Sample records for ultrasound pulsed doppler

  1. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  2. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. © 2012 IEEE

  3. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  4. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  5. Superharmonic microbubble Doppler effect in ultrasound therapy

    PubMed Central

    Pouliopoulos, Antonios N; Choi, James J

    2016-01-01

    Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to

  6. Ultrasound Pulsed-Wave Doppler Detects an Intrathecal Location of an Epidural Catheter Tip: A Case Report.

    PubMed

    Elsharkawy, Hesham; Saasouh, Wael; Patel, Bimal; Babazade, Rovnat

    2018-04-01

    Currently, no gold standard method exists for localization of an epidural catheter after placement. The technique described in this report uses pulsed-wave Doppler (PWD) ultrasound to identify intrathecal location of an epidural catheter. A thoracic epidural catheter was inserted after multiple trials with inconclusive aspiration and test dose. Ultrasound PWD confirmed no flow in the epidural space and positive flow in the intrathecal space. A fluid aspirate was positive for glucose, reconfirming intrathecal placement. PWD is a potential tool that can be used to locate the tip of an epidural catheter.

  7. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  8. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  9. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    PubMed

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  10. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  11. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  12. Transcranial power M-mode Doppler ultrasound for diagnosis of patent foramen ovale

    NASA Astrophysics Data System (ADS)

    Moehring, Mark; Spencer, Merrill

    2005-04-01

    Patent foramen ovale (PFO) is a right-to-left shunt (RLS) which communicates blood from the right to left atrium of the heart. PFO has been associated with stroke and, more recently, with migraine headache. Diagnosis of RLS can be accomplished effectively with transcranial power M-mode Doppler ultrasound (PMD). PMD is a modality which can be performed without the sedation required by the more invasive diagnostic technique using transesophageal echocardiography. PMD for this application consists of 2 MHz pulse Doppler ultrasound with placement of sample gates at 2 mm intervals along the single-transducer beam axis, and 8 kHz pulse repetition rate (PMD100M, Spencer Technologies). Doppler power versus depth is constructed every 4ms, using 33 sample gates. Bubble microemboli injected in the venous system and moving across a PFO present as high intensity tracks on a PMD image, as emboli transit from the heart to the brain and through the observed cerebral vasculature. Use of PMD in this context has been reported in the clinical literature [M. P. Spencer, M. A. Moehring, J. Jesurum et al, J. Neuroimaging 14, 342-349 (2004)]. This talk surveys the basic technical features of PMD for sensing PFO-related showers of bubble microemboli, and how these features provide clues to the severity of PFO.

  13. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-12-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: "Gestational trophoblastic disease AND Ultrasonography, Doppler." Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1) Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2) There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3) Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4) Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.

  14. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    PubMed

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p <0.005 and <0.001, respectively). The detection rate of standard plus contrast or vardenafil enhanced power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological

  15. Color Doppler ultrasound evaluation of testicular blood flow in stallions.

    PubMed

    Pozor, M A; McDonnell, S M

    2004-04-01

    The objectives of this study were to evaluate the potential use of color Doppler ultrasound to characterize blood flow to the stallion testis, and to establish reference values for Doppler measures of blood flow in the testicular artery of the stallion. Both testes from each of 52 horses were examined using a pulsed-wave color Doppler ultrasound with a sector array 5/7.5 MHz transducer with a 1mm gate setting. Peak systolic velocity (PSV), end diastolic velocity (EDV), resistive index (RI), and pulsatility index (PI) of the testicular artery were measured in each of two locations, the convoluted aspect (spermatic cord) and the marginal aspect of the artery (on the epididymal edge of testis). We found that: (1) all measures were obtainable; (2) except for EDV, the majority of the measures were higher at the cord location than at the marginal aspect of the artery (P < 0.05); and (3) measures for left and right testes were similar (P > 0.10). Resulting measures from 41 of these stallions (82 testes) that appeared free of testicular pathology provide useful reference values for clinical evaluation. Evaluation of 11 cases with testicular pathology suggested further investigation of possible effects of these various conditions on testicular blood flow and testicular function.

  16. Hyperemia in plantar fasciitis determined by power Doppler ultrasound.

    PubMed

    McMillan, Andrew M; Landorf, Karl B; Gregg, Julie M; De Luca, Jason; Cotchett, Matthew P; Menz, Hylton B

    2013-12-01

    Cross-sectional observational study. To investigate the presence of soft tissue hyperemia in plantar fasciitis with power Doppler ultrasound. Localized hyperemia is an established feature of tendinopathy, suggesting that neurovascular in-growth may contribute to tendon-associated pain in some patients. The presence of abnormal soft tissue vascularity can be assessed with Doppler ultrasound, and a positive finding can assist with targeted treatment plans. However, very little is known regarding the presence of hyperemia in plantar fasciitis and the ability of routine Doppler ultrasound to identify vascular in-growth in the plantar fascia near its proximal insertion. This observational study included 30 participants with plantar fasciitis unrelated to systemic disease and 30 age- and sex-matched controls. Ultrasound examination was performed with a 13- to 5-MHz linear transducer, and power Doppler images were assessed by 2 blinded investigators. Hyperemia of the plantar fascia was present in 8 of 30 participants with plantar fasciitis and in 2 of 30 controls. The between-group difference for hyperemia, using a 4-point scale, was statistically significant, with participants with plantar fasciitis showing increased Doppler ultrasound signal compared to controls (Mann-Whitney U, P = .03). However, the majority of participants with plantar fasciitis with evidence of hyperemia demonstrated very mild color changes, and only 3 were found to have moderate or marked hyperemia. Mild hyperemia can occur with plantar fasciitis, but most individuals will not exhibit greater soft tissue vascularity when assessed with routine Doppler ultrasound. Clinicians treating plantar fasciitis should not consider a positive Doppler signal as essential for diagnosis of the condition but, rather, as a feature that may help to refine the treatment plan for an individual patient.

  17. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses a small hand-held device (transducer), ... neurologic-disorders/neurologic-tests-and-procedures/other-neurologic-imaging-studies. Accessed Oct. 18, 2016. ... . Mayo Clinic Footer Legal ...

  18. MP3 compression of Doppler ultrasound signals.

    PubMed

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  19. Power Doppler ultrasonography and synovitis: correlating ultrasound imaging with histopathological findings and evaluating the performance of ultrasound equipments.

    PubMed

    Koski, J M; Saarakkala, S; Helle, M; Hakulinen, U; Heikkinen, J O; Hermunen, H

    2006-12-01

    To examine the validity of power Doppler ultrasound imaging to identify synovitis, using histopathology as gold standard, and to assess the performance of ultrasound equipments. 44 synovial sites in small and large joints, bursae and tendon sheaths were depicted with ultrasound. A synovial biopsy was performed on the site depicted and a synovial sample was taken for histopathological evaluation. The performance of three ultrasound devices was tested using flow phantoms. A positive Doppler signal was detected in 29 of 35 (83%) of the patients with active histological inflammation. In eight additional samples, histological examination showed other pathological synovial findings and a Doppler signal was detected in five of them. No significant correlation was found between the amount of Doppler signal and histological synovitis score (r = 0.239, p = NS). The amount of subsynovial infiltration of polymorphonuclear leucocytes and surface fibrin correlated significantly with the amount of power Doppler signal: r = 0.397 (p<0.01) and 0.328 (p<0.05), respectively. The ultrasound devices differed in showing the smallest detectable flow. A negative Doppler signal does not exclude the possibility of synovitis. A positive Doppler signal in the synovium is an indicator of an active synovial inflammation in patients. A Doppler signal does not correlate with the extent of the inflammation and it can also be seen in other synovial reactions. It is important that the quality measurements of ultrasound devices are reported, because the results should be evaluated against the quality of the device used.

  20. Eyeballing oscillators for pulsed Doppler radar

    NASA Astrophysics Data System (ADS)

    Goldman, S.

    1985-03-01

    The visibility of small targets to a Doppler radar system in the presence of large targets is limited by phase noise. Such limitations occur when an airborne radar searches the ground for a mobile vehicle. Under these conditions, the performance of the Doppler radar depends greatly on the specifications of its phased-locked oscillator. Goldman (1984) has discussed the steps required to evaluate the noise resulting from a pulsed Doppler radar system. In the present investigation, these techniques are applied in reverse to determine system specifications for oscillator noise. A 95-GHz pulsed Doppler radar system is used as an example of specifying system phase noise.

  1. Doppler ultrasound exam of an arm or leg

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003775.htm Doppler ultrasound exam of an arm or leg To use ... this page, please enable JavaScript. This test uses ultrasound to look at the blood flow in the ...

  2. Clinical diagnosis by transcutaneous Doppler ultrasound

    PubMed Central

    Wyse, R. K. H.

    1982-01-01

    Transcutaneous Doppler ultrasound represents a convenient, reliable technique for the non-invasive diagnosis and assessment of a rapidly increasing number of diverse circulatory disorders. ImagesFig. 2Fig. 3 PMID:7050948

  3. An audit of a hospital-based Doppler ultrasound quality control protocol using a commercial string Doppler phantom.

    PubMed

    Cournane, S; Fagan, A J; Browne, J E

    2014-05-01

    Results from a four-year audit of a Doppler quality assurance (QA) program using a commercially available Doppler string phantom are presented. The suitability of the phantom was firstly determined and modifications were made to improve the reliability and quality of the measurements. QA of Doppler ultrasound equipment is very important as data obtained from these systems is used in patient management. It was found that if the braided-silk filament of the Doppler phantom was exchanged with an O-ring rubber filament and the velocity range below 50 cm/s was avoided for Doppler quality control (QC) measurements, then the maximum velocity accuracy (MVA) error and intrinsic spectral broadening (ISB) results obtained using this device had a repeatability of 18 ± 3.3% and 19 ± 3.5%, respectively. A consistent overestimation of the MVA of between 12% and 56% was found for each of the tested ultrasound systems. Of more concern was the variation of the overestimation within each respective transducer category: MVA errors of the linear, curvilinear and phased array probes were in the range 12.3-20.8%, 32.3-53.8% and 27-40.7%, respectively. There is a dearth of QA data for Doppler ultrasound; it would be beneficial if a multicentre longitudinal study was carried out using the same Doppler ultrasound test object to evaluate sensitivity to deterioration in performance measurements. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Repeatability of Doppler ultrasound measurements of hindlimb blood flow in halothane anaesthetised horses.

    PubMed

    Raisis, A L; Young, L E; Meire, H; Walsh, K; Taylor, P M; Lekeux, P

    2000-05-01

    The purpose of this study was to determine the repeatability of femoral blood flow recorded using Doppler ultrasound in anaesthetised horses. Doppler ultrasound of the femoral artery and vein was performed in 6 horses anaesthetised with halothane and positioned in left lateral recumbency. Velocity spectra, recorded using low pulse repetition frequency, were used to calculate time-averaged mean velocity (TAV), velocity of component a (TaVa), velocity of component b (TaVb), volumetric flow, early diastolic deceleration slope (EDDS) and pulsatility index (PI). Within-patient variability was determined for sequential Doppler measurements recorded during a single standardised anaesthetic episode. Within-patient variability was also determined for Doppler and cardiovascular measurements recorded during 4 separate standardised anaesthetic episodes performed at intervals of at least one month. Within-patient variation during a single anaesthetic episode was small. Coefficients of variation (cv) were <12.5% for arterial measurements and <17% for venous measurements. Intraclass correlation coefficient was >0.75 for all measurements. No significant change was observed in measurements of cardiovascular function suggesting that within-patient variation observed during a single anaesthetic episode was due to measurement error. In contrast, within-patient variation during 4 separate anaesthetic episodes was marked (cv>17%) for most Doppler measurements obtained from arteries and veins. Variation in measurements of cardiovascular function were marked (cv>20%), suggesting that there is marked biological variation in central and peripheral observed. Further studies are warranted to determine the ability of this technique to detect differences in blood flow during administration of different anaesthetic agents.

  5. Comparison of the Diagnostic Performance of Power Doppler Ultrasound and a New Microvascular Doppler Ultrasound Technique (AngioPLUS) for Differentiating Benign and Malignant Breast Masses.

    PubMed

    Jung, Hae Kyoung; Park, Ah Young; Ko, Kyung Hee; Koh, Jieun

    2018-03-12

    This study was performed to compare the diagnostic performance of power Doppler ultrasound (US) and a new microvascular Doppler US technique (AngioPLUS; SuperSonic Imagine, Aix-en-Provence, France) for differentiating benign and malignant breast masses. Power Doppler US and AngioPLUS findings were available in 124 breast masses with confirmed pathologic results (benign, 80 [64.5%]; malignant, 44 [35.5%]). The diagnostic performance of each tool was calculated to distinguish benign from malignant masses using a receiver operating characteristic curve analysis and compared. The area under the curve showed that AngioPLUS was superior to power Doppler US in differentiating benign from malignant breast masses, but the difference was not statistically significant. © 2018 by the American Institute of Ultrasound in Medicine.

  6. Causes of Ultrasound Doppler Twinkling Artifact

    NASA Astrophysics Data System (ADS)

    Leonov, D. V.; Kulberg, N. S.; Gromov, A. I.; Morozov, S. P.; Kim, S. Yu.

    2018-01-01

    Ultrasound Doppler twinkling artifact is analyzed. It usually appears as a frequent color alteration in the region of hyperechoic objects. Its noiselike spectrum can also be seen in spectral Doppler mode. Physicians use twinkling artifact as a clinical sign for kidney-stone and soft-tissue calculi detection. The advantageous peculiarity of this study is that the experiments were conducted utilizing raw signals obtained from a custom ultrasonic machine and a specially developed phantom. The phantom contained specimens with known qualities, allowing for reproducible and predictable results. The experiments revealed evidence for two physical causes of twinkling artifact, which were associated with two unique Doppler signals. The research laid the foundation for the new reflected-signal model introduced and used throughout this paper.

  7. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  8. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  9. Doppler ultrasound to detect pulpal blood flow changes during local anaesthesia.

    PubMed

    Yoon, M J; Lee, S J; Kim, E; Park, S H

    2012-01-01

      To examine whether Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia.   Changes in pulpal blood flow in maxillary central incisor teeth of 18 patients (mean age 26.7 years, 13 men, five women) after infiltration anaesthesia were examined. Before infiltration anaesthesia, the pulpal blood flow was measured using Doppler ultrasound. A local anaesthetic solution containing 2% lidocaine with 1:80,000 epinephrine was injected into the submucosa above the experimental tooth. The Doppler ultrasound test was carried out at 5, 10, 20, 30, 45 and 60 min after infiltration. The parameters were Vas (maximum linear velocity, cm s(-1) ), Vam (average linear velocity, cm s(-1) ) and Vakd (minimum linear velocity, cm s(-1) ), which are indicators of the level of blood flow. The mixed procedure at the 95% confidence interval was used to examine the changes in pulpal blood flow after the injection.   The linear velocity profiles (Vas, Vam, and Vakd) decreased sharply 5 min after anaesthesia and then reduced continuously for 30 min. The maximum degree of blood flow reduction in Vas, Vam and Vakd was 58%, 83% and 82%, respectively. After 30 min, the linear velocities increased gradually. The Vam returned to the pre-anaesthesia state at 60 minutes but the Vas and Vakd did not recover completely.   Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. In the future, Doppler ultrasound can be used as a tool for measuring pulpal blood flow. © 2011 International Endodontic Journal.

  10. Wave Field Characterization Using Dual-Polarized Pulse-Doppler X-Band Radar

    DTIC Science & Technology

    2012-06-01

    spectrum (frequencies higher than that associated with the wind wave peak) are similar for the buoy and Doppler, and likewise for the ultrasound array and...values of the RCS and ultrasound array relative to the buoy and Doppler are due to the formers’ larger energy levels at high frequencies. NSWCCD-50-TR...pp. 199- 203, 2008. [II] W. J. Plant, W. C. Keller, A. B. Reeves, E. A. Uliana, and J. W. Johnson, " Airborne microwave Doppler measurements of

  11. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  12. Computed estimates of maximum temperature elevations in fetal tissues during transabdominal pulsed Doppler examinations.

    PubMed

    Bly, S H; Vlahovich, S; Mabee, P R; Hussey, R G

    1992-01-01

    Measured characteristics of ultrasonic fields were obtained in submissions from manufacturers of diagnostic ultrasound equipment for devices operating in pulsed Doppler mode. Simple formulae were used with these data to generate upper limits to fetal temperature elevations, delta Tlim, during a transabdominal pulsed Doppler examination. A total of 236 items were analyzed, each item being a console/transducer/operating-mode/intended-use combination, for which the spatial-peak temporal-average intensity, ISPTA, was greater than 500 mW cm-2. The largest calculated delta Tlim values were approximately 1.5, 7.1 and 8.7 degrees C for first-, second- and third-trimester examinations, respectively. The vast majority of items yielded delta Tlim values which were less than 1 degree C in the first trimester. For second- and third-trimester examinations, where heating of fetal bone determines delta Tlim, most delta Tlim values were less than 4 degrees C. The clinical significance of the results is discussed.

  13. Ultrasound Doppler method of remote elastometry

    NASA Astrophysics Data System (ADS)

    Timanin, E. M.; Eremin, E. V.; Belyaev, R. V.; Mansfel'd, A. D.

    2015-03-01

    The paper presents the theoretical relations constituting the basis of remote measurements of the shear elasticity of biological tissues using the ultrasound Doppler method. It also describes the hardware-software setup implementing this approach, as well as the results of experiments with these tools on a biological tissue phantom and on human liver in vivo.

  14. Relationship between loss of echogenicity and cavitation emissions from echogenic liposomes insonified by spectral Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Kirthi

    Cardiovascular disease is the leading cause of death and disability in the United States and worldwide. Echogenic liposomes (ELIP) are theragonistic ultrasound contrast agents (UCAs) being developed for the early detection and treatment of cardiovascular disease. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. The stability of ELIP echogenicity was determined in vitro under physiologic conditions of total dissolved gas concentration, temperature, and hydrodynamic pressure in porcine plasma and whole blood. Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation as a function of pulse duration and pulse repetition frequency (PRF). Previous studies have also demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of ELIP as a function of pulse duration and pulse repetition frequency. Determining the relationship between cavitation thresholds and loss of echogenicity of ELIP would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. ELIP were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations and four PRFs in a static fluid and in a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a single-element passive cavitation detection (PCD) system and a passive cavitation imaging (PCI) system. Stable and inertial cavitation thresholds were ascertained. Loss of echogenicity from ELIP was assessed within regions of interest on B-mode images. Stable cavitation thresholds were found to be lower than inertial

  15. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... determine stationary body tissue characteristics, such as depth or location of tissue interfaces or dynamic...

  16. [The use of intraoperative Doppler ultrasound in endoscopic transsphenoidal surgery].

    PubMed

    Sharipov, O I; Kutin, M A; Kalinin, P L; Fomichev, D V; Lukshin, V A; Kurnosov, A B

    2016-01-01

    Doppler ultrasound (DUS) has been widely used in neurosurgical practice to diagnose various cerebrovascular diseases. This technique is used in transsphenoidal surgery to identify the localization of intracranial arteries when making an approach or during tumor resection. To identify the cavernous segment of the internal carotid artery (ICA) and/or basilar artery during endoscopic transsphenoidal surgery, we used a combined device on the basis of a click line curette («Karl Storz») and a 16 MHz Doppler probe (Lassamed). The technique was used in 51 patients during both standard transsphenoidal surgery (23 cases) and transsphenoidal tumor resection through an extended approach (28 cases). Doppler ultrasound was used in different situations: to determine a trajectory of the endonasal transsphenoidal approach in the absence of the normal anatomical landmarks (16 cases), to define the limits of safe resection of a tumor located in the laterosellar region (7), and to implement an extended transsphenoidal endoscopic approach (28). Intraoperative Doppler ultrasound enabled identification of the cavernous segment of the internal carotid artery in 45 cases and the basilar artery in 2 cases; a blood vessel was not found in 4 cases. Injury to the cavernous segment of the internal carotid artery was observed only in 1 case. The use of the described combined device in transsphenoidal surgery turned Doppler ultrasound into an important and useful technique for visualization of the ICA within the tumor stroma as well as in the case of the changed skull base anatomy. Its use facilitates manipulations in a deep and narrow wound and enables inspection of the entire surface of the operative field in various planes, thereby surgery becomes safer due to the possibility of maximum investigation of the operative field.

  17. Carotid Doppler ultrasound findings in patients with left ventricular assist devices.

    PubMed

    Cervini, Patrick; Park, Soon J; Shah, Dipesh K; Penev, Irina E; Lewis, Bradley D

    2010-12-01

    Left ventricular assist devices (LVADs) have been used to treat advanced heart failure refractory to medical management, as bridge therapy to myocardial recovery, as bridge therapy to cardiac transplantation, or as destination therapy for patients with unfavorable transplant candidacy. Neurologic complications are some of the most common and devastating complications in these patients. Preoperative carotid ultrasound is, therefore, a standard evaluation in patients at risk for cerebrovascular disease. Postoperative carotid artery Doppler sonography is performed in those patients with neurologic symptoms. It is likely, therefore, that sonographers, radiologists, and other physicians working in a center where LVADs are implanted will likely encounter a carotid artery Doppler study in this patient group. To our knowledge, the carotid Doppler findings in these patients have never been published. We review the Doppler ultrasound findings in 6 patients after LVAD insertion.

  18. Pulse Doppler ultrasound as a tool for the diagnosis of chronic testicular dysfunction in stallions

    PubMed Central

    Ortiz-Rodriguez, Jose M.; Anel-Lopez, Luis; Martín-Muñoz, Patricia; Álvarez, Mercedes; Gaitskell-Phillips, Gemma; Anel, Luis; Rodríguez-Medina, Pedro; Peña, Fernando J.

    2017-01-01

    values (high vascular perfusion). In contrast, subfertile stallions tend to present high values of PI and RI (high vascular resistance). The ROC curves revealed that the best Doppler parameters to predict sperm quality in stallions were: Doppler velocities (PSV, EDV and TAMV), the diameter of the capsular artery and TABF parameters (tissue perfusion parameters). Cut off values were established using a Youden´s Index to identify fertile stallions from stallions with testicular dysfunction. Spectral Doppler ultrasound is a good predictive tool for sperm quality since correlations were determined among Doppler parameters and markers of sperm quality. Doppler ultrasonography could be a valuable diagnostic tool for use by clinical practitioners for the diagnosis of stallions with testicular dysfunction and could be a viable alternative to invasive procedures traditionally used for diagnosis of sub-fertility disorders. PMID:28558006

  19. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  20. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  1. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  3. Real-time and interactive virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  4. Audible handheld Doppler ultrasound determines reliable and inexpensive exclusion of significant peripheral arterial disease.

    PubMed

    Alavi, Afsaneh; Sibbald, R Gary; Nabavizadeh, Reza; Valaei, Farnaz; Coutts, Pat; Mayer, Dieter

    2015-12-01

    To determine the accuracy of audible arterial foot signals with an audible handheld Doppler ultrasound for identification of significant peripheral arterial disease as a simple, quick, and readily available bedside screening tool. Two hundred consecutive patients referred to an interprofessional wound care clinic underwent audible handheld Doppler ultrasound of both legs. As a control and comparator, a formal bilateral lower leg vascular study including the calculation of Ankle Brachial Pressure Index and toe pressure (TP) was performed at the vascular lab. Diagnostic reliability of audible handheld Doppler ultrasound was calculated versus Ankle Brachial Pressure Index as the gold standard test. A sensitivity of 42.8%, a specificity of 97.5%, negative predictive value of 94.10%, positive predictive value of 65.22%, positive likelihood ratio of 17.52, and negative likelihood ratio of 0.59. The univariable logistic regression model had an area under the curve of 0.78. There was a statistically significant difference at the 5% level between univariable and multivariable area under the curves of the dorsalis pedis and posterior tibial models (p < 0.001). Audible handheld Doppler ultrasound proved to be a reliable, simple, rapid, and inexpensive bedside exclusion test of peripheral arterial disease in diabetic and nondiabetic patients. © The Author(s) 2015.

  5. C-band radar pulse Doppler error: Its discovery, modeling, and elimination

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Dempsey, D. J.

    1978-01-01

    The discovery of a C Band radar pulse Doppler error is discussed and use of the GEOS 3 satellite's coherent transponder to isolate the error source is described. An analysis of the pulse Doppler tracking loop is presented and a mathematical model for the error was developed. Error correction techniques were developed and are described including implementation details.

  6. Invasive and noninvasive assessment of pulmonic regurgitation: clinical, angiographic, phonocardiographic, echocardiographic, and Doppler ultrasound correlations.

    PubMed

    Chandraratna, P A; Wilson, D; Imaizumi, T; Ritter, W S; Aronow, W S

    1982-06-01

    Three patients with pulmonic regurgitation and no evidence of pulmonary hypertension were investigated. These patients had low pitched diastolic murmurs which increased on inspiration, evidence of connective tissue disease as manifested by lax joints and hyperextensible skin, and marked hilar dance which extended up to the peripheral vessels. Suprasternal echocardiography revealed dilatation and increased systolic expansion of the right pulmonary artery (RPA) (25% and 28%, respectively) in two patients; the third patient had a normal RPA dimension in diastole and a marked increase in diameter (88%) in systole. Thus, these three patients demonstrated hyperdistensibility of the RPA. The spectral signal from the pulsed doppler echocardiograph showed evidence of turbulent blood flow in diastole (wide dispersion of the dots) in the right ventricular outflow tract in all three patients. This pattern was indicative of pulmonic regurgitation. In summary, the combined use of echocardiography and Doppler ultrasound is useful in the evaluation of patients with pulmonic regurgitation.

  7. The effect of blood acceleration on the ultrasound power Doppler spectrum

    NASA Astrophysics Data System (ADS)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  8. Doppler color imaging. Principles and instrumentation.

    PubMed

    Kremkau, F W

    1992-01-01

    DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.

  9. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  10. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  11. Non-invasive measurement of pulse wave velocity using transputer-based analysis of Doppler flow audio signals.

    PubMed

    Stewart, W R; Ramsey, M W; Jones, C J

    1994-08-01

    A system for the measurement of arterial pulse wave velocity is described. A personal computer (PC) plug-in transputer board is used to process the audio signals from two pocket Doppler ultrasound units. The transputer is used to provide a set of bandpass digital filters on two channels. The times of excursion of power through thresholds in each filter are recorded and used to estimate the onset of systolic flow. The system does not require an additional spectrum analyser and can work in real time. The transputer architecture provides for easy integration into any wider physiological measurement system.

  12. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  13. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    PubMed Central

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  14. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis.

    PubMed

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene

    2015-02-01

    To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.

  15. [Validation of a new hand-carried ultrasound device equipped with directional color power Doppler and continuous wave Doppler].

    PubMed

    Kawai, Junichi; Tanabe, Kazuaki; Matsuzaki, Masashi; Yamaguchi, Kazuto; Yagi, Toshikazu; Fujii, Yoko; Konda, Toshiko; Ui, Kazuyo; Sumida, Toshiaki; Okada, Midori; Tani, Tomoko; Morioka, Shigefumi

    2003-10-01

    This study evaluated the accuracy of the directional color power Doppler (DCPD) and continuous wave Doppler (CWD) methods incorporated in the new hand-carried SonoSite 180PLUS ultrasound device. The hand-held ultrasound system with 2.5 MHz transducer and SONOS 5500 was used as a standard ultrasound system with a 2 to 4 MHz wideband transducer. The experimental study used a Doppler wire phantom to evaluate the influence of target wire speed and angle of transducer on DCPD imaging. The clinical study included 48 consecutive patients. DCPD assessment of valvular regurgitation measured the distances of DCPD signals of mitral, aortic and tricuspid valve regurgitation using the apical four-chamber view for comparison with standard echocardiography. CWD assessment measured the peak velocities of the aortic flow and tricuspid valve regurgitant flow for comparison with standard echocardiography. In the experimental study, DCPD signals were not influenced by target wire speed changes and transducer incident angles. In the clinical study, agreements for mitral, aortic and tricuspid regurgitation between the two methods were 89.6%, 81.8% and 78.7%, respectively. The distances of DCPD valve regurgitant signals by the hand-carried ultrasound device showed good correlation (mitral regurgitation: y = 0.84x + 0.55; r = 0.93, aortic regurgitation: y = 0.95x + 0.27; r = 0.94, tricuspid regurgitation: y = 0.86x + 0.61; r = 0.90) with those by standard echocardiography. Evaluation of CWD velocity measurements showed good agreement for the lower flow velocities (< 2.0 m/sec). However, underestimation occurred for the high flow velocities (> 2.0 m/sec) compared with those by standard echocardiography (aortic flow: y = 0.80x + 0.11; r = 0.95, tricuspid regurgitation: y = 1.00x - 0.23; r = 0.90). The new hand-carried ultrasound device (SonoSite 180PLUS equipped with DCPD and CWD) is clinically useful for evaluating valvular regurgitations and flow velocities. Further studies are needed to

  16. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference

    PubMed Central

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-01-01

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257

  17. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    PubMed

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  18. 3D power Doppler ultrasound in early diagnosis of preeclampsia.

    PubMed

    Neto, R Moreira; Ramos, J G L

    2016-01-01

    Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (p<0.001). There was not any statistical difference in the patients examined in the first trimester. Our findings suggest that 3D-power Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  19. Transcranial Doppler Ultrasound in Peninsular Arab Patients With Sickle Cell Disease.

    PubMed

    Adekile, Adekunle; Hassan, Meaad; Asbeutah, Akram; Al-Hinai, Mohamed; Trad, Omar; Farhan, Nayef

    2018-05-06

    Transcranial Doppler ultrasound is used to identify patients with sickle cell disease (SCD) at risk for stroke. We performed transcranial Doppler studies in patients from 4 countries in the Arabian Peninsula (Kuwait, Oman, Iraq, and United Arab Emirates) to document the prevalence of abnormal transcranial Doppler findings. The patients were recruited from outpatient clinics and studied in a steady state. Transcranial Doppler examinations were performed with standard equipment by experienced operators. The time-averaged maximum mean velocity (TAMMV) was documented in the arteries of the circle of Willis. The hemoglobin (Hb) genotype was confirmed, and the fetal Hb level and complete blood counts were determined. There were 415 patients in the study, aged 2 to 18 years (mean ± SD, 8.6 ± 3.5 years). None of the patients had an abnormal TAMMV (ie, > 200 cm/s), whereas only 13 (3.1%), all from Iraq, had conditional values (170-200 cm/s) in the right middle cerebral artery and 7 (1.7%) in the left middle cerebral artery. There were no consistent TAMMV differences among male and female patients or in patients with different Hb genotypes (sickle cell anemia, sickle cell β 0- thalassemia, and sickle D). The use of hydroxyurea was associated with a lower TAMMV, whereas a blood transfusion history had no influence. Total hemoglobin, reticulocyte count, serum bilirubin, and fetal Hb values showed varying degrees of association with the TAMMV in the different vessels. This study has demonstrated the rarity of abnormal transcranial Doppler findings among Peninsular Arab patients with SCD. The guidelines for transcranial Doppler screening in this population need further studies and recommendations. © 2018 by the American Institute of Ultrasound in Medicine.

  20. Physics and instrumentation of ultrasound.

    PubMed

    Lawrence, John P

    2007-08-01

    A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.

  1. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    PubMed

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes

    PubMed Central

    Mehrmohammadi, Mohammad; Oh, Junghwan; Mallidi, Srivalleesha; Emelianov, Stanislav Y.

    2011-01-01

    Nano-sized particles are widely regarded as a tool to study biologic events at the cellular and molecular levels. However, only some imaging modalities can visualize interaction between nanoparticles and living cells. We present a new technique, pulsed magneto-motive ultrasound imaging, which is capable of in vivo imaging of magnetic nanoparticles in real time and at sufficient depth. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce the motion within the magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. Our experiments demonstrated a sufficient contrast between normal and iron-laden cells labeled with ultrasmall magnetic nanoparticles. Therefore, pulsed magneto-motive ultrasound imaging could become an imaging tool capable of detecting magnetic nanoparticles and characterizing the cellular and molecular composition of deep-lying structures. PMID:21439255

  3. [Current role of color Doppler ultrasound in acute renal failure].

    PubMed

    Bertolotto, M; Quaia, E; Rimondini, A; Lubin, E; Pozzi Mucelli, R

    2001-01-01

    Acute Renal Failure (ARF) is characterized by a rapid decline of the glomerular filtration rate, due to hypotension (prerenal ARF), obstruction of the urinary tract (post-renal ARF) or renal parenchymal disease (renal ARF). The differential diagnosis among different causes of ARF is based on anamnesis, clinical symptoms and laboratory data. Usually ultrasound (US) is the only imaging examination performed in these patients, because it is safe and readily available. In patients with ARF gray scale US is usually performed to rule out obstruction since it is highly sensitive to recognize hydronephrosis. Patients with renal ARF have no specific changes in renal morphology. The size of the kidneys is usually normal or increased, with smooth margins. Detection of small kidneys suggests underlying chronic renal pathology and worse prognosis. Echogenicity and parenchymal thickness are usually normal, but in some cases there are hyperechogenic kidneys, increased parenchymal thickness and increased cortico-medullary differentiation. Evaluation of renal vasculature with pulsed Doppler US is useful in the differential diagnosis between prerenal ARF and acute tubular necrosis (ATN), and in the diagnosis of renal obstruction. Latest generation US apparatus allow color Doppler and power Doppler evaluation of renal vasculature up to the interlobular vessels. A significant, but non specific, reduction in renal perfusion is usually appreciable in the patients with ARF. There are renal pathologic conditions presenting with ARF in which color Doppler US provides more specific morphologic and functional information. In particular, color Doppler US often provides direct or indirect signs which can lead to the right diagnosis in old patients with chronic renal insufficiency complicated with ARF, in patients with acute pyelonephritis, hepatic disease, vasculitis, thrombotic microangiopathies, and in patients with acute thrombosis of the renal artery and vein. Contrast enhanced US is

  4. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience.

    PubMed

    Cantisani, Vito; Maceroni, Piero; D'Andrea, Vito; Patrizi, Gregorio; Di Segni, Mattia; De Vito, Corrado; Grazhdani, Hektor; Isidori, Andrea M; Giannetta, Elisa; Redler, Adriano; Frattaroli, Fabrizio; Giacomelli, Laura; Di Rocco, Giorgio; Catalano, Carlo; D'Ambrosio, Ferdinando

    2016-05-01

    To assess whether ultrasound elastography (USE) with strain ratio increases diagnostic accuracy of Doppler ultrasound in further characterisation of cytologically Thy3 thyroid nodules. In two different university diagnostic centres, 315 patients with indeterminate cytology (Thy3) in thyroid nodules aspirates were prospectively evaluated with Doppler ultrasound and strain ratio USE before surgery. Ultrasonographic features were analysed separately and together as ultrasound score, to assess sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Receiver operating characteristic (ROC) curves to identify optimal cut-off value of the strain ratio were also provided. Diagnosis on a surgical specimen was considered the standard of reference. Higher strain ratio values were found in malignant nodules, with an optimum strain ratio cut-off of 2.09 at ROC analysis. USE with strain ratio showed 90.6% sensitivity, 93% specificity, 82.8% PPV, 96.4% NPV, while US score yielded a sensitivity of 52.9%, specificity of 84.3%, PPV 55.6% and NPV 82.9%. The diagnostic gain with strain ratio was statistically significant as proved by ROC areas, which was 0.9182 for strain ratio and 0.6864 for US score. USE with strain ratio should be considered a useful additional tool to colour-Doppler US, since it improves characterisation of thyroid nodules with indeterminate cytology. • Strain ratio measurements improve differentiation of thyroid nodules with indeterminate cytology • Elastography with strain ratio is more reliable than ultrasound features and ultrasound score • Strain ratio may help to better select patients with Thy 3 nodules candidate for surgery.

  5. [Contrast enhanced power Doppler and color Doppler ultrasound in breast masses: Efficiency in diagnosis and contributions to differential diagnosis].

    PubMed

    Algül, Ali; Balci, Pinar; Seçil, Mustafa; Canda, Tülay

    2003-06-01

    To compare ability of detection of vascular structures by utilizing ultrasonographic contrast agent (Levovist) prior to and following power Doppler ultrasound (PDUS) and colour Doppler ultrasound (CDUS) and to determine useful parameters in the differentiation of malignant and benign breast masses by means of verified data. Vascularisation characteristics of 38 breast masses (22 malignant, 16 benign) which were confirmed by mammography and B-mode sonography were evaluated by both CDUS and PDUS following and prior to intravenous contrast application. In addition, Vmax and RI values of vascular structures were calculated by Doppler spectral evaluation. Malignant lesions showed more vascularity than benign lesions both with and without contrast enhancement. With both methods, by utilizing contrast agent, central, penetrating and tortuous vascular structures became more significant in malignant lesions when compared with benign lesions. PDUS was able to detect vascular structures better than CDUS; however, the difference was not statistically significant. Presence of peripheral vascularity was not useful in differentiating malignant from benign lesions. Vmax and RI values were higher in malignant lesions and the difference was statistically significant. In both methods, Vmax > 15 cm/sec and RI > 0.80 (CDUS), and RI > 0.70 (PDUS) were accepted as malignancy parameters. Vascular patterns of breast masses as determined with PDUS and CDUS with contrast enhancement and Doppler spectral examinations enabled differentiation of malignant and benign breast lesions. Thus, it is possible to decrease the number of unnecessary surgical interventions.

  6. From a formal training program in musculoskeletal ultrasound (MSUS) to a high reproducibility for Doppler ultrasound in rheumatoid arthritis.

    PubMed

    Villota, Orlando; Diaz, Mario; Ceron, Carmen; Moller, Ingrid; Naredo, Esperanza; Saaibi, Diego Luis

    2017-07-28

    To assess the intra- and inter-observer reliability of ultrasound (US) in scoring B-mode, Doppler synovitis and combined B-mode and Doppler synovitis scores in different peripheral joints of rheumatoid arthritis (RA) patients. Four rheumatologists with a formal training in musculoskeletal US (MSKUS) particularly focus on definitions and scoring synovitis on B-mode and Doppler mode participated in a patient-based reliability exercise on 16 active RA patients. The four rheumatologists independently and consecutively performed a B-mode and power Doppler (PD) US assessment of 7 joints of each patient in two rounds in a blinded fashion. Each joint was semi quantitatively scored from 0 to 3 for B-mode synovitis (BS), Doppler synovitis (DS), and combined B-mode/Doppler synovitis (CS). Intraobserver reliability was assessed by Cohen's κ. Interobserver reliability was assessed by unweight Light's κ. The mean prevalence of synovitis on B-mode was 83% of joints; scores ranging from grade 1 in 18% of joints, to grade 3 in 33%. In 55% of joints synovial PD signal was detected and the distribution of scores range from 14% of joints for grade 3, to 26% for grade 2. After a total of 448 joints scanned with 896 adquired images our intraobserver and interobserver reliability was good to excellent for most of the joints. Formal, structured and continuous training in musculoskeletal ultrasound would bring a good to excellent reproducibility in rheumatological hands with a high reliability in real time acquisition BS, DS and CS modalities for scoring synovitis in patients with active rheumatoid arthritis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. High-intensity focused ultrasound ablation assisted using color Doppler imaging for the treatment of hepatocellular carcinomas.

