extracellular protons, and is associated with an exercise-induced pressor reflex and possibly autonomic imbalance. To test the statistical association between genetic polymorphisms of the ASIC3 gene and blood pressure (BP) variations in Taiwanese, 551 unrelated individuals (286 men and 265 women) were recruited from a routine health examination. The participants had no prior history of cardiovascular disease or medication use for hypertension. Six ASIC3 gene polymorphisms were genotyped; three were polymorphic, and only the rs2288646 polymorphism was associated with variations in BP among participants. Significantly higher systolic, diastolic, and mean BP were observed in participants carrying the rs2288646-A allele (P=0.034, 0.023, and 0.010, respectively). Significantly higher frequencies of the rs2288646-A-containing genotype were observed in normotensive, prehypertensive, and hypertensive subgroups (P for trend=0.026); and in those with higher systolic and diastolic BPs (P for trend=0.005 and P for trend=0.002, respectively). The association between the rs2288646-A allele and BP persisted even after adjustment for age, sex, BMI, and other metabolic factors. When a second independent group of 403 individuals was combined with the first group of 551 (n=954), a significantly higher frequency of the rs2288646-A-containing genotype was observed in participants with hypertension (9.7 vs. 4.0%, P=0.003). Our data showed an independent association between an ASIC3 genetic polymorphism and BP variations in Taiwanese. These results suggest that the ASIC3 may be involved in BP regulation.

  16. Ultrasound Thermal Imaging and its application to Rayleigh-Bénard convection in mercury

    NASA Astrophysics Data System (ADS)

    Xu, Hongzhou; Andereck, C. David

    2003-11-01

    We have developed Ultrasound Thermal Imaging (UTI), a non-intrusive ultrasound technique for internal temperature measurement of opaque fluids, and have applied UTI to low Rayleigh number buoyancy driven convection in mercury. UTI relies upon the variation of sound speed with temperature of the fluid. An array of ultrasound transducers scanned electronically along the sidewall of a convection cell with aspect ratio of 6 yields a map of the thermal field over the chamber. The chamber has stainless steel sidewalls and molybdenum covered copper plates at the top and bottom. As the Rayleigh number increases slowly from zero, the data reveal the formation of a roll cell pattern and transitions between different cellular states. Based on standard deviation distributions of the temperature profile at the cell's mid-depth, the critical temperature difference agrees well with the theoretically predicted value. The heat flux through the horizontal mercury layer was determined by thermistors mounted at the exit and entrance of the internal channel in each copper plate through which flows warm/cool constant temperature water. Nusselt numbers and other experimental results will also be presented.

  17. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    NASA Astrophysics Data System (ADS)

    Volz, Kevin R.

    Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was

  18. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    NASA Astrophysics Data System (ADS)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in

  19. Recent advances in ultrasound-triggered therapy.

    PubMed

    Yang, Chaopin; Li, Yue; Du, Meng; Chen, Zhiyi

    2018-04-27

    As a non-invasive and real-time diagnostic technique, ultrasound has provided a novel strategy for targeted treatment. With the rapid development of ultrasonic technique and ultrasound contrast agents (UCAs), spatiotemporally controllable application of ultrasound with or without UCAs makes it possible for site-specific delivery of therapeutic agents and targeted modulation with minimal side effects, which indicated a promising therapy in clinical use. This review will describe the main mechanism of targeted therapy induced by ultrasound briefly, then focus on the current application of ultrasound mediated targeted therapy in various fields including tumour, cardiovascular disease, central nervous system, skeletal muscle system diseases and stem cells therapy. In addition, ongoing challenges of ultrasound-mediated targeted therapy for further research and its clinical use are reviewed.

  20. Driving delivery vehicles with ultrasound

    PubMed Central

    Ferrara, Katherine W.

    2009-01-01

    Therapeutic applications of ultrasound have been considered for over 40 years, with the mild hyperthermia and associated increases in perfusion produced by ultrasound harnessed in many of the earliest treatments. More recently, new mechanisms for ultrasound-based or ultrasound-enhanced therapies have been described, and there is now great momentum and enthusiasm for the clinical translation of these techniques. This dedicated issue of Advanced Drug Delivery Reviews, entitled “Ultrasound for Drug and Gene Delivery,” addresses the mechanisms by which ultrasound can enhance local drug and gene delivery and the applications that have been demonstrated at this time. In this commentary, the identified mechanisms, delivery vehicles, applications and current bottlenecks for translation of these techniques are summarized. PMID:18479775