    PubMed

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Maeda, Shin; Tanaka, Katsuaki; Ohto, Masao; Ito, Ryu; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang, Zhi-Biao

    2013-12-01

    We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.

  8. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton

    2017-11-01

    Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

  9. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  10. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    PubMed

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  11. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model.

    PubMed

    Maxwell, Adam D; Owens, Gabe; Gurm, Hitinder S; Ives, Kimberly; Myers, Daniel D; Xu, Zhen

    2011-03-01

    This study evaluated histotripsy as a noninvasive, image-guided method of thrombolysis in a porcine model of deep vein thrombosis. Histotripsy therapy uses short, high-intensity, focused ultrasound pulses to cause mechanical breakdown of targeted soft tissue by acoustic cavitation, which is guided by real-time ultrasound imaging. This is an in vivo feasibility study of histotripsy thrombolysis. Acute thrombi were formed in the femoral vein of juvenile pigs weighing 30-40 kg by balloon occlusion with two catheters and thrombin infusion. A 10-cm-diameter 1-MHz focused transducer was used for therapy. An 8-MHz ultrasound imager was used to align the clot with the therapy focus. Therapy consisted of five cycle pulses delivered at a rate of 1 kHz and peak negative pressure between 14 and 19 MPa. The focus was scanned along the long axis of the vessel to treat the entire visible clot during ultrasound exposure. The targeted region identified by a hyperechoic cavitation bubble cloud was visualized via ultrasound during treatment. Thrombus breakdown was apparent as a decrease in echogenicity within the vessel in 10 of 12 cases and in 7 cases improved flow through the vein as measured by color Doppler. Vessel histology found denudation of vascular endothelium and small pockets of hemorrhage in the vessel adventitia and underlying muscle and fatty tissue, but perforation of the vessel wall was never observed. The results indicate histotripsy has potential for development as a noninvasive treatment for deep vein thrombosis. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  12. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  13. Doppler ultrasound of the central retinal artery in microgravity.

    PubMed

    Sirek, Adam S; Garcia, Kathleen; Foy, Millennia; Ebert, Doug; Sargsyan, Ashot; Wu, Jimmy H; Dulchavsky, Scott A

    2014-01-01

    Ocular changes have been noted during long-duration spaceflight; we studied central retinal artery (CRA) blood flow using Doppler before, during, and after long-term microgravity exposure in astronauts compared with data from a control group of nonastronauts subjected to head-down tilt (HDT). Available Doppler spectra of International Space Station (ISS) crewmembers were obtained from the NASA Lifetime Surveillance of Astronaut Health database, along with 2D ultrasound-derived measurements of the optic nerve sheath diameter (ONSD). CRA Doppler spectra and optic nerve sheath images were also obtained from healthy test subjects in an acute HDT experiment at 20 min of exposure (the ground-based analogue). HDT CRA peak systolic velocity in the ground-based analogue group increased by an average of 3 cm -s(-1) (33%) relative to seated values. ONSD at 300 of HDT increased by 0.5 mm relative to supine values. CRA Doppler spectra obtained on orbit were of excellent quality and demonstrated in-flight changes of +5 cm x s(-1) (50%) compared to preflight. ONSD increased in ISS crewmembers during flight relative to before flight, with some reversal postflight. A significant ONSD response to acute postural change and to spaceflight was demonstrated in this preliminary study. Increases in Doppler peak flow velocities correlated with increases in ONSD. Further investigations are warranted to corroborate the relationship between ONSD, intracranial pressure, and central retinal blood flow for occupational surveillance and research purposes.

  14. Cow's milk allergy: color Doppler ultrasound findings in infants with hematochezia.

    PubMed

    Epifanio, Matias; Spolidoro, Jose Vicente; Missima, Nathalia Guarienti; Soder, Ricardo Bernardi; Garcia, Pedro Celiny Ramos; Baldisserotto, Matteo

    2013-01-01

    ultrasound (US) has been an important diagnostic tool to identify several causes of gastrointestinal bleeding. Infants with cow's milk allergy (CMA) may present hematochezia and the confirmation of the diagnosis can be difficult. The aim of this study is to describe grayscale and color Doppler ultrasound findings in patients with CMA. we retrospectively studied 13 infants with CMA. All infants presented severe hematochezia and abdominal pain. All underwent an US study with the diagnosis of allergic colitis. This diagnosis was based on clinical findings, recovery after infant or mother exclusion diets in the case of exclusive breastfeeding and positive oral challenge test. the mean age ranged from 1 to 6 months (mean=3.53). Seven out of 13 infants (53.8%) had grayscale and color Doppler sonographic repeated after exclusion diet. Twelve out of 13 (92,3%) showed abnormalities at US and CDUS at beginning. The positive findings suggesting colitis were thickened bowel walls and increased vascularity, especially in the descending and sigmoid colon. Colonoscopy and histopathological findings were compatible with allergic colitis. After a diet change the 13 infants recovered and their oral challenge tests were positive. Doppler US may be very useful in diagnosing secondary colitis, such as CMA, and to exclude several other abdominal diseases that can emulate this disease. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  16. High-frequency ultrasound Doppler system for biomedical applications with a 30-MHz linear array.

    PubMed

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2008-04-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30-MHz linear array transducer to assess the cardiovascular functions in small animals. This array-based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers and analog front ends. The beamformed echoes acquired by the 16-channel analog beamformer were fed directly to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a personal computer. The Doppler spectrogram was displayed on a personal computer in real time. The two-way beamwidths were determined to be 160 microm to 320 microm when the array was electronically focused at different focal points at depths from 5 to 10 mm. A micro-flow phantom, consisting of a polyimide tube with an inner diameter of 127 microm and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127-microm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels, with diameters of approximately 200 microm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array-based imaging systems for small animal studies.

  17. [Two- and three-dimensional power Doppler ultrasound in the follow-up of placenta accreta treated conservatively].

    PubMed

    Roulot, A; Barranger, E; Morel, O; Soyer, P; Héquet, D

    2015-02-01

    To determinate the potential of 2D and 3D-ultrasound in the follow-up of patients with placenta accreta treated conservatively. Seven patients with placenta accreta treated conservatively during June 2007 and September 2009 were included. The follow-up consisted in clinical examination and 2D/3D-ultrasound once a month. Criteria studied included clinical outcome, echogenicity at 2D-ultrasound, vascularisation at colour Doppler, Mean Grey at 3D-ultrasound and vascularisation, flow and perfusion index. Seven women with invasive placenta (3 placentas accreta and 2 percreta) were studied. The mean follow-up was 228 days [75-369]. Mean delay for complete elimination of residual placenta was 280 days [120-365]. The two main results were: presence of an increased anechogenicpart in residual placenta before complete resorption for all patients; a systematic and concomitant stop of genital haemorrhage and vascularisation at colour Doppler. High degrees of variability in parameters measured at 3D-ultrasound were observed between patients so that correlations with clinical outcome were found. Long and regular follow-up is essential after conservative management but the role of 3D-ultrasound compared to 2D-ultrasound was not demonstrated in this study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. A new method for blood velocity measurements using ultrasound FMCW signals.

    PubMed

    Kunita, Masanori; Sudo, Masamitsu; Inoue, Shinya; Akahane, Mutsuhiro

    2010-05-01

    The low peak power of frequency-modulated continuous wave (FMCW) radar makes it attractive for various applications, including vehicle collision warning systems and airborne radio altimeters. This paper describes a new ultrasound Doppler measurement system that measures blood flow velocity based on principles similar to those of FMCW radar. We propose a sinusoidal wave for FM modulation and introduce a new demodulation technique for obtaining Doppler information with high SNR and range resolution. Doppler signals are demodulated with a reference FMCW signal to adjust delay times so that they are equal to propagation times between the transmitter and the receiver. Analytical results suggest that Doppler signals can be obtained from a selected position, as with a sample volume in pulse wave Doppler systems, and that the resulting SNR is nearly identical to that obtained with continuous wave (CW) Doppler systems. Additionally, clutter power is less than that of CW Doppler systems. The analytical results were verified by experiments involving electronic circuits and Doppler ultrasound phantoms.

  19. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  20. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact.

    PubMed

    Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R

    2018-01-09

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  1. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact

    NASA Astrophysics Data System (ADS)

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.

    2018-01-01

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  2. Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats.

    PubMed

    Kanaguchi Arita, A; Yonemitsu, I; Ikeda, Y; Miyazaki, M; Ono, T

    2018-05-01

    This study evaluated low-intensity pulsed ultrasound effects for temporomandibular joint osteoarthritis in adult rats. Osteoarthritis-like lesions were induced in 24 adult rats' temporomandibular joints with low-dose mono-iodoacetate injections. The rats were divided into four groups: control and mono-iodoacetate groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks and observed until 20 weeks; and low-intensity pulsed ultrasound and mono-iodoacetate + low-intensity pulsed ultrasound groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks with low-intensity pulsed ultrasound performed from 16 to 20 weeks. Condylar bone mineral density, bone mineral content and bone volume were evaluated weekly with microcomputed tomography. Histological and immunohistochemical staining for matrix metalloproteinases-13 was performed at 20 weeks. At 20 weeks, the mono-iodoacetate + low-intensity pulsed ultrasound group showed significantly higher bone mineral density, bone mineral content and bone volume than the mono-iodoacetate group; however, these values remained lower than those in the other two groups. On histological and immunohistochemical analysis, the chondrocytes were increased, and fewer matrix metalloproteinases-13 immunopositive cells were identified in the mono-iodoacetate + low-intensity pulsed ultrasound group than mono-iodoacetate group. Low-intensity pulsed ultrasound for 2 weeks may have therapeutic potential for treating temporomandibular joint osteoarthritis lesions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel

  4. Neovascularity in patellar tendinopathy and the response to eccentric training: a case report using Power Doppler ultrasound.

    PubMed

    McCreesh, Karen M; Riley, Sara J; Crotty, James M

    2013-12-01

    This report describes the case of an amateur soccer player with chronic patellar tendinopathy who underwent ultrasound imaging before and after engaging in an 8-week programme of eccentric exercise. On initial assessment, greyscale ultrasound imaging demonstrated tendon thickening and reduced echogenicity, while Power Doppler imaging demonstrated a large amount of neovascularity. After 8 weeks of an eccentric loading programme, the patient reported significantly improved symptoms and functional scores, while follow-up imaging demonstrated improvement in the echo appearance of the tendon and complete resolution of the neovascularity. The association between neovascularity and symptoms in tendinopathy research is conflicting, with a paucity of research in the area of patellar tendinopathy. While further research is needed to clarify the significance of greyscale and Power Doppler ultrasound changes in relation to symptoms in patellar tendinopathy, ultrasound imaging was shown to be a useful adjunct to diagnosis and outcome assessment in this case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Power Doppler flow mapping and four-dimensional ultrasound for evaluating tubal patency compared with laparoscopy.

    PubMed

    Soliman, Amr A; Shaalan, Waleed; Abdel-Dayem, Tamer; Awad, Elsayed Elbadawy; Elkassar, Yasser; Lüdders, Dörte; Malik, Eduard; Sallam, Hassan N

    2015-12-01

    To study the accuracy of four-dimensional (4D) ultrasound and power Doppler flow mapping in detecting tubal patency in women with sub-/infertility, and compare it with laparoscopy and chromopertubation. A prospective study. The study was performed in the outpatient clinic and infertility unit of a university hospital. The sonographic team and laparoscopic team were blinded to the results of each other. Women aged younger than 43 years seeking medical advice due to primary or secondary infertility and who planned to have a diagnostic laparoscopy performed, were recruited to the study after signing an informed consent. All of the recruited patients had power Doppler flow mapping and 4D hysterosalpingo-sonography by injecting sterile saline into the fallopian tubes 1 day before surgery. Registering Doppler signals, while using power Doppler, both at the tubal ostia and fimbrial end and the ability to demonstrate the course of the tube especially the isthmus and fimbrial end, while using 4D mode, was considered a patent tube. Out of 50 recruited patients, 33 women had bilateral patent tubes and five had unilateral patent tubes as shown by chromopertubation during diagnostic laparoscopy. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for two-dimensional power Doppler hysterosalpingography were 94.4%, 100%, 100%, 89.2%, and 96.2%, respectively and for 4D ultrasound were 70.4%, 100%, 100%, 70.4%, and 82.6%, respectively. Four-dimensional saline hysterosalpingography has acceptable accuracy in detecting tubal patency, but is surpassed by power Doppler saline hysterosalpingography. Power Doppler saline hysterosalpingography could be incorporated into the routine sub-/infertility workup. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    PubMed

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  7. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  8. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  9. An Investigation of Acoustic Cavitation Produced by Pulsed Ultrasound

    DTIC Science & Technology

    1987-12-01

    S~ PVDF Hydrophone Sensitivity Calibration Curves C. DESCRIPTION OF TEST AND CALIBRATION TECHNIQUE We chose the reciprocity technique for calibration...NAVAL POSTGRADUATE SCHOOLN a n Monterey, Calif ornia ITHESIS AN INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED BY PULSED ULTRASOUND by Robert L. Bruce...INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED B~Y PULSED ULTRASOUND !2 PERSONAL AUTHOR(S) .RR~r. g~rtL_ 1DLJN, Rober- ., Jr. 13a TYPE OF REPORT )3b TIME

  10. UltraPulse--simulating a human arterial pulse with focussed airborne ultrasound.

    PubMed

    Hung, G M Y; John, N W; Hancock, C; Gould, D A; Hoshi, T

    2013-01-01

    Medical simulators provide a risk-free environment for trainee doctors to practice and improve their skills. UltraPulse is a new tactile system designed to utilise focussed airborne ultrasound to mimic a pulsation effect such as that of a human arterial pulse. In this paper, we focus on the construction of the haptics component, which can later be integrated into a variety of medical procedure training simulators.

  11. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    PubMed

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  12. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  13. Synthesis of monopolar ultrasound pulses for therapy: the frequency-compounding transducer.

    PubMed

    Lin, Kuang-Wei; Hall, Timothy L; McGough, Robert J; Xu, Zhen; Cain, Charles A

    2014-07-01

    In diagnostic ultrasound, broadband transducers capable of short acoustic pulse emission and reception can improve axial resolution and provide sufficient bandwidth for harmonic imaging and multi-frequency excitation techniques. In histotripsy, a cavitation-based ultrasound therapy, short acoustic pulses (<2 cycles) can produce precise tissue ablation wherein lesion formation only occurs when the applied peak negative pressure exceeds an intrinsic threshold of the medium. This paper investigates a frequency compounding technique to synthesize nearly monopolar (half-cycle) ultrasound pulses. More specifically, these pulses were generated using a custom transducer composed of 23 individual relatively-broadband piezoceramic elements with various resonant frequencies (0.5, 1, 1.5, 2, and 3 MHz). Each frequency component of the transducer was capable of generating 1.5-cycle pulses with only one high-amplitude negative half-cycle using a custom 23-channel high-voltage pulser. By varying time delays of individual frequency components to allow their principal peak negative peaks to arrive at the focus of the transducer constructively, destructive interference occurs elsewhere in time and space, resulting in a monopolar pulse approximation with a dominant negative phase (with measured peak negative pressure [P-]: peak positive pressure [P+] = 4.68: 1). By inverting the excitation pulses to individual elements, monopolar pulses with a dominant positive phase can also be generated (with measured P+: P- = 4.74: 1). Experiments in RBC phantoms indicated that monopolar pulses with a dominant negative phase were able to produce very precise histotripsy-type lesions using the intrinsic threshold mechanism. Monopolar pulses with a dominant negative phase can inhibit shock scattering during histotripsy, leading to more predictable lesion formation using the intrinsic threshold mechanism, while greatly reducing any constructive interference, and potential hot-spots elsewhere

  14. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  15. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    PubMed

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Value of Quantitative Three-dimensional Doppler Ultrasound in the Differentiation of Benign and Malignant Thyroid Nodules.

    PubMed

    Li, Wen-Bo; Zhang, Bo; Jiang, Yu-Xin; Zhu, Qing-Li; Zhang, Qing; Sun, Jian

    2015-06-01

    To investigate the role of quantitative three-dimensional (3D) power Doppler ultrasound in differentiating malignant and benign thyroid nodule. A total of 92 lesions in 86 patients were preoperatively examined using 3D power Doppler ultrasound. The Virtual Organ Computer-aided Analysis(VOCAL)-imaging program was used to analyze the stored volume ultrasound. The differences in the mean gray value (MG), vascularization index (VI), flow index(FI), and vascularization flow index (VFI) were compared between benign and malignant lesions. The MG of the malignant thyroid nodules was significantly lower than that of the benign ones (28.27±7.21 vs. 32.89±8.73,P=0.007). The benign nodules had significantly higher VI,FI,and VFI than the malignant nodules [VI:(40.43±26.55)% vs. (26.87±23.06)%,P=0.011;FI:41.03±7.19 vs. 37.51±7.17,P=0.022;VFI:18.23±14.60 vs. 11.47±12.47, P=0.009]. Also,76.5% (39/51) of the malignant nodules and 92.7% (38/41) of the benign nodules had higher VIs in the shell of the lesion than that of the whole lesion,and 80.4%(41/51) of the malignant nodules and 95.1% (39/41) of the benign nodules had higher FIs in the shell of the lesion than that of the whole lesion. Quantitative 3D power Doppler ultrasound provides a useful tool in distinguishing benign and malignant thyroid nodules. The malignant thyroid nodules have lower echoes than the benign nodules, wherese the benign nodules have larger blood flow than the malignant nodules.

  17. Comparison of pulsed Doppler and thermodilution methods for measuring cardiac output in critically ill patients.

    PubMed

    Donovan, K D; Dobb, G J; Newman, M A; Hockings, B E; Ireland, M

    1987-09-01

    We obtained 145 consecutive cardiac output measurements in 38 critically ill patients, using the invasive thermodilution and the noninvasive pulsed Doppler methods. The mean thermodilution cardiac output (TDCO) was 5.7 +/- 1.87 L/min and the mean pulsed Doppler cardiac output (PDCO) was 5.16 +/- 1.66 L/min. The mean difference between the two measurements was 0.51 L/min with an SD greater than 1.6 L/min, reflecting the scattering of results. The overall correlation coefficient was .58. The intercepts were large and the regression equation some way from the line of equal values (TDCO = 2.28 + 0.66 PDCO). When the results were analyzed according to diagnosis or by group experience, there were some differences in the bias of the estimate; however, the SD of the difference between methods was greater than one liter/min in all groups. Thus, the pulsed Doppler method failed to estimate accurately TDCO in critically ill patients.

  18. A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity

    PubMed Central

    Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.

    2010-01-01

    A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048

  19. Fpga based L-band pulse doppler radar design and implementation

    NASA Astrophysics Data System (ADS)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  20. Doppler ultrasound-guided percutaneous nephrolithotomy with two-step tract dilation for management of complex renal stones.

    PubMed

    Xu, Youming; Wu, Zhonghua; Yu, Jianhua; Wang, Shulong; Li, Fang; Chen, Jiushun; Liu, Jin; Chen, Kan

    2012-06-01

    To report our experience and assess the safety and efficacy of Doppler ultrasound-guided percutaneous nephrolithotomy (PCNL) with 2-step tract dilation for complex renal stones. From March 2009 to February 2011, 262 patients underwent PCNL. Eighty-three patients had a complete and 105 had partial staghorn calculus, and 74 had a renal pelvic stone of >2 cm in diameter. Thirty-five patients had renal surgical history. Doppler ultrasound-guided PCNL with 2-step tract dilation were performed. Stones were fragmented and cleared using a combination of ultrasonic and pneumatic lithotripters. All PCNL procedures were successful. Successful access to the collecting system was 100%. Although most of the cases (231/262) were managed satisfactorily by a single tract, a second tract was used in 31 cases. Mean operation time was 56 minutes (range 25-145). The primary stone-free rate of PCNL was 80.9%. There were 39 auxiliary procedures (13 second PCNL and 26 extracorporeal shock wave lithotripsy). One month after treatment, the overall stone-free rate was 92.7%. Five patients (1.9%) received blood transfusion. Eight patients (3.1%) with a postoperative fever of ≥38.5°C were cured by intravenous antibiotics. No other severe complications occurred. The mean postoperative stay was 3.8 days (range 2-12). Doppler ultrasound-guided PCNL with 2-step tract dilation for complex renal stones is safe, effective, and worthy of wider use in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Contrast-enhanced power Doppler endosonography and pathological assessment of vascularization in advanced gastric carcinomas--a feasibility study.

    PubMed

    Iordache, Sevastiţa; Filip, Maria-Monalisa; Georgescu, Claudia-Valentina; Angelescu, Cristina; Ciurea, Tudorel; Săftoiu, Adrian

    2012-06-01

    Besides representing angiogenesis markers, microvascular density (MVD) and vascular endothelial growth factor (VEGF) are two important tools for the assessment of prognosis in patients with gastric cancer. The aim of our study was to assess the Doppler parameters (resistivity and pulsatility indexes) and vascularity index (VI) calculated by contrast-enhanced power Doppler endoscopic ultrasound (CEPD-EUS) in correlation with the expression of intra-tumoral MVD and VEGF in patients with gastric cancer. The study included 20 consecutive patients with advanced gastric carcinoma, but without distant metastasis at initial assessment. All the patients were assessed by contrast-enhanced power Doppler endoscopic ultrasound (EUS) combined with pulsed Doppler examinations in the late venous phase. The vascularity index (VI) was calculated before and after injection of second generation microbubble contrast specific agent (SonoVue 2.4 mL), used as a Doppler signal enhancer. Moreover, pulsed Doppler parameters (resistivity and pulsatility indexes) were further calculated. The correlation between power Doppler parameters and pathological/molecular parameters (MVD assessed through immunohistochemistry with CD31 and CD34, as well as VEGF assessed through real-time PCR) was assessed. Kaplan-Meier survival analysis was used for the assessment of prognosis. Significantly statistical correlations were found between post-contrast VI and CD34 (p=0.0226), VEGF (p=0.0231), VEGF-A (p=0.0464) and VEGF-B (p=0.0022) while pre-contrast VI was correlated only with CD34 expression. Pulsatility index and resistivity index were not correlated with MVD or VEGF expression. Survival analysis demonstrated that VEGF-A is an accurate parameter for survival rate (p=0.045), as compared to VEGF (p=0.085) and VEGF-B (p=0.230). We did not find any correlation between the survival rate and ultrasound parameters (RI, PI, pre-contrast VI or post-contrast VI). Assessment of tumor vascularity using contrast

  2. Routine preoperative colour Doppler duplex ultrasound scanning in anterolateral thigh flaps.

    PubMed

    Lichte, Johanna; Teichmann, Jan; Loberg, Christina; Kloss-Brandstätter, Anita; Bartella, Alexander; Steiner, Timm; Modabber, Ali; Hölzle, Frank; Lethaus, Bernd

    2016-10-01

    The anterolateral thigh flap (ALT) is often used to reconstruct the head and neck and depends on one or more skin perforators, which often present with variable anatomy. The aim of this study was to localise and evaluate the precise position of these perforators preoperatively with colour Doppler duplex ultrasound scanning (US). We detected 74 perforators in 30 patients. The mean duration of examination with colour Doppler was 29 (range 13-51) minutes. Adequate perforators and their anatomical course could be detected preoperatively extremely accurately (p<0.001). The mean difference between the preoperatively marked, and the real, positions was 6.3 (range 0-16) mm. There was a highly significant correlation between the accuracy of the prediction and the body mass index of the patient (0.75; p<0.001). Neither the age nor the sex of the patient correlated with the accuracy of the prediction. Colour Doppler duplex US used preoperatively to localise perforators in ALT flaps is reliable and could be adopted as standard procedure. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Transcranial Doppler ultrasound in the diagnosis of brain death. Is it useful or does it delay the diagnosis?

    PubMed

    Escudero, D; Otero, J; Quindós, B; Viña, L

    2015-05-01

    Transcranial Doppler ultrasound is able to demonstrate cerebral circulatory arrest associated to brain death, being especially useful in sedated patients, or in those in which complete neurological exploration is not possible. Transcranial Doppler ulstrasound is a portable, noninvasive and high-availability technique. Among its limitations, mention must be made of the absence of acoustic windows and false-negative cases. In patients clinically diagnosed with brain death, with open skulls or with anoxia as the cause of death, cerebral blood flow can be observed by ultrasound, since cerebral circulatory arrest is not always synchronized to the clinical diagnosis. The diagnostic rate is therefore time-dependent, and this fact that must be recognized in order to avoid delays in death certification. Despite its limitations, transcranial Doppler ulstrasound helps solve common diagnostic problems, avoids the unnecessary consumption of resources, and can optimize organ harvesting for transplantation. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  4. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    NASA Astrophysics Data System (ADS)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  5. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  6. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  7. B-mode Ultrasound Versus Color Doppler Twinkling Artifact in Detecting Kidney Stones

    PubMed Central

    Harper, Jonathan D.; Hsi, Ryan S.; Shah, Anup R.; Dighe, Manjiri K.; Carter, Stephen J.; Moshiri, Mariam; Paun, Marla; Lu, Wei; Bailey, Michael R.

    2013-01-01

    Abstract Purpose To compare color Doppler twinkling artifact and B-mode ultrasonography in detecting kidney stones. Patients and Methods Nine patients with recent CT scans prospectively underwent B-mode and twinkling artifact color Doppler ultrasonography on a commercial ultrasound machine. Video segments of the upper pole, interpolar area, and lower pole were created, randomized, and independently reviewed by three radiologists. Receiver operator characteristics were determined. Results There were 32 stones in 18 kidneys with a mean stone size of 8.9±7.5 mm. B-mode ultrasonography had 71% sensitivity, 48% specificity, 52% positive predictive value, and 68% negative predictive value, while twinkling artifact Doppler ultrasonography had 56% sensitivity, 74% specificity, 62% positive predictive value, and 68% negative predictive value. Conclusions When used alone, B-mode is more sensitive, but twinkling artifact is more specific in detecting kidney stones. This information may help users employ twinkling and B-mode to identify stones and developers to improve signal processing to harness the fundamental acoustic differences to ultimately improve stone detection. PMID:23067207

  8. A bistatic pulse-Doppler intruder-detection radar

    NASA Astrophysics Data System (ADS)

    Walker, B. C.; Callahan, M. W.

    The U.S. Air Force's Aircraft Security Radar (ASR) is a small pulse-Doppler radar designed to detect intruders on the ground near parked aircraft, with a moving target detection effectiveness that encompasses high speed vehicles and intruders moving at as little as 2 cm/sec. The ASR is comparatively insensitive to weather, and will be affected only by severe wind and rain storms. Five ASRs are typically used around an aircraft, in order to reduce the area of coverage. Attention is given to the ASR's theory of operation, radar parameters, and both intruder and nuisance alarm test results.

  9. Pulse Pressure and Carotid Artery Doppler Velocimetry as Indicators of Maternal Volume Status: A Prospective Cohort Study.

    PubMed

    Lappen, Justin R; Myers, Stephen A; Bolden, Norman; Shaman, Ziad; Angirekula, Venkata; Chien, Edward K

    2018-03-01

    Narrow pulse pressure has been demonstrated to indicate low central volume status. In critically ill patients, volume status can be qualitatively evaluated using Doppler velocimetry to assess hemodynamic changes in the carotid artery in response to autotransfusion with passive leg raise (PLR). Neither parameter has been prospectively evaluated in an obstetric population. The objective of this study was to determine if pulse pressure could predict the response to autotransfusion using carotid artery Doppler in healthy intrapartum women. We hypothesized that the carotid artery Doppler response to PLR would be greater in women with a narrow pulse pressure, indicating relative hypovolemia. Intrapartum women with singleton gestations ≥35 weeks without acute or chronic medical conditions were recruited to this prospective cohort study. Participants were grouped by admission pulse pressure as <45 mm Hg(narrow) or ≥50 mm Hg(normal). Maternal carotid artery Doppler assessment was then performed in all patients before and after PLR using a standard technique where carotid blood flow (mL/min) = π × (carotid artery diameter/2) × (velocity time integral) x (60 seconds). The velocity time integral was calculated from the Doppler waveform. The primary outcome was the change in the carotid Doppler parameters (carotid artery diameter, velocity time integral, and carotid blood flow) after PLR. Outcomes were compared between study groups with univariable and multivariable analyses with adjustment for potential confounding factors. Thirty-three women consented to participation, including 18 in the narrow and 15 in the normal pulse pressure groups (mean and standard deviation initial pulse pressure, 38.3 ± 4.4 vs 57.3 ± 4.1 mm Hg). The 2 groups demonstrated similar characteristics except for initial pulse pressure, systolic and diastolic blood pressure, and race. In response to PLR, the narrow pulse pressure group had a significantly greater increase in carotid artery diameter

  10. Four-dimensional Doppler ultrasound measurements in carotid bifurcation models: effect of concentric versus eccentric stenosis

    NASA Astrophysics Data System (ADS)

    Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.

    2001-05-01

    A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.

  11. Integration of Real-Time Intraoperative Contrast-Enhanced Ultrasound and Color Doppler Ultrasound in the Surgical Treatment of Spinal Cord Dural Arteriovenous Fistulas.

    PubMed

    Della Pepa, Giuseppe Maria; Sabatino, Giovanni; Sturiale, Carmelo Lucio; Marchese, Enrico; Puca, Alfredo; Olivi, Alessandro; Albanese, Alessio

    2018-04-01

    In the surgical treatment of spinal dural arteriovenous fistulas (DAVFs), intraoperative definition of anatomic characteristics of the DAVF and identification of the fistulous point is mandatory to effectively exclude the DAVF. Intraoperative ultrasound and contrast-enhanced ultrasound integrated with color Doppler ultrasound was applied in the surgical setting for a cervical DAVF to identify the fistulous point and evaluate correct occlusion of the fistula. Integration of intraoperative ultrasound and contrast-enhanced ultrasound is a simple, cost-effective technique that provides an opportunity for real-time dynamic visualization of DAVF vascular patterns, identification of the fistulous point, and assessment of correct exclusion. Compared with other intraoperative tools, such as indocyanine green videoangiography, it allows the surgeon to visualize hidden anatomic and vascular structures, minimizing surgical manipulation and guiding the surgeon during resection. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The usefulness of Duplex Doppler ultrasound in the angiological and dermatological diagnosis of patients with blue toe syndrome.

    PubMed

    Pawlaczyk, Katarzyna; Gabriel, Marcin; Strzelecka-Węklar, Daria A; Krasiński, Zbigniew; Stanisic, Michal; Gabriel, Zofia; Dzieciuchowicz, Łukasz; Adamski, Zygmunt

    2017-10-01

    Peripheral microembolism is one of the most frequent causes of acute limb ischemia. In order to effectively prevent relapses it is essential to localize and eliminate the source of embolism. To evaluate the role of Duplex Doppler ultrasound examination in identifying the causes of blue toe syndrome (BTS). The group of 165 patients with clinical symptoms of BTS on their upper limbs ( n = 16) and lower limbs ( n = 149) was investigated. They all underwent Duplex Doppler ultrasound of the major arteries of the extremities, where ischemic changes occurred. Morphological and functional changes which might be potential sources of microembolism were identified in 146 patients. These changes included significant short-length stenoses or unstable atherosclerotic plaque ( n = 73), true aneurysms ( n = 42) and pseudoaneurysms ( n = 17). In 11 cases, pathology of vascular prostheses in the form of anastomotic aneurysms, infection and residual thrombi after fibrinolysis was detected. In all cases, Duplex diagnosis was confirmed by other imaging and intraoperative tests. Duplex Doppler ultrasound of the arteries in the affected limb with a full length view should be the first-line examination in diagnosing patients with BTS. In the absence of hemodynamic blood flow disturbances in the major arteries in patients with symptoms of BTS, it is advisable to start haematological tests to identify/exclude congenital or acquired thrombophilia.

  13. Reliability of laser Doppler, near-infrared spectroscopy and Doppler ultrasound for peripheral blood flow measurements during and after exercise in the heat.

    PubMed

    Choo, Hui C; Nosaka, Kazunori; Peiffer, Jeremiah J; Ihsan, Mohammed; Yeo, Chow C; Abbiss, Chris R

    2017-09-01

    This study examined the test-retest reliability of near-infrared spectroscopy (NIRS), laser Doppler flowmetry (LDF) and Doppler ultrasound to assess exercise-induced haemodynamics. Nine men completed two identical trials consisting of 25-min submaximal cycling at first ventilatory threshold followed by repeated 30-s bouts of high-intensity (90% of peak power) cycling in 32.8 ± 0.4°C and 32 ± 5% relative humidity (RH). NIRS (tissue oxygenation index [TOI] and total haemoglobin [tHb]) and LDF (perfusion units [PU]) signals were monitored continuously during exercise, and leg blood flow was assessed by Doppler ultrasound at baseline and after exercise. Cutaneous vascular conductance (CVC; PU/mean arterial pressure (MAP)) was expressed as the percentage change from baseline (%CVC BL ). Coefficients of variation (CVs) as indicators of absolute reliability were 18.7-28.4%, 20.2-33.1%, 42.5-59.8%, 7.8-12.4% and 22.2-30.3% for PU, CVC, %CVC BL , TOI and tHb, respectively. CVs for these variables improved as exercise continued beyond 10 min. CVs for baseline and post-exercise leg blood flow were 17.8% and 10.5%, respectively. CVs for PU, tHb (r 2  = 0.062) and TOI (r 2  = 0.002) were not correlated (P > 0.05). Most variables demonstrated CVs lower than the expected changes (35%) induced by training or heat stress; however, minimum of 10 min exercise is recommended for more reliable measurements.

  14. Doppler indexes of left ventricular systolic and diastolic flow and central pulse pressure in relation to renal resistive index.

    PubMed

    Kuznetsova, Tatiana; Cauwenberghs, Nicholas; Knez, Judita; Thijs, Lutgarde; Liu, Yan-Ping; Gu, Yu-Mei; Staessen, Jan A

    2015-04-01

    The cardio-renal interaction occurs via hemodynamic and humoral factors. Noninvasive assessment of renal hemodynamics is currently possible by assessment of renal resistive index (RRI) derived from intrarenal Doppler arterial waveforms as ((peak systolic velocity - end-diastolic velocity)/peak systolic velocity). Limited information is available regarding the relationship between RRI and cardiac hemodynamics. We investigated these associations in randomly recruited subjects from a general population. In 171 participants (48.5% women; mean age, 52.2 years), using pulsed wave Doppler, we measured RRI (mean, 0.60) and left ventricular outflow tract (LVOT) and transmitral (E and A) blood flow peak velocities and its velocity time integrals (VTI). Using carotid applanation tonometry, we measured central pulse pressure and arterial stiffness indexes such as augmentation pressure and carotid-femoral pulse wave velocity. In stepwise regression analysis, RRI independently and significantly increased with female sex, age, body weight, brachial pulse pressure, and use of β-blockers, whereas it decreased with body height and mean arterial pressure. In multivariable-adjusted models with central pulse pressure and arterial stiffness indexes as the explanatory variables, we observed a significant and positive correlation of RRI only with central pulse pressure (P < 0.0001). Among the Doppler indexes of left ventricular blood flow, RRI was significantly and positively associated with LVOT and E peak velocities (P ≤ 0.012) and VTIs (P ≤ 0.010). We demonstrated that in unselected subjects RRI was significantly associated with central pulse pressure and left ventricular systolic and diastolic Doppler blood flow indexes. Our findings imply that in addition to the anthropometric characteristics, cardiac hemodynamic factors influence the intrarenal arterial Doppler waveform patterns. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email

  15. Atypical Cerebral Lateralisation in Adults with Compensated Developmental Dyslexia Demonstrated Using Functional Transcranial Doppler Ultrasound

    ERIC Educational Resources Information Center

    Illingworth, Sarah; Bishop, Dorothy V. M.

    2009-01-01

    Functional transcranial Doppler ultrasound (fTCD) is a relatively new and non-invasive technique that assesses cerebral lateralisation through measurements of blood flow velocity in the middle cerebral arteries. In this study fTCD was used to compare functional asymmetry during a word generation task between a group of 30 dyslexic adults and a…

  16. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Hadjisavvas, V.; Damianou, C.

    2011-09-01

    In this paper a simulation model for predicting the temperature during the application of MR-guided focused ultrasound for stroke treatment using pulsed ultrasound is presented. A single element spherically focused transducer of 5 cm diameter, focusing at 10 cm and operating at either 0.5 MHz or 1 MHz was considered. The power field was estimated using the KZK model. The temperature was estimated using the bioheat equation. The goal was to extract the acoustic parameters (power, pulse duration, duty factor and pulse repetition frequency) that maintain a temperature increase of less than 1 °C during the application of a pulse ultrasound protocol. It was found that the temperature change increases linearly with duty factor. The higher the power, the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. The higher the frequency the lower the duty factor needed to keep the temperature change to the safe limit of 1 °C. Finally, the deeper the target, the higher the duty factor needed to keep the temperature change to the safe limit of 1 °C. The simulation model was tested in brain tissue during the application of pulse ultrasound and the measured temperature was in close agreement with the simulated temperature. This simulation model is considered to be very useful tool for providing acoustic parameters (frequency, power, duty factor, pulse repetition frequency) during the application of pulsed ultrasound at various depths in tissue so that a safe temperature is maintained during the treatment. This model could be tested soon during stroke clinical trials.

  18. Anthropomorphic cardiac ultrasound phantom.

    PubMed

    Smith, S W; Rinaldi, J E

    1989-10-01

    A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.

  19. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.

    PubMed

    Miller, Ryan M; Zhang, Xi; Maxwell, Adam D; Cain, Charles A; Xu, Zhen

    2016-03-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high-intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with two-cycle histotripsy pulses at [Formula: see text] using a 500-kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression.

  20. Bubble-induced Color Doppler Feedback for Histotripsy Tissue Fractionation

    PubMed Central

    Miller, Ryan M.; Zhang, Xi; Maxwell, Adam; Cain, Charles; Xu, Zhen

    2016-01-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with 2-cycle histotripsy pulses at > 30 MPa using a 500 kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression. PMID:26863659

  1. [Doppler echocardiography of tricuspid insufficiency. Methods of quantification].

    PubMed

    Loubeyre, C; Tribouilloy, C; Adam, M C; Mirode, A; Trojette, F; Lesbre, J P

    1994-01-01

    Evaluation of tricuspid incompetence has benefitted considerably from the development of Doppler ultrasound. In addition to direct analysis of the valves, which provides information about the mechanism involved, this method is able to provide an accurate evaluation, mainly through use of the Doppler mode. In addition to new criteria being evaluated (mainly the convergence zone of the regurgitant jet), some indices are recognised as good quantitative parameters: extension of the regurgitant jet into the right atrium, anterograde tricuspid flow, laminar nature of the regurgitant flow, analysis of the flow in the supra-hepatic veins, this is only semi-quantitative, since the calculation of the regurgitation fraction from the pulsed Doppler does not seem to be reliable; This accurate semi-quantitative evaluation is made possible by careful and consistent use of all the criteria available. The authors set out to discuss the value of the various evaluation criteria mentioned in the literature and try to define a practical approach.

  2. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  3. Pulse transit time differential measurement by fiber Bragg grating pulse recorder.

    PubMed

    Umesh, Sharath; Padma, Srivani; Ambastha, Shikha; Kalegowda, Anand; Asokan, Sundarrajan

    2015-05-01

    The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure. The results are validated against blood pressure variation obtained from a Mindray Patient Monitor. Furthermore, the pulse wave velocity computed from the obtained PTTD is compared with the pulse wave velocity obtained from the color Doppler ultrasound system and is found to be in good agreement. The major advantage of the PTTD measurement via FBGPRs is that the data acquisition system employed can simultaneously acquire pulse pressure waveforms from both FBGPRs placed at carotid and radial arterial sites with a single time scale, which eliminates time synchronization complexity.

  4. A Minicomputer Based Scheme for Turbulence Measurements with Pulsed Doppler Ultrasound

    PubMed Central

    Craig, J. I.; Saxena, Vijay; Giddens, D. P.

    1979-01-01

    The present paper describes the design and performance of a digital-based Doppler signal processing system that is currently being used in hemodynamics research on arteriosclerosis. The major emphasis is on the development of the digital signal processing technique and its implementation in a small but powerful minicomputer. The work reported on here is part of a larger ongoing effort that the authors are undertaking to study the structure of turbulence in blood flow and its relation to arteriosclerosis. Some of the techniques and instruments developed are felt to have a broad applicability to fluid mechanics and especially to pipe flow fluid mechanics.

  5. Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography.

    PubMed

    Jeger-Madiot, Nathan; Gateau, Jérôme; Fink, Mathias; Ing, Ros-Kiri

    2017-12-01

    We present a novel non-contact system for monitoring the heart rate on human subjects with clothes. Our approach is based on vibrocardiography, and measures locally skin displacements. Vibrocardiography with a laser Doppler vibrometer already allows monitoring of this vital sign, but can only be used on bare skin and requires an expensive piece of equipment. We propose here to use an airborne pulse-Doppler ultrasound system operating in the 20-60 kHz range, and comprised of an emitter focusing the ultrasound pulses on skin and a microphone recording the reflected waves. Our implementation was validated in vitro and on two healthy human subjects, using simultaneously laser vibrocardiography and electrocardiography as references. Accurate measurements of the heart rate on clothed skin suggest that our non-contact ultrasonic method could be implemented both inside and outside the clinical environment, and therefore benefit both medical and safety applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Pulse-encoded ultrasound imaging of the vitreous with an annular array.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Lloyd, Harriet O; Filoux, Erwan; Coleman, D Jackson

    2012-01-01

    The vitreous body is nearly transparent both optically and ultrasonically. Conventional 10- to 12-MHz diagnostic ultrasound can detect vitreous inhomogeneities at high gain settings, but has limited resolution and sensitivity, especially outside the fixed focal zone near the retina. To improve visualization of faint intravitreal fluid/gel interfaces, the authors fabricated a spherically curved 20-MHz five-element annular array ultrasound transducer, implemented a synthetic-focusing algorithm to extend the depth-of-field, and used a pulse-encoding strategy to increase sensitivity. The authors evaluated a human subject with a recent posterior vitreous detachment and compared the annular array with conventional 10-MHz ultrasound and spectral-domain optical coherence tomography. With synthetic focusing and chirp pulse-encoding, the array allowed visualization of the formed and fluid components of the vitreous with improved sensitivity and resolution compared with the conventional B-scan. Although optical coherence tomography allowed assessment of the posterior vitreoretinal interface, the ultrasound array allowed evaluation of the entire vitreous body. Copyright 2012, SLACK Incorporated.

  7. Detection of vascularity in wrist tenosynovitis: power doppler ultrasound compared with contrast-enhanced grey-scale ultrasound.

    PubMed

    Klauser, Andrea S; Franz, Magdalena; Arora, Rohit; Feuchtner, Gudrun M; Gruber, Johann; Schirmer, Michael; Jaschke, Werner R; Gabl, Markus F

    2010-01-01

    We sought to assess vascularity in wrist tenosynovitis by using power Doppler ultrasound (PDUS) and to compare detection of intra- and peritendinous vascularity with that of contrast-enhanced grey-scale ultrasound (CEUS). Twenty-six tendons of 24 patients (nine men, 15 women; mean age ± SD, 54.4 ± 11.8 years) with a clinical diagnosis of tenosynovitis were examined with B-mode ultrasonography, PDUS, and CEUS by using a second-generation contrast agent, SonoVue (Bracco Diagnostics, Milan, Italy) and a low-mechanical-index ultrasound technique. Thickness of synovitis, extent of vascularized pannus, intensity of peritendinous vascularisation, and detection of intratendinous vessels was incorporated in a 3-score grading system (grade 0 to 2). Interobserver variability was calculated. With CEUS, a significantly greater extent of vascularity could be detected than by using PDUS (P < 0.001). In terms of peri- and intratendinous vessels, CEUS was significantly more sensitive in the detection of vascularization compared with PDUS (P < 0.001). No significant correlation between synovial thickening and extent of vascularity could be found (P = 0.089 to 0.097). Interobserver reliability was calculated to be excellent when evaluating the grading score (κ = 0.811 to 1.00). CEUS is a promising tool to detect tendon vascularity with higher sensitivity than PDUS by improved detection of intra- and peritendinous vascularity.

  8. [Urodynamics foundations: contractile potency and urethral doppler].

    PubMed

    Benítez Navío, Julio; Caballero Gómez, Pilar; Delgado Elipe, Ildefonso

    2002-12-01

    To calculate the bladder softening factor, elastic constant and contractile potency. For the analysis we considered bladder behavior like that of a spring. See articles 1 and 2 published in this issue. Using flowmetry, Doppler ultrasound and abdominal pressure (Transrectal pressure register catheter) an analytical solution that permits calculation of factors defining bladder behavior was looked for. Doppler ultrasound allows us to know urine velocity through the prostatic urethra and, therefore, to calculate bladder contractile potency. Equations are solved reaching an analytical solution that allows calculating those factors that define bladder behavior: Bladder contractile potency, detrusor elastic constant, considering it behaves like a spring, and calculation of muscle resistance to movement. All thanks to Doppler ultrasound that allows to know urine speed. The bladder voiding phase is defined with the aforementioned factors; storage phase behavior can be indirectly inferred. Only uroflowmetry curves, Doppler ultrasound and abdominal pressure value are used. We comply with the so called non invasive urodynamics although for us it is just another phase in the biomechanical study of the detrusor muscle. Main conclusion is the addition of Doppler ultrasound to the urodynamist armamentarium as an essential instrument for the comprehension of bladder dynamics and calculation of bladder behavior defining factors. It is not a change in the focus but in the methods, gaining knowledge and diminishing invasion.

  9. Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging

    PubMed Central

    D'Ausilio, A.; Maffongelli, L.; Bartoli, E.; Campanella, M.; Ferrari, E.; Berry, J.; Fadiga, L.

    2014-01-01

    The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners’ tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan. PMID:24778384

  10. Real-Time Color-Doppler Guidance of HIFU for the Selective Avoidance or Occlusion of Blood Vessels

    NASA Astrophysics Data System (ADS)

    Rabkin, Brian A.; Zderic, Vesna; Vaezy, Shahram

    2005-03-01

    High-intensity focused ultrasound (HIFU) has been shown to effectively occlude blood vessels deep within tissue. The objective of the current study was to synchronize HIFU and color-Doppler ultrasound (US) for the real-time visualization of flow within blood vessels during HIFU treatment. The excitation of the HIFU was synchronized with the color-Doppler imager by collecting the excitation pulses of one of the elements of either a curved array intracavitary (C 9-5) or an intraoperative (CL 10-5) imaging probe. The collected excitation pulse was converted into a TTL-high pulse, which was delayed and gated to time the excitation duration and location of the HIFU pulse with respect to each imaging frame. The single pulse was used to drive a 3.2 MHz concave HIFU transducer (focal length of 3.5 cm, f-number 1) while the US imager was not collecting RF signals from the treatment region of the US image. The feasibility of the system was demonstrated in vivo by the selective ablation of tissue adjacent to, or the occlusion of, large vessels (including the femoral artery) both transcutaneously and interoperatively in the rabbit and pig. For the occlusion of vessels, the HIFU focus was placed immediately distal (with respect to the transducer) to the vessel at a depth of 2-2.5 cm. HIFU was applied at in situ intensities of 1000-2000 W/cm2, at a duty cycle of 50-75%, and a HIFU pulse repetition frequency (set by the US image frame rate) of 6-18 Hz. During each HIFU exposure, the HIFU pulse resulted in color interference bands running vertically within the color-Doppler window. Through the synchronization of the US imager with the HIFU excitation, the location and duration of the interference bands were set outside the treatment region within each image frame. This provided the operator with a clear view of the HIFU treatment site during therapy. Gross assessment showed necrosis of the tissue surrounding the HIFU treated vessel and occlusion of vessels up to 4 mm in diameter

  11. Doppler ultrasound of the placenta and maternal and fetal vessels during normal gestation in captive agoutis (Dasyprocta prymnolopha, Wagler, 1831).

    PubMed

    Sousa, Francisco C A; Pessoa, Gerson T; Moura, Laecio S; Rodrigues, Renan P S; Diniz, Anaemilia N; Souza, André B; Silva, Elzivânia G; Sanches, Marina P; Silva-Filho, Osmar F; Guerra, Porfirio C; Sousa, João M; Neves, Willams C; Alves, Flávio R

    2016-11-01

    The use of ultrasound for pregnancy monitoring is critical for the evaluation of hemodynamic parameters essential to fetal viability. In the present study, using B-mode and Doppler ultrasound, we characterized the placenta, subplacenta, maternal, and fetal vessels during normal gestation of healthy agoutis raised in captivity. In total, 30 agoutis were obtained from the Center for the Study and Preservation of Wild Animals, Center of Agricultural Sciences, Federal University of Piauí (Núcleo de Estudos e Preservação de Animais Silvestres-NEPAS, Centro de Ciências Agrárias-CCA, Universidade Federal do Piauí-UFPI). These animals were subjected to B-mode and Doppler ultrasound examinations to evaluate their maternal and fetal hemodynamic profiles. The placenta was located in the mesometrial region and had a discoid, ellipsoid, or globular aspect. With spectral Doppler, characteristic systolic and diastolic flow was observed in the umbilical artery. This flow increased during pregnancy. A cross-sectional view revealed a goblet-shaped placenta. The uteroplacental blood flow was characterized by a marked increase in systolic peak velocity during pregnancy, the presence of a rapid deceleration ramp, and a relatively high diastolic speed. The fetal aortic vascular flow was predominantly systolic and diastolic. The caudal vena cava blood flow was characterized by a systolic peak followed by a decreased diastolic wave throughout pregnancy. In the present study, we characterized the morphologic and hemodynamic interactions of the placenta/subplacenta with maternal and fetal vessels in agoutis at 30, 45, 60, 75, and 90 days gestation using B-mode and Doppler ultrasound. We determined the approximation and separation of the blood flow values of the umbilical artery, subplacental flow, uteroplacental artery, fetal aorta, and fetal vena cava. We believe these values may contribute to an understanding of the gestational biology and aid delivery prediction in this species

  12. Velocity measurement by vibro-acoustic Doppler.

    PubMed

    Nabavizadeh, Alireza; Urban, Matthew W; Kinnick, Randall R; Fatemi, Mostafa

    2012-04-01

    We describe the theoretical principles of a new Doppler method, which uses the acoustic response of a moving object to a highly localized dynamic radiation force of the ultrasound field to calculate the velocity of the moving object according to Doppler frequency shift. This method, named vibro-acoustic Doppler (VAD), employs two ultrasound beams separated by a slight frequency difference, Δf, transmitting in an X-focal configuration. Both ultrasound beams experience a frequency shift because of the moving objects and their interaction at the joint focal zone produces an acoustic frequency shift occurring around the low-frequency (Δf) acoustic emission signal. The acoustic emission field resulting from the vibration of the moving object is detected and used to calculate its velocity. We report the formula that describes the relation between Doppler frequency shift of the emitted acoustic field and the velocity of the moving object. To verify the theory, we used a string phantom. We also tested our method by measuring fluid velocity in a tube. The results show that the error calculated for both string and fluid velocities is less than 9.1%. Our theory shows that in the worst case, the error is 0.54% for a 25° angle variation for the VAD method compared with an error of -82.6% for a 25° angle variation for a conventional continuous wave Doppler method. An advantage of this method is that, unlike conventional Doppler, it is not sensitive to angles between the ultrasound beams and direction of motion.

  13. Power Doppler signal calibration between ultrasound machines by use of a capillary-flow phantom for pannus vascularity in rheumatoid finger joints: a basic study.

    PubMed

    Sakano, Ryosuke; Kamishima, Tamotsu; Nishida, Mutsumi; Horie, Tatsunori

    2015-01-01

    Ultrasound allows the detection and grading of inflammation in rheumatology. Despite these advantages of ultrasound in the management of rheumatoid patients, it is well known that there are significant machine-to-machine disagreements regarding signal quantification. In this study, we tried to calibrate the power Doppler (PD) signal of two models of ultrasound machines by using a capillary-flow phantom. After flow velocity analysis in the perfusion cartridge at various injection rates (0.1-0.5 ml/s), we measured the signal count in the perfusion cartridge at various injection rates and pulse repetition frequencies (PRFs) by using PD, perfusing an ultrasound micro-bubble contrast agent diluted with normal saline simulating human blood. By use of the data from two models of ultrasound machines, Aplio 500 (Toshiba) and Avius (Hitachi Aloka), the quantitative PD (QPD) index [the summation of the colored pixels in a 1 cm × 1 cm rectangular region of interest (ROI)] was calculated via Image J (internet free software). We found a positive correlation between the injection rate and the flow velocity. In Aplio 500 and Avius, we found negative correlations between the PRF and the QPD index when the flow velocity was constant, and a positive correlation between flow velocity and the QPD index at constant PRF. The equation for the relationship of the PRF between Aplio 500 and Avius was: y = 0.023x + 0.36 [y = PRF of Avius (kHz), x = PRF of Aplio 500 (kHz)]. Our results suggested that the signal calibration of various models of ultrasound machines is possible by adjustment of the PRF setting.

  14. Usefulness of the twinkling artifact on Doppler ultrasound for the detection of breast microcalcifications.

    PubMed

    Relea, A; Alonso, J A; González, M; Zornoza, C; Bahamonde, S; Viñuela, B E; Encinas, M B

    2018-06-12

    To determine whether the twinkling artifact on Doppler ultrasound imaging corresponds to microcalcifications previously seen on mammograms and to evaluate the usefulness of this finding in the ultrasound management of suspicious microcalcifications. We used ultrasonography to prospectively examine 46 consecutive patients with groups of microcalcifications suspicious for malignancy identified at mammography, searching for the presence of the twinkling artifact to identify the microcalcifications. Once we identified the microcalcifications, we obtained core-needle biopsy specimens with 11G needles and then used X-rays to check the specimens for the presence of microcalcifications. We analyzed the percentage of detection and obtainment of microcalcifications by core-needle biopsy with this technique and the radiopathologic correlation. Microcalcifications that were not detected by ultrasound or discordant lesions were biopsied by stereotaxy at another center. We also used ultrasound guidance for preoperative marking with clips, usually orienting them radially. We identified and biopsied 41 of the 46 lesions under ultrasound guidance, including 24 of 25 carcinomas (17 in situ). B-mode ultrasound was sufficient for biopsying the microcalcifications in 14 patients, although the presence of the twinkling artifact increased the number of microcalcifications detected and thus enabled more accurate preoperative marking. Thanks to the twinkling sign, we were able to identify 27 additional groups of microcalcifications (89% vs. 30%; p < 0.05). All the surgical specimens had margins free of disease. The twinkling artifact is useful for microcalcifications in ultrasound examinations, enabling a significant increase in the yield of ultrasound-guided biopsies and better preoperative marking of groups of microcalcifications. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Colour Doppler ultrasound in preoperative assessment of the neck vessels in patients with tumours of the oral cavity and the neck region.

    PubMed

    Falkowski, Aleksander; Wilk, Grazyna; Mokrzyński, Stanisław; Dul, Przemysław; Toloczko-Grabarek, Aleksandra; Huzarski, Tomasz; Kowalczyk, Robert

    2004-06-01

    The aim of the study was not only to establish the applicability of color Doppler ultrasound of the neck vessels in patients with tumors of the oral cavity and the neck region but also to check whether the coexistence of sclerotic changes in the carotid arteries is essential in determination of the sequence of surgical procedure. Color Doppler ultrasound was performed on 110 patients, aged 15 -71 years with tumors of the oral cavity and the neck. The localization, size, echogenicity, as well as the tumor relationship to the surrounding structures and big vessels of the neck region was analyzed. Compression of the veins was observed in 27 cases, and of the arteries only in 20 cases. Infiltration of the jugular vein was observed in 8 patients, whereas infiltration of the carotid artery were seen only in 6 patients. Severe internal carotid artery stenosis, due to arteriosclerosis, was observed in 10 patients. Three persons were suggested to be operated on, first due to carotid artery stenosis, later on, due to the oral cavity tumor. It was found that color Doppler ultrasound is useful in deciding upon the method of treatment, while the examination of the neck vessels is helpful in establishing the sequence of surgical procedures in patients with tumors and coexisting arteriosclerosis.

  16. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  17. Twinkling artifact on color Doppler ultrasound: an advantage or a pitfall?

    PubMed

    Ozan, Ebru; Atac, Gokce Kaan; Gundogdu, Sadi

    2016-07-01

    The twinkling artifact (TA) or color comet-tail artifact is characterized by a rapidly changing mixture of red and blue color Doppler signals. Even though many diseases and clinical conditions have been shown to produce this artifact, its source is not clearly understood yet. The TA may provide additional information to gray-scale ultrasound findings in several clinical situations. However, there may be pitfalls to keep in mind. We must first be aware of the TA to benefit from the advantages and avoid the pitfalls. In this review, we aim to give practicing radiologists an overview of the mechanisms and clinical applications of the TA by illustrating sample cases we have encountered.

  18. [Effect of metabolic uncontrolled diabetes mellitus (DM) on the resistance index of renal (IR) Interlobar arteries assessed with pulsed Doppler].

    PubMed

    Muraira-Cárdenas, Luis Cesar; Barrios-Pérez, Martín

    2016-01-01

    Diabetes mellitus is a chronic degenerative disease characterized by elevated hyperglycemia, triggering a series of processes and culminating in chronic, uncontrolled, cellular and vascular damage in different organs. To assess whether the elevated glycosylated hemoglobin, microalbuminuria, and the time evolution of more than 10 years of diabetes mellitus are associated with elevated resistance index of the interlobar renal arteries assessed with pulsed Doppler in patients with metabolic uncontrolled diabetes mellitus. Transversal-analytical, observational, prospective study that included diabetic patients attending UMAE abdominal ultrasound in 25 of IMSS, from October 15, 2014 to November 15, 2014, which was performed for pulsed Doppler index resistance of vascular interlobar renal arteries and was collected from electronic medical records: age, sex, glycated hemoglobin, and microalbuminuria. The association between metabolic uncontrolled diabetes mellitus was analyzed with the elevation of resistance index by χ(2) test or Fisher, being significant with a value of p < 0.05, and to assess the magnitude of the association that was measured with a response magnitude of 95%. 63 patients with type 2 diabetes were examined, with an average age of 52.3 ± 14.2 years, 41 were older than 50 years (65.0%), 26 with hypertension (41.2%), 32 with higher levels of glycated hemoglobin 7 (50.8%), 35 with normoalbuminuria (55.6%), 28 with microalbuminuria (44.4%), and 39 with a time evolution of diabetes of more than 10 years (61.9%). We observed a statistically significant difference between microalbuminuria and increased duration of diabetes mellitus with high resistance index. The alterations in renal microvasculature conditioned by the occurrence of microalbuminuria in diabetic nephropathy and the duration of diabetes are strongly associated with higher resistance index.

  19. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  20. Videodermoscopy and doppler-ultrasound in spider naevi: towards a new classification?

    PubMed

    Alegre-Sánchez, A; Bernárdez, C; Fonda-Pascual, P; Moreno-Arrones, O M; López-Gutiérrez, J C; Jaén-Olasolo, P; Boixeda, P

    2018-01-01

    Spider naevi (SN) are considered a subtype of telangiectasias, currently classified as low-flow vascular malformations. To describe the videodermoscopy and Doppler-ultrasound (US) features of a large group of SN. A retrospective study of cases of SN collected at our Dermatology department during the period between June 2015 and June 2017 was performed. Clinical images, dermoscopic, videodermoscopic and Doppler-US files were reviewed. For each case, the age of the patient, time since onset, size and dermoscopic pattern of the lesions were recorded. The presence of pulsatility was also evaluated visually on the videodermoscopy. Two hundred and thirty-three SN in 189 patients were included. The mean age was 39.5 years (range: 10-76 years). Mean size of the lesions was 4.1 ± 2.0 mm. We described three dermoscopic patterns: network, star and looping. Older age, longer time since onset and larger size were found associated with higher frequency of the looping and star patterns compared to that of network pattern (P < 0.01). Pulsatility during videodermoscopy was found in 88 patients (37%). This pulsatility phenomenon was more commonly associated with the looping pattern (64.7%) than star- (40.3%) or network-like patterns (29.9%) (P < 0.001). In Doppler-US studies, a high-flow with arterial biphasic waveform was found. In the light of the results, we support that SN could be reconsidered in upcoming classifications as lesions closer to the group of high-flow arteriovenous malformations. © 2017 European Academy of Dermatology and Venereology.

  1. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    PubMed

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error

  2. Modelflow Estimates of Stroke Volume Do Not Correlate With Doppler Ultrasound Estimates During Upright Posture

    NASA Technical Reports Server (NTRS)

    Ferguson, Connor R.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.; Laurie, Steven S.

    2014-01-01

    Orthostatic intolerance affects 60-80% of astronauts returning from long-duration missions, representing a significant risk to completing mission-critical tasks. While likely multifactorial, a reduction in stroke volume (SV) represents one factor contributing to orthostatic intolerance during stand and head up tilt (HUT) tests. Current measures of SV during stand or HUT tests use Doppler ultrasound and require a trained operator and specialized equipment, restricting its use in the field. BeatScope (Finapres Medical Systems BV, The Netherlands) uses a modelflow algorithm to estimate SV from continuous blood pressure waveforms in supine subjects; however, evidence supporting the use of Modelflow to estimate SV in subjects completing stand or HUT tests remain scarce. Furthermore, because the blood pressure device is held extended at heart level during HUT tests, but allowed to rest at the side during stand tests, changes in the finger arterial pressure waveform resulting from arm positioning could alter modelflow estimated SV. The purpose of this project was to compare Doppler ultrasound and BeatScope estimations of SV to determine if BeatScope can be used during stand or HUT tests. Finger photoplethysmography was used to acquire arterial pressure waveforms corrected for hydrostatic finger-to-heart height using the Finometer (FM) and Portapres (PP) arterial pressure devices in 10 subjects (5 men and 5 women) during a stand test while simultaneous estimates of SV were collected using Doppler ultrasound. Measures were made after 5 minutes of supine rest and while subjects stood for 5 minutes. Next, SV estimates were reacquired while each arm was independently raised to heart level, a position similar to tilt testing. Supine SV estimates were not significantly different between all three devices (FM: 68+/-20, PP: 71+/-21, US: 73+/-21 ml/beat). Upon standing, the change in SV estimated by FM (-18+/-8 ml) was not different from PP (-21+/-12), but both were significantly

  3. Pulsed and Tissue Doppler Echocardiographic Changes in Hypertensive Crisis with and without End Organ Damage

    PubMed Central

    Garadah, Taysir; Kassab, Salah; Gabani, Saleh; Abu-Taleb, Ahmed; Abdelatif, Ahmed; Asef, Aysha; Shoroqi, Issa; Jamsheer, Anwer

    2011-01-01

    Background Hypertensive crisis (HC) is a common medical emergency associated with acute rise in arterial blood pressure that leads to end-organ damage (EOD). Therefore, it is imperative to find markers that may help in the prediction of EOD in acute hypertensive crisis. Aim To assess the clinical presentations on admission; echocardiographic changes of pulsed and tissue Doppler changes in EOD patients compared with no EOD; and the risk of developing end organ damage for clinical and biochemical variables in hypertension crisis. Material and Methods The data of 241 patients with hypertensive crisis with systolic blood pressure (SBP) of >180 mmHg or diastolic blood pressure (DBP) >120 mmHg were extracted from patients files. Patients divided into hypertensive emergency (HE) with EOD, n = 62 and hypertensive urgency (HU) without EOD, n = 179. LV hypertrophy on ECG, echo parameters for wall thickness, left Ventricular mass index (LVMI), Body mass index (BMI), pulse Doppler ratio of early filling velocity E wave to late A wave (E/A) and ratio of E wave velocity to tissue Doppler Em to E wave (E/Em) were evaluated. Serum creatinine, hemoglobin, age, gender, body mass Index (BMI), history of diabetes mellitus, smoking, hypertension, stroke and hyperlipidemia were recorded. Multiple logistic regression analysis was applied for risk prediction of end organ damage of clinical variables. Results Patients with HE compared with HU were significantly older, with a significantly higher SBP on admission, high BMI and LVMI. Further there were significantly higher E/A ratio on Doppler echo and higher E/Em ratio on tissue Doppler echocardiogram. Multiple regression analysis with adjustment for age and sex shows positive predictive value with odds ratio of SBP on admission >220 mmHg of 1.98, serum creatinine > 120 µg/L of 1.43, older age > 60 year of 1.304, obesity (BMI ≥ 30) of 1.9, male gender of 2.26 and left ventricle hypertrophy on ECG of 1.92. The hemoglobin level, history of

  4. Pulsed and Tissue Doppler Echocardiographic Changes in Hypertensive Crisis with and without End Organ Damage.

    PubMed

    Garadah, Taysir; Kassab, Salah; Gabani, Saleh; Abu-Taleb, Ahmed; Abdelatif, Ahmed; Asef, Aysha; Shoroqi, Issa; Jamsheer, Anwer

    2011-01-01

    Hypertensive crisis (HC) is a common medical emergency associated with acute rise in arterial blood pressure that leads to end-organ damage (EOD). Therefore, it is imperative to find markers that may help in the prediction of EOD in acute hypertensive crisis. To assess the clinical presentations on admission; echocardiographic changes of pulsed and tissue Doppler changes in EOD patients compared with no EOD; and the risk of developing end organ damage for clinical and biochemical variables in hypertension crisis. The data of 241 patients with hypertensive crisis with systolic blood pressure (SBP) of >180 mmHg or diastolic blood pressure (DBP) >120 mmHg were extracted from patients files. Patients divided into hypertensive emergency (HE) with EOD, n = 62 and hypertensive urgency (HU) without EOD, n = 179. LV hypertrophy on ECG, echo parameters for wall thickness, left Ventricular mass index (LVMI), Body mass index (BMI), pulse Doppler ratio of early filling velocity E wave to late A wave (E/A) and ratio of E wave velocity to tissue Doppler Em to E wave (E/Em) were evaluated. Serum creatinine, hemoglobin, age, gender, body mass Index (BMI), history of diabetes mellitus, smoking, hypertension, stroke and hyperlipidemia were recorded. Multiple logistic regression analysis was applied for risk prediction of end organ damage of clinical variables. Patients with HE compared with HU were significantly older, with a significantly higher SBP on admission, high BMI and LVMI. Further there were significantly higher E/A ratio on Doppler echo and higher E/Em ratio on tissue Doppler echocardiogram. Multiple regression analysis with adjustment for age and sex shows positive predictive value with odds ratio of SBP on admission >220 mmHg of 1.98, serum creatinine > 120 µg/L of 1.43, older age > 60 year of 1.304, obesity (BMI ≥ 30) of 1.9, male gender of 2.26 and left ventricle hypertrophy on ECG of 1.92. The hemoglobin level, history of smoking, hyperlipidemia and DM were with no

  5. [The specific features of Doppler ultrasound study of ophthalmic vessels in young persons with peripheral vitreochorioretinal dystrophies].

    PubMed

    Pozdeeva, O G

    2005-01-01

    Hemodynamic parameters were studied in the ophthalmic artery, short posterior ciliary arteries (SPCA), long posterior ciliary arteries (LPCA), and central artery of the retina (CAR). Doppler ultrasound study (DUSS) was performed on an Acuson Aspen multipurpose diagnostic system using a linear transducer at a frequency of 7.5 MHz in the pulse mode. Chelyabinsk students aged 17-25 years were examined. A number of specific features of retinal blood supply were detected in young persons with dystrophic diseases of the periphery of the fundus oculi. These included decreased blood flow velocities and less systolic flow acceleration time in SPCA, LPCA, and CAR in peripheral vitreochorioretinal dystrophies (PVCRD). The higher pulsatile index (PI) in the LPCA system characterized a possible mechanism responsible for compensation of impaired blood supply in the retinal periphery in the development of PVCRD. The high values of the pulsatile index and the vascular wall resistivity index in CAR reflected the changes determining the absence of complications as retinal ruptures and detachment. There were neither changes in ophthalmic arterial blood flow depending on the type of PVCRD and the nature of its course nor significant differences in blood supply to the eye in different types of refraction.

  6. Pulsed activation measurement of the Doppler effect of uranium-238 over the temperature range 300 to 3115 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, S.K.; Russell, G.J.; Foell, W.K.

    The Doppler effect for /sup 235/U-enriched UO/sub 2/ fuel pellets has been measured by the Pulsed Activation Doppler (PAD) technique in a TRIGA reactor. A combination of static electrical preheating and pulsed fission heating during irradiation was used to perform the measurements at temperatures extending from 300 K to the melting point of UO/sub 2/ (3115 K). The /sup 235/U enrichment in the experimental samples investigated ranged from 0.22 to 12 percent by weight. Measurements were made at under partially molten conditions of UO/sub 2/. Two sizes of pellets were used, with nominal surface-to-mass ratio values of 0.63 and 1.08more » cm/sup 2//g, respectively. The experimentally determined values of the Doppler ratio were in good agreement with resonance integral ratios determined from GAROL calculations and extrapolations of the low-temperature Hellstrand correlation.« less

  7. Using Flow Characteristics in Three-Dimensional Power Doppler Ultrasound Imaging to Predict Complete Responses in Patients Undergoing Neoadjuvant Chemotherapy.

    PubMed

    Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren

    2017-05-01

    Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  9. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  10. Ultrasound Thermal Field Imaging of Opaque Fluids

    NASA Technical Reports Server (NTRS)

    Andereck, C. David

    1999-01-01

    We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for

  11. Is there subclinical enthesitis in early psoriatic arthritis? A clinical comparison with power doppler ultrasound.

    PubMed

    Freeston, J E; Coates, L C; Helliwell, P S; Hensor, E M A; Wakefield, R J; Emery, P; Conaghan, P G

    2012-10-01

    Enthesitis is a recognized feature of spondylarthritides (SpA), including psoriatic arthritis (PsA). Previously, ultrasound imaging has highlighted the presence of subclinical enthesitis in established SpA, but there are little data on ultrasound findings in early PsA. The aim of our study was to compare ultrasound and clinical examination (CE) for the detection of entheseal abnormalities in an early PsA cohort. Forty-two patients with new-onset PsA and 10 control subjects underwent CE of entheses for tenderness and swelling, as well as gray-scale (GS) and power Doppler (PD) ultrasound of a standard set of entheses. Bilateral elbow lateral epicondyles, Achilles tendons, and plantar fascia were assessed by both CE and ultrasound, the latter scored using a semiquantitative (SQ) scale. Inferior patellar tendons were assessed by ultrasound alone. A GS SQ score of >1 and/or a PD score of >0 was used to describe significant ultrasound entheseal abnormality. A total of 24 (57.1%) of 42 patients in the PsA group and 0 (0%) of 10 controls had clinical evidence of at least 1 tender enthesis. In the PsA group, for sites assessed by both CE and ultrasound, 4% (7 of 177) of nontender entheses had a GS score >1 and/or a PD score >0 compared to 24% (9 of 37) of tender entheses. CE overestimated activity in 28 (13%) of 214 of entheses. All the nontender ultrasound-abnormal entheses were in the lower extremity. The prevalence of subclinical enthesitis in this early PsA cohort was low. CE may overestimate active enthesitis. The few subclinically inflamed entheses were in the lower extremity, where mechanical stress is likely to be more significant. Copyright © 2012 by the American College of Rheumatology.

  12. Color Doppler Sonographic Evaluation of Peak Systolic Velocity and Pulsatility Index in Artery after Pulsed HIFU Exposure

    NASA Astrophysics Data System (ADS)

    Yang, Feng-Yi; Chiu, Wei-Hsiu; Yeh, Chi-Fang

    2011-09-01

    The objective of current study was to investigate the functional changes in arteries induced by pulsed-HIFU with or without microbubbles. Sonication was applied at an ultrasound frequency of 1 MHz with a burst length of 50 ms and a repetition frequency of 1 Hz. The duration of the whole sonication was 6s. The abdominal aortas of Sprague-Dawley rats were surgically exposed and sonicated with pulsed HIFU; the pulsed HIFU beam was aimed using color images of the blood flow. There was no obvious normalized peak systolic velocity (PSV) change at various acoustic powers of pulsed-HIFU exposure in the absence of ultrasound contrast agent (UCA). However, the normalized PSV change induced by pulsed-HIFU decreased with the injected dose of UCA at acoustic powers. At this time, the normalized pulsatility index (PI) change in the vessel subjected to pulsed-HIFU increased in proportion to UCA dose. Additional research is needed to investigate the detailed mechanical effects of pulsed-HIFU exposure on blood flow and the structure of vessel walls.

  13. Doppler ultrasound study of penis in men with systemic sclerosis: a correlation with Doppler indices of renal and digital arteries.

    PubMed

    Rosato, E; Barbano, B; Gigante, A; Cianci, R; Molinaro, I; Quarta, S; Digiulio, M A; Messineo, D; Pisarri, S; Salsano, F

    2013-01-01

    Erectile dysfunction (ED) prevalence in male systemic sclerosis (SSc) is high and its pathogenesis is unclear. The aim of the study is to assess correlation between Doppler ultrasound indices of penis and kidneys or digital arteries in male systemic sclerosis. Fourteen men with systemic sclerosis were enrolled in this study. Erectile function was investigated by the International Index of Erectile Function-5. Peak systolic velocity, end diastolic velocity, resistive index, pulsative index, and systolic/diastolic ratio were measured on the cavernous arteries at the peno-scrotal junction in the flaccid state, on the interlobar artery of both kidneys and all ten proper palmar digital arteries. Ten (71 percent) patients have an International Index of Erectile Function-5 less than 21. Reduction of penis peak systolic velocity was observed in all SSc subjects. Doppler indices of cavernous arteries correlate with the International Index of Erectile Function-5. The renal and digital arteries resistive index demonstrated a good correlation (p less than 0.0001) with International Index of Erectile Function-5. A positive correlation exists between penis and kidney arteries Doppler indices: end diastolic velocity (p less than 0.05, r=0.54), resistive index (p less than 0.0001, r=0.90), systolic/diastolic ratio (p less than 0.01, r=0.69). A positive correlation was observed between penis and digital arteries Doppler indices: peak systolic velocity (p less than 0.01, r=0.68), end diastolic velocity (p less than 0.01, r=0.75), resistive index (p less than 0.001, r=0.79), systolic/diastolic ratio (p less than 0.05, r=0.59). A correlation exists between arterial impairment of penis and renal or digital arteries.

  14. Loss of echogenicity and onset of cavitation from echogenic liposomes: pulse repetition frequency independence.

    PubMed

    Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D; Holland, Christy K

    2015-01-01

    Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP has been found to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. It has been reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The study described here evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25, 2.5, 5 and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed, and the spatial widths of stable and inertial cavitation emissions were compared with the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF, and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also indicate that 64%-79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order

  16. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  17. [Doppler ultrasound evaluation of aortic insufficiency using half-pressure time. Absence of arterial rigidity influence].

    PubMed

    Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y

    1989-02-01

    In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.

  18. Three-dimensional color Doppler imaging of the carotid artery

    NASA Astrophysics Data System (ADS)

    Picot, Paul A.; Rickey, Daniel W.; Mitchell, Ross; Rankin, Richard N.; Fenster, Aaron

    1991-05-01

    Stroke is the third leading cause of death in the United States. It is caused by ischemic injury to the brain, usually resulting from emboli from atherosclerotic plaques. The carotid bifurcation in humans is prone to atherosclerotic disease and is a site where emboli may originate. Currently, carotid stenoses are evaluated by non-invasive duplex Doppler ultrasound, with preoperative verification by intra-arterial angiography. We have developed a system that uses a color Doppler ultrasound imaging system to acquire in-vivo 3-D color Doppler images of the human carotid artery, with the aim of increasing the diagnostic accuracy of ultrasound and decreasing the use of angiography for verification. A clinical TL Ultramark 9 color Doppler ultrasound system was modified by mounting the hand-held ultrasound scan head on a motor-driven translation stage. The stage allows planar ultrasound images to be acquired over 45 mm along the neck between the clavicle and the mandible. A 3- D image is acquired by digitizing, in synchrony with the cardiac cycle, successive color ultrasound video images as the scan head is stepped along the neck. A complete volume set of 64 frames, comprising some 15 megabytes of data, requires approximately 2 minutes to acquire. The volume image is reformatted and displayed on a Sun 4/360 workstation equipped with a TAAC-1 graphics accelerator. The 3-D image may be manipulated in real time to yield the best view of blood flow in the bifurcation.

  19. Three-dimensional ultrasound features of the polycystic ovary in Chinese women.

    PubMed

    Lam, P; Raine-Fenning, N; Cheung, L; Haines, C

    2009-08-01

    To quantify the three-dimensional (3D) ultrasound characteristics of ovaries in Chinese women with polycystic ovarian syndrome (PCOS) and to compare these with previous data on a Caucasian cohort with PCOS. 3D pelvic ultrasound was performed in 40 Chinese women with PCOS and 40 controls. Ovarian volume, stromal volume and echogenicity, and antral follicle count (AFC) were measured and ovarian blood flow was quantified using both 3D power Doppler and two-dimensional (2D) pulsed wave Doppler. These data were compared with previously published data on a Caucasian cohort with PCOS. Compared with controls, women with PCOS had a higher AFC (median (range), 15 (11-30) vs. 5.5 (1-10) per ovary, P < 0.01), ovarian volume (12.32 (8.10-16.16) mL vs. 5.64 (2.62-8.81) mL, P < 0.01) and stromal volume (9.74 (6.44-13.56) mL vs. 4.07 (1.52-6.67) mL, P < 0.01) but were comparable in stromal echogenicity and ovarian blood flow as measured by 3D power Doppler or 2D pulsed wave Doppler indices. However, in comparison with a previously reported Caucasian cohort with PCOS, the ovaries of Chinese women with PCOS had a significantly smaller stromal volume (median (range), 9.74 (6.44-13.56) mL vs. 10.79 (5.65-17.12) mL, P < 0.05), were less echogenic as reflected in a lower mean gray value (22.43 (13.13-35.50) vs. 32.36 (19.35-53.71), P < 0.01), and had reduced ovarian blood flow as reflected in a lower flow index (30.19 (23.32-44.88) vs. 33.54 (21.88-51.65), P < 0.05). Based on 3D ultrasound measurements, Chinese women with PCOS have an increased stromal volume compared with controls. However, their stromal volume, echogenicity and vascularity is significantly lower than that in Caucasian women with PCOS. The possible etiology for these differences is discussed.

  20. Variation of safety indices during in the learning curve for color Doppler assessment of the fetal heart at 11+0 to 13+6 weeks' gestation.

    PubMed

    Nemescu, Dragos; Berescu, Anca; Rotariu, Cristian

    2015-12-01

    The aim of our study was to analyze the variation of acoustic output, as expressed by the thermal (TI) and mechanical index (MI), during the learning curve for a fetal heart scan at 11-13 gestational weeks, with the introduction of a new ultrasound system. This was a prospective, observational study on 303 normal fetuses. The fetal heart was examined transabdominally using B-Mode and high definition (HD) color Doppler to obtain standard parameters: four-chamber, outflow tracts and three-vessel-trachea views. Data were analyzed in groups of 20 consecutive examinations and the percentage of successful examinations was calculated. TI and MI were retrieved from HD color Doppler examinations of the fetal heart and from pulsed-wave Doppler assessment of the tricuspid flow and ductus venosus. MI values from the color Doppler examination of the fetal heart showed a continuous decrease (0.81 to 0.75, p<0.001), along the learning phase. TI and MI indices from pulsed-wave Doppler evaluation of the tricuspid flow increased at the beginning of the learning phase and stabilized afterwards (0.34 to 0.36, p<0.05 and 0.37 to 0.4, p<0.001, respectively). TI from color Doppler exam of the heart and indices from ductus venosus assessment were very constant and did not change along the studied periods. The length of Doppler examination of the heart increased after about 80 cases by 25%, to a mean of 4 minutes (p<0.05). Safety indices from Doppler evaluation of the fetal heart and tricuspid flow vary during the learning curve for fetal heart assessment. Also, the occurrence of constant values suggests the potential for their supplementary active reduction. For a better adaptation to a new ultrasound technology, the sonographer should scan the fetal heart longer in the first trimester and follow displayed safety indices along the first 80 cases.

  1. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity.

    PubMed

    Svensson, W E; Pandian, A J; Hashimoto, H

    2010-10-01

    The aim of this study was to evaluate the use of vascular morphology, around and within the B-mode region of abnormality, for improving the diagnostic accuracy of two of the most common solid breast pathologies. The B-mode and Doppler images of 117 breast cancers and 366 fibroadenomas and lesions with a fibroadenoma-like appearance were reviewed retrospectively and the morphology of the vascular pattern was evaluated. The ratio of external to internal color Doppler, the external vascular pattern and the connecting vessels to internal vessels were assessed and differentiated into benign and malignant vascular patterns. These patterns were correlated with the histological diagnosis. Vascularity was demonstrated in 95 % of cancers and in 46 % of benign lesions with a trend to increasing vascularity in cancers. This provided poor specificity for excluding cancer in fibroadenomas. Variations in vascular pattern were recorded. The observed benign vascular patterns were avascularity, vascularity in the periphery and peripheral marginal vessels connecting with internal vascularity. The observed malignant vascular patterns were radially aligned external vessels with internal vessels being more numerous than external vessels which connected to radial vessels. (Fisher exact test p < 0.0001). Analysis of the vascular morphology improved the sensitivity for identifying cancers from 97 % (B-mode) to 99 % (B-mode and color Doppler) with a minimal reduction in specificity (93.7 to 92.6 %) or accuracy (94.6 to 94.2 %). The presence of vascularity within a lesion, by itself, is no longer a good predictor of malignancy because of the increase in Doppler sensitivity associated with improvements in ultrasound technology. The color Doppler ultrasound vascular pattern morphology improves the accuracy and sensitivity of B-mode image diagnosis, breast cancers and fibroadenomas with a minimal loss of specificity. Any breast lesion with radial rather than marginal connecting vessels should

  2. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology

    PubMed Central

    Lin, Guiting; Lei, Hongen; Lue, Tom F.; Guo, Yinglu

    2016-01-01

    Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that delivered at a much lower intensity (<3 W/cm2) than traditional ultrasound energy and output in the mode of pulse wave, and it is typically used for therapeutic purpose in rehabilitation medicine. LIPUS has minimal thermal effects due to its low intensity and pulsed output mode, and its non-thermal effects which is normally claimed to induce therapeutic changes in tissues attract most researchers’ attentions. LIPUS have been demonstrated to have a rage of biological effects on tissues, including promoting bone-fracture healing, accelerating soft-tissue regeneration, inhibiting inflammatory responses and so on. Recent studies showed that biological effects of LIPUS in healing morbid body tissues may be mainly associated with the upregulation of cell proliferation through activation of integrin receptors and Rho/ROCK/Src/ERK signaling pathway, and with promoting multilineage differentiation of mesenchyme stem/progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Hopefully, LIPUS may become an effective clinical procedure for the treatment of urological diseases, such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), erectile dysfunction (ED), and stress urinary incontinence (SUI) in the field of urology. It still needs an intense effort for basic-science and clinical investigators to explore the biomedical applications of ultrasound. PMID:27141455

  3. Pulsed ultrasounds accelerate healing of rib fractures in an experimental animal model: an effective new thoracic therapy?

    PubMed

    Santana-Rodríguez, Norberto; Clavo, Bernardino; Fernández-Pérez, Leandro; Rivero, José C; Travieso, María M; Fiuza, María D; Villar, Jesús; García-Castellano, José M; Hernández-Pérez, Octavio; Déniz, Antonio

    2011-05-01

    Rib fractures are a frequent traumatic injury associated with a relatively high morbidity. Currently, the treatment of rib fractures is symptomatic. Since it has been reported that pulsed ultrasounds accelerates repair of limb fractures, we hypothesized that the application of pulsed ultrasounds will modify the course of healing in an animal model of rib fracture. We studied 136 male Sprague-Dawley rats. Animals were randomly assigned to different groups of doses (none, 50, 100, and 250 mW/cm(2) of intensity for 3 minutes per day) and durations (2, 10, 20, and 28 days) of treatment with pulsed ultrasounds. In every subgroup, we analyzed radiologic and histologic changes in the bone callus. In addition, we examined changes in gene expression of relevant genes involved in wound repair in both control and treated animals. Histologic and radiologic consolidation was significantly increased by pulsed ultrasound treatment when applied for more than 10 days. The application of 50 mW/cm(2) was the most effective dose. Only the 100 and 250 mW/cm(2) doses were able to significantly increase messenger RNA expression of insulin-like growth factor 1, suppressor of cytokine signaling-2 and -3, and vascular endothelial growth factor and decrease monocyte chemoattractant protein-1 and collagen type II-alpha 1. Our findings indicate that pulsed ultrasound accelerates the consolidation of rib fractures. This study is the first to show that pulsed ultrasound promotes the healing of rib fractures. From a translational point of view, this easy, cheap technique could serve as an effective new therapeutic modality in patients with rib fractures. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  4. Transtemporal ultrasound application potentially elevates brain temperature: results of an anthropomorphic skull model.

    PubMed

    Pfaffenberger, S; Vyskocil, E; Kollmann, C; Unger, E; Kaun, C; Kastl, S; Woeber, C; Nawratil, G; Huber, K; Maurer, G; Gottsauner-Wolf, M; Wojta, J

    2013-02-01

    Transtemporal sonothrombolysis is a tool for a more effective treatment in acute stroke patients. However, some reports revealed side effects, which might be potentially connected to temperature elevation. To gain better insight into cerebral temperature changes during transtemporal sonication, diagnostic and therapeutic ultrasound (US) applications were evaluated using an anthropomorphic skull model. The impact of diagnostic (PW-Doppler, 1.8-MHz, 0.11 W/cm², TIC 1.2) and therapeutic (1-MHz and 3-MHz, 0.07 - 0.71 W/cm², continuous and pulsed mode) US application on temperature changes was evaluated at the level of muscle/temporal bone (TB), TB/brain, brain and at the middle cerebral artery (MCA) using 4 miniature thermocouples along the US beam. Sonication lasted 120 minutes. Diagnostic ultrasound revealed a maximum temperature increase of 1.45°/0.60°/0.39°/0.41°C (muscle/TB, TB/brain, brain, MCA) after 120 minutes. Therapeutic-1-MHz ultrasound raised temperature by 4.33°/2.02°/1.05 °C/0.81°C (pulsed 1:20) and by 10.38°/4.95°/2.43°/2.08°C (pulsed 1:5) over 120 minutes. Therapeutic-3-MHz US raised temperature by 4.89°/2.56°/1.24/1.25°C (pulsed 1:20) and by 14.77°/6.59°/3.56°/2.86°C (pulsed 1:5) over 120 minutes, respectively. Continuous application of therapeutic US (1-MHz and 3-MHz) led to a temperature increase of 13.86°/3.63°/1.66°/1.48°C and 17.09°/4.28°/1.38/0.99°C within 3 minutes. Diagnostic PW-Doppler showed only a moderate temperature increase and can be considered as safe. Therapeutic sonication is very powerful in delivering energy so that even pulsed application modes resulted in significant and potentially harmful temperature increases. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  6. Effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins.

    PubMed

    Higuera-Barraza, O A; Torres-Arreola, W; Ezquerra-Brauer, J M; Cinco-Moroyoqui, F J; Rodríguez Figueroa, J C; Marquez-Ríos, E

    2017-09-01

    Food technologists are always looking to improve the functional properties of proteins. In this sense, in last years ultrasound has been used to improve some functional properties. For this reason, and considering that jumbo squid is an important fishery in northwest Mexico, the purpose of this research was to determine the effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Pulsed ultrasound (20kHz, 20, and 40% amplitude) was applied for 30, 60, and 90s to a protein extract prepared from giant squid mantle causing an increase (p<0.05) in surface hydrophobicity (S o ) from 108.4±1.4 to 239.1±2.4 after application of pulsed ultrasound at 40% of amplitude for 90s. The electrophoretic profile and the total and reactive sulfhydryl contents were not affected (p⩾0.05) by the ultrasound treatment. The emulsifying ability of the protein solution was improved (p<0.05), whereas the Emulsifier Activity Index (EAI) varied from123.67±5.52m 2 /g for the control and increased up to 217.7±3.8m 2 /g after application of the ultrasound. The Stability Emulsifier Index (EEI) was improved at 40% of amplitude by 60 and 90s. The results suggested that pulsed ultrasound used as pretreatment induced conformational changes in giant squid proteins, which improved the interfacial association between protein-oil phases, thus contributing to the improvement of their emulsifient properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Wake Vortex Tracking Using a 35 GHz Pulsed Doppler Radar

    NASA Technical Reports Server (NTRS)

    Neece, Robert T.; Britt, Charles L.; White, Joseph H.; Mudukutore, Ashok; Nguyen, Chi; Hooper, Bill

    2005-01-01

    A 35 GHz, pulsed-Doppler radar system has been designed and assembled for wake vortex detection and tracking in low visibility conditions. Aircraft wake vortices continue to be an important factor in determining safe following distances or spacings for aircraft in the terminal area. Currently, under instrument meteorological conditions (IMC), aircraft adhere to conservative, fixed following-distance guidelines based primarily on aircraft weight classifications. When ambient conditions are such that vortices will either drift or dissipate, leaving the flight corridor clear, the prescribed spacings are unnecessarily long and result in decreased airport throughput. There is a potential for significant airport efficiency improvement, if a system can be employed to aid regulators and pilots in setting safe and efficient following distances based on airport conditions. The National Aeronautics and Space Administration (NASA), the Federal Aviation Agency, and Volpe National Transportation Systems Center have promoted and worked to develop systems that would increase airport capacity and provide for safe reductions in aircraft separation. The NASA Aircraft Vortex Spacing System (AVOSS), a wake vortex spacing system that can provide dynamic adjustment of spacings based on real-time airport weather conditions, has demonstrated that Lidar systems can be successfully used to detect and track vortices in clear air conditions. To fill the need for detection capability in low-visibility conditions, a 35 GHz, pulsed-Doppler radar system is being investigated for use as a complimentary, low-visibility sensor for wake vortices. The radar sensor provides spatial and temporal information similar to that provided by Lidar, but under weather conditions that a Lidar cannot penetrate. Currently, we are analyzing the radar design based upon the data and experience gained during the wake vortex Lidar deployment with AVOSS at Dallas/Fort Worth International Airport. As part of this study

  8. Doppler ultrasound compatible plastic material for use in rigid flow models.

    PubMed

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  9. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  10. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer.

    PubMed

    Azuma, Takashi; Ogihara, Makoto; Kubota, Jun; Sasaki, Akira; Umemura, Shin-ichiro; Furuhata, Hiroshi

    2010-05-01

    A new ultrasound array transducer with two different optimal frequencies designed for diagnosis and therapy integration in Doppler imaging-based transcranial sonothrombolysis is described. Previous studies have shown that respective frequencies around 0.5 and 2 MHz are suitable for sonothrombolysis and Doppler imaging. Because of the small acoustic window available for transcranial ultrasound exposure, it is highly desirable that both therapeutic and diagnostic ultrasounds pass through the same aperture with high efficiency. To achieve such a dual-frequency array transducer, we propose a bilaminar array, having an array for imaging and another for therapy, with a frequency selective isolation layer between the two arrays. The function of this layer is to isolate the imaging array from the therapy array at 2 MHz without disturbing the 0.5-MHz ultrasound transmission. In this study, we first used a 1-D model including two lead zirconate titanate (PZT) layers separated by an isolation layer for intuitive understanding of the phenomena. After that, we optimized the acoustic impedance and thickness of the isolation layer by analyzing pulse propagation in a 2-D model by conducting a numerical simulation with commercially available software. The optimal acoustic impedance and thickness are 3 to 4 MRayI and lambda/10, respectively. On the basis of the optimization, a prototype array transducer was fabricated, and the spatial resolutions of the Doppler images it obtained were found to be practically the same as those obtained through conventional imaging array transducers.

  11. Obstetric Ultrasound

    PubMed Central

    Nicholson, Stuart F.; Nimrod, Carl A.

    1988-01-01

    This article addresses the current indications for an obstetric ultrasound and describes the findings that it is reasonable to expect when reading an ultrasound report. The authors discuss several common obstetrical problems focussing the attention on the usefulness of the imaging information. Finally, they provide a glimpse into the future direction of obstetric ultrasound by discussing vaginal scanning, Doppler assessment of fetal blood flow, and routine ultrasound in pregnancy. PMID:21253229

  12. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2015-02-01

    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  13. Grey-scale and colour Doppler ultrasound versus magnetic resonance imaging for the prenatal diagnosis of placenta accreta.

    PubMed

    Rezk, Mohamed Abd-Allah; Shawky, Mohamed

    2016-01-01

    To assess the effectiveness of grey-scale and colour Doppler ultrasound (US) versus magnetic resonance imaging (MRI) for the prenatal diagnosis of placenta accreta. A prospective observational study including a total of 74 patients with placenta previa and previous uterine scar (n = 74). Grey-scale and colour Doppler US was done followed by MRI by different observers to diagnose adherent placenta. Test validity of US and MRI were calculated. Maternal morbidity and mortality were also assessed. A total of 53 patients confirmed to have placenta accreta at operation. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of US was 94.34, 91.67, 96.15 and 88% compared to 96.08, 87.50, 94.23 and 91.3% for MRI, respectively. The most relevant US sign was turbulent blood flow by colour Doppler, while dark intra-placental band was the most sensitive MRI sign. Venous thromboembolism (1.3%), bladder injury (29.7%), ureteric injury (18.9%), postoperative fever (10.8%), admission to ICU (50%) and re-operation (31.1%). Placenta accreta can be successfully diagnosed by grey-scale and colour Doppler US. MRI would be more likely suggested for either posteriorly or laterally situated placenta previa in order to exclude placental invasion.

  14. [The development and utility of new uroflowmetry measurement by wearable airborne ultrasound Doppler system].

    PubMed

    Matsumoto, Seiji; Kakizaki, Hidehiro

    2012-09-01

    The conventional concept of uroflowmetry (UFM) is to equip the urine-receiving container like a toilet device (s) with various sensors. A UFM device based on an airborne ultrasound continuous wave Doppler system was developed to satisfy the need of measuring urinary flow anytime and anywhere in an easy, natural, and repeated manner. It is a non-contact, indirect measuring device that can be easily worn by the test subjects who urinate. The prototype of the new UFM device was used to collect urination data from normal adult volunteers. Data could be collected with the new UFM device, and the Doppler spectrum (urination pattern) could be evaluated in chronological order for each volunteer's urination. It was confirmed from the examination of effectiveness that there is a potential for the clinical application of the new device, but at the present stage it is not yet clinically applicable. The results obtained suggest that the device may greatly change the concept of urodynamics, depending on future progress. However, accuracy in collecting samples and analyzing data will have to be further improved using the latest engineering technology.

  15. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.

    PubMed

    Stegman, Kelly J; Park, Edward J; Dechev, Nikolai

    2012-07-01

    The motivation of this research is to non-invasively monitor the wrist tendon's displacement and velocity, for purposes of controlling a prosthetic device. This feasibility study aims to determine if the proposed technique using Doppler ultrasound is able to accurately estimate the tendon's instantaneous velocity and displacement. This study is conducted with a tendon mimicking experiment consisting of two different materials: a commercial ultrasound scanner, and a reference linear motion stage set-up. Audio-based output signals are acquired from the ultrasound scanner, and are processed with our proposed Fourier technique to obtain the tendon's velocity and displacement estimates. We then compare our estimates to an external reference system, and also to the ultrasound scanner's own estimates based on its proprietary software. The proposed tendon motion estimation method has been shown to be repeatable, effective and accurate in comparison to the external reference system, and is generally more accurate than the scanner's own estimates. After establishing this feasibility study, future testing will include cadaver-based studies to test the technique on the human arm tendon anatomy, and later on live human test subjects in order to further refine the proposed method for the novel purpose of detecting user-intended tendon motion for controlling wearable prosthetic devices.

  16. Non-invasive assessment of fibrosis using color Doppler ultrasound in patients with hepatitis C virus in the Amazon rainforest, Brazil.

    PubMed

    Leão, Jorge; Brock, Marianna; Castilho, Márcia; Scariot, André; Scariot, Ana; Braga, Wornei

    2012-02-01

    The purpose of this study was to correlate morphologic and hemodynamic Doppler ultrasound findings as indicators of the degree of inflammation and fibrosis and to diagnose chronic vital hepatitis complications and progression. A prospective, descriptive study of a case series was conducted that analyzed Doppler ultrasound images of the liver and portal system and used the portal vein congestion index, hepatic and splenic artery impedance indices, and the liver vascular index. Of 50 patients positive for antibodies against hepatitis C virus, morphologic changes highlighted increased hepatic parenchyma echogenicity in 24%, and increased gall blander echogenicity and wall thickness in 4%. The most common hemodynamic changes observed were reduced flow velocity in the portal vein trunk in 26%, congestion index changes in 12%, liver vascular index changes in 16%, and splenic and hepatic artery impedance index changes in 14%. These indices were shown to be associated with alanine aminotransferase levels, which suggested that they are important liver damage indicators in the early phase of infection with hepatitis C virus.

  17. Non-Invasive Assessment of Fibrosis Using Color Doppler Ultrasound in Patients with Hepatitis C Virus in the Amazon Rainforest, Brazil

    PubMed Central

    Leão, Jorge; Brock, Marianna; Castilho, Márcia; Scariot, André; Scariot, Ana; Braga, Wornei

    2012-01-01

    The purpose of this study was to correlate morphologic and hemodynamic Doppler ultrasound findings as indicators of the degree of inflammation and fibrosis and to diagnose chronic vital hepatitis complications and progression. A prospective, descriptive study of a case series was conducted that analyzed Doppler ultrasound images of the liver and portal system and used the portal vein congestion index, hepatic and splenic artery impedance indices, and the liver vascular index. Of 50 patients positive for antibodies against hepatitis C virus, morphologic changes highlighted increased hepatic parenchyma echogenicity in 24%, and increased gall blander echogenicity and wall thickness in 4%. The most common hemodynamic changes observed were reduced flow velocity in the portal vein trunk in 26%, congestion index changes in 12%, liver vascular index changes in 16%, and splenic and hepatic artery impedance index changes in 14%. These indices were shown to be associated with alanine aminotransferase levels, which suggested that they are important liver damage indicators in the early phase of infection with hepatitis C virus. PMID:22302863

  18. Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index.

    PubMed

    Retz, K; Kotopoulis, S; Kiserud, T; Matre, K; Eide, G E; Sande, R

    2017-08-01

    To investigate if the thermal index for bone (TIB) displayed on screen is an adequate predictor for the derated spatial-peak temporal-average (I SPTA .3 ) and spatial-peak pulse-average (I SPPA .3 ) acoustic intensities in a selection of clinical diagnostic ultrasound machines and transducers. We calibrated five clinical diagnostic ultrasound scanners and 10 transducers, using two-dimensional grayscale, color Doppler and pulsed-wave Doppler, both close to and far from the transducer, with a TIB between 0.1 and 4.0, recording 103 unique measurements. Acoustic measurements were performed in a bespoke three-axis computer-controlled scanning tank, using a 200-μm-diameter calibrated needle hydrophone. There was significant but poor correlation between the acoustic intensities and the on-screen TIB. At a TIB of 0.1, the I SPTA .3 range was 0.51-50.49 mW/cm 2 and the I SPPA .3 range was 0.01-207.29 W/cm 2 . At a TIB of 1.1, the I SPTA .3 range was 19.02-309.44 mW/cm 2 and the I SPPA .3 range was 3.87-51.89 W/cm 2 . TIB is a poor predictor for I SPTA .3 and I SPPA .3 and for the potential bioeffects of clinical diagnostic ultrasound scanners. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  19. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor.

    PubMed

    Sato, Miki; Noguchi, Junko; Mashima, Masato; Tanaka, Hirokazu; Hata, Toshiyuki

    2016-09-01

    To assess placental perfusion during spontaneous or induced uterine contraction in labor at term using placental vascular sonobiopsy (PVS) by 3D power Doppler ultrasound with the VOCAL imaging analysis program. PVS was performed in 50 normal pregnancies (32 in spontaneous labor group [SLG], and 18 in induced labor group with oxytocin or prostaglandin F2α [ILG]) at 37-41 weeks of gestation to assess placental perfusion during uterine contraction in labor. Only pregnancies with an entirely visualized anterior placenta were included in the study. Data acquisition was performed before, during (at the peak of contraction), and after uterine contraction. 3D power Doppler indices such as the vascularization index (VI), flow index (FI), and vascularization flow index (VFI) were calculated in each placenta. There were no abnormal fetal heart rate tracings during contraction in either group. VI and VFI values were significantly reduced during uterine contraction in both groups (SLG, -33.4% [-97.0-15.2%], and ILG, -49.6% [-78.2--4.0%]), respectively (P < 0.001). The FI value in the ILG group was significantly lower during uterine contraction (P = 0.035), whereas it did not change during uterine contraction in the SLG group. After uterine contraction, all vascular indices returned almost to the same level as that before uterine contraction. However, the FI value in ILG (-8.6%, [-19.7-16.0%]) was significantly lower than that in SLG (2.4%, [-13.4-38.1%]) after uterine contraction (P < 0.05). All 3D power Doppler indices (VI, FI, and VFI) during uterine contraction (at the peak of contraction) showed a correlation greater than 0.7, with good intra- and inter-observer agreements. Our findings suggest that uterine contraction in both spontaneous and induced labors causes a significant reduction in placental perfusion. Reduced placental blood flow in induced uterine contraction has a tendency to be marked compared with that in spontaneous uterine contraction. To the best of

  20. Assessment of ureterovesical jet dynamics in obstructed ureter by urinary stone with color Doppler and duplex Doppler examinations.

    PubMed

    Jandaghi, Ali Babaei; Falahatkar, Siavash; Alizadeh, Ahmad; Kanafi, Alireza Rajabzadeh; Pourghorban, Ramin; Shekarchi, Babak; Zirak, Amin Keshavarz; Esmaeili, Samaneh

    2013-04-01

    This study was designed to evaluate ureterovesical jet dynamics in obstructed ureter and to compare it with those of contralateral unobstructed side. Forty-six patients with diagnosis of ureteral stone, based on imaging findings in computed tomography were enrolled in this study. The gray-scale ultrasound exam from both kidneys and urinary bladder was performed. Then, ureterovesical jet characteristics including ureteral jet frequency, duration and peak velocity were assessed by color Doppler and duplex Doppler studies in both obstructed and unobstructed ureters by a radiologist, 15-30 min after oral hydration with 750-1,000 mL of water. When compared with contralateral normal side, the ureterovesical jet in obstructed ureter showed less frequency (0.59 vs. 3.04 jets/min; P < 0.05), shorter duration (1.24 vs. 5.26 s; P < 0.05) and lower peak velocity (5.41 vs. 32.09 cm/s; P < 0.05). The cut-off points of 1.5 jets/min, 2.5 s and 19.5 cm/s for difference of ureteral jet frequency, duration and peak velocity between obstructed and contralateral normal ureters yielded sensitivities of 97.8, 95.6 and 100 % and specificities of 87, 87.9 and 97.8 %, respectively for diagnosis of ureteral obstruction. Given the safety of Doppler study and significant differences in flow dynamics of obstructed versus unobstructed ureters, our findings demonstrated the utility of Doppler ultrasound examination as a useful adjunct to gray-scale ultrasound by improving the accuracy of ultrasound exam in diagnosis of ureteral obstruction.

  1. Two-dimensional grayscale ultrasound and spectral Doppler waveform evaluation of dogs with chronic enteropathies.

    PubMed

    Gaschen, Lorrie; Kircher, Patrick

    2007-08-01

    Sonography is an important diagnostic tool to examine the gastrointestinal tract of dogs with chronic diarrhea. Two-dimensional grayscale ultrasound parameters to assess for various enteropathies primarily focus on wall thickness and layering. Mild, generalized thickening of the intestinal wall with maintenance of the wall layering is common in inflammatory bowel disease. Quantitative and semi-quantitative spectral Doppler arterial waveform analysis can be utilized for various enteropathies, including inflammatory bowel disease and food allergies. Dogs with inflammatory bowel disease have inadequate hemodynamic responses during digestion of food. Dogs with food allergies have prolonged vasodilation and lower resistive and pulsatility indices after eating allergen-inducing foods.

  2. Application of MR-guided focused pulsed ultrasound for destroying clots in vitro using thrombolytic drugs

    NASA Astrophysics Data System (ADS)

    Hadjisavvas, V.; Ioannides, K.; Damianou, C.

    2011-09-01

    In this paper an MR-guided focused pulsed ultrasound system for the treatment of stroke using thrombolytic drugs in a model in vitro is presented. A single element spherically focused transducer of 5 cm diameter; focusing at 10 cm and operating at 0.5 MHz or 1 MHz was used. The transducer was mounted in an MR compatible robot. The artery was modelled using a silicone tube. Tissue was modelled using polyaclylimide gel. Coagulated blood was used to model thrombus. A thermocouple was placed in the thrombus in order to measure the thrombus temperature. The effect of power, beam, and frequency was investigated. The goal was to maintain a temperature increase of less than 1 °C during the application of pulse ultrasound (called safe temperature). With the application of ultrasound alone there was no notable destruction of the thrombus. With the combination of ultrasound and thrombolytic drugs destruction occurred after 60 mins of pulse exposure (PRF = 1 s, duty factor = 10%, and with thrombus placed at 1 cm deep in the tissue). This simple in vitro model was proven very successful for evaluating MRgFUS as a modality for treating stroke. In the future we plan to apply this treatment protocol in live animals and humans.

  3. Radar Doppler Processing with Nonuniform Sampling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  4. Coronary CT Angiography Incorporating Doppler-Guided Prospective ECG Gating in Patients with High Heart Rate: Comparison with Results of Traditional Prospective ECG Gating

    PubMed Central

    Li, Min; Yu, Bing-bing; Wu, Jian-hua; Xu, Lin; Sun, Gang

    2013-01-01

    Purpose As Doppler ultrasound has been proven to be an effective tool to predict and compress the optimal pulsing windows, we evaluated the effective dose and diagnostic accuracy of coronary CT angiography (CTA) incorporating Doppler-guided prospective electrocardiograph (ECG) gating, which presets pulsing windows according to Doppler analysis, in patients with a heart rate >65 bpm. Materials and Methods 119 patients with a heart rate >65 bpm who were scheduled for invasive coronary angiography were prospectively studied, and patients were randomly divided into traditional prospective (n = 61) and Doppler-guided prospective (n = 58) ECG gating groups. The exposure window of traditional prospective ECG gating was set at 30%–80% of the cardiac cycle. For the Doppler group, the length of diastasis was analyzed by Doppler. For lengths greater than 90 ms, the pulsing window was preset during diastole (during 60%–80%); otherwise, the optimal pulsing intervals were moved from diastole to systole (during 30%–50%). Results The mean heart rates of the traditional ECG and the Doppler-guided group during CT scanning were 75.0±7.7 bpm (range, 66–96 bpm) and 76.5±5.4 bpm (range: 66–105 bpm), respectively. The results indicated that whereas the image quality showed no significant difference between the traditional and Doppler groups (P = 0.42), the radiation dose of the Doppler group was significantly lower than that of the traditional group (5.2±3.4mSv vs. 9.3±4.5mSv, P<0.001). The sensitivities of CTA applying traditional and Doppler-guided prospective ECG gating to diagnose stenosis on a segment level were 95.5% and 94.3%, respectively; specificities 98.0% and 97.1%, respectively; positive predictive values 90.7% and 88.2%, respectively; negative predictive values 99.0% and 98.7%, respectively. There was no statistical difference in concordance between the traditional and Doppler groups (P = 0.22). Conclusion Doppler-guided prospective ECG gating

  5. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  6. Comparative analysis of renal flow using contrast power Doppler and gray-scale ultrasound

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Arger, Peter H.; Bovee, Kenneth C.; Pugh, Charles; Kirchhofer, Justin I.

    1997-05-01

    Our previous studies have shown that renal perfusion can be visualized by imaging the transit of a contrast agent through the parenchyma of the organ using gray scale (GS) and power Doppler (PD) ultrasound.However, the relative merits and the sensitivities of the two imaging methods are not known. This study compares the effectiveness of the two modes in visualizing kidney perfusion at the clinical dose of contrast agents. GS and PD images of the dog kidneys were recorded using a clinical ultrasound scanner at 4-7 MHz. A fixed longitudinal plane of the kidney was imaged by mounting the transducer on the animal with a specially designed holder. A dose of 0.1 m1/kg of Echogen was injected intravenously and GS and PD images were recorded simultaneously on two separate time-encoded video tapes during the passage of the contrast agent through the kidneys. The enhancement of GS and PD images was assessed qualitatively by three radiologists. The quantitative assessment was made by measuring the regional and global enhancements of digitized B-scan and PS images. Regional measurements were made by comparing brightness of the post contrast images with that of a pre-contrast reference image pixel by pixel. Student t-test was used to determine the statistical significance of the change. The regions representing statistically significant differences were encoded on the image in color with brightness proportional to the magnitude of change. The regions with no significant change were represented in GS. This generated a series of new images, referred to as StatMap, with color representing regions of perfusion. Changes in power Doppler images were visually detectable with high confidence in all five dogs by al three radiologists. There was no perceptible changes in B-scans. Computer analysis of PD images yielded characteristic indicator dilution curves in all five dogs with an initial rise time of 2-5 sec and a peak at 7-20 sec. The enhancement in PD lasted for 97-400 seconds. The

  7. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  8. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta.

    PubMed

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental mRNA in maternal plasma. Based on the findings at cesarean delivery and histological examination, patients were divided into two groups of women with and without placenta accrete. To compare of the mean of mRNA levels between the two groups we used independent t-test and to compare of the mean of age and gestational age at sonography we used Mann-Whitney test. For determination of sensitivity and specificity and the cut-off point of mRNA levels we used the receiver operating characteristic curve. A total of 50 women with a mean age of 30.24 ± 4.905 years entered the study and 12 (24%) patients were diagnosed with placenta accreta. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Doppler ultrasound were 83.3%, 78.9%, 56% and 94%, respectively. Results of our study showed if we consider a cut-off point equal to 3.325, with sensitivity and specificity of 0.917 and 0.789, respectively and the sensitivity, specificity, PPV and NPV of mRNA with were cut-off point of 3.325 were 91.7%, 78.9%, 57.9% and 96.8%, respectively. Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta.

  9. Non-Invasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy – Histotripsy

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Duryea, Alexander P.; Yuan, Lingqian; Gurm, Hitinder S.; Xu, Zhen

    2009-01-01

    Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters), and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and non-invasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses. In-vitro blood clots formed from fresh canine blood were treated by histotripsy. The treatment was applied using a focused 1-MHz transducer, with 5-cycle pulses at a pulse repetition rate of 1 kHz. Acoustic pressures varying from 2 – 12 MPa peak negative pressure were tested. Our results show that histotripsy can perform effective thrombolysis with ultrasound energy alone. Histotripsy thrombolysis only occurred at peak negative pressure ≥6 MPa when initiation of a cavitating bubble cloud was detected using acoustic backscatter monitoring. Blood clots weighing 330 mg were completely broken down by histotripsy in 1.5 – 5 minutes. The clot was fractionated to debris with >96% weight smaller than 5 μm diameter. Histotripsy thrombolysis treatment remained effective under a fast, pulsating flow (a circulatory model) as well as in static saline. Additionally, we observed that fluid flow generated by a cavitation cloud can attract, trap, and further break down clot fragments. This phenomenon may provide a non-invasive method to filter and eliminate hazardous emboli during thrombolysis. PMID:19854563

  10. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles

    PubMed Central

    Mehrmohamamdi, Mohammad; Qu, Min; Ma, Li L.; Romanovicz, Dwight K.; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular trafficking of nanoparticles – an important part of cell-nanoparticle interaction, has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique – pulsed magneto-motive ultrasound (pMMUS), to identify intracellular trafficking of endocytosed magnetic nanoparticles. In pulsed magneto-motive ultrasound imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular aggregation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular trafficking non-invasively and in real-time. PMID:21926454

  11. Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound with Gas Body Contrast Agent

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.

    2009-01-01

    Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967

  12. Pulsed focused ultrasound-induced displacements in confined in vitro blood clots.

    PubMed

    Wright, Cameron C; Hynynen, Kullervo; Goertz, David E

    2012-03-01

    Ultrasound has been shown to potentiate the effects of tissue plasminogen activator to improve clot lysis in a range of in vitro and in vivo studies as well as in clinical trials. One possible mechanism of action is acoustic radiation force-induced clot displacements. In this study, we investigate the temporal and spatial dynamics of clot displacements and strain initiated by focused ultrasound pulses. Displacements were produced by a 1.51 MHz f-number 1 transducer over a range of acoustic powers (1-85 W) in clots constrained within an agar vessel phantom channel. Displacements were tracked during and after a 5.45 ms therapy pulse using a 20 MHz high-frequency ultrasound imaging probe. Peak thrombus displacements were found to be linear as a function of acoustic power up to 60 W before leveling off near 128 μm for the highest transmit powers. The time to peak displacement and recovery time of blood clots was largely independent of acoustic powers with measured values near 2 ms. A linear relationship between peak axial strain and transmit power was observed, reaching a peak value of 11% at 35 W. The peak strain occurred ~0.75 mm from the focal zone for all powers investigated in both lateral and axial directions. These results indicate that substantial displacements can be induced by focused ultrasound in confined blood clots, and that the spatial and temporal displacement patterns are complex and highly dependent on exposure conditions, which has implications for future work investigating their link to clot lysis and for developing approaches to exploit these effects.

  13. A novel technique for fetal heart rate estimation from Doppler ultrasound signal

    PubMed Central

    2011-01-01

    Background The currently used fetal monitoring instrumentation that is based on Doppler ultrasound technique provides the fetal heart rate (FHR) signal with limited accuracy. It is particularly noticeable as significant decrease of clinically important feature - the variability of FHR signal. The aim of our work was to develop a novel efficient technique for processing of the ultrasound signal, which could estimate the cardiac cycle duration with accuracy comparable to a direct electrocardiography. Methods We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation. Results The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid. Conclusions The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements. PMID:21999764

  14. GPU simulation of nonlinear propagation of dual band ultrasound pulse complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvam, Johannes, E-mail: johannes.kvam@ntnu.no; Angelsen, Bjørn A. J., E-mail: bjorn.angelsen@ntnu.no; Elster, Anne C., E-mail: elster@ntnu.no

    In a new method of ultrasound imaging, called SURF imaging, dual band pulse complexes composed of overlapping low frequency (LF) and high frequency (HF) pulses are transmitted, where the frequency ratio LF:HF ∼ 1 : 20, and the relative bandwidth of both pulses are ∼ 50 − 70%. The LF pulse length is hence ∼ 20 times the HF pulse length. The LF pulse is used to nonlinearly manipulate the material elasticity observed by the co-propagating HF pulse. This produces nonlinear interaction effects that give more information on the propagation of the pulse complex. Due to the large difference inmore » frequency and pulse length between the LF and the HF pulses, we have developed a dual level simulation where the LF pulse propagation is first simulated independent of the HF pulse, using a temporal sampling frequency matched to the LF pulse. A separate equation for the HF pulse is developed, where the the presimulated LF pulse modifies the propagation velocity. The equations are adapted to parallel processing in a GPU, where nonlinear simulations of a typical HF beam of 10 MHz down to 40 mm is done in ∼ 2 secs in a standard GPU. This simulation is hence very useful for studying the manipulation effect of the LF pulse on the HF pulse.« less

  15. Diagnostic utility of three-dimensional power Doppler ultrasound for postmenopausal bleeding.

    PubMed

    Kim, Ari; Lee, Ji Young; Chun, Sungwook; Kim, Heung Yeol

    2015-06-01

    We evaluated the role of three-dimensional power Doppler ultrasound (3D PD-US) to detect endometrial lesions in women with postmenopausal endometrial bleeding. In this prospective observational study, from January 2009 to November 2012, we recruited 225 postmenopausal women with postmenopausal uterine bleeding who met the study criteria. Women who had hematologic disease, chronic medical diseases, or nonuterine pelvic diseases were excluded. Prior to endometrial biopsy, the patients underwent a baseline transvaginal ultrasound screening. The vascular indices and endometrial volumes were calculated with 3D PD-US and compared with the endometrial histopathology. Among the endometrial histopathologic findings of 174 women, atrophic endometrium was the most common finding (30.5%). Endometrial malignancy was confirmed in 28 cases (16.1%), and endometrial hyperplasia was diagnosed in 17 cases (9.8%). The prevalence of endometrial cancer was high in patients who had endometrial thickness >9.5 mm (p < 0.001) and volume greater than 4.05 mL (p < 0.001). For the endometrial carcinoma only, the cutoff values of vascular index, flow index, and vascular flow index for predicting malignancy were 13.070, 12.610, and 3.764, respectively. For endometrial hyperplasia, endometrial thickness and vascular flow index were significant findings. Endometrial vasculature and volume can be obtained using 3D PD-US. The diagnostic usefulness of 3D PD-US for endometrial diseases is promising in women with postmenopausal endometrial bleeding. Copyright © 2015. Published by Elsevier B.V.

  16. The value of Doppler ultrasound in predicting delayed graft function occurrence after kidney transplantation.

    PubMed

    Mocny, Grzegorz; Bachul, Piotr; Chang, Ea-Sle; Kulig, Piotr

    The aim of this study was to assess the predictive value of blood flow velocity and vascular resistance measured by Doppler ultrasound in terms of pulsatility index (PI) and resistive index (RI) respectively, in the occurrence of delayed graft function (DGF) after kidney transplantation. This prospective study enrolled kidney transplant recipients operated from January 2005 to April 2009 in the 1st Department of General, Oncological and Gastroenterological Surgery, Jagiellonian University Medical College, Kraków, Poland. The medical records of 53 kidney transplant recipients from deceased donors were reviewed. PI and RI values of the graft arcuate artery were calculated immediately after blood flow restoration and on the 1st, 2nd, 4th and 8th post-operative day. DGF was observed in 20 patients (37.7%), while 33 patients (62.3%) had immediate restoration of the kidney function. The mean intraoperative values of RI and PI from patients with DGF were significantly higher in comparison to patients without DGF (0.9 vs. 0.74, p <0.001; 1.76 vs. 1.54, p = 0.019, respectively). Post-operatively, the RI and PI values remained stable and significantly higher in DGF group. The highest sensitivity of RI to predict DGF occurrence was observed intraoperatively and on the first postoperative day, with values of 77.8% and 72.2%, respectively. The risk of DGF occurrence with intraoperative RI value ≥0.9 increased by 13-fold, and with intraoperative PI value ≥1.9 by 12-fold. This increase was even more prominent during the first post-operative day with RI value ≥0.9 or PI value ≥1.9 with 19-fold increase in the risk of DGF occurrence. According to our study, the utilization of Doppler ultrasound with measurement of hemodynamic parameters (PI, RI), play a crucial role in predicting the outcomes of kidney transplantation.

  17. Assessment by three-dimensional power Doppler ultrasound of cerebral blood flow perfusion in fetuses with congenital heart disease.

    PubMed

    Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q

    2015-06-01

    To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P < 0.001), and the 3D power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P < 0.01). The largest proportional increase in the blood flow perfusion indices in the fetuses with CHD relative to controls was observed in the ACA territory (P < 0.05). Among 41 cases with CHD that underwent testing, the mean Psychomotor Development Index (PDI) and Mental Development Index (MDI) scores were significantly lower than in 94 of the controls that were tested (P < 0.001). Among these CHD cases, total intracranial FI was positively correlated with PDI (r = 0.342, P = 0.029) and MDI (r = 0.339, P = 0.030), and ACA-VI and ACA-VFI were positively correlated with PDI (r = 0.377 and 0.389, P = 0.015 and 0.012, respectively) but were not correlated with MDI (r = 0.243 and 0.203, P = 0.126 and 0.204, respectively). Cerebral blood flow perfusion was increased relative to controls in most fetuses with CHD and was associated with neurodevelopment scores at 12 months

  18. Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao

    1995-05-01

    Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.

  19. The role of transvaginal power Doppler ultrasound in the differential diagnosis of benign intrauterine focal lesions.

    PubMed

    Cogendez, Ebru; Eken, Meryem Kurek; Bakal, Nuray; Gun, Ismet; Kaygusuz, Ecmel Isik; Karateke, Ates

    2015-10-01

    The purpose of this prospective study was to assess the role of power Doppler imaging in the differential diagnosis of benign intrauterine focal lesions such as endometrial polyps and submucous myomas using the characteristics of power Doppler flow mapping. A total of 480 premenopausal patients with abnormal uterine bleeding were evaluated by transvaginal ultrasonography (TVS) searching for intrauterine pathology. Sixty-four patients with a suspicious focal endometrial lesion received saline infusion sonography (SIS) after TVS. Fifty-eight patients with focal endometrial lesions underwent power Doppler ultrasound (PDUS). Three different vascular flow patterns were defined: Single vessel pattern, multiple vessel pattern, and circular flow pattern. Finally, hysteroscopic resection was performed in all cases, and Doppler flow characteristics were then compared with the final histopathological findings. Histopathological results were as follows: endometrial polyp: 40 (69 %), submucous myoma: 18 (31 %). Of the cases with endometrial polyps, 80 % demonstrated a single vessel pattern, 7.5 % a multiple vessel pattern, and 0 % a circular pattern. Vascularization was not observed in 12.5 % of patients with polyps. Of the cases with submucousal myomas, 72.2 % demonstrated a circular flow pattern, 27.8 % a multiple vessel pattern, and none of them showed a single vessel pattern. The sensitivity, specificity, and positive and negative predictive values of the single vessel pattern in diagnosing endometrial polyps were 80, 100, 100, and 69.2 %, respectively; and for the circular pattern in diagnosing submucous myoma, these were 72.2, 100, 100, and 88.9 %, respectively. Power Doppler blood flow mapping is a useful, practical, and noninvasive diagnostic method for the differential diagnosis of benign intrauterine focal lesions. Especially in cases of recurrent abnormal uterine bleeding, recurrent abortion, and infertility, PDUS can be preferred as a first-line diagnostic method.

  20. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  1. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants.

    PubMed

    Julkunen, Mia K; Himanen, Sari-Leena; Eriksson, Kai; Janas, Martti; Luukkaala, Tiina; Tammela, Outi

    2014-09-01

    To evaluate electroencephalograms (EEG), evoked potentials (EPs) and Doppler findings in the cerebral arteries as predictors of a 1-year outcome in asphyxiated newborn infants. EEG and EPs (brain stem auditory (BAEP), somatosensory (SEP), visual (VEP) evoked potentials) were assessed in 30 asphyxiated and 30 healthy term infants during the first days (range 1-8). Cerebral blood flow velocities (CBFV) were measured from the cerebral arteries using pulsed Doppler at ∼24h of age. EEG, EPs, Doppler findings, symptoms of hypoxic ischemic encephalopathy (HIE) and their combination were evaluated in predicting a 1-year outcome. An abnormal EEG background predicted poor outcome in the asphyxia group with a sensitivity of 67% and 81% specificity, and an abnormal SEP with 75% and 79%, respectively. Combining increased systolic CBFV (mean+3SD) with abnormal EEG or SEP improved the specificity, but not the sensitivity. The predictive values of abnormal BAEP and VEP were poor. Normal EEG and SEP predicted good outcome in the asphyxia group with sensitivities from 79% to 81%. The combination of normal EEG, normal SEP and systolic CBFV<3SD predicted good outcome with a sensitivity of 74% and 100% specificity. Combining abnormal EEG or EPs findings with increased systolic CBFV did not improve prediction of a poor 1-year outcome of asphyxiated infants. Normal EEG and normal SEP combined with systolic CBFV<3SD at about 24 h can be valuable in the prediction of normal 1-year outcome. Combining systolic CBFV at 24 h with EEG and SEP examinations can be of use in the prediction of normal 1-year outcome among asphyxiated infants. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Repeatability, variability and reference values of pulsed wave Doppler echocardiographic measurements in healthy Saanen goats

    PubMed Central

    2012-01-01

    Background Pulsed wave (PW) Doppler echocardiography has become a routine non invasive cardiac diagnostic tool in most species. However, evaluation of intracardiac blood flow requires reference values, which are poorly documented in goats. The aim of this study was to test the repeatability, the variability, and to establish the reference values of PW measurements in healthy adult Saanen goats. Using a standardised PW Doppler echocardiographic protocol, 10 healthy adult unsedated female Saanen goats were investigated three times at one day intervals by the same observer. Mitral, tricuspid, aortic and pulmonary flows were measured from a right parasternal view, and mitral and aortic flows were also measured from a left parasternal view. The difference between left and right side measurements and the intra-observer inter-day repeatability were tested and then the reference values of PW Doppler echocardiographic parameters in healthy adult female Saanen goats were established. Results As documented in other species, all caprine PW Doppler parameters demonstrated a poor inter-day repeatability and a moderate variability. Tricuspid and pulmonary flows were best evaluated on the right side whereas mitral and aortic flows were best obtained on the left side, and reference values are reported for healthy adult Saanen goats. Conclusions PW Doppler echocardiography allows the measurement of intracardiac blood flow indices in goats. The reference values establishment will help interpreting these indices of cardiac function in clinical cardiac cases and developing animal models for human cardiology research. PMID:23067875

  3. Perfusion dynamics assessment with Power Doppler ultrasound in skeletal muscle during maximal and submaximal cycling exercise.

    PubMed

    Heres, H M; Schoots, T; Tchang, B C Y; Rutten, M C M; Kemps, H M C; van de Vosse, F N; Lopata, R G P

    2018-06-01

    Assessment of limitations in the perfusion dynamics of skeletal muscle may provide insight in the pathophysiology of exercise intolerance in, e.g., heart failure patients. Power doppler ultrasound (PDUS) has been recognized as a sensitive tool for the detection of muscle blood flow. In this volunteer study (N = 30), a method is demonstrated for perfusion measurements in the vastus lateralis muscle, with PDUS, during standardized cycling exercise protocols, and the test-retest reliability has been investigated. Fixation of the ultrasound probe on the upper leg allowed for continuous PDUS measurements. Cycling exercise protocols included a submaximal and an incremental exercise to maximal power. The relative perfused area (RPA) was determined as a measure of perfusion. Absolute and relative reliability of RPA amplitude and kinetic parameters during exercise (onset, slope, maximum value) and recovery (overshoot, decay time constants) were investigated. A RPA increase during exercise followed by a signal recovery was measured in all volunteers. Amplitudes and kinetic parameters during exercise and recovery showed poor to good relative reliability (ICC ranging from 0.2-0.8), and poor to moderate absolute reliability (coefficient of variation (CV) range 18-60%). A method has been demonstrated which allows for continuous (Power Doppler) ultrasonography and assessment of perfusion dynamics in skeletal muscle during exercise. The reliability of the RPA amplitudes and kinetics ranges from poor to good, while the reliability of the RPA increase in submaximal cycling (ICC = 0.8, CV = 18%) is promising for non-invasive clinical assessment of the muscle perfusion response to daily exercise.

  4. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods.

    PubMed

    Cupek, Rafal; Ziębiński, Adam

    2016-01-01

    Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. This paper focus on a computer aided diagnostic system that was developed within joint Polish-Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner's experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner's experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity.

  5. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.

    PubMed

    Maxwell, Adam D; Cain, Charles A; Hall, Timothy L; Fowlkes, J Brian; Xu, Zhen

    2013-03-01

    In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. The doppler frequency shift caused by the inhomogeneities of a medium induced by pulses of intense laser radiation

    NASA Astrophysics Data System (ADS)

    Rozanov, N. N.; Kiselev, Al. S.; Kiselev, An. S.

    2008-08-01

    Self-reflection of pulses of intense laser radiation from an inhomogeneity induced by them in a medium with fast optical nonlinearity is analyzed. The reflected radiation is characterized by a considerable Doppler shift and by a signal magnitude that is sufficient for experimental detection.

  7. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    PubMed

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-02

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  8. Effects of intravenous bolus injection of nicorandil on renal artery flow velocity assessed by color Doppler ultrasound.

    PubMed

    Shimamoto, Yukiko; Kubo, Takashi; Tanabe, Kazumi; Emori, Hiroki; Katayama, Yosuke; Nishiguchi, Tsuyoshi; Taruya, Akira; Kameyama, Takeyoshi; Orii, Makoto; Yamano, Takashi; Kuroi, Akio; Yamaguchi, Tomoyuki; Takemoto, Kazushi; Matsuo, Yoshiki; Ino, Yasushi; Tanaka, Atsushi; Hozumi, Takeshi; Terada, Masaki; Akasaka, Takashi

    2017-01-01

    Previous animal studies have shown that a potassium channel opener, nicorandil, provokes vasodilation in renal microvasculature and increases renal blood flow. We conducted a clinical study that aimed to evaluate the effect of nicorandil on renal artery blood flow in comparison with nitroglycerin by using color Doppler ultrasound. The present study enrolled 40 patients with stable coronary artery disease who had no renal arterial stenosis and renal parenchymal disease. The patients received intravenous administration of nicorandil (n=20) or nitroglycerin (n=20). Before and after the administration, renal artery blood flow velocity was measured by color-guided pulsed-wave Doppler. The peak-systolic, end-diastolic, and mean renal artery blood flow velocities before the administration were not different between the nicorandil group and the nitroglycerin group. The peak-systolic (79±15cm/s to 99±21cm/s, p<0.001; and 78±19cm/s to 85±19cm/s, p=0.004), end-diastolic (22±5cm/s to 28±8cm/s, p<0.001; and 24±6cm/s to 26±6cm/s, p=0.005) and mean (41±6cm/s to 49±9cm/s, p<0.001; and 43±9cm/s to 45±9cm/s, p=0.009) renal artery flow velocities increased significantly in either group. The nominal changes in the peak-systolic (20±10cm/s vs. 7±8cm/s, p<0.001), end-diastolic (5±4cm/s vs. 2±3cm/s, p=0.001), and mean (8±5cm/s vs. 2±2cm/s, p<0.001) renal artery blood flow velocities were significantly greater in the nicorandil group compared with the nitroglycerin group. Intravenous nicorandil increased renal artery blood flow velocity in comparison with nitroglycerin. Nicorandil has a significant effect on renal hemodynamics. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  9. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery.

    PubMed

    Mannaris, Christophoros; Averkiou, Michalakis A

    2012-04-01

    In current drug delivery approaches, microbubbles and drugs can be co-administered while ultrasound is applied. The mechanism of microbubble interaction with ultrasound, the drug and the cells is not fully understood. The aim of this study was to investigate microbubble response to long ultrasonic pulses used in drug delivery approaches. Two different in vitro set-ups were considered: with the microbubbles diluted in an enclosure and with the microbubbles flowing in a capillary tube. Acoustic streaming, which influences the observed bubble response, was observed in "typical" drug delivery conditions in the first set-up. With the capillary set-up, streaming effects were avoided and accurate bubble responses were recorded. The diffraction pattern of the source greatly influences the bubble response and in different locations of the field different bubble responses are observed. At low nondestructive pressures, microbubbles can oscillate for thousands of cycles repeatedly. At high acoustic pressures (at 1 MHz), most bubble activity disappeared within about 100 μs despite the length of the pulse, mainly due to violent bubble destruction and subsequent accelerated diffusion. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    PubMed

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (< 10 µs) delivered by an external 1-MHz focused ultrasound transducer at a 0.2-1-kHz pulse-repetition rate and 10-16 MPa peak negative pressure. Procedures were monitored and guided by real-time ultrasound imaging. Treated organs were examined by gross and histological inspection for location and degree of tissue injury. Hyperechoic, cavitating bubble clouds were successfully generated in 19/31 (61%) treatment attempts in 27 fetal organs beneath up to 8 cm of overlying tissue and fetal bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  11. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    PubMed Central

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    Background: The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. Materials and Methods: In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental mRNA in maternal plasma. Based on the findings at cesarean delivery and histological examination, patients were divided into two groups of women with and without placenta accrete. To compare of the mean of mRNA levels between the two groups we used independent t-test and to compare of the mean of age and gestational age at sonography we used Mann-Whitney test. For determination of sensitivity and specificity and the cut-off point of mRNA levels we used the receiver operating characteristic curve. Results: A total of 50 women with a mean age of 30.24 ± 4.905 years entered the study and 12 (24%) patients were diagnosed with placenta accreta. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Doppler ultrasound were 83.3%, 78.9%, 56% and 94%, respectively. Results of our study showed if we consider a cut-off point equal to 3.325, with sensitivity and specificity of 0.917 and 0.789, respectively and the sensitivity, specificity, PPV and NPV of mRNA with were cut-off point of 3.325 were 91.7%, 78.9%, 57.9% and 96.8%, respectively. Conclusions: Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta. PMID:25709996

  12. [Estimation of the atrioventricular time interval by pulse Doppler in the normal fetal heart].

    PubMed

    Hamela-Olkowska, Anita; Dangel, Joanna

    2009-08-01

    To assess normative values of the fetal atrioventricular (AV) time interval by pulse-wave Doppler methods on 5-chamber view. Fetal echocardiography exams were performed using Acuson Sequoia 512 in 140 singleton fetuses at 18 to 40 weeks of gestation with sinus rhythm and normal cardiac and extracardiac anatomy. Pulsed Doppler derived AV intervals were measured from left ventricular inflow/outflow view using transabdominal convex 3.5-6 MHz probe. The values of AV time interval ranged from 100 to 150 ms (mean 123 +/- 11.2). The AV interval was negatively correlated with the heart rhythm (p<0.001). Fetal heart rate decreased as gestation progressed (p<0.001). Thus, the AV intervals increased with the age of gestation (p=0.007). However, in the same subgroup of the fetal heart rate there was no relation between AV intervals and gestational age. Therefore, the AV intervals showed only the heart rate dependence. The 95th percentiles of AV intervals according to FHR ranged from 135 to 148 ms. 1. The AV interval duration was negatively correlated with the heart rhythm. 2. Measurement of AV time interval is easy to perform and has a good reproducibility. It may be used for the fetal heart block screening in anti-Ro and anti-La positive pregnancies. 3. Normative values established in the study may help obstetricians in assessing fetal abnormalities of the AV conduction.

  13. [Ultrasound and color Doppler applications in nephrology. The normal kidney: anatomy, vessels and congenital anomalies].

    PubMed

    Meola, Mario; Petrucci, Ilaria; Giovannini, Lisa; Samoni, Sara; Dellafiore, Carolina

    2012-01-01

    Gray-scale ultrasound is the diagnostic technique of choice in patients with suspected or known renal disease. Knowledge of the normal and abnormal sonographic morphology of the kidney and urinary tract is essential for a successful diagnosis. Conventional sonography must always be complemented by Doppler sampling of the principal arterial and venous vessels. B-mode scanning is performed with the patient in supine, prone or side position. The kidney can be imaged by the anterior, lateral or posterior approach using coronal, transverse and oblique scanning planes. Morphological parameters that must be evaluated are the coronal diameter, the parenchymal thickness and echogenicity, the structure and state of the urinary tract, and the presence of congenital anomalies that may mimic a pseudomass. The main renal artery and the hilar-intraparenchymal branches of the arterial and venous vessels should be accurately evaluated using color Doppler. Measurement of intraparenchymal resistance indices (IP, IR) provides an indirect and quantitative parameter of the stiffness and eutrophic or dystrophic remodeling of the intrarenal microvasculature. These parameters differ depending on age, diabetic and hypertensive disease, chronic renal glomerular disease, and interstitial, vascular and obstructive nephropathy.

  14. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  15. In vitro comparative study of vibro-acoustography versus pulse-echo ultrasound in imaging permanent prostate brachytherapy seeds

    PubMed Central

    Mitri, F.G.; Davis, B.J.; Greenleaf, J.F.; Fatemi, M.

    2010-01-01

    Background Permanent prostate brachytherapy (PPB) is a common treatment for early stage prostate cancer. While the modern approach using trans-rectal ultrasound guidance has demonstrated excellent outcome, the efficacy of PPB depends on achieving complete radiation dose coverage of the prostate by obtaining a proper radiation source (seed) distribution. Currently, brachytherapy seed placement is guided by trans-rectal ultrasound imaging and fluoroscopy. A significant percentage of seeds are not detected by trans-rectal ultrasound because certain seed orientations are invisible making accurate intra-operative feedback of radiation dosimetry very difficult, if not impossible. Therefore, intra-operative correction of suboptimal seed distributions cannot easily be done with current methods. Vibro-acoustography (VA) is an imaging modality that is capable of imaging solids at any orientation, and the resulting images are speckle free. Objective and methods The purpose of this study is to compare the capabilities of VA and pulse-echo ultrasound in imaging PPB seeds at various angles and show the sensitivity of detection to seed orientation. In the VA experiment, two intersecting ultrasound beams driven at f1 = 3.00 MHz and f2 = 3.020 MHz respectively were focused on the seeds attached to a latex membrane while the amplitude of the acoustic emission produced at the difference frequency 20 kHz was detected by a low frequency hydrophone. Results Finite element simulations and results of experiments conducted under well-controlled conditions in a water tank on a series of seeds indicate that the seeds can be detected at any orientation with VA, whereas pulse-echo ultrasound is very sensitive to the seed orientation. Conclusion It is concluded that vibro-acoustography is superior to pulse-echo ultrasound for detection of PPB seeds. PMID:18538365

  16. Loss of gas from echogenic liposomes exposed to pulsed ultrasound

    PubMed Central

    Raymond, Jason L.; Luan, Ying; Peng, Tao; Huang, Shao-Ling; McPherson, David D.; Versluis, Michel; de Jong, Nico; Holland, Christy K.

    2017-01-01

    The destruction of echogenic liposomes (ELIP) in response to pulsed ultrasound excitations has been studied acoustically previously. However, the mechanism underlying the loss of echogenicity due to cavitation of ELIP has not been fully clarified. In this study, an ultra-high speed imaging approach was employed to observe the destruction phenomena of single ELIP exposed to ultrasound bursts at a center frequency of 6- MHz. We observed a rapid size reduction during the ultrasound excitation in 139 out of 397 (35 %) ultra-high-speed recordings. The shell dilation rate, which is defined as the microbubble wall velocity divided by the instantaneous radius, Ṙ/R, was extracted from the radius versus time response of each ELIP, and was found to be correlated with the deflation. Fragmentation and surface mode vibrations were also observed and are shown to depend on the applied acoustic pressure and initial radius. Results from this study can be utilized to optimize the theranostic application of ELIP, e.g., by tuning the size distribution or the excitation frequency. PMID:27811382

  17. Assessment of placental volume and vascularization at 11-14 weeks of gestation in a Taiwanese population using three-dimensional power Doppler ultrasound.

    PubMed

    Wang, Hsing-I; Yang, Ming-Jie; Wang, Peng-Hui; Wu, Yi-Cheng; Chen, Chih-Yao

    2014-12-01

    The placental volume and vascular indices are crucial in helping doctors to evaluate early fetal growth and development. Inadequate placental volume or vascularity might indicate poor fetal growth or gestational complications. This study aimed to evaluate the placental volume and vascular indices during the period of 11-14 weeks of gestation in a Taiwanese population. From June 2006 to September 2009, three-dimensional power Doppler ultrasound was performed in 222 normal pregnancies from 11-14 weeks of gestation. Power Doppler ultrasound was applied to the placenta and the placental volume was obtained by a rotational technique (VOCAL). The three-dimensional power histogram was used to assess the placental vascular indices, including the mean gray value, the vascularization index, the flow index, and the vascularization flow index. The placental vascular indices were then plotted against gestational age (GA) and placental volume. Our results showed that the linear regression equation for placental volume using gestational week as the independent variable was placental volume = 18.852 × GA - 180.89 (r = 0.481, p < 0.05). All the placental vascular indices showed a constant distribution throughout the period 11-14 weeks of gestation. A tendency for a reduction in the placental mean gray value with gestational week was observed, but without statistical significance. All the placental vascular indices estimated by three-dimensional power Doppler ultrasonography showed a constant distribution throughout gestation. Copyright © 2014. Published by Elsevier Taiwan.

  18. The variation in frequency locations in Doppler ultrasound spectra for maximum blood flow velocities in narrowed vessels.

    PubMed

    Zhang, Yingyun; Zhang, Yufeng; Gao, Lian; Deng, Li; Hu, Xiao; Zhang, Kexin; Li, Haiyan

    2017-11-01

    This study assessed the variation in the frequency locations in the Doppler ultrasound spectra for the maximum blood flow velocities of in vessels with different degrees of bilaterally axisymmetric stenosis. This was done by comparing the relationship between the velocity distributions and corresponding Doppler power spectra. First, a geometric vessel model with axisymmetric stenosis was established. This made it possible to obtain the blood flow velocity distributions for different degrees of stenosis from the solutions of the Navier-Stokes equations. Then, the Doppler spectra were calculated for the entire segment of the vessel that was covered by the sound field. Finally, the maximum frequency locations for the spectra were determined based on the intersections of the maximum values chosen from the calculated blood flow velocity distributions and their corresponding spectra. The computational analysis showed that the maximum frequencies, which corresponded to the maximum blood flow velocities for different degrees of stenosis, were located at different positions along the spectral falling edges. The location for a normal (stenosis free) vessel was in the middle of the falling edge. For vessels with increasing degrees of stenosis, this location shifted approximately linearly downward along the falling edge. For 40% stenosis, the location reached a position at the falling edge of 0.32. Results obtained using the Field II simulation tool demonstrated the validity of the theoretical analysis and calculations, and may help to improve the maximum velocity estimation accuracy for Doppler blood flow spectra in stenosed vessels. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats.

    PubMed

    Zhou, Hongbo; Hou, Yongfu; Zhu, Zhimin; Xiao, Weixiong; Xu, Qian; Li, Lei; Li, Xin; Chen, Wenchuan

    2016-04-01

    To investigate the effect of low-intensity pulsed ultrasound (US) on peri-implant bone healing and osseointegration under osteoporotic conditions. Seventy-two 12-week-old female Sprague Dawley rats received bilateral ovariectomies. Twelve weeks later, titanium implants were bilaterally placed in the proximal tibial metaphysis. The right tibia was exposed to low-intensity pulsed US (40 mW/cm 2 , spatial and temporal average) for 20 min/d starting the 2nd day after implantation, and the left tibia served as a control without stimulation. The rats were randomly assigned to 6 groups of 12 each according to the US duration (group 1: weeks 0-2, 280 minutes; group 2: weeks 0-4, 560 minutes; group 3: weeks 0-6, 840 minutes; group 4: weeks 0-8, 1120 minutes; group 5: weeks 0-10, 1400 minutes; group 6: weeks 0-12, 1680 minutes). At the end of the 2nd, 4th, 6th, 8th, 10th, and 12th weeks, the rats were euthanized, and bilateral tibias were harvested. Peri-implant bone volume and bone-implant contact were assessed by micro-computed tomography; the implant-bone interface was assessed histologically; and implant fixation strength was determined by a removal torque test. Low-intensity pulsed US increased bone-implant contact at the 4th, 6th, 8th, 10th, and 12th weeks (P = .019, .017, <.001, <.001, and <.001, respectively) and peri-implant bone volume at all times (P = <.001, .002, .012, .007, .005, and .010). Removal torque on the US side was improved at the 6th, 8th, 10th, and 12th weeks (P= .012, <.001, .006, and .009). Ultrasound evoked a favorable bone response in the histologic study. Low-intensity pulsed US might enhance new bone formation, especially at an early stage, and improve osseointegration in osteoporotic bone as an auxiliary method. However, further studies are needed to elucidate the mechanisms underlying its action. © 2016 by the American Institute of Ultrasound in Medicine.

  20. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  1. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Kirthi; Bader, Kenneth B.; Haworth, Kevin J.; Kopechek, Jonathan A.; Raymond, Jason L.; Huang, Shao-Ling; McPherson, David D.; Holland, Christy K.

    2013-09-01

    Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the onscreen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations (‘sample volumes’) in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and

  2. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents

    PubMed Central

    Radhakrishnan, Kirthi; Bader, Kenneth B; Haworth, Kevin J; Kopechek, Jonathan A; Raymond, Jason L; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2014-01-01

    Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations (“sample volumes”) in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and

  3. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents.

    PubMed

    Radhakrishnan, Kirthi; Bader, Kenneth B; Haworth, Kevin J; Kopechek, Jonathan A; Raymond, Jason L; Huang, Shao-Ling; McPherson, David D; Holland, Christy K

    2013-09-21

    Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the onscreen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations ('sample volumes') in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and inertial

  4. Assessment of early placental development in the cynomolgus monkey (Macaca fascicularis) using colour and pulsed wave Doppler sonography.

    PubMed

    Nimrod, C; Simpson, N; Hafner, T; de Vermette, R; Fournier, J; Coady, L; Baccanale, C

    1996-04-01

    Colour flow mapping and pulsed wave Doppler were used to assess the process of placental growth and development in the cynomolgus monkey from 32 to 71 days gestational age. Fetal and maternal vessels were reliably visualised and insonated. Accurate longitudinal non-invasive assessment of placentation is possible using this technique.

  5. Biological response in vitro of skeletal muscle cells treated with different intensity continuous and pulsed ultrasound fields

    NASA Astrophysics Data System (ADS)

    Abrunhosa, Viviane M.; Mermelstein, Claudia S.; Costa, Manoel L.; Costa-Felix, Rodrigo P. B.

    2011-02-01

    Therapeutic ultrasound has been used in physiotherapy to accelerate tissue healing. Although the ultrasonic wave is widely used in clinical practice, not much is known about the biological effects of ultrasound on cells and tissues. This study aims to evaluate the biological response of ultrasound in primary cultures of chick myogenic cells. To ensure the metrological reliability of whole measurement process, the ultrasound equipment was calibrated in accordance with IEC 61689:2007. The skeletal muscle cells were divided in four samples. One sample was used as a control group and the others were submitted to different time and intensity and operation mode of ultrasound: 1) 0.5 W/cm2 continuous for 5 minutes, 2) 0.5 W/cm2 pulsed for 5 minutes, 3) 1.0 W/cm2 pulsed for 10 minutes. The samples were analyzed with phase contrast optical microscopy before and after the treatment. The results showed alignment of myogenic cells in the sample treated with 0.5 W/cm2 continuous during 5 minutes when compared with the control group and the other samples. This study is a first step towards a metrological and scientific based protocol to cells and tissues treatment under different ultrasound field exposures.

  6. Pulsed radiofrequency on radial nerve under ultrasound guidance for treatment of intractable lateral epicondylitis.

    PubMed

    Oh, Dae Seok; Kang, Tae Hyung; Kim, Hyae Jin

    2016-06-01

    Lateral epicondylitis is a painful and functionally limiting disorder. Although lateral elbow pain is generally self-limiting, in a minority of people symptoms persist for a long time. When various conservative treatments fail, surgical approach is recommended. Surgical denervation of several nerves that innervate the lateral humeral epicondyle could be considered in patients with refractory pain because it denervates the region of pain. Pulsed radiofrequency is a minimally invasive procedure that improves chronic pain when applied to various neural tissues without causing any significant destruction and painful complication. This procedure is safe, minimally invasive, and has less risk of complications relatively compared to the surgical approach. The radial nerve can be identified as a target for pulsed radiofrequency lesioning in lateral epicondylitis. This innovative method of pulsed radiofrequency applied to the radial nerve has not been reported before. We reported on two patients with intractable lateral epicondylitis suffering from elbow pain who did not respond to nonoperative treatments, but in whom the ultrasound-guided pulsed radiofrequency neuromodulation of the radial nerve induced symptom improvement. After a successful diagnostic nerve block, radiofrequency probe adjustment around the radial nerve was performed on the lateral aspect of the distal upper arm under ultrasound guidance and multiple pulsed treatments were applied. A significant reduction in pain was reported over the follow-up period of 12 weeks.

  7. Etiology of congenital hypothyroidism using thyroglobulin and ultrasound combination.

    PubMed

    Beltrão, Cristine B; Juliano, Adriana G; Chammas, Maria C; Watanabe, Tomoco; Sapienza, Marcelo T; Marui, Suemi

    2010-01-01

    Methods currently employed to establish the etiology of congenital hypothyroidism include thyroid ultrasound and scintigraphic exams. Thyroglobulin is a protein almost exclusively secreted by thyroid tissue and indirectly reflects the amount of follicular cells. Even though thyroglobulin is easy to measure, it has been not frequently used because of discordant results to distinguish mainly athyreosis and ectopy (dysgenesis). Knowing the differences in inheritance and prognosis of thyroid dysgenesis and dyshormonogenesis, it is important to define the etiology of CH, combining tools that are easy, fast and available in most medical centers. Our objective was to evaluate and compare color Doppler ultrasound and serum thyroglobulin with radionuclide scan to define the etiology of congenital hypothyroidism. We evaluated 38 children above 3 years-old off-treatment that performed serum thyroglobulin by immunofluorometric assay, color Doppler ultrasound and radionuclide study. On color Doppler ultrasound, 11 patients had athyreosis, 5 ectopic glands, being 1 associated to hemiagenesis. Twenty one had topic thyroid (3 goiters, 10 normal, 8 hypoplastic). Hemiagenesis and cystic lesion were not revealed by radionuclide scan. We observed substantial agreement between color Doppler ultrasound and radionuclide scan (kappa=0.745, p<0.0001). Serum thyroglobulin in athyreosis ranged from <1.0 to 18.7 micro g/L. Patients with ectopic glands showed wider thyroglobulin range (4.5 to 123 micro g/L, median 28.4 micro g/L). Only one patient showed thyroglobulin deficiency. By using color Doppler ultrasound and serum thyroglobulin levels as valuable combined tools, we established the etiology of congenital hypothyroidism limiting excessive and harmful exams in children, like radionuclide scan.

  8. L wave in echo Doppler.

    PubMed

    Kumar, Vipin; Jose, John; Jose, V Jacob

    2014-01-01

    62-year-old female presented with progressive dyspnea NYHA class III for six months. Echocardiography showed normal left ventricular (LV) systolic function, mild biatrial enlargement, an L wave in pulse wave Doppler at mitral inflow and in M mode echocardiography across mitral valve. Tissue Doppler imaging at medial mitral annulus showed an L' wave in mid diastole in addition to E' and A' wave. An L wave in pulse wave Doppler and M mode echocardiography represents continued pulmonary vein mid diastolic flow through the left atrium in to LV across mitral valve after early rapid filling. Presence of an L' wave in these patients associated with higher E/E' is indicative of advance diastolic dysfunction with elevated filling pressures. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  9. Noninvasive Evaluation of Varying Pulse Pressures in vivo Using Brachial Sphymomanometry, Applanation Tonometry, and Pulse Wave Ultrasound Manometry.

    PubMed

    Li, Ronny X; Ip, Ada; Sanz-Miralles, Elena; Konofagou, Elisa E

    2017-06-01

    The routine assessment and monitoring of hypertension may benefit from the evaluation of arterial pulse pressure (PP) at more central locations (e.g. the aorta) rather solely at the brachial artery. Pulse Wave Ultrasound Manometry (PWUM) was previously developed by our group to provide direct, noninvasive aortic PP measurements using ultrasound elasticity imaging. Using PWUM, radial applanation tonometry, and brachial sphygmomanometry, this study investigated the feasibility of noninvasively obtaining direct PP measurements at multiple arterial locations in normotensive, pre-hypertensive, and hypertensive human subjects. Two-way ANOVA indicated a significantly higher aortic PP in the hypertensive subjects, while radial and brachial PP were not significantly different among the subject groups. No strong correlation (r 2 < 0.45) was observed between aortic and radial/brachial PP in normal and pre-hypertensive subjects, suggesting that increases in PP throughout the arterial tree may not be uniform in relatively compliant arteries. However, there was a relatively strong positive correlation between aortic PP and both radial and brachial PP in hypertensive subjects (r 2 = 0.68 and 0.87, respectively). PWUM provides a low-cost, non-invasive, and direct means of measuring the pulse pressure in large central arteries such as the aorta. When used in conjunction with peripheral measurement devices, PWUM allows for the routine screening of hypertension and monitoring of BP-lowering drugs based on the PP from multiple arterial sites.

  10. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  11. High pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubble interrogated by acoustic radiation force

    PubMed Central

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-01-01

    A high pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on measured motion of the microbubble, the Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using indentation test. Measured values of Young’s moduli of 4 bovine lenses ranged from 2.6±0.1 to 26±1.4 kPa and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. PMID:22797709

  12. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.

    PubMed

    Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B

    2008-05-01

    Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.

  13. Use of translabial three-dimensional power Doppler ultrasound for cervical assessment before labor induction.

    PubMed

    Esin, Sertac; Yirci, Bulent; Yalvac, Serdar; Kandemir, Omer

    2017-07-26

    To compare translabial three-dimensional (3D) power Doppler ultrasound with Bishop score and transvaginal ultrasound measurements for cervical assessment before induction of labor with dinoprostone or cervical ripening balloon. Translabial cervical volume and length, vascularization indices and transvaginal cervical length were measured. Results were compared among women who had vaginal delivery at 24 h or less and more than 24 h after the insertion of the dinoprostone vaginal insert or cervical ripening balloon and among women who had vaginal delivery and cesarean delivery for failure to go into labor or failure to progress. There was no correlation between the time to delivery after a ripening agent was applied and translabial cervical volume, translabial cervical length, vascularization index (VI), flow index (FI), vascularization flow index (VFI), transvaginal cervical length and Bishop scores. The ultrasonographic measurements were no different among women who had vaginal delivery at 24 h or less and more than 24 h and among women who had vaginal delivery and cesarean delivery for failure to go into labor or failure to progress. In this study, we failed to demonstrate the superiority of translabial 3D ultrasonography over Bishop score and transvaginal ultrasonography for predicting the success of induction of labor.

  14. Automated synovium segmentation in doppler ultrasound images for rheumatoid arthritis assessment

    NASA Astrophysics Data System (ADS)

    Yeung, Pak-Hei; Tan, York-Kiat; Xu, Shuoyu

    2018-02-01

    We need better clinical tools to improve monitoring of synovitis, synovial inflammation in the joints, in rheumatoid arthritis (RA) assessment. Given its economical, safe and fast characteristics, ultrasound (US) especially Doppler ultrasound is frequently used. However, manual scoring of synovitis in US images is subjective and prone to observer variations. In this study, we propose a new and robust method for automated synovium segmentation in the commonly affected joints, i.e. metacarpophalangeal (MCP) and metatarsophalangeal (MTP) joints, which would facilitate automation in quantitative RA assessment. The bone contour in the US image is firstly detected based on a modified dynamic programming method, incorporating angular information for detecting curved bone surface and using image fuzzification to identify missing bone structure. K-means clustering is then performed to initialize potential synovium areas by utilizing the identified bone contour as boundary reference. After excluding invalid candidate regions, the final segmented synovium is identified by reconnecting remaining candidate regions using level set evolution. 15 MCP and 15 MTP US images were analyzed in this study. For each image, segmentations by our proposed method as well as two sets of annotations performed by an experienced clinician at different time-points were acquired. Dice's coefficient is 0.77+/-0.12 between the two sets of annotations. Similar Dice's coefficients are achieved between automated segmentation and either the first set of annotations (0.76+/-0.12) or the second set of annotations (0.75+/-0.11), with no significant difference (P = 0.77). These results verify that the accuracy of segmentation by our proposed method and by clinician is comparable. Therefore, reliable synovium identification can be made by our proposed method.

  15. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  16. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  17. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    PubMed

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  18. MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.

    PubMed

    Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan

    2016-02-01

    A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.

  19. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  20. The Effect of Short Duration Ultrasound Pulses on the Interaction Between Individual Microbubbles and Fibrin Clots.

    PubMed

    Acconcia, Christopher; Leung, Ben Y C; Manjunath, Anoop; Goertz, David E

    2015-10-01

    In previous work, we examined microscale interactions between microbubbles and fibrin clots under exposure to 1 ms ultrasound pulses. This provided direct evidence that microbubbles were capable of deforming clot boundaries and penetrating into clots, while also affecting fluid uptake and inducing fibrin network damage. Here, we investigate the effect of short duration (15 μs) pulses on microscale bubble-clot interactions as function of bubble diameter (3-9 μm) and pressure. Individual microbubbles (n = 45) were placed at the clot boundary with optical tweezers and exposed to 1 MHz ultrasound. High-speed (10 kfps) imaging and 2-photon microscopy were performed during and after exposure, respectively. While broadly similar phenomena were observed as in the 1 ms pulse case (i.e., bubble penetration, network damage and fluid uptake), substantial quantitative differences were present. The pressure threshold for bubble penetration was increased from 0.39 MPa to 0.6 MPa, and those bubbles that did enter clots had reduced penetration depths and were associated with less fibrin network damage and nanobead uptake. This appeared to be due in large part to increased bubble shrinkage relative to the 1 ms pulse case. Stroboscopic imaging was performed on a subset of bubbles (n = 11) and indicated that complex bubble oscillations can occur during this process. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Improved ultrasound transducer positioning by fetal heart location estimation during Doppler based heart rate measurements.

    PubMed

    Hamelmann, Paul; Vullings, Rik; Schmitt, Lars; Kolen, Alexander F; Mischi, Massimo; van Laar, Judith O E H; Bergmans, Jan W M

    2017-09-21

    Doppler ultrasound (US) is the most commonly applied method to measure the fetal heart rate (fHR). When the fetal heart is not properly located within the ultrasonic beam, fHR measurements often fail. As a consequence, clinical staff need to reposition the US transducer on the maternal abdomen, which can be a time consuming and tedious task. In this article, a method is presented to aid clinicians with the positioning of the US transducer to produce robust fHR measurements. A maximum likelihood estimation (MLE) algorithm is developed, which provides information on fetal heart location using the power of the Doppler signals received in the individual elements of a standard US transducer for fHR recordings. The performance of the algorithm is evaluated with simulations and in vitro experiments performed on a beating-heart setup. Both the experiments and the simulations show that the heart location can be accurately determined with an error of less than 7 mm within the measurement volume of the employed US transducer. The results show that the developed algorithm can be used to provide accurate feedback on fetal heart location for improved positioning of the US transducer, which may lead to improved measurements of the fHR.

  2. Visualizing ultrasound through computational modeling

    NASA Technical Reports Server (NTRS)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  3. Feasibility study: real-time 3-D ultrasound imaging of the brain.

    PubMed

    Smith, Stephen W; Chu, Kengyeh; Idriss, Salim F; Ivancevich, Nikolas M; Light, Edward D; Wolf, Patrick D

    2004-10-01

    We tested the feasibility of real-time, 3-D ultrasound (US) imaging in the brain. The 3-D scanner uses a matrix phased-array transducer of 512 transmit channels and 256 receive channels operating at 2.5 MHz with a 15-mm diameter footprint. The real-time system scans a 65 degrees pyramid, producing up to 30 volumetric scans per second, and features up to five image planes as well as 3-D rendering, 3-D pulsed-wave and color Doppler. In a human subject, the real-time 3-D scans produced simultaneous transcranial horizontal (axial), coronal and sagittal image planes and real-time volume-rendered images of the gross anatomy of the brain. In a transcranial sheep model, we obtained real-time 3-D color flow Doppler scans and perfusion images using bolus injection of contrast agents into the internal carotid artery.

  4. Arterial and Venous Doppler in Evaluation of the "At-Risk" Fetus.

    PubMed

    Turan, Sifa; Turan, Ozhan M

    2017-09-01

    Our practice utilizes Doppler ultrasound as one of the most objective and effective methods to assess at-risk pregnancies. This review will discuss the application of arterial and venous Doppler techniques in assessing and managing various diseases and conditions for high-risk fetuses.

  5. Effect of pulsed ultrasound in combination with gentamicin on bacterial killing of biofilms on bone cements in vivo

    PubMed Central

    Ensing, G.T.; Roeder, B.L.; Nelson, J.L.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J.; Pitt, W.G.

    2008-01-01

    Aim The aim of this study is to investigate whether pulsed ultrasound in combination with gentamicin yields increased killing of bacterial biofilms on bone cements in vivo. Methods and Results Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with E. coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement disks loaded with gentamicin were used, and in one group unloaded bone cement disks in combination with systemically administered gentamicin were used. Pulsed ultrasound with a mean acoustic intensity of 167 mW cm−2 and a maximum acoustic intensity of 500 mW cm−2 was applied from 24 h till 72 h post surgery on one of the two implanted disks. After euthanization, the bacteria removed from the disk were quantified. Application of ultrasound, combined with gentamicin, reduced the biofilm in all three groups varying between 58 to 69% compared to the negative control. Ultrasound proved to be safe with respect to creating skin lesions. Conclusions Ultrasound resulted in an tendency of improved efficacy of gentamicin, either applied locally or systemically. Significance and impact of Study This study implies that ultrasound could improve the prevention of infection, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice. PMID:16108785

  6. Ultrasound in the evaluation of enthesitis: status and perspectives.

    PubMed

    Gandjbakhch, Frédérique; Terslev, Lene; Joshua, Fredrick; Wakefield, Richard J; Naredo, Esperanza; D'Agostino, Maria Antonietta

    2011-01-01

    An increasing number of studies have applied ultrasound to the evaluation of entheses in spondyloarthritis patients. However, no clear agreement exists on the definition of enthesitis, on the number and choice of entheses to examine and on ultrasound technique, which may all affect the results of the examination. The objectives of this study were to first determine the level of homogeneity in the ultrasound definitions for the principal lesions of enthesitis in the published literature and second, to evaluate the metric properties of ultrasound for detecting enthesitis according to the OMERACT filter. Search was performed in PUBMED and EMBASE. Both grey-scale and Doppler definitions of enthesitis, including describing features of enthesitis, were collected and metrological qualities of studies were assessed. After selection, 48 articles were analyzed. The definition of ultrasound enthesitis and elementary features varied among authors. Grey-scale enthesitis was characterized by increasing thickness (94% of studies), hypoechogenicity (83%), enthesophytes (69%), erosions (67%), calcifications (52%), associated bursitis (46%) and cortical irregularities (29%). Only 46% of studies reported the use of Doppler. High discrepancies were observed on frequency, type of probe and Doppler mode used. Face and content validity were the most frequently evaluated criteria (43%) followed by reliability (29%) and responsiveness (19%). Ultrasound has evidence to support face, content validity and reliability for the evaluation of enthesitis, though there is a lack of well-reported methodology in most of the studies. Consensus on elementary lesions and standardization of exam is needed to determine the ultrasound definition of enthesitis in grey-scale and in Doppler for future applications.

  7. Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water

    NASA Astrophysics Data System (ADS)

    Baac, Hyoung Won; Lee, Taehwa; Ok, Jong G.; Hall, Timothy; Jay Guo, L.

    2013-12-01

    Pulsed ultrasonic cavitation is a promising modality for non-contact targeted therapy, enabling mechanical ablation of the tissue. We demonstrate a spatio-temporal superposition approach of two ultrasound pulses (high and low frequencies) producing a tight cavitation zone of 100 μm in water, which is an-order-of-magnitudes smaller than those obtained by the existing high-amplitude transducers. Particularly, laser-generated focused ultrasound (LGFU) was employed for the high-frequency operation (15 MHz). As demonstrated, LGFU plays a primary role to define the cavitation zone. The generation rate of cavitation bubbles could be dramatically increased up to 4.1% (cf. 0.06% without the superposition) with moderated threshold requirement.

  8. Multiparametric ultrasound in the detection of prostate cancer: a systematic review.

    PubMed

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-11-01

    To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.

  9. Ground-echo characteristics for a ground-target pulse-Doppler radar fuze of high duty ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.S.

    1973-11-21

    From Tri-service electronic fuse symposium; Washington, District of Columbia, USA (26 Nov 1973). A pulse-Doppler radar fuze for use against ground targets at high burst heights can operate at low peak power provided a high duty ratio is used. The high duty ratio brings about ambiguous ground return that is prevented from firing the fuze by randomly coding the phase of the transmitted pulses. This causes the ambiguous return to appear as random noise. This paper provides formulas for the calculation of the clutter-noise power density and of the signal power so that the performance of the radar can bemore » determined. The paper also discusses the myth of decorrelation'' that is alleged to destroy the transmittedphase modulation in the echo and so make it useless. (auth)« less

  10. Clinical use of ultrasonography associated with color Doppler in the diagnosis and follow-up of acute pyelonephritis.

    PubMed

    Dell'Atti, Lucio; Borea, Pier Andrea; Ughi, Gianni; Russo, Gian Rosario

    2010-12-01

    The purpose of this study is to evaluate the current role of the Ultrasound associated with the color-Doppler in the diagnosis of acute pyelonephritis (APN) and to compare ultrasound images with CT images in order to reduce the amount radiation absorbe without significant loss of diagnostic efficacy, since this disease in most cases affects young adults. We studied 38 patients (aged 17-65 years) who presented from September 2007 to March 2010 to the emergency department with suspected diagnosis of APN. All patients underwent first to an ultrasound study, then to abdominal CT. Renal, perirenal and extrarenal tomographic findings usually associated with acute pyelonephritis were analyzed, in an attempt to identify what are the differences with respect to the images obtained with an ultrasound study. All patients then performed ultrasonography and/or abdominal CT evaluation one month later, 25 patients repeated both examinations, while the other 13 repeated only ultrasound. In 38 subjects with suspected APN, CT assessed the presence in 79% and in 21% the absence of the disease. Ultrasonography in 68% of cases diagnosed APN, by an increase in kidney size related to the presence of hypoechoic areas associated to edema, blurred margins and reduction of the color-Doppler vascularity. Ultrasound associated with the use of color-Doppler revealed a sensibility of 76% and specificity of 75%. Color and power-Doppler have better diagnostic accuracy than basic gray scale ultrasound, in the diagnosis of focal pyelonephritis. Therefore the combined use of ultrasound and color-Doppler can obtain useful information about the diagnosis and follow-up of the disease, with an improvement in terms of cost, without significantly altering the diagnostic efficacy and reducing the amount of radiation absorbed.

  11. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  12. Vascularization of liver tumors - preliminary results with Coded Harmonic Angio (CHA), phase inversion imaging, 3D power Doppler and contrast medium-enhanced B-flow with second generation contrast agent (Optison).

    PubMed

    Jung, E M; Kubale, R; Jungius, K-P; Jung, W; Lenhart, M; Clevert, D-A

    2006-01-01

    To investigate the dynamic value of contrast medium-enhanced ultrasonography with Optison for appraisal of the vascularization of hepatic tumors using harmonic imaging, 3D-/power Doppler and B-flow. 60 patients with a mean age of 56 years (range 35-76 years) with 93 liver tumors, including histopathologically proven hepatocellular carcinoma (HCC) [15 cases with 20 lesions], liver metastases of colorectal tumors [17 cases with 33 lesions], metastases of breast cancer [10 cases with 21 lesions] and hemangiomas [10 cases with 19 lesions] were prospectively investigated by means of multislice CT as well as native and contrast medium-enhanced ultrasound using a multifrequency transducer (2.5-4 MHz, Logig 9, GE). B scan was performed with additional color and power Doppler, followed by a bolus injection of 0.5 ml Optison. Tumor vascularization was evaluated with coded harmonic angio (CHA), pulse inversion imaging with power Doppler, 3D power Doppler and in the late phase (>5 min) with B-flow. In 15 cases with HCC, i.a. DSA was performed in addition. The results were also correlated with MRT and histological findings. Compared to spiral-CT/MRT, only 72/93 (77%) of the lesions could be detected in the B scan, 75/93 (81%) with CHA and 93/93 (100%) in the pulse inversion mode. Tumor vascularization was detectable in 43/93 (46%) of lesions with native power Doppler, in 75/93 (81%) of lesions after administering contrast medium in the CHA mode, in 81/93 (87%) of lesions in the pulse inversion mode with power Doppler and in 77/93 (83%) of lesions with contrast-enhanced B-flow. Early arterial and capillary perfusion was best detected with CHA, particularly in 20/20 (100%) of the HCC lesions, allowing a 3D reconstruction. 3D power Doppler was especially useful in investigating the tumor margins. Up to 20 min after contrast medium injection, B-flow was capable of detecting increased metastatic tumor vascularization in 42/54 (78%) of cases and intratumoral perfusion in 17/20 (85

  13. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-07

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  14. In-Suit Doppler Technology Assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  15. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    PubMed

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  16. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo.

    PubMed

    Ensing, G T; Roeder, B L; Nelson, J L; van Horn, J R; van der Mei, H C; Busscher, H J; Pitt, W G

    2005-01-01

    The aim of this study is to investigate whether pulsed ultrasound (US) in combination with gentamicin yields a decreased viability of bacteria in biofilms on bone cements in vivo. Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with an Escherichia coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement discs loaded with gentamicin, freshly prepared and aged were used, and in one group unloaded bone cement discs in combination with systemically administered gentamicin. Pulsed ultrasound with a frequency of 28.48 kHz and a maximum acoustic intensity of 500 mW cm(-2) was applied continuously from 24 h till 72 h postsurgery on one of the two implanted discs. After euthanization and removal of the bacteria from the discs, the number of viable bacteria were quantified and skin samples were analysed for histopathological examination. Application of ultrasound, combined with gentamicin, reduced the viability of the biofilms in all three groups varying between 58 and 69% compared with the negative control. Histopathological examinations showed no skin lesions. Ultrasound resulted in a tendency of improved efficacy of gentamicin, either applied locally or systemically. Usage of ultrasound in this model proved to be safe. This study implies that ultrasound could improve the prevention of infection immediately after surgery, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice.

  17. [Vascular complications following kidney transplant: the role of color-Doppler imaging].

    PubMed

    Granata, Antonio; Floccari, Fulvio; Lentini, Paolo; Vittoria, Salvatore; Di Pietro, Fabio; Zamboli, Pasquale; Fiorini, Fulvio; Fatuzzo, Pasquale

    2012-01-01

    The progressive decline in the incidence of graft rejection has made urological, surgical, parenchymal and vascular complications of kidney transplant more frequent. The latter, although accounting for only 5-10% of all post-transplant complications, are a frequent cause of graft loss. Ultrasonography, both in B-mode and with Doppler ultrasound, is an important diagnostic tool in case of clinical conditions which might impair kidney function. Even though ultrasonography is considered fundamental in the diagnosis of parenchymal and surgical complications of the transplanted kidney, its role is not fully understood in case of vascular complications of the graft. The specificity of Doppler ultrasound is very important in case of stenosis of the transplanted renal artery, pseudoaneurysms, arteriovenous fistulas, and thrombosis with complete or partial artery or vein occlusion. Doppler and color determinations present high diagnostic accuracy, which is higher in case of successive measurements performed during the follow-up of the graft. Modern techniques including contrast-enhanced ultrasound increase the diagnostic power of ultrasonography in case of vascular complications of the transplanted kidney, planted kidney.

  18. Power Doppler sonography and pulse-inversion harmonic imaging in evaluation of rheumatoid arthritis synovitis.

    PubMed

    Schueller-Weidekamm, Claudia; Krestan, Christian; Schueller, Gerd; Kapral, Theresa; Aletaha, Daniel; Kainberger, Franz

    2007-02-01

    This study evaluates the value of contrast-enhanced pulse-inversion harmonic imaging (PIHI) to detect synovial vascularization and thus the therapeutic effects of prednisolone treatment on the inflammation in finger joints in rheumatoid arthritis (RA). Before and after 7 days of mid- to high-dose steroid therapy, blood tests and clinical and sonographic examinations were assessed in 14 patients. Two hundred eighty finger joints (metacarpophalangeal [MCP] I-V, interphalangeal [IP], and proximal interphalangeal [PIP] II-V) were investigated on power Doppler sonography to determine, in each patient, the finger joint with the strongest hypervascularization and to score the synovial vascularization. Further dynamic examination of the selected joint was performed on PIHI after i.v. administration of a second-generation sonographic contrast medium. Vascularization was quantified by calculating the area under the time-intensity curves. The changes in signal intensities before and after therapy were correlated with clinical examinations (disease activity score [DAS]). The score of the joint with the strongest hypervascularization assessed by power Doppler sonography decreased significantly from 1.7 to 1.3 (p < 0.01); however, in six patients, no change was assessed after steroid therapy. In all patients, a significant reduction in PIHI signals was observed after therapy (p < 0.05). The baseline and follow-up median values of the area under the time-intensity curves were 8.56 +/- 1.28 and 7.65 +/- 0.66, respectively. The median values of the DAS decreased significantly from 4.90 +/- 0.86 to 3.6 +/- 1.0 (p < 0.01) 7 days after the steroid therapy. PIHI and power Doppler sonography enable the detection of synovial perfusion alterations after steroid therapy and, therefore, may be useful tools for the evaluation of active inflammation in RA and for the assessment of therapeutic response. However, minor changes of synovial vascularization can be better detected on PIHI than on

  19. Field Evaluation in Four NEEMO Divers of a Prototype In-suit Doppler Ultrasound Bubble Detector

    NASA Technical Reports Server (NTRS)

    Acock, K. E.; Gernhardt, M. L.; Conkin, J.; Powell, M. R.

    2004-01-01

    It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.

  20. Phased Array Ultrasound System for Planar Flow Mapping in Liquid Metals.

    PubMed

    Mader, Kevin; Nauber, Richard; Galindo, Vladimir; Beyer, Hannes; Buttner, Lars; Eckert, Sven; Czarske, Jurgen

    2017-09-01

    Controllable magnetic fields can be used to optimize flows in technical and industrial processes involving liquid metals in order to improve quality and yield. However, experimental studies in magnetohydrodynamics often involve complex, turbulent flows and require planar, two-component (2c) velocity measurements through only one acoustical access. We present the phased array ultrasound Doppler velocimeter as a modular research platform for flow mapping in liquid metals. It combines the pulse wave Doppler method with the phased array technique to adaptively focus the ultrasound beam. This makes it possible to resolve smaller flow structures in planar measurements compared with fixed-beam sensors and enables 2c flow mapping with only one acoustical access via the cross beam technique. From simultaneously measured 2-D velocity fields, quantities for turbulence characterization can be derived. The capabilities of this measurement system are demonstrated through measurements in the alloy gallium-indium-tin at room temperature. The 2-D, 2c velocity measurements of a flow in a cubic vessel driven by a rotating magnetic field (RMF) with a spatial resolution of up to 2.2 mm are presented. The measurement results are in good agreement with a semianalytical simulation. As a highlight, two-point correlation functions of the velocity field for different magnitudes of the RMF are presented.

  1. Loss of echogenicity and onset of cavitation from echogenic liposomes: pulse repetition frequency independence

    PubMed Central

    Radhakrishnan, Kirthi; Haworth, Kevin J; Peng, Tao; McPherson, David D.; Holland, Christy K.

    2014-01-01

    Echogenic liposomes (ELIP) are being developed for the early detection and treatment of atherosclerotic lesions. An 80% loss of echogenicity of ELIP (Radhakrishnan et al. 2013) has been shown to be concomitant with the onset of stable and inertial cavitation. The ultrasound pressure amplitude at which this occurs is weakly dependent on pulse duration. Smith et al. (2007) have reported that the rapid fragmentation threshold of ELIP (based on changes in echogenicity) is dependent on the insonation pulse repetition frequency (PRF). The current study evaluates the relationship between loss of echogenicity and cavitation emissions from ELIP insonified by duplex Doppler pulses at four PRFs (1.25 kHz, 2.5 kHz, 5 kHz, and 8.33 kHz). Loss of echogenicity was evaluated on B-mode images of ELIP. Cavitation emissions from ELIP were recorded passively on a focused single-element transducer and a linear array. Emissions recorded by the linear array were beamformed and the spatial widths of stable and inertial cavitation emissions were compared to the calibrated azimuthal beamwidth of the Doppler pulse exceeding the stable and inertial cavitation thresholds. The inertial cavitation thresholds had a very weak dependence on PRF and stable cavitation thresholds were independent of PRF. The spatial widths of the cavitation emissions recorded by the passive cavitation imaging system agreed with the calibrated Doppler beamwidths. The results also show that 64%–79% loss of echogenicity can be used to classify the presence or absence of cavitation emissions with greater than 80% accuracy. PMID:25438849

  2. Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.

    PubMed

    Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A

    2017-06-06

    Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.

  3. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  4. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  5. Data Acquisition and Processing System for Airborne Wind Profiling with a Pulsed, 2-Micron, Coherent-Detection, Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.

    2010-01-01

    A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.

  6. Acoustically active injection catheter guided by ultrasound: navigation tests in acutely ischemic porcine hearts.

    PubMed

    Belohlavek, Marek; Katayama, Minako; Zarbatany, David; Fortuin, F David; Fatemi, Mostafa; Nenadic, Ivan Z; McMahon, Eileen M

    2014-07-01

    Catheters are increasingly used therapeutically and investigatively. With complex usage comes a need for more accurate intracardiac localization than traditional guidance can provide. An injection catheter navigated by ultrasound was designed and then tested in an open-chest model of acute ischemia in eight pigs. The catheter is made "acoustically active" by a piezo-electric crystal near its tip, electronically controlled, vibrating in the audio frequency range and uniquely identifiable using pulsed-wave Doppler. Another "target" crystal was sutured to the epicardium within the ischemic region. Sonomicrometry was used to measure distances between the two crystals and then compared with measurements from 2-D echocardiographic images. Complete data were obtained from seven pigs, and the correlation between sonomicrometry and ultrasound measurements was excellent (p < 0.0001, ρ = 0.9820), as was the intraclass correlation coefficient (0.96) between two observers. These initial experimental results suggest high accuracy of ultrasound navigation of the acoustically active catheter prototype located inside the beating left ventricle. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    PubMed

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  9. Doppler flowmeter

    DOEpatents

    Karplus, Henry H. B.; Raptis, Apostolos C.

    1983-01-01

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  10. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  11. Pulsed-wave Doppler ultrasonographic evaluation of hepatic vein in dogs with tricuspid regurgitation

    PubMed Central

    Kim, Jaehwan; Kim, Soyoung

    2017-01-01

    This study was performed to identify the relationships between hepatic vein (HV) measurements, including flow velocity and waveform, using pulsed-wave (PW) Doppler ultrasonography, and the severity of tricuspid regurgitation (TR) in dogs. The study included 22 dogs with TR and 7 healthy dogs. The TR group was subdivided into 3 groups according to TR jet profile obtained by echocardiography. The hepatic venous waveform was obtained and classified into 3 types. A variety of HV measurements, including the maximal velocities of the atrial systolic, systolic (S), end ventricular systolic, and diastolic (D) waves and the ratio of the S- and D- wave velocities (S/D ratio), were acquired. TR severity was significantly correlated with the S- (r = −0.380, p = 0.042) and D- (r = 0.468, p = 0.011) wave velocities and the S/D ratio (r = −0.747, p < 0.001). Receiver operating characteristic curve analysis revealed the highest sensitivity and specificity for the S/D ratio (89% and 75%, respectively) at a threshold of 0.97 with excellent accuracy (AUC = 0.911, p < 0.001). In conclusion, PW Doppler ultrasonography of the HV can be used to identify the presence of significant TR and to classify TR severity in dogs. PMID:27515264

  12. Pulsed-wave Doppler ultrasonographic evaluation of hepatic vein in dogs with tricuspid regurgitation.

    PubMed

    Kim, Jaehwan; Kim, Soyoung; Eom, Kidong

    2017-03-30

    This study was performed to identify the relationships between hepatic vein (HV) measurements, including flow velocity and waveform, using pulsed-wave (PW) Doppler ultrasonography, and the severity of tricuspid regurgitation (TR) in dogs. The study included 22 dogs with TR and 7 healthy dogs. The TR group was subdivided into 3 groups according to TR jet profile obtained by echocardiography. The hepatic venous waveform was obtained and classified into 3 types. A variety of HV measurements, including the maximal velocities of the atrial systolic, systolic (S), end ventricular systolic, and diastolic (D) waves and the ratio of the S- and D- wave velocities (S/D ratio), were acquired. TR severity was significantly correlated with the S- ( r = -0.380, p = 0.042) and D- ( r = 0.468, p = 0.011) wave velocities and the S/D ratio ( r = -0.747, p < 0.001). Receiver operating characteristic curve analysis revealed the highest sensitivity and specificity for the S/D ratio (89% and 75%, respectively) at a threshold of 0.97 with excellent accuracy (AUC = 0.911, p < 0.001). In conclusion, PW Doppler ultrasonography of the HV can be used to identify the presence of significant TR and to classify TR severity in dogs.

  13. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    PubMed

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  14. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  15. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  16. Detecting Subclinical Biventricular Impairment in Scleroderma Patients by Use of Pulsed-Wave Tissue Doppler Imaging

    PubMed Central

    Can, Ilknur; Onat, Ahmet Mesut; Aytemir, Kudret; Akdogan, Ali; Ureten, Kemal; Kiraz, Sedat; Ertenli, Ihsan; Tokgozoglu, Lale; Oto, Ali

    2009-01-01

    Systemic scleroderma is a disease that is characterized by excessive fibroblastic activity and collagen deposition in various organs, including the heart. We sought to evaluate the limits of biventricular function as derived noninvasively from pulsed-wave tissue Doppler imaging (TDI) of tricuspid and mitral annular motion in patients who had scleroderma. We enrolled 24 patients with scleroderma (study group; mean age, 49 ± 11 yr; 20 women) and 24 healthy participants (control group; mean age, 51 ± 9 yr; 19 women). Persons with cardiovascular risk factors were excluded. We obtained images by conventional echocardiography and by pulsed-wave TDI, measuring the respective peak systolic velocities (S, Sm) and peak early (E, Em) and late (A, Am) diastolic velocities. Mean Sm, mean Em, and mean Am were averages of the 4 measured sites (anterior, inferior, lateral, and septal). We calculated noninvasive estimates of left ventricular (LV) filling pressure by dividing E velocities (from the mitral inflow) by Em velocities (E/Em ratios). Biventricular regional Sm, regional LV myocardial Em, and ratios of myocardial Em/atrial component velocity (Em/Am) for the LV, and mean Sm, mean Em, and mean Em/mean Am ratios for the LV were significantly lower in the study group. The E/Em ratio was higher in the study group (7.3 ± 2.6 vs 5.2 ± 1.0, P = 0.01). Global LV systolic and diastolic function did not differ between the groups. Tissue Doppler imaging complements conventional echocardiography in detecting subclinical biventricular impairment in patients with scleroderma who have normal global measurements. PMID:19436783

  17. 3D noninvasive ultrasound Joule heat tomography based on acousto-electric effect using unipolar pulses: a simulation study

    PubMed Central

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2012-01-01

    Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on acouto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of any priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757

  18. Current Perspectives in Hyperbaric Physiology, Ultrasonic Doppler Bubble Detection, and Mass Spectrometry,

    DTIC Science & Technology

    1979-12-28

    Doppler sound made by a bubble passing through the inson- ified volume blood vessel resembles a very sharp truncated whistle , chirp or click depending...the Doppler ultrasound , suffered the "slings and arrows of outrageous criticism" to borrow and beat a phrase. It is not appropriate to go into this

  19. Risk of deep venous thrombosis in elective neurosurgical procedures: a prospective, Doppler ultrasound-based study in children 12 years of age or younger.

    PubMed

    Scherer, Andrea G; White, Ian K; Shaikh, Kashif A; Smith, Jodi L; Ackerman, Laurie L; Fulkerson, Daniel H

    2017-07-01

    OBJECTIVE The risk of venous thromboembolism (VTE) from deep venous thrombosis (DVT) is significant in neurosurgical patients. VTE is considered a leading cause of preventable hospital deaths and preventing DVT is a closely monitored quality metric, often tied to accreditation, hospital ratings, and reimbursement. Adult protocols include prophylaxis with anticoagulant medications. Children's hospitals may adopt adult protocols, although the incidence of DVT and the risk or efficacy of treatment is not well defined. The incidence of DVT in children is likely less than in adults, although there is very little prospectively collected information. Most consider the risk of DVT to be extremely low in children 12 years of age or younger. However, this consideration is based on tradition and retrospective reviews of trauma databases. In this study, the authors prospectively evaluated pediatric patients undergoing a variety of elective neurosurgical procedures and performed Doppler ultrasound studies before and after surgery. METHODS A total of 100 patients were prospectively enrolled in this study. All of the patients were between the ages of 1 month and 12 years and were undergoing elective neurosurgical procedures. The 91 patients who completed the protocol received a bilateral lower-extremity Doppler ultrasound examination within 48 hours prior to surgery. Patients did not receive either medical or mechanical DVT prophylaxis during or after surgery. The ultrasound examination was repeated within 72 hours after surgery. An independent, board-certified radiologist evaluated all sonograms. We prospectively collected data, including potential risk factors, details of surgery, and details of the clinical course. All patients were followed clinically for at least 1 year. RESULTS There was no clinical or ultrasound evidence of DVT or VTE in any of the 91 patients. There was no clinical evidence of VTE in the 9 patients who did not complete the protocol. CONCLUSIONS In this

  20. Power Doppler ultrasound of rheumatoid synovitis: quantification of vascular signal and analysis of interobserver variability.

    PubMed

    Kamishima, Tamotsu; Tanimura, Kazuhide; Henmi, Mihoko; Narita, Akihiro; Sakamoto, Fumihiko; Terae, Satoshi; Shirato, Hiroki

    2009-05-01

    The objective of this study was to assess interobserver uncertainties in power Doppler (PD) examination of the fingers of patients with rheumatoid arthritis (RA), by separating the source of the discrepancy into (1) acquisition of the images and (2) criteria for assessment of the images. Twenty patients who had been diagnosed with RA were enrolled in this study. Ultrasound examinations were performed by one inexperienced and two experienced sonographers. Interobserver variation was measured using a conventional semiquantitative image grading scale. Interobserver variation of the quantitative PD (QPD) index (the summation of the colored pixels in a region of interest) was also assessed. The agreement was higher between the two experienced sonographers (kappa value of 0.8) than between experienced and inexperienced sonographers (kappa value, 0.6-0.7) in the semiquantitative image grading scale. Results suggest that the difference in the assessment on the image grading scale was due more to the difference in the acquisition of the images than to variations in the grading criteria between sonographers. An excellent relationship was noted between the image grading scale and the QPD index for Doppler signal with a Spearman's coefficient of rank correlation of 0.83 (P < 0.0001). Interobserver discrepancies in the image grading and QPD index methods were due more to the difference in the acquisition of the image than to the grading criteria used. The QPD index seems to be as reliable as the image grading scale with reasonable interobserver agreement between experienced sonographers.

  1. The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: comparison with colour and power Doppler imaging regarding diagnostic performance.

    PubMed

    Park, A Y; Seo, B K; Woo, O H; Jung, K S; Cho, K R; Park, E K; Cha, S H; Cha, J

    2018-03-01

    To investigate the utility of superb microvascular imaging (SMI) for evaluating the vascularity of breast masses in comparison with colour or power Doppler ultrasound (US) and the effect on diagnostic performance. A total of 191 biopsy-proven masses (99 benign and 92 malignant) in 166 women with greyscale, colour Doppler, power Doppler, and SMI images were enrolled in this retrospective study. Three radiologists analysed the vascular images using a three-factor scoring system to evaluate the number, morphology, and distribution of tumour vessels. They assessed the Breast Imaging-Reporting and Data System categories for greyscale US alone and combinations of greyscale US and each type of vascular US. The Kruskal-Wallis test was performed and the area under the receiver-operating characteristic curve (AUC) measured. On SMI, vascular scores were compared between benign and malignant masses and the optimal cut-off value for the overall score was determined. SMI showed higher vascular scores than colour or power Doppler US and malignant masses had higher scores than benign masses (p<0.001). The diagnostic performance of the combination of greyscale US and SMI was higher than those of greyscale US alone and greyscale and colour or power Doppler US (AUC, 0.815 versus 0.774, 0.789, 0.791; p<0.001). The optimal cut-off value of the overall vascular score was 5 with a sensitivity of 82.3% and a specificity of 65.3% (AUC, 0.808). SMI is superior to colour or power Doppler US for characterising the vascularity in breast masses and improving diagnostic performance. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-09-01

    first statement of work is to determine if high intensity focused ultrasound ( HIFU ) increases the cellular uptake of AS-MDM2, AS-bcl-2 and AS-PKA...Drug Delivery in Prostate Tumor in vivo Using MR Guided Focused Ultrasound (MRg HIFU ). WC, IFMBE Proceedings 25: pp341-344, 2009 6...pharmaceutical agents in the treatment target. In the model system proposed, pulsed high intensity focused ultrasound ( HIFU ) is hypothesized to improve

  3. High-Frame-Rate Doppler Ultrasound Using a Repeated Transmit Sequence

    PubMed Central

    Podkowa, Anthony S.; Oelze, Michael L.; Ketterling, Jeffrey A.

    2018-01-01

    The maximum detectable velocity of high-frame-rate color flow Doppler ultrasound is limited by the imaging frame rate when using coherent compounding techniques. Traditionally, high quality ultrasonic images are produced at a high frame rate via coherent compounding of steered plane wave reconstructions. However, this compounding operation results in an effective downsampling of the slow-time signal, thereby artificially reducing the frame rate. To alleviate this effect, a new transmit sequence is introduced where each transmit angle is repeated in succession. This transmit sequence allows for direct comparison between low resolution, pre-compounded frames at a short time interval in ways that are resistent to sidelobe motion. Use of this transmit sequence increases the maximum detectable velocity by a scale factor of the transmit sequence length. The performance of this new transmit sequence was evaluated using a rotating cylindrical phantom and compared with traditional methods using a 15-MHz linear array transducer. Axial velocity estimates were recorded for a range of ±300 mm/s and compared to the known ground truth. Using these new techniques, the root mean square error was reduced from over 400 mm/s to below 50 mm/s in the high-velocity regime compared to traditional techniques. The standard deviation of the velocity estimate in the same velocity range was reduced from 250 mm/s to 30 mm/s. This result demonstrates the viability of the repeated transmit sequence methods in detecting and quantifying high-velocity flow. PMID:29910966

  4. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  5. Investigations into pulsed-high intensity focused ultrasound enhanced delivery: Preliminary evidence for a novel mechanism

    PubMed Central

    Hancock, Hilary A.; Smith, Lauren H.; Cuesta, Julian; Durrani, Amir K.; Angstadt, Mary; Palmeri, Mark L.; Kimmel, Eitan; Frenkel, Victor

    2009-01-01

    Pulsed-high intensity focused ultrasound (HIFU) exposures without ultrasound contrast agents have been used for non-invasively enhancing the delivery of various agents to improve their therapeutic efficacy in a variety of tissue models in a non-destructive manner. Despite the versatility of these exposures, little is known about the mechanisms by which their effects are produced. In this study pulsed-HIFU exposures were given in the flank muscle of mice, followed by the administration a variety of fluorophores, both soluble and particulate, by local or systemic injection. In vivo imaging (whole animal and microscopic) was used to quantify observations of increased extravasation and interstitial transport of the fluorophores as a result of the exposures. Histological analysis indicated that the exposures caused some structural alterations such as enlarged gaps between muscle fibers. These effects were consistent with increasing the permeability of the tissues; however they were found to be transient and reversed themselves gradually within 72 hrs. Simulations of radiation force induced displacements and the resulting local shear strain they produced were carried out to potentially explain the manner by which these effects occurred. A better understanding of the mechanisms involved with pulsed-HIFU exposures for non-invasively enhancing delivery will facilitate the process for optimizing their use. PMID:19616368

  6. Using the angiogenic factors sFlt-1 and PlGF with Doppler ultrasound of the uterine artery for confirming preeclampsia.

    PubMed

    Bahlmann, Franz; Al Naimi, Ammar

    2016-11-01

    The aim of this study is to assess the value of the angiogenic factors for diagnosing preeclampsia and predicting the severity of manifestation. A secondary aim is assessing the combination of the uterine artery Doppler with the angiogenic factors for improving the diagnostic power. This is a prospective single center study in a tertiary referral hospital. This study includes 728 individual patients. Inclusion criteria were singleton pregnancies, a referral to the hospital with suspicion of preeclampsia and any one or combination of the following symptoms: headache, upper abdominal pain, edema, and hypertension. Patients with complications that would affect the course of the pregnancy, such as placenta praevia, premature preterm rupture of membranes, breech presentation, and fetal chromosomal or structural anomalies, were excluded from the study. Blood samples collection and uterine artery Doppler ultrasound were performed at time of recruitment. The differences in sFlt-1, PlGF, and their quotient among normal collective and patients with preeclampsia were analyzed. Doppler ultrasound was performed by one of four highly qualified sonographers. Wilcoxon-Mann-Whitney U test, Spearman's rank correlation, receiver operating characteristic curves, Chi-square test, and logistic regression were used in the analysis. A total of 1003 individual samples for the angiogenic factors were included in the analysis. 584 out of the recruited 728 patients had follow-up data with delivery information at the study hospital. Patients with preeclampsia show a significant increase in sFlt-1, which directly correlate with the increased severity of manifestation (Spearman's ρ 0.49). The sFlt-1 cut-off value of 5424 pg/ml confirms preeclampsia with 83.7 % sensitivity, 68.1 % specificity, and 24 % misclassification rate. Preeclampsia patients also show a significant decrease in PlGF, which negatively correlates with the increased severity of manifestation (Spearman's ρ -0.39). A Pl

  7. Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Lun; Li, Pai-Chi; Shih, Wen-Pin; Huang, Pei-Shin; Kuo, Po-Ling

    2013-10-01

    Pulsed high-intensity focused ultrasound (HIFU) is proposed as a new alternative treatment for contracture of dense fibrous tissue. It is hypothesized that the pulsed-HIFU can release the contracted tissues by attenuating tensile stiffness along the fiber axis, and that the stiffness reduction can be quantitatively monitored by change of B-mode images. Fresh porcine tendons and ligaments were adapted to an ex vivo model and insonated with pulsed-HIFU for durations ranging from 5 to 30 min. The pulse length was 91 µs with a repetition frequency of 500 Hz, and the peak rarefactional pressure was 6.36 MPa. The corresponding average intensities were kept around 1606 W cm-2 for ISPPA and 72.3 W cm-2 for ISPTA. B-mode images of the tissues were acquired before and after pulsed-HIFU exposure, and the changes in speckle intensity and organization were analyzed. The tensile stiffness of the HIFU-exposed tissues along the longitudinal axis was examined using a stretching machine. Histology examinations were performed by optical and transmission electron microscopy. Pulsed-HIFU exposure significantly decreased the tensile stiffness of the ligaments and tendons. The intensity and organization of tissue speckles in the exposed region were also decreased. The speckle changes correlated well with the degree of stiffness alteration. Histology examinations revealed that pulsed-HIFU exposure probably damages tissues via a cavitation-mediated mechanism. Our results suggest that pulsed-HIFU with a low duty factor is a promising tool for developing new treatment strategies for orthopedic disorders.

  8. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    PubMed

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  9. Spatiotemporal image correlation-derived volumetric Doppler impedance indices from spherical samples of the placenta: intraobserver reliability and correlation with conventional umbilical artery Doppler indices.

    PubMed

    Welsh, A W; Hou, M; Meriki, N; Martins, W P

    2012-10-01

    Volumetric impedance indices derived from spatiotemporal image correlation (STIC) power Doppler ultrasound (PDU) might overcome the influence of machine settings and attenuation. We examined the feasibility of obtaining these indices from spherical samples of anterior placentas in healthy pregnancies, and assessed intraobserver reliability and correlation with conventional umbilical artery (UA) impedance indices. Uncomplicated singleton pregnancies with anterior placenta were included in the study. A single observer evaluated UA pulsatility index (PI), resistance index (RI) and systolic/diastolic ratio (S/D) and acquired three STIC-PDU datasets from the placenta just above the placental cord insertion. Another observer analyzed the STIC-PDU datasets using Virtual Organ Computer-aided AnaLysis (VOCAL) spherical samples from every frame to determine the vascularization index (VI) and vascularization flow index (VFI); maximum, minimum and average values were used to determine the three volumetric impedance indices (vPI, vRI, vS/D). Intraobserver reliability was examined by intraclass correlation coefficients (ICC) and association between volumetric indices from placenta, and UA Doppler indices were assessed by Pearson's correlation coefficient. A total of 25 pregnant women were evaluated but five were excluded because of artifacts observed during analysis. The reliability of measurement of volumetric indices of both VI and VFI from three STIC-PDU datasets was similar, with all ICCs ≥ 0.78. Pearson's r values showed a weak and non-significant correlation between UA pulsed-wave Doppler indices and their respective volumetric indices from spherical samples of placenta (all r ≥ 0.23). VOCAL indices from specific phases of the cardiac cycle showed good repeatability (ICC ≥ 0.92). Volumetric impedance indices determined from spherical samples of placenta are sufficiently reliable but do not correlate with UA Doppler indices in healthy pregnancies. Copyright © 2012

  10. Doppler-guided retrograde catheterization system

    NASA Astrophysics Data System (ADS)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  11. Comparison of Two Devices for Intraoperative Portal Venous Flow Measurement in Living-Donor Liver Transplantation: Transit Time Ultrasound and Conventional Doppler Ultrasound.

    PubMed

    Wang, H-K; Chen, C-Y; Lin, N-C; Liu, C-S; Loong, C-C; Lin, Y-H; Lai, Y-C; Chiou, H-J

    2018-05-01

    Intraoperative portal venous flow measurement provides surgeons with instant guidance for portal flow modulation during living-donor liver transplantation (LDLT). In this study, we compared the agreement of portal flow measurement obtained by 2 devices: transit time ultrasound (TTU) and conventional Doppler ultrasound (CDU). Fifty-four recipients of LDLT underwent intraoperative measurement of portal flow after completion of vascular anastomosis of the implanted partial liver graft. Both TTU and CDU were used concurrently. Agreement of TTU and CDU was assessed by intraclass correlation coefficient using a model of 2-way random effects, absolute agreement, and single measurement. A Bland-Altman plot was applied to assess the variability between the 2 devices. The mean, median, and range of portal venous flow was 1456, 1418, and 117 to 2776 mL/min according to TTU; and 1564, 1566, and 119 to 3216 mL/min according to CDU. The intraclass correlation coefficient of portal venous flow between TTU and CDU was 0.68 (95% confidence interval, 0.51-0.80). The Bland-Altman plots revealed an average variation of 4.8% between TTU and CDU but with a rather wide 95% confidence interval of variation ranging from -57.7% to 67.4%. Intraoperative TTU and CDU showed moderate agreement in portal flow measurement. However, a relatively wide range of variation exists between TTU and CDU, indicating that data obtained from the 2 devices may not be interchangeable. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. [Ultrasound diagnosis of aneurysm of the vein of Galen in children].

    PubMed

    Gazikalović, S; Kosutić, J; Komar, P; Vukomanović, V; Mogić, M

    2001-01-01

    Aneurysm of the vein of Galen is rare and complex vascular disorder that develops during embriogenesis and provokes significant haemodynamic changes. Boys are more frequently involved. During the foetal period Ballantyne syndrome may develop, and postnatal clinical presentation vary with ages. Serious haemodynamic changes are followed by congestive heart failure and, if not treated, with lethal exitus. Fast and correct diagnosis is very important. Ultrasound examination of central nervous system supported with Duplex-Doppler and Colour-Doppler examination of the head and heart enables the diagnosis. This text comments ultrasound presentation of the malformation and ultrasound diagnostic possibilities.

  13. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    PubMed

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  14. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    PubMed Central

    Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566

  15. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    PubMed

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  16. Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats.

    PubMed

    Zhou, Hongbo; Hou, Yongfu; Zhu, Zhimin; Xiao, Weixiong; Xu, Qian; Li, Lei; Li, Xin; Chen, Wenchuan

    2016-04-01

    To investigate the effect of low-intensity pulsed ultrasound (US) on periimplant bone healing and osseointegration under osteoporotic conditions. Seventy-two 12-week-old female Sprague Dawley rats received bilateral ovariectomies. Twelve weeks later, titanium implants were bilaterally placed in the proximal tibial metaphysis. The right tibia was exposed to low-intensity pulsed US (40 mW/cm2, spatial and temporal average) for 20 min/d starting the 2nd day after implantation, and the left tibia served as a control without stimulation. The rats were randomly assigned to 6 groups of 12 each according to the US duration (group 1: weeks 0–2, 280 minutes; group 2: weeks 0–4, 560 minutes; group 3: weeks 0–6, 840 minutes; group 4: weeks 0–8, 1120 minutes; group 5: weeks 0–10, 1400 minutes; group 6: weeks 0–12, 1680 minutes). At the end of the 2nd, 4th, 6th, 8th, 10th, and 12th weeks, the rats were euthanized, and bilateral tibias were harvested. Peri-implant bone volume and bone-implant contact were assessed by micro–computed tomography; the implantbone interface was assessed histologically; and implant fixation strength was determined by a removal torque test. Low-intensity pulsed US increased bone-implant contact at the 4th, 6th, 8th, 10th, and 12th weeks (P = .019, .017, <.001, <.001, and <.001, respectively) and periimplant bone volume at all times (P = <.001, .002, .012, .007, .005, and .010). Removal torque on the US side was improved at the 6th, 8th, 10th, and 12th weeks (P= .012, <.001, .006, and .009). Ultrasound evoked a favorable bone response in the histologic study. Low-intensity pulsed US might enhance new bone formation, especially at an early stage, and improve osseointegration in osteoporotic bone as an auxiliary method. However, further studies are needed to elucidate the mechanisms underlying its action.

  17. Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow

    NASA Astrophysics Data System (ADS)

    Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.

    2005-04-01

    Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.

  18. Stable cavitation induces increased cytoplasmic calcium in L929 fibroblasts exposed to 1-MHz pulsed ultrasound.

    PubMed

    Tsukamoto, Akira; Higashiyama, Satoru; Yoshida, Kenji; Watanabe, Yoshiaki; Furukawa, Katsuko S; Ushida, Takashi

    2011-12-01

    An increase in cytoplasmic calcium (Ca(2+) increase) is a second messenger that is often observed under ultrasound irradiation. We hypothesize that cavitation is a physical mechanism that underlies the increase in Ca(2+) in these experiments. To control the presence of cavitation, the wave type was controlled in a sonication chamber. One wave type largely contained a traveling wave (wave type A) while the other wave type largely contained a standing wave (wave type B). Fast Fourier transform (FFT) analysis of a sound field produced by the wave types ascertained that stable cavitation was present only under wave type A ultrasound irradiation. Under the two controlled wave types, the increase in Ca(2+) in L929 fibroblasts was observed with fluorescence imaging. Under wave type A ultrasound irradiation, an increase in Ca(2+) was observed; however, no increase in Ca(2+) was observed under wave type B ultrasound irradiation. We conclude that stable cavitation is involved in the increase of Ca(2+) in cells subjected to pulsed ultrasound. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  20. Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season: a prospective cohort study.

    PubMed

    Boesen, Anders Ploug; Boesen, Morten Ilum; Torp-Pedersen, Soren; Christensen, Robin; Boesen, Lars; Hölmich, Per; Nielsen, Michael Bachmann; Koenig, Merete Juhl; Hartkopp, Andreas; Ellegaard, Karen; Bliddal, Henning; Langberg, Henning

    2012-03-01

    Color Doppler ultrasound is widely used to examine intratendinous flow in individuals with overuse tendon problems, but the association between color Doppler and pain is still unclear. Intratendinous flow is present and associated with pain in badminton players, and intratendinous flow and pain increase during a badminton season. Cohort study (prognosis); Level of evidence, 2. Ninety-five semiprofessional badminton players were included in the study at a tournament at the start of the badminton season. All players were interviewed regarding pain. The anterior knee tendons and Achilles tendons were studied. Each tendon was scored using a quantitative grading system (grades 0-5) and a qualitative scoring system (color fraction) using color Doppler ultrasound. Eight months later, 86 of the players (91%) were retested by the same investigators during an equivalent badminton tournament (including 1032 tendon regions; 86 players with 4 tendons each with 3 regions), thus forming the study group. At the start of the season, 24 players (28%) experienced pain in 37 tendons (11%), and at the end of the season, 31 players (36%) experienced pain in 51 tendons (15%), which was a statistically significant increase (P = .0002). Abnormal flow was found in 230 tendon regions in 71 players (83%) at the start of the season compared with 78 tendon regions in 41 players (48%) at the follow-up. The decrease in abnormal flow was statistically significant (P < .0001). Of the 37 painful tendons at the start of the season, 25 had abnormal flow (68%). In contrast, 131 tendons (85%) with abnormal flow at the start of the season were pain free. At the end of the season, 18 of the 51 painful tendons (35%) had abnormal flow. Ninety-six of the 131 pain-free tendons (73%) with abnormal flow at the start of the season were normalized (no pain and normal flow) at the end of the season. It was not possible to verify any association between intratendinous flow and pain at the start of the season or at

  1. Evaluation of gastrointestinal activity patterns in healthy horses using B mode and Doppler ultrasonography

    PubMed Central

    2005-01-01

    Abstract Healthy adult horses were examined by using transabdominal ultrasonography to quantitatively and qualitatively evaluate activity of the jejunum, cecum, and colon with B mode and Doppler techniques. Doppler ultrasound was used to assess jejunal peristaltic activity. Examinations were performed on multiple occasions under imposed colic evaluation conditions, including fasting, nasogastric intubation, and xylazine sedation. In fasted horses, jejunal visibility was increased and jejunal, cecal, and colonic activity was decreased. The stomach was displaced ventrally and was visualized ventral to the costochondral junction. Xylazine sedation in fed horses had minimal effects; however, in fasted horses, xylazine significantly decreased jejunal and cecal activity. Nasogastric intubation in fasted horses had no observable effects on activity, but moved the stomach dorsally. B mode and Doppler jejunal activity were strongly correlated. Prior feeding and sedation status need to be considered when interpreting the results of equine abdominal ultrasound examinations. Doppler techniques may be useful for assessing jejunal activity. PMID:15825515

  2. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    PubMed

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  3. Effect of low-intensity pulsed ultrasound on bone regeneration: biochemical and radiologic analyses.

    PubMed

    Pomini, Karina T; Andreo, Jesus C; Rodrigues, Antonio de C; de O Gonçalves, Jéssica B; Daré, Letícia R; German, Iris J S; Rosa, Geraldo M; Buchaim, Rogerio L

    2014-04-01

    The purpose of this study was to evaluate the effects of low-intensity pulsed ultrasound at 1.0 MHz on the healing process of fractures with bone loss in the rat fibula by alkaline phosphate level measurement and radiologic analyses. Thirty 70-day-old male Wistar rats underwent a bone resection of 2.5 to 3.0 mm between the proximal and middle third of the right fibular diaphysis. The animals were randomly divided into 3 experimental groups: reference (uninjured), control (injured only), and treated (injured and treated with 5 applications of ultrasound, interspersed by 2 days of rest, beginning 24 hours after the osteotomy). Euthanasia was performed at experimental periods of 7 and 14 days. The right hind limb was removed for radiologic analysis. The blood was collected via cardiac puncture to determine the serum alkaline phosphatase activity. The bone fractures had not been completely consolidated in the treated and control group when analysis of the bone took place. At day 7, the serum alkaline phosphatase activity was higher in the treated group (mean ± SD, 72.17 ± 7.02 U/L) compared to the control (65.26 ± 8.41 U/L) and reference (67.21 ± 7.86 U/L) groups. At day 14, higher alkaline phosphatase activity was seen in the control group (68.96 ± 8.12 U/L) compared to the treated (66.09 ± 8.46 U/L) and reference (67.14 ± 7.96 U/L) groups. The biochemical and radiologic results suggest that low-intensity pulsed ultrasound can be used as an auxiliary method to consolidate fractures and probably reduces the bone healing time, offering clinical benefits.

  4. Real-time clinically oriented array-based in vivo combined photoacoustic and power Doppler imaging

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Jeffery, Dean; Wiebe, Edward; Zemp, Roger J.

    2014-03-01

    Photoacoustic imaging has great potential for identifying vascular regions for clinical imaging. In addition to assessing angiogenesis in cancers, there are many other disease processes that result in increased vascularity that present novel targets for photoacoustic imaging. Doppler imaging can provide good localization of large vessels, but poor imaging of small or low flow speed vessels and is susceptible to motion artifacts. Photoacoustic imaging can provide visualization of small vessels, but due to the filtering effects of ultrasound transducers, only shows the edges of large vessels. Thus, we have combined photoacoustic imaging with ultrasound power Doppler to provide contrast agent- free vascular imaging. We use a research-oriented ultrasound array system to provide interlaced ultrasound, Doppler, and photoacoustic imaging. This system features realtime display of all three modalities with adjustable persistence, rejection, and compression. For ease of use in a clinical setting, display of each mode can be disabled. We verify the ability of this system to identify vessels with varying flow speeds using receiver operating characteristic curves, and find that as flow speed falls, photoacoustic imaging becomes a much better method for identifying blood vessels. We also present several in vivo images of the thyroid and several synovial joints to assess the practicality of this imaging for clinical applications.

  5. Ultrasound enhanced thrombolysis: Clinical evidence

    NASA Astrophysics Data System (ADS)

    Alexandrov, Andrei V.

    2005-04-01

    Phase II CLOTBUST randomized clinical trial (Houston, Barcelona, Edmonton, Calgary) evaluated patients with acute ischemic stroke due to intracranial occlusion and treated with intravenous tissue plasminogen activator (TPA) within 3 h of symptom onset. Randomization: monitoring with pulsed wave 2 MHz transcranial Doppler (TCD) (Target) or placebo monitoring (Control). Safety: symptomatic bleeding to the brain (sICH). Primary end-point: complete recanalization on TCD or dramatic clinical recovery by the total NIHSS score <3, or improvement by >10 NIHSS points within 2 hours after TPA bolus. All projected 126 patients were randomized 1:1 to target (median NIHSS 16) or control (NIHSS 17). sICH: 4.8% Target, 4.8% Controls. Primary end-point was achieved by 31 (49%, Target) versus 19 (30%, Control), p<0.03. At 3 months, 22 (42% Target) and 14 (29% Control) patients achieved favorable outcomes. Continuous TCD monitoring of intracranial occlusion safely augments TPA-induced arterial recanalization, and 2 MHz diagnostic ultrasound has a positive biological activity that aids systemic thrombolytic therapy. For the first time in clinical medicine, the CLOTBUST trial provides the evidence that ultrasound enhances thrombolytic activity of a drug in humans thereby confirming intense multi-disciplinary experimental research conducted worldwide for the past 30 years.

  6. [Color Doppler ultrasonography--a new imaging procedure in maxillofacial surgery].

    PubMed

    Reinert, S; Lentrodt, J

    1991-01-01

    Colour Doppler ultrasonography shows blood flow in real time and colour by combining the features of real time B mode ultrasound and Doppler. At each point in the image the returning signal is interrogated for both amplitude and frequency information. The resulting image shows all non-moving structures in shades of gray and moving structures in shades of red or blue depending on direction and velocity. The technique of colour Doppler ultrasonography and our experiences in 63 examinations are described. The clinical application of this new simple non-invasive method in maxillo-facial surgery is discussed.

  7. Diagnostic value of Doppler assessment of the hepatic and portal vessels and ultrasound of the spleen in liver disease.

    PubMed

    O'Donohue, John; Ng, Chaan; Catnach, Susan; Farrant, Patricia; Williams, Roger

    2004-02-01

    To investigate the clinical utility and the intra-observer and inter-observer variability of Doppler ultrasound assessment of the hepatic and portal vessels along with measurement of spleen size in the diagnosis of chronic liver disease and cirrhosis. Ultrasound measurements of portal vein diameter (PVD), portal vein velocity (PVV), hepatic arterial resistance index (HARI), hepatic vein profile (HVP), and spleen size were obtained in 49 controls and 45 patients with liver disease (23 with primary biliary cirrhosis, 22 with hepatitis C) by two experienced observers, who each performed three blinded measurements of each variable. Control values were derived from normal hospital workers. Percutaneous liver biopsies in 41 of the patients showed cirrhosis (14 patients), moderate/severe fibrosis (13 patients), and early disease (14 patients). Seventy-one percent of cirrhotic patients had splenomegaly (> 13.6 cm). The spleen size was significantly larger in cirrhotics (16.0 cm) than in non-cirrhotics (13.0 cm, P < 0.009) and healthy controls (10.7 cm, P < 0.00005), and was the only independent predictor of cirrhosis, with a threshold of 15 cm predicting cirrhosis with a specificity of 98%, positive predictive value of 93%, sensitivity of 57% and negative predictive value of 80%. HVP was abnormal in 76.9% of cirrhotics, 57.7% of non-cirrhotics and 2.1% of controls (P < 0.04). However, the mean PVV, PVD and HARI were no different between controls and patients or between cirrhotic and non-cirrhotic liver disease. There was significant inter-observer variability for PVV, but intra-observer and inter-observer variability was acceptable for the other measurements. Splenomegaly size and abnormal HVP are useful predictors of chronic liver disease and cirrhosis, and both can be measured reliably and reproducibly. However, Doppler measurements of PVV, PVD and HARI are not useful in distinguishing patients with chronic liver disease from normal controls.

  8. Measurements of Doppler-ion temperature and flow in the multi-pulsing CHI experiment on HIST

    NASA Astrophysics Data System (ADS)

    Hanao, T.; Ishihara, M.; Hirono, H.; Hyobu, T.; Ito, K.; Matsumoto, K.; Nakayama, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    The steady-state current sustainment of spherical torus (ST) configurations is expected to be achieved by Multi-pulsing Coaxial Helicity Injection (M-CHI) method. In the double-pulsing discharges, the plasma current can be sustained much longer against the resistive decay compared to the single CHI. The M-CHI has capabilities as a static ion heating method. Ion Doppler Spectrometer (IDS) measurements confirmed a significant increase in the ion temperature after the second CHI pulse. The ion heating mechanism is an important issue to be explored in the M-CHI experiments. It is considered due to the magnetic reconnection process of plasmoids and/or the damping of the Alfven wave. The ion heating becomes suppressed around the separatrix layer in the high field side where the amplitude of the magnetic fluctuations is minimized due to the poloidal flow shear. The shear flow generation is caused by ExB drift and ion diamagnetic drift. The contribution from the diamagnetic drift on the shear flow can be evaluated by measuring the flow velocity of hydrogen and impurity ions by using Mach probe and IDS. We will discuss the dependence of the ion heating characteristics on the variation of the density gradient by varying TF coil current.

  9. 4D in vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves

    NASA Astrophysics Data System (ADS)

    Flesch, M.; Pernot, M.; Provost, J.; Ferin, G.; Nguyen-Dinh, A.; Tanter, M.; Deffieux, T.

    2017-06-01

    4D ultrafast ultrasound imaging was recently shown using a 2D matrix (i.e. fully populated) connected to a 1024-channel ultrafast ultrasound scanner. In this study, we investigate the row-column addressing (RCA) matrix approach, which allows a reduction of independent channels from N  ×  N to N  +  N, with a dedicated beamforming strategy for ultrafast ultrasound imaging based on the coherent compounding of orthogonal plane wave (OPW). OPW is based on coherent compounding of plane wave transmissions in one direction with receive beamforming along the orthogonal direction and its orthogonal companion sequence. Such coherent recombination of complementary orthogonal sequences leads to the virtual transmit focusing in both directions which results into a final isotropic point spread function (PSF). In this study, a 32  ×  32 2D matrix array probe (1024 channels), centered at 5 MHz was considered. An RCA array, of same footprint with 32  +  32 elements (64 channels), was emulated by summing the elements either along a line or a column in software prior to beamforming. This approach allowed for the direct comparison of the 32  +  32 RCA scheme to the optimal fully sampled 32  ×  32 2D matrix configuration, which served as the gold standard. This approach was first studied through PSF simulations and then validated experimentally on a phantom consisting of anechoic cysts and echogenic wires. The contrast-to-noise ratio and the lateral resolution of the RCA approach were found to be approximately equal to half (in decibel) and twice the values, respectively, obtained when using the 2D matrix approach. Results in a Doppler phantom and the human humeral artery in vivo confirmed that ultrafast Doppler imaging can be achieved with reduced performances when compared against the equivalent 2D matrix. Volumetric anatomic Doppler rendering and voxel-based pulsed Doppler quantification are presented as well. OPW compound imaging

  10. 4D in vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves.

    PubMed

    Flesch, M; Pernot, M; Provost, J; Ferin, G; Nguyen-Dinh, A; Tanter, M; Deffieux, T

    2017-06-07

    4D ultrafast ultrasound imaging was recently shown using a 2D matrix (i.e. fully populated) connected to a 1024-channel ultrafast ultrasound scanner. In this study, we investigate the row-column addressing (RCA) matrix approach, which allows a reduction of independent channels from N  ×  N to N  +  N, with a dedicated beamforming strategy for ultrafast ultrasound imaging based on the coherent compounding of orthogonal plane wave (OPW). OPW is based on coherent compounding of plane wave transmissions in one direction with receive beamforming along the orthogonal direction and its orthogonal companion sequence. Such coherent recombination of complementary orthogonal sequences leads to the virtual transmit focusing in both directions which results into a final isotropic point spread function (PSF). In this study, a 32  ×  32 2D matrix array probe (1024 channels), centered at 5 MHz was considered. An RCA array, of same footprint with 32  +  32 elements (64 channels), was emulated by summing the elements either along a line or a column in software prior to beamforming. This approach allowed for the direct comparison of the 32  +  32 RCA scheme to the optimal fully sampled 32  ×  32 2D matrix configuration, which served as the gold standard. This approach was first studied through PSF simulations and then validated experimentally on a phantom consisting of anechoic cysts and echogenic wires. The contrast-to-noise ratio and the lateral resolution of the RCA approach were found to be approximately equal to half (in decibel) and twice the values, respectively, obtained when using the 2D matrix approach. Results in a Doppler phantom and the human humeral artery in vivo confirmed that ultrafast Doppler imaging can be achieved with reduced performances when compared against the equivalent 2D matrix. Volumetric anatomic Doppler rendering and voxel-based pulsed Doppler quantification are presented as well. OPW compound imaging

  11. Is articular pain in rheumatoid arthritis correlated with ultrasound power Doppler findings?

    PubMed

    Pereira, Daniele Freitas; Gutierrez, Marwin; de Buosi, Ana Leticia Pirozzi; Ferreira, Fernando Bernardes Maia Diniz; Draghessi, Antonella; Grassi, Walter; Natour, Jamil; Furtado, Rita Nely Vilar

    2015-11-01

    The study is addressed to determine if there is a correlation between intra-articular power Doppler (PD) and pain symptoms in patients with rheumatoid arthritis (RA). A cross-sectional study of patients with established RA was rolled out. Seventy-two patients with chronic swelling at metacarpophalangeal (MCP) joints were consecutively enrolled in the study and divided into two groups (painful and painless). In the painful group, the inclusion criteria were pain in the visual analog scale (VAS), from 0 to 10 cm, of at least 4 cm and 0 in the painless group. All two to five MCP joints, bilaterally, were scanned by ultrasound (US) searching for intra-articular PD presence. Any value of p < 0.05 was considered significant. Patients in the painful group had longer morning stiffness, worse 28-joint disease activity score (DAS 28), and health assessment questionnaire (HAQ) indexes. There were no association between pain and gray scale (GS) synovitis, odds ratio (OR) = 0.9 (0.6-1.2), p = 0.485; and pain and intra-articular PD, OR = 0.8 (0.6-1.2), p = 0.244. Intra-articular PD was not correlated with pain symptom in this study.

  12. Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-06-01

    The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s-1 and 120 m s-1, depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery.

  13. Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Every, A. G., E-mail: arthur.every@wits.ac.za; Utegulov, Z. N., E-mail: zhutegulov@nu.edu.kz; Veres, I. A., E-mail: istvan.veres@recendt.at

    2015-03-31

    The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axiallymore » symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.« less

  14. The value of Doppler ultrasound in diagnosis in 25 cases of furunculoid myiasis.

    PubMed

    Quintanilla-Cedillo, Marco R; León-Ureña, Heberth; Contreras-Ruiz, José; Arenas, Roberto

    2005-01-01

    The larvae of the botfly Dermatobia hominis cause furunculoid myiasis in endemic areas. Lack of knowledge of this condition outside these areas leads to confusion in diagnosis and delays appropriate treatment. To describe the clinical findings of furunculoid myiasis encountered in Quintana Roo, in the south-east of Mexico. We performed an observational study on 25 cases diagnosed over a period of 4 years. Diagnosis of furunculoid myiasis was made in 14 males and 11 females with an average age of 24.5 years. Most of our patients were students, farmers, or housewives. The number of lesions varied from one to four. In 20% of cases, more than one parasite was present in each lesion. The scalp was the most commonly affected region (40%), followed by the trunk and the extremities. Doppler ultrasound study (DUSG) of the furuncle-like lesions confirmed the clinical diagnosis in all cases. Furunculoid myiasis is frequent in the state of Quintana Roo, Mexico. We found no association with occupation, gender, social background or age. DUSG can be used to evaluate the number of parasites per furunculoid lesion avoiding misdiagnoses and treatment delays.

  15. Transcranial Doppler ultrasound and the etiology of neurologic decompression sickness during altitude decompression

    NASA Technical Reports Server (NTRS)

    Norfleet, W. T.; Powell, M. R.; Kumar, K. Vasantha; Waligora, J.

    1993-01-01

    The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.

  16. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit--a hybrid tool for assessment of choroidal melanoma.

    PubMed

    Walter, Uwe; Niendorf, Thoralf; Graessl, Andreas; Rieger, Jan; Krüger, Paul-Christian; Langner, Sönke; Guthoff, Rudolf F; Stachs, Oliver

    2014-05-01

    A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. • Orbital magnetic resonance and colour Doppler ultrasound real-time fusion imaging is feasible • Fusion imaging combines the spatial and temporal resolution advantages of each modality • Magnetic resonance and ultrasound fusion imaging improves assessment of choroidal melanoma vascularisation.

  17. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  18. A brief history of ultrasound in rheumatology: where we were.

    PubMed

    Grassi, Walter; Filippucci, Emilio

    2014-01-01

    Ultrasonography in the '70s was a well-known and widely used method within several medical specialties but not in rheumatology. Initial development of the field was led by radiologists who mainly investigated the potential of ultrasound in the assessment of large joints. In the late '80s, the first studies supporting the role of ultrasound in the detection of soft tissue changes and bone erosions in the hands of patients with rheumatoid arthritis were published. In the '90s, the dramatic improvement of spatial resolution due to the new generation high frequency probes opened up new avenues for the exploration of otherwise undetectable anatomical details. Ultrasound research during this period was enhanced by the growing use of colour Doppler and power Doppler and by the first prototypes of three dimensional ultrasound. Over the last 10 years, the buzz words in ultrasound research in rheumatology have been standardisation, early diagnosis and therapy monitoring.

  19. Measurement of carotid pulse wave velocity using ultrafast ultrasound imaging in hypertensive patients.

    PubMed

    Li, Xiaopeng; Jiang, Jue; Zhang, Hong; Wang, Hua; Han, Donggang; Zhou, Qi; Gao, Ya; Yu, Shanshan; Qi, Yanhua

    2017-04-01

    The study aimed to assess the utility of ultrafast ultrasound imaging for evaluation of carotid pulse wave velocity (PWV) in newly diagnosed hypertension patients. This prospective non-randomized study enrolled 90 hypertensive patients in our hospital from September to December 2013 as a hypertension group. An age- and sex-matched cohort of 50 healthy adults in our hospital from September to December 2013 was also included in the study as a control group. Carotid PWV at the beginning and at the end of systole (PWV-BS and PWV-ES, respectively) and intima-media thickness (IMT) were measured by ultrafast ultrasound imaging technology. The associations of PWV-BS, PWV-ES, and IMT with hypertension stage were evaluated by Spearman correlation analysis. PWV-BS and PWV-ES in the hypertension group were significantly elevated compared with those in control group. Different hypertension stages significantly differed in PWV-BS and PWV-ES. PWV-BS and PWV-ES appeared to increase with the hypertension stage. Moreover, IMT, PWV-BS, and PWV-ES were positively correlated with the hypertension stage in hypertensive patients. Ultrafast ultrasound imaging was a valid and convenient method for the measurement of carotid PWV in hypertensive patients. Ultrafast ultrasound imaging might be recommended as a promising alternative method for early detection of arterial abnormality in clinical practice.

  20. Sonothrombolysis of Intra-Catheter Aged Venous Thrombi Using Microbubble Enhancement and Guided Three Dimensional Ultrasound Pulses

    PubMed Central

    Kutty, Shelby; Xie, Feng; Gao, Shunji; Drvol, Lucas K; Lof, John; Fletcher, Scott E; Radio, Stanley J; Danford, David A; Hammel, James M; Porter, Thomas R

    2010-01-01

    Central venous and arterial catheters are a major source of thrombo-embolic disease in children. We hypothesized that guided high mechanical index (MI) impulses from diagnostic three-dimensional (3D) ultrasound during an intravenous microbubble infusion could dissolve these thrombi. An in vitro system simulating intra-catheter thrombi was created and then treated with guided high MI impulses from 3D ultrasound, utilizing low MI microbubble sensitive imaging pulse sequence schemes to detect the microbubbles (Perflutren Lipid Microsphere, Definity®, Lantheus). Ten aged thrombi over 24 hours old were tested using 3D ultrasound coupled with a continuous diluted microbubble infusion (Group A), and ten with 3D ultrasound alone (Group B). Mean thrombus age was 28.6 hours (range 26.6–30.3). Groups A exhibited a 55 ± 19 % reduction in venous thrombus size, compared to 31±10 % for Group B (p=0.008). Feasibility testing was performed in 4 pigs, establishing a model to further investigate the efficacy. Sonothrombolysis of aged intra-catheter venous thrombi can be achieved with commercially available microbubbles and guided high MI ultrasound from a diagnostic 3D transducer. PMID:20696549

  1. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  2. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  3. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    NASA Astrophysics Data System (ADS)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  4. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    PubMed

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P < .01) but were smaller at a DC of 5%. The necrosis volume was negatively related to the perfusion rate in the pulsed HIFU at a DC of 50% for exposure durations of 4 and 6 s, while the perfusion flow rate did not affect the necrosis volume for exposure durations of 1, 2 and 3 s. For increased perfusion flow rates, there was no significant decrease in the cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  5. Heart Rate Assessment Immediately after Birth.

    PubMed

    Phillipos, Emily; Solevåg, Anne Lee; Pichler, Gerhard; Aziz, Khalid; van Os, Sylvia; O'Reilly, Megan; Cheung, Po-Yin; Schmölzer, Georg M

    2016-01-01

    Heart rate assessment immediately after birth in newborn infants is critical to the correct guidance of resuscitation efforts. There are disagreements as to the best method to measure heart rate. The aim of this study was to assess different methods of heart rate assessment in newborn infants at birth to determine the fastest and most accurate method. PubMed, EMBASE and Google Scholar were systematically searched using the following terms: 'infant', 'heart rate', 'monitoring', 'delivery room', 'resuscitation', 'stethoscope', 'auscultation', 'palpation', 'pulse oximetry', 'electrocardiogram', 'Doppler ultrasound', 'photoplethysmography' and 'wearable sensors'. Eighteen studies were identified that described various methods of heart rate assessment in newborn infants immediately after birth. Studies examining auscultation, palpation, pulse oximetry, electrocardiography and Doppler ultrasound as ways to measure heart rate were included. Heart rate measurements by pulse oximetry are superior to auscultation and palpation, but there is contradictory evidence about its accuracy depending on whether the sensor is connected to the infant or the oximeter first. Several studies indicate that electrocardiogram provides a reliable heart rate faster than pulse oximetry. Doppler ultrasound shows potential for clinical use, however future evidence is needed to support this conclusion. Heart rate assessment is important and there are many measurement methods. The accuracy of routinely applied methods varies, with palpation and auscultation being the least accurate and electrocardiogram being the most accurate. More research is needed on Doppler ultrasound before its clinical use. © 2015 S. Karger AG, Basel.

  6. Noninvasive aortic bloodflow by Pulsed Doppler Echocardiography (PDE) compared to cardiac output by the direct Fick procedure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Left ventricular stroke volume was estimated from the systolic velocity integral in the ascending aorta by pulsed Doppler Echocardiography (PDE) and the cross sectional area of the aorta estimated by M mode echocardiography on 15 patients with coronary disease undergoing right catheterization for diagnostic purposes. Cardiac output was calculated from stroke volume and heart volume using the PDE method as well as the Fick procedure for comparison. The mean value for the cardiac output via the PDE method (4.42 L/min) was only 6% lower than for the cardiac output obtained from the Fick procedure (4.69 L/min) and the correlation between the two methods was excellent (r=0.967, p less than .01). The good agreement between the two methods demonstrates that the PDE technique offers a reliable noninvasive alternative for estimating cardiac output, requiring no active cooperation by the subject. It was concluded that the Doppler method is superior to the Fick method in that it provides beat by beat information on cardiac performance.

  7. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    1998-09-01

    ultrasound imaging in discriminating benign from malignant known masses . Preliminary data analyses were completed on new trials and contributions were made...specificity of ultrasound imaging in discriminating benign from malignant known masses . Increasingly we and others will look toward expanded roles in...evaluate which Doppler signals might provide discrimination of breast cancer from benign masses and to compare 2D and 3D ultrasound display modes.

  8. No midterm benefit from low intensity pulsed ultrasound after chevron osteotomy for hallux valgus.

    PubMed

    Zacherl, Max; Gruber, Gerald; Radl, Roman; Rehak, Peter H; Windhager, Reinhard

    2009-08-01

    Chevron osteotomy is a widely accepted method for correction of symptomatic hallux valgus deformity. Full weight bearing in regular shoes is not recommended before 6 weeks after surgery. Low intensity pulsed ultrasound is known to stimulate bone formation leading to more stable callus and faster bony fusion. We performed a randomized, placebo-controlled, double-blinded study on 44 participants (52 feet) who underwent chevron osteotomy to evaluate the influence of daily transcutaneous low intensity pulsed ultrasound (LIPUS) treatment at the site of osteotomy. Follow-up at 6 weeks and 1 year included plain dorsoplantar radiographs, hallux-metatarsophalangeal-interphalangeal scale and a questionnaire on patient satisfaction. There was no statistical difference in any pre- or postoperative clinical features, patient satisfaction or radiographic measurements (hallux valgus angle, intermetatarsal angle, sesamoid index and metatarsal index) except for the first distal metatarsal articular angle (DMAA). The DMAA showed statistically significant (p = 0.046) relapse in the placebo group upon comparison of intraoperative radiographs after correction and fixation (5.2 degrees) and at the 6-week follow-up (10.6 degrees). Despite potential impact of LIPUS on bone formation, we found no evidence of an influence on outcome 6 weeks and 1 year after chevron osteotomy for correction of hallux valgus deformity.

  9. Evaluation of joint effusion in rabbits by color Doppler, power Doppler, and contrast-enhanced power Doppler ultrasonography.

    PubMed

    Lim, Gye-Yeon; Im, Soo Ah; Jung, Won Sang; Lee, Jae Mun; Lee, Ah Won

    2005-09-01

    The aim of this prospective study was to evaluate the diagnostic value of power Doppler ultrasonography (PDUS) and contrast-enhanced PDUS (CEPDUS) in the depiction and characterization of experimentally induced arthritis in the rabbit. Thirty rabbits were divided into three groups consisting of one control group (saline injection group) and two experimental groups: a suppurative arthritis group and a chemically induced synovitis group. The same amount (1 ml) of each agent was directly injected into the right hip joint. Serial color Doppler ultrasound (CDUS), PDUS, and CEPDUS images were obtained before and after injection. We observed that all of the infected knees in the suppurative arthritis group with Staphylococcus aureus demonstrated an increased signal on PDUS after inoculation. A minimal power Doppler signal was presented in the chemically induced synovitis group with talc injection, but none of the control knees demonstrated any increased signals. CEPDUS was the most sensitive imaging modality for evaluating the increase of blood flows in suppurative arthritis and was subsequently followed by PDUS and CDUS. The increased signals obtained with PDUS represent increased local blood flows; therefore, this technique can be used for evaluating the degree of inflammation. Furthermore, using the contrast agent enhances the sensitivity of PDUS, and it can even be useful for differentiating borderline cases. Copyright 2005 Wiley Periodicals, Inc

  10. Development of the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2010-01-01

    A general overview of the development of a data acquisition and processing system is presented for a pulsed, 2-micron coherent Doppler Lidar system located in NASA Langley Research Center in Hampton, Virginia, USA. It is a comprehensive system that performs high-speed data acquisition, analysis, and data display both in real time and offline. The first flight missions are scheduled for the summer of 2010 as part of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The system as well as the control software is reviewed and its requirements and unique features are discussed.

  11. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  12. The Presto 1000: A novel automated transcranial Doppler ultrasound system.

    PubMed

    Han, Seunggu J; Rutledge, William Caleb; Englot, Dario J; Winkler, Ethan A; Browne, Janet L; Pflugrath, Lauren; Cronsier, David; Abla, Adib A; Kliot, Michel; Lawton, Michael T

    2015-11-01

    We examined the reliability and ease of use of a novel automated transcranial Doppler (TCD) system in comparison to a conventional TCD system. TCD ultrasound allows non-invasive monitoring of cerebral blood flow, and can predict arterial vasospasm after a subarachnoid hemorrhage (SAH). The Presto 1000 TCD system (PhysioSonics, Bellevue, WA, USA) is designed for monitoring flow through the M1 segment of the middle cerebral artery (MCA) via temporal windows. The Presto 1000 system was tested across multiple preclinical and clinical settings in parallel with a control predicate TCD system. In a phantom flow generating device, both the Presto 1000 and Spencer system (Spencer Technologies, Redmond, WA, USA) were able to detect velocities with high accuracy. In nine volunteer patients, the Presto system was able to locate the MCA in 14 out of 18 temporal windows, in an average of 12.5s. In the SAH cohort of five patients with a total of 25 paired measurements, the mean absolute difference in flow velocities of the M1 segment, as measured by the two systems, was 17.5 cm/s. These data suggest that the Presto system offers an automated TCD that can reliably localize and detect flow of the MCA, with relative ease of use. The system carries the additional benefit of requiring minimal training for the operator, and can be used by many providers across multiple bedside settings. The mean velocities that were generated warrant further validation across an extended group of patients, and the predictive value for vasospasm should be checked against the current standard of angiography. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    PubMed

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  14. Note: Comparative experimental studies on the performance of 2-2 piezocomposite for medical ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Marinozzi, F.; Bini, F.; Biagioni, A.; Grandoni, A.; Spicci, L.

    2013-09-01

    The paper reports the experimental investigation of the behavior of 2-2 Lead Zirconate Titanate (PZT)-polymer composite transducers array for clinical ultrasound equipments. Several 2-2 plate composites having the same dicing pitch of 0.11 mm and different volume fractions were manufactured and investigated. Measurements were performed through different techniques such as electrical impedance, pulse-echo, and Laser Doppler Vibrometer. With the last one, maps of the surface displacement were presented relative to thickness mode and first lateral mode resonance frequencies. The transducers with volume fractions of the 40% resulted markedly inefficient, whereas the largest bandwidth and best band shape were achieved by the 50%.

  15. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Implantable pulsed Doppler ultrasonic flowmeter development has resulted in designs for application to the aortas of dogs and humans, and to human renal and coronary arteries. A figure of merit was derived for each design, indicating the degree of its precision. An H-array design for transcutaneous observation of blood flow was developed and tested in vitro. Two other simplified designs for the same purpose obviate the need to determine vessel orientation. One of these will be developed in the next time period. Techniques for intraoperative use and for implantation have had mixed success. While satisfactory on large vessels, higher ultrasonic frequencies and alteration of transducer design are required for satisfactory operation of pulsed Doppler flowmeters with small vessels.

  16. Coherent Doppler lidar signal covariance including wind shear and wind turbulence

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal is presented for random atmospheric wind fields with wind shear. The random component is described by a Kolmogorov turbulence spectrum. The signal parameters are clarified for a general coherent Doppler lidar system. There are two distinct physical regimes: one where the transmitted pulse determines the signal statistics and the other where the wind field dominates the signal statistics. The Doppler shift of the signal is identified in terms of the wind field and system parameters.

  17. Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    NASA Astrophysics Data System (ADS)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2017-11-01

    We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 < Ra < 3 ×107 at a Prandtl number Pr 0.032 . The Nusselt number Nu is found to scale as Nu Ra0.31 . A Reynolds number Rez based on the vertical velocities close the heated and cooled side walls scales with Rez Ra0.45 . Additionally a Reynolds number based on the horizontal flow component is scaling as Rex Ra0.67 . These results agree well with numerical simulations and theoretical predictions. This work is funded by the Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.

  18. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    PubMed

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue <125, light blue 125-250, and green 250-440 PU. The thickness of these scars was significantly different between the predominant colours of burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  19. Microbubble-enhanced ultrasound to demonstrate urethral transection in a case of penile fracture.

    PubMed

    Czarnecki, Oliver; von Stempel, Conrad Brice; Sangster, Pippa; Walkden, Miles

    2017-09-23

    A 47-year-old man attended the emergency department following trauma during sexual intercourse after which he developed penile swelling and haematuria several hours later. A penile fracture was suspected but given the slightly atypical history, ultrasound was performed to look for a fracture. Given the history of haematuria, both a standard Doppler ultrasound and a microbubble-enhanced retrograde ultrasound urethrogram were performed. The Doppler confirmed the suspected diagnosis of penile fracture, and microbubble urethrogram demonstrated a urethral injury. This facilitated prompt surgical treatment and helped guide the surgical approach. Retrograde microbubble enhanced ultrasound urethrogram is a novel technique that can be used in conjunction with standard ultrasound to confirm the presence of a concurrent urethral rupture in penile fracture. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Clinical Tests Combined with Color Doppler Versus Color Doppler Alone in Identifying Incompetent Perforator Veins of the Lower Limb: A Prospective Analytical Study.

    PubMed

    Sureshkumar, Sathasivam; Vignesh, Narayan; Venkatachalam, J; Vijayakumar, Chellappa; Sudharsanan, Sundaramurthi

    2018-01-05

    Background The color Doppler, a better investigation to identify the perforators objectively has replaced the clinical examination for the same. However, this has led to a significant number of negative explorations and cosmetic disfigurement. Objective To compare the efficacy of the clinical tests combined with the color Doppler versus color Doppler alone to identify the perforator incompetence during the surgery for primary varicose veins of the lower limb. Methods This was a prospective analytical study, including 61 lower limb varicose vein patients who belonged to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) class four-six, planned for the surgical treatment for perforator incompetence, excluding those requiring additional vascular or nonvascular procedure, recurrent varicose veins and those who had injection sclerotherapy prior to the surgery. The clinical tests, including Trendelenburg's test, multiple tourniquet tests and, the Fegan's tests were performed and incompetent perforators were marked on a template as 'C' to indicate the clinically positive perforator incompetence. The patients were then examined with the color Doppler ultrasound and the pathological incompetent perforators were marked as 'D'. The surgical management of the perforator incompetence was done by stab ligation. The incision was made in the color Doppler 'D' marked sites as it has been the standard protocol. The number of incompetent perforators identified during the surgical exploration were categorized as 'D' positive or 'C' and 'D' positive and were recorded in the specified proforma. Results It was found that the mean number of the perforator incompetence identified by the color Doppler alone was 8.2 whereas during the surgery, only a mean of six perforators was identified, leading to 20 unnecessary explorations per 10 patients (8.2 vs. 6; mean difference 2.229; P <0.001). The mean number of the perforator incompetence identified by the color Doppler combined with the

  1. Clinical Tests Combined with Color Doppler Versus Color Doppler Alone in Identifying Incompetent Perforator Veins of the Lower Limb: A Prospective Analytical Study

    PubMed Central

    Vignesh, Narayan; Venkatachalam, J; Vijayakumar, Chellappa; Sudharsanan, Sundaramurthi

    2018-01-01

    Background The color Doppler, a better investigation to identify the perforators objectively has replaced the clinical examination for the same. However, this has led to a significant number of negative explorations and cosmetic disfigurement. Objective To compare the efficacy of the clinical tests combined with the color Doppler versus color Doppler alone to identify the perforator incompetence during the surgery for primary varicose veins of the lower limb. Methods This was a prospective analytical study, including 61 lower limb varicose vein patients who belonged to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) class four-six, planned for the surgical treatment for perforator incompetence, excluding those requiring additional vascular or nonvascular procedure, recurrent varicose veins and those who had injection sclerotherapy prior to the surgery. The clinical tests, including Trendelenburg’s test, multiple tourniquet tests and, the Fegan’s tests were performed and incompetent perforators were marked on a template as ‘C’ to indicate the clinically positive perforator incompetence. The patients were then examined with the color Doppler ultrasound and the pathological incompetent perforators were marked as ‘D’. The surgical management of the perforator incompetence was done by stab ligation. The incision was made in the color Doppler ‘D’ marked sites as it has been the standard protocol. The number of incompetent perforators identified during the surgical exploration were categorized as ‘D’ positive or ’C’ and ‘D’ positive and were recorded in the specified proforma. Results It was found that the mean number of the perforator incompetence identified by the color Doppler alone was 8.2 whereas during the surgery, only a mean of six perforators was identified, leading to 20 unnecessary explorations per 10 patients (8.2 vs. 6; mean difference 2.229; P <0.001). The mean number of the perforator incompetence identified by the color

  2. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model.

    PubMed

    Wahab, Radia Abdul; Choi, Mina; Liu, Yunbo; Krauthamer, Victor; Zderic, Vesna; Myers, Matthew R

    2012-07-01

    To study how pressure pulses affect nerves through mechanisms that are neither thermal nor cavitational, and investigate how the effects are related to cumulative radiation-force impulse (CRFI). Applications include traumatic brain injury and acoustic neuromodulation. A simple neural model consisting of the giant axon of a live earthworm was exposed to trains of pressure pulses produced by an 825 kHz focused ultrasound transducer. The peak negative pressure of the pulses and duty cycle of the pulse train were controlled so that neither cavitation nor significant temperature rise occurred. The amplitude and conduction velocity of action-potentials triggered in the worm were measured as the magnitude of the pulses and number of pulses in the pulse trains were varied. The functionality of the axons decreased when sufficient pulse energy was applied. The level of CRFI at which the observed effects occur is consistent with the lower levels of injury observed in this study relative to blast tubes. The relevant CRFI values are also comparable to CRFI values in other studies showing measureable changes in action-potential amplitudes and velocities. Plotting the measured action-potential amplitudes and conduction velocities from different experiments with widely varying exposure regimens against the single parameter of CRFI yielded values that agreed within 21% in terms of amplitude and 5% in velocity. A predictive model based on the assumption that the temporal rate of decay of action-potential amplitude and velocity is linearly proportional the radiation force experienced by the axon predicted the experimental amplitudes and conduction velocities to within about 20% agreement. The functionality of axons decreased due to noncavitational mechanical effects. The radiation force, possibly by inducing changes in ion-channel permeability, appears to be a possible mechanism for explaining the observed degradation. The CRFI is also a promising parameter for quantifying neural

  3. Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation?

    PubMed Central

    Jezewski, Janusz; Wrobel, Janusz; Matonia, Adam; Horoba, Krzysztof; Martinek, Radek; Kupka, Tomasz; Jezewski, Michal

    2017-01-01

    Great expectations are connected with application of indirect fetal electrocardiography (FECG), especially for home telemonitoring of pregnancy. Evaluation of fetal heart rate (FHR) variability, when determined from FECG, uses the same criteria as for FHR signal acquired classically—through ultrasound Doppler method (US). Therefore, the equivalence of those two methods has to be confirmed, both in terms of recognizing classical FHR patterns: baseline, accelerations/decelerations (A/D), long-term variability (LTV), as well as evaluating the FHR variability with beat-to-beat accuracy—short-term variability (STV). The research material consisted of recordings collected from 60 patients in physiological and complicated pregnancy. The FHR signals of at least 30 min duration were acquired dually, using two systems for fetal and maternal monitoring, based on US and FECG methods. Recordings were retrospectively divided into normal (41) and abnormal (19) fetal outcome. The complex process of data synchronization and validation was performed. Obtained low level of the signal loss (4.5% for US and 1.8% for FECG method) enabled to perform both direct comparison of FHR signals, as well as indirect one—by using clinically relevant parameters. Direct comparison showed that there is no measurement bias between the acquisition methods, whereas the mean absolute difference, important for both visual and computer-aided signal analysis, was equal to 1.2 bpm. Such low differences do not affect the visual assessment of the FHR signal. However, in the indirect comparison the inconsistencies of several percent were noted. This mainly affects the acceleration (7.8%) and particularly deceleration (54%) patterns. In the signals acquired using the electrocardiography the obtained STV and LTV indices have shown significant overestimation by 10 and 50% respectively. It also turned out, that ability of clinical parameters to distinguish between normal and abnormal groups do not depend on

  4. Ultrasound contrast agents: an overview.

    PubMed

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  5. Diagnostic ultrasound imaging for lateral epicondylalgia: a case-control study.

    PubMed

    Heales, Luke James; Broadhurst, Nathan; Mellor, Rebecca; Hodges, Paul William; Vicenzino, Bill

    2014-11-01

    Lateral epicondylalgia (LE) is clinically diagnosed as pain over the lateral elbow that is provoked by gripping. Usually, LE responds well to conservative intervention; however, those who fail such treatment require further evaluation, including musculoskeletal ultrasound. Previous studies of musculoskeletal ultrasound have methodological flaws, such as lack of assessor blinding and failure to control for participant age, sex, and arm dominance. The purpose of this study was to assess the diagnostic use of blinded ultrasound imaging in people with clinically diagnosed LE compared with that in a control group matched for age, sex, and arm dominance. Participants (30 with LE and 30 controls) underwent clinical examination as the criterion standard test. Unilateral LE was defined as pain over the lateral epicondyle, which was provoked by palpation, resisted wrist and finger extension, and gripping. Controls without symptoms were matched for age, sex, and arm dominance. Ultrasound investigations were performed by two sonographers using a standardized protocol. Grayscale images were assessed for signs of tendon pathology and rated on a four-point ordinal scale. Power Doppler was used to assess neovascularity and rated on a five-point ordinal scale. The combination of grayscale and power Doppler imaging revealed an overall sensitivity of 90% and specificity of 47%. The positive and negative likelihood ratios for combined grayscale and power Doppler imaging were 1.69 and 0.21, respectively. Although ultrasound imaging helps confirm the absence of LE, when findings are negative for tendinopathic changes, the high prevalence of tendinopathic changes in pain-free controls challenges the specificity of the measure. The validity of ultrasound imaging to confirm tendon pathology in clinically diagnosed LE requires further study with strong methodology.

  6. Single-element ultrasound transducer for combined vessel localization and ablation.

    PubMed

    Chen, Wen-Shiang; Shen, Che-Chou; Wang, Jen-Chieh; Ko, Chung-Ting; Liu, Hao-Li; Ho, Ming-Chih; Chen, Chiung-Nien; Yeh, Chih-Kuang

    2011-04-01

    This report describes a system that utilizes a single high-intensity focused ultrasound (HIFU) transducer for both the localization and ablation of arteries with internal diameters of 0.5 and 1.3 mm. In vitro and in vivo tests were performed to demonstrate both the imaging and ablation functionalities of this system. For imaging mode, pulsed acoustic waves (3 cycles for in vitro and 10 cycles for in vivo tests, 2 MPa peak pressure) were emitted from the 2-MHz HIFU transducer, and the backscattered ultrasonic signal was collected by the same transducer to calculate Doppler shifts in the target region. The maximum signal amplitude of the Doppler shift was used to determine the location of the target vessel. The operation mode was then switched to the therapeutic mode and vessel occlusion was successfully produced by high-intensity continuous HIFU waves (12 MPa) for 60 s. The system was then switched back to imaging mode for residual flow to determine the need for a second ablation treatment. The new system might be used to target and occlude unwanted vessels such as vasculature around tumors, and to help with tumor destruction. © 2011 IEEE

  7. Imaging-based assessment of the mineral composition of urinary stones: an in vitro study of the combination of hounsfield unit measurement in noncontrast helical computerized tomography and the twinkling artifact in color Doppler ultrasound.

    PubMed

    Hassani, Hakim; Raynal, Gauthier; Spie, Romain; Daudon, Michel; Vallée, Jean-Noël

    2012-05-01

    We evaluated the value of combining noncontrast helical computerized tomography (NCHCT) and color Doppler ultrasound in the assessment of the composition of urinary stones. In vitro, we studied 120 stones of known composition, that separate into the five main types: 18 calcium oxalate monohydrate (COM) stones, 41 calcium oxalate dihydrate (COD) stones, 24 uric acid stones, 25 calcium phosphate stones and 12 cystine calculi. Stones were characterized in terms of their Hounsfield density (HU) in NCHCT and the presence of a twinkling artifact (TA) in color Doppler ultrasound. There were statistically significant HU differences between calcium and non-calcium stones (p < 0.001), calcium oxalate stones and calcium phosphate stones (p < 0.001) and uric acid stones and cystine calculi (p < 0.001) but not between COM and COD stones (p = 0.786). Hence, the HU was a predictive factor of the composition of all types of stones, other than for COM and COD stones within the calcium oxalate class (p > 0.05). We found that the TA does not enable differentiation between calcium and non-calcium stones (p > 0.999), calcium oxalate stones and calcium phosphate stones (p = 0.15), or uric acid stones and cystine calculi (p = 0.079). However, it did reveal a significant difference between COM and COD stones (p = 0.002). The absence of a TA is a predictive factor for the presence of COM stones (p = 0.008). Hence, the association of NCHCT and Doppler enables the accurate classification of the five types of stones in vitro. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Characterization of turbulent wake of wind turbine by coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Li, Rongzhong; Wang, Xitao; Feng, Changzhong; Zhuang, Quanfeng; Zhang, Kailin

    2014-11-01

    The indispensable access to real turbulent wake behavior is provided by the pulsed coherent Doppler Light Detection and Ranging (LIDAR) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. The Doppler shift in the frequency of the backscattered signal is analyzed to obtain the line-of-sight (LOS) velocity component of the air motion. From the LOS velocities the characteristic of the turbulent wake can be deduced. The Coherent Doppler LIDAR (CDL) is based on all-fiber laser technology and fast digital-signal-processing technology. The 1.5 µm eye-safe Doppler LIDAR system has a pulse length of 200ns and a pulse repetition frequency of 10 kHz. The speed measurement range is ±50m/s and the speed measurement uncertainty is 0.3 m/s. The 2-axis beam scanner and detection range of 3000m enable the system to monitor the whole wind farming filed. Because of the all-fiber structure adoption, the system is stable, reliable and high-integrated. The wake vortices of wind turbine blades with different spatial and temporal scales have been observed by LIDAR. In this paper, the authors discuss the possibility of using LIDAR measurements to characterize the complicated wind field, specifically wind velocity deficit and terrain effects.

  9. Transjugular Intrahepatic Portosystemic Shunt Dysfunction: Concordance of Clinical Findings, Doppler Ultrasound Examination, and Shunt Venography.

    PubMed

    Owen, Joshua M; Gaba, Ron Charles

    2016-01-01

    The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance.

  10. Transjugular Intrahepatic Portosystemic Shunt Dysfunction: Concordance of Clinical Findings, Doppler Ultrasound Examination, and Shunt Venography

    PubMed Central

    Owen, Joshua M; Gaba, Ron Charles

    2016-01-01

    Objectives: The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Materials and Methods: Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Results: Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Conclusion: Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance. PMID:27563495

  11. Determination of Testicular Blood Flow in Camelids Using Vascular Casting and Color Pulsed-Wave Doppler Ultrasonography

    PubMed Central

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography. PMID:21941690

  12. Determination of testicular blood flow in camelids using vascular casting and color pulsed-wave Doppler ultrasonography.

    PubMed

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography.

  13. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  14. Transcranial Doppler ultrasound study of the effects of nitrous oxide on cerebral autoregulation during neurosurgical anesthesia: a randomized controlled trial.

    PubMed

    Iacopino, Domenico G; Conti, Alfredo; Battaglia, Calogero; Siliotti, Clotilde; Lucanto, Tullio; Santamaria, Letterio B; Tomasello, Francesco

    2003-07-01

    Nitrous oxide has an adverse effect on cerebrovascular hemodynamics. Increased intracranial pressure, cerebral blood flow (CBF), cerebral metabolic rate of O2 (CMRO2), and reduced autoregulation indices have been reported, but their magnitudes are still being debated. This study was designed to evaluate the effect of N2O on CBF and autoregulatory indexes during N2O-sevoflurane anesthesia in a prospective randomized controlled series of patients. Two groups of 20 patients were studied on the basis of the use of N2O in the anesthetic gas mixture. The transient hyperemic response test, which relies on transcranial Doppler ultrasound techniques, was used to assess cerebral hemodynamics. The time-averaged mean flow velocity, considered to be an index of actual CBF, increased significantly (p < 0.001) after introduction of N2O. The hyperemic response, considered as the index of autoregulatory potential, decreased significantly after introduction of N2O into the gas mixture (p < 0.001). The increase in CBF and the reduction in autoregulatory indices suggest caution in using N2O during sevoflurane anesthesia, especially in patients with reduced autoregulatory reserve and during neurosurgical interventions. Transcranial Doppler ultrasonography is an efficacious method to evaluate the effects of anesthetic agents on CBF.

  15. Detection of cavernous transformation of the portal vein by contrast-enhanced ultrasound.

    PubMed

    Hwang, Misun; Thimm, Matthew A; Guerrerio, Anthony L

    2018-06-01

    Cavernous transformation of the portal vein can be missed on color Doppler exam or arterial phase cross-sectional imaging due to their slow flow and delayed enhancement. Contrast-enhanced ultrasound (CEUS) offers many advantages over other imaging techniques and can be used to successfully detect cavernous transformations of the portal vein. A 10-month-old female was followed for repeat episodes of hematemesis. Computed tomography angiography (CTA) and magnetic resonance arteriogram (MRA) and portal venography were performed. Color Doppler exam of the portal vein was performed followed by administration of Lumason, a microbubble US contrast agent. Magnetic resonance arteriogram, CTA, and color Doppler exam at the time of initial presentation was unremarkable without obvious vascular malformation within the limits of motion degraded exam. At 8-month follow-up, esophagogastroduodenoscopy revealed a vascular malformation in the distal esophagus which was sclerosed. At 6 month after sclerosis of the lesion, portal venography revealed occlusion of the portal vein with extensive collateralization. Color Doppler revealed subtle hyperarterialization and periportal collaterals. CEUS following color Doppler exam demonstrated extensive enhancement of periportal collaterals. Repeat color Doppler after contrast administration demonstrated extensive Doppler signal in the collateral vessels, suggestive of cavernous transformation. We describe a case of cavernous transformation of the portal vein missed on initial color Doppler, CTA and MRA, but detected with contrast-enhanced ultrasound technique.

  16. Assessment of left ventricular function using pulsed tissue Doppler imaging in healthy dogs and dogs with spontaneous mitral regurgitation.

    PubMed

    Teshima, Kenji; Asano, Kazushi; Sasaki, Yukie; Kato, Yuka; Kutara, Kenji; Edamura, Kazuya; Hasegawa, Atsuhiko; Tanaka, Shigeo

    2005-12-01

    Pulsed tissue Doppler imaging (pulsed TDI) has been demonstrated to be useful for the estimation of left ventricular (LV) systolic and diastolic functions in various human cardiac diseases. The objectives of this study were to investigate the relationship between pulsed TDI and LV function by using cardiac catheterization in healthy dogs and to evaluate the clinical usefulness of pulsed TDI in dogs with spontaneous mitral regurgitation (MR). The peak early diastolic velocity (E'), peak atrial systolic velocity (A'), and peak systolic velocity (S') were detectable in the velocity profiles of the mitral annulus in all the dogs. In the healthy dogs, S' and E' were correlated with LV peak +dP/dt and -dP/dt, respectively. E' was lower in dogs with MR than in dogs without cardiac diseases. E/E' in the MR dogs with decompensated heart failure was significantly increased in comparison with those with compensated heart failure. The sensitivity and specificity of the E/E' cutoff value of 13.0 for identifying decompensated heart failure were 80% and 83%, respectively. In addition, E/E' was significantly correlated with the ratio of left atrial to aortic diameter. These findings suggest that canine pulsed TDI can be applied clinically for estimation of cardiac function and detection of cardiac decompensation and left atrial volume overload in dogs with MR.

  17. [Doppler study of gluteal arteries. A useful tool for excluding gluteal arterial pathology snd an important adjunct to lower limb Doppler studies].

    PubMed

    Bruninx, G; Salame, H; Wery, D; Delcour, C

    2002-02-01

    1) To determine the negative predictive value (VPN) of duplex scan in patients complaining of buttock or hip pain and thereby to distinguish vascular claudication from other musculoskeletal or neurological diseases. 2) To show its complementarity in doppler investigation of lower limb arteries. Prospective study by duplex scan and arteriography of 60 gluteal arteries in 30 consecutive patients referred to check up for lower limb arteriopathy or sexual impotence. Duplex scan was performed by posterior approach. Correlation between doppler ultrasound and arteriography was studied. The study of normal arteries was possible in all cases and only one normal gluteal artery could not be detected in a diabetic overweight patient. On 60 arteries, sensitivity of duplex was 100 percent, specificity 96 percent and VPN 100 percent. Significant obstructive lesions were always associated with pathological velocimetric waveform or were not detected. Buttock claudication can appear like a typical vascular claudication or mimic neurological or musculoskeletal diseases. It is very useful to rule out a vascular causality responsible for buttock or hip pain by simple, non-invasive and cheap exploration. A normal doppler ultrasound of gluteal arteries can rule out vascular disease responsible for buttock or hip pain thereby avoiding arteriography. The strategy of diagnostic or therapy can be modified by such additional information as shown in two case reports.

  18. Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.

    PubMed

    Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M

    2012-12-01

    Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Three-dimensional power Doppler ultrasound diagnosis and laparoscopic management of a pregancy in a previous cesarean scar.

    PubMed

    Wang, Chin-Jung; Yuen, Leung-To; Yen, Chih-Feng; Lee, Chyi-Long; Soong, Yung-Kuei

    2004-12-01

    An ectopic pregnancy developing in a previous Cesarean section scar is a rare event, and there is still a lack of information concerning the adequacy of management strategies. So far, no modality can guarantee the integrity of the uterus. We report the case of a 29-year-old woman with three Cesarean deliveries who was transferred to our hospital with a diagnosis of cervical pregnancy. Transvaginal three-dimensional power Doppler ultrasound revealed a well-encapsulated bulging mass displacing anteriorly over the lower anterior uterine wall sounding with an irregular course and branching vessels. The diagnosis of pregnancy in a previous Cesarean scar was made. Laparoscopic ligation of bilateral uterine arteries followed by excision of the ectopic pregnant mass was undertaken, and the patient's uterus was successfully preserved. Conservative management with the laparoscopic approach may be a safe and effective alternative to hysterectomy in patients with a pregnacy in a previous Cesarean scar.

  20. Ultrasound-detected bone erosion is a relapse risk factor after discontinuation of biologic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis whose ultrasound power Doppler synovitis activity and clinical disease activity are well controlled.

    PubMed

    Kawashiri, Shin-Ya; Fujikawa, Keita; Nishino, Ayako; Okada, Akitomo; Aramaki, Toshiyuki; Shimizu, Toshimasa; Umeda, Masataka; Fukui, Shoichi; Suzuki, Takahisa; Koga, Tomohiro; Iwamoto, Naoki; Ichinose, Kunihiro; Tamai, Mami; Mizokami, Akinari; Nakamura, Hideki; Origuchi, Tomoki; Ueki, Yukitaka; Aoyagi, Kiyoshi; Maeda, Takahiro; Kawakami, Atsushi

    2017-05-25

    In the present study, we explored the risk factors for relapse after discontinuation of biologic disease-modifying antirheumatic drug (bDMARD) therapy in patients with rheumatoid arthritis (RA) whose ultrasound power Doppler (PD) synovitis activity and clinical disease activity were well controlled. In this observational study in clinical practice, the inclusion criteria were based on ultrasound disease activity and clinical disease activity, set as low or remission (Disease Activity Score in 28 joints based on erythrocyte sedimentation rate <3.2). Ultrasound was performed in 22 joints of bilateral hands at discontinuation for evaluating synovitis severity and presence of bone erosion. Patients with a maximum PD score ≤1 in each joint were enrolled. Forty patients with RA were consecutively recruited (November 2010-March 2015) and discontinued bDMARD therapy. Variables at the initiation and discontinuation of bDMARD therapy that were predictive of relapse during the 12 months after discontinuation were assessed. The median patient age was 54.5 years, and the median disease duration was 3.5 years. Nineteen (47.5%) patients relapsed during the 12 months after the discontinuation of bDMARD therapy. Logistic regression analysis revealed that only the presence of bone erosion detected by ultrasound at discontinuation was predictive of relapse (OR 8.35, 95% CI 1.78-53.2, p = 0.006). No clinical characteristics or serologic biomarkers were significantly different between the relapse and nonrelapse patients. The ultrasound synovitis scores did not differ significantly between the groups. Our findings are the first evidence that ultrasound bone erosion may be a relapse risk factor after the discontinuation of bDMARD therapy in patients with RA whose PD synovitis activity and clinical disease activity are well controlled.

  1. Carotid duplex ultrasound and transcranial Doppler findings in commercial divers and pilots.

    PubMed

    Dormanesh, Banafshe; Vosoughi, Kia; Akhoundi, Fahimeh H; Mehrpour, Masoud; Fereshtehnejad, Seyed-Mohammad; Esmaeili, Setareh; Sabet, Azin Shafiee

    2016-12-01

    The risky working environments of divers and pilots, and the possible role of extreme ambient pressure in carotid stenosis, make ischemic stroke an important occupational concern among these professionals. In this study, we aimed to evaluate the association of being exposed to hyperbaric or hypobaric conditions with carotid artery stenosis by comparing common carotid intima-media thickness (CCIMT) and blood flow velocities of cerebral arteries in divers and pilots using carotid duplex ultrasound (CDUS) and transcranial Doppler (TCD). CDUS and transtemporal TCD were performed in 29 divers, 36 pilots and 30 control participants. Medical history, blood pressure, lipid profile and blood sugar were recorded to control the previously well-known risk factors of atherosclerosis. Findings of the CDUS and TCD [including: CCIMT and blood flow velocities of internal carotid artery (ICA), common carotid artery (CCA), and middle cerebral artery (MCA)] of divers and pilots were compared with those of the control group using regression analysis models. Both right and left side CCIMT were significantly higher in divers (P < 0.05) and pilots (P < 0.05) in comparison with the control group. Carotid index [peak systolic velocity (PSV) of ICA/PSV of CCA) of divers and pilots were also higher than the control group. TCD findings were not significantly different between divers, pilots, and the control group. Increased CCIMT and carotid index in diver and pilot groups appear to be suggestive of accelerated atherosclerosis of carotid artery in these occupational groups.

  2. Risk of ultrasound-detected neonatal brain abnormalities in intrauterine growth-restricted fetuses born between 28 and 34 weeks' gestation: relationship with gestational age at birth and fetal Doppler parameters.

    PubMed

    Cruz-Martinez, R; Tenorio, V; Padilla, N; Crispi, F; Figueras, F; Gratacos, E

    2015-10-01

    To estimate the value of gestational age at birth and fetal Doppler parameters in predicting the risk of neonatal cranial abnormalities in intrauterine growth-restricted (IUGR) fetuses born between 28 and 34 weeks' gestation. Fetal Doppler parameters including umbilical artery (UA), middle cerebral artery (MCA), aortic isthmus, ductus venosus and myocardial performance index were evaluated in a cohort of 90 IUGR fetuses with abnormal UA Doppler delivered between 28 and 34 weeks' gestation and in 90 control fetuses matched for gestational age. The value of gestational age at birth and fetal Doppler parameters in predicting the risk of ultrasound-detected cranial abnormalities (CUA), including intraventricular hemorrhage, periventricular leukomalacia and basal ganglia lesions, was analyzed. Overall, IUGR fetuses showed a significantly higher incidence of CUA than did control fetuses (40.0% vs 12.2%, respectively; P < 0.001). Within the IUGR group, all predictive variables were associated individually with the risk of CUA, but fetal Doppler parameters rather than gestational age at birth were identified as the best predictor. MCA Doppler distinguished two groups with different degrees of risk of CUA (48.5% vs 13.6%, respectively; P < 0.01). In the subgroup with MCA vasodilation, presence of aortic isthmus retrograde net blood flow, compared to antegrade flow, allowed identification of a subgroup of cases with the highest risk of CUA (66.7% vs 38.6%, respectively; P < 0.05). Evaluation of fetal Doppler parameters, rather than gestational age at birth, allows identification of IUGR preterm fetuses at risk of neonatal brain abnormalities. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  3. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  4. The Pathophysiology of Decompression Sickness and the Effects of Doppler Detectable Bubbles.

    DTIC Science & Technology

    1980-12-18

    Doppler Ultrasound and a calibrated 6 1 Venous Gas Embol i Scale. C. Electronic Counting of Doppler Bubble Signals 72 £ III. Pulmonary Embolism Studies...IA. Background 75 B. Right Ventricular Systolic Pressure following Gas 81 Embolization and Venous Gas Phase Content IC. Effects of Pulmonary Gas... Embolism on the Development 9 of Limb-Bend Decompression Sickness 1 IV. Gas Phase Formation in Highly Perfused Tissues IA. Renal 9 B. Cerebral 9 1 I I V

  5. Power Doppler Ultrasound Evaluation of Peripheral Joint, Entheses, Tendon, and Bursa Abnormalities in Psoriatic Patients: A Clinical Study.

    PubMed

    Tang, Yuanjiao; Yang, Yujia; Xiang, Xi; Wang, Liyun; Zhang, Lingyan; Qiu, Li

    2018-06-01

    To evaluate the prevalence rates of peripheral joint, enthesis, tendon, and bursa abnormalities by power Doppler (PD) ultrasonic examination in patients with psoriatic arthritis (PsA), psoriatic patients without clinical signs of arthritis (non-PsA psoriasis group), and healthy individuals, to detect subclinical PsA. A total of 253 healthy volunteers, 242 non-PsA psoriatic patients, and 86 patients with PsA were assessed by 2-dimensional and power Doppler (PD) ultrasound. Peripheral joint, enthesis, tendon, and bursa abnormalities were observed, characterizing abnormal PD. The affected patients and sites with abnormalities in various ages were compared among groups; PD signal grades for the abnormalities were also compared. In the PsA group, significantly higher percentages of sites showing joint effusion/synovitis, enthesitis, and tenosynovitis in all age groups, and markedly higher rates of sites with bursitis were found in young and middle age groups, compared with the non-PsA and control groups (all p < 0.01). Meanwhile, the non-PsA group showed significantly higher rates of joint effusion/synovitis and enthesitis sites, and elevated PD signal grades of synovitis, enthesitis, and tenosynovitis in comparison with the control group, both in young and middle age groups (all p < 0.01). Patients with PsA have high percentages and PD signal grades of peripheral joint, tendon, enthesis, and bursa involvement. Young and middle-aged non-PsA patients have high synovitis and enthesitis percentages, and elevated PD signal grades of synovitis, enthesitis, and tenosynovitis.

  6. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  7. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanter, M.

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with

  8. Enhancement of cardiomyogenesis in stem cells by low intensity pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Teo, Ailing; Morshedi, Amir; Wang, Jen-Chieh; Lim, Mayasari; Zhou, Yufeng

    2017-03-01

    Low intensity pulsed ultrasound (LIPUS) has been shown to enhance bone and cartilage regeneration from stem cells. Gene expression of angiotensin II type 1 (AT1) receptor can be increased in LIPUS-treated osteoblasts. The AT1 receptor is a known mechanoreceptor in cardiomyocytes. It suggests that LIPUS may enhance cardiomyogenesis via mechanotransduction by increasing AT1 expression. Murine embryonic stem cells (ESCs) were treated daily by 10-min 1MHz LIPUS at spatial-average temporal-peak acoustic intensities of 30 mW/cm2 and 300 mW/cm2 in both continuous and pulsed wave (20% duty cycle) for 10 days. Polymerase chain reaction (PCR), immunocytochemistry, and beating rate were used to evaluate the cardiac viability quantitatively. After the treatment of LIPUS, beating rate of contractile areas and cardiac gene expression, such as α- and β-myosin heavy chain, were improved. Furthermore, no deleterious effects to the development of cardiac proteins were observed. All results suggest that LIPUS stimulation has the capacity of enhancing cardiomyogenesis from embryonic stem cells. With the benefit and the ease in incorporating LIPUS into various culture platforms, LIPUS has the potential to produce cardiomyocytes for clinical use in the future.

  9. Feasibility of transabdominal Doppler sonography for studying uterine blood flow characteristics in cycling gilts.

    PubMed

    Herlta, Catherine; Starka, Rosa; Sigmarsson, Haukur L; Kauffold, Johannes

    2018-06-01

    To test for the feasibility of transabdominal Doppler sonography (color, power, pulse wave) to define uterine perfusion characteristics throughout the estrous cycle in gilts. A total of 15 gilts were synchronized for estrus and scanned in their following spontaneous cycle while being restrained in a purpose-designed mobile crate. To define uterine perfusion characteristics, vessels in between and within uterine cross-sections were imaged and recorded as video sequences to be analyzed by PixelFlux® software for perfused area (Amix), blood flow velocity (vmix) and intensity (Imix) as well as resistance (RIvmix) and pulsatility index (PIvmix). Color Doppler sonography proved to be the only feasible technique, as it was less affected by animal movements than power and pulse wave sonography. As determined by color Doppler sonography, all five parameters determined showed specific patterns through the estrous cycle, i. e. Amix, vmix, Imix were high in proestrus, decreased in estrus and remained low in midestrus and most parts of diestrus; RIvmix and PIvmix with inversely paralleled patterns. This study has demonstrated that transabdominal color Doppler but not power and pulse wave Doppler sonography is feasible to be performed in crate-restrained gilts for studying uterine perfusion characteristics during the estrous cycle, and that changes of uterine perfusion over the course of the estrous cycle can be clearly followed by color Doppler sonography. Results encourage the use of color Doppler sonography for studying i. e. uterine capacity or uterus related infertility such as for cases of clinically unapparent endometritis. Schattauer GmbH.

  10. Application of partial inversion pulse to ultrasonic time-domain correlation method to measure the flow rate in a pipe

    NASA Astrophysics Data System (ADS)

    Wada, Sanehiro; Furuichi, Noriyuki; Shimada, Takashi

    2017-11-01

    This paper proposes the application of a novel ultrasonic pulse, called a partial inversion pulse (PIP), to the measurement of the velocity profile and flow rate in a pipe using the ultrasound time-domain correlation (UTDC) method. In general, the measured flow rate depends on the velocity profile in the pipe; thus, on-site calibration is the only method of checking the accuracy of on-site flow rate measurements. Flow rate calculation using UTDC is based on the integration of the measured velocity profile. The advantages of this method compared with the ultrasonic pulse Doppler method include the possibility of the velocity range having no limitation and its applicability to flow fields without a sufficient amount of reflectors. However, it has been previously reported that the measurable velocity range for UTDC is limited by false detections. Considering the application of this method to on-site flow fields, the issue of velocity range is important. To reduce the effect of false detections, a PIP signal, which is an ultrasound signal that contains a partially inverted region, was developed in this study. The advantages of the PIP signal are that it requires little additional hardware cost and no additional software cost in comparison with conventional methods. The effects of inversion on the characteristics of the ultrasound transmission were estimated through numerical calculation. Then, experimental measurements were performed at a national standard calibration facility for water flow rate in Japan. The experimental results demonstrate that measurements made using a PIP signal are more accurate and yield a higher detection ratio than measurements using a normal pulse signal.

  11. Ultrasound predictors of neonatal outcome in intrauterine growth restriction.

    PubMed

    Craigo, S D; Beach, M L; Harvey-Wilkes, K B; D'Alton, M E

    1996-11-01

    Our purpose was to assess the value of commonly performed ultrasound parameters in predicting neonatal outcome of fetuses with intrauterine growth restriction (IUGR). One hundred twenty-seven patients were identified on ultrasound examination to have IUGR. Estimated weight percentile, amniotic fluid volume, umbilical artery Doppler velocimetry, and head circumference/abdominal circumference ratio were compared with neonatal outcome. Thirty infants had severely adverse courses. The degree of growth restriction was strongly associated with adverse outcome and neonatal death. Umbilical artery Doppler waveforms with absent or reverse end-diastolic flow were predicted of neonatal death, bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), and adverse outcome in general. Oligohydramnios was predictive of adverse outcome and neonatal death. Logistic regression also showed that absent or reverse end-diastolic flow and oligohydramnios were independent predictors of adverse outcome. Ultrasound findings of low estimated weight percentile, absent or reverse end-diastolic umbilical blood flow, and oligohydramnios are independent predictors of adverse neonatal outcome of growth restricted fetuses.

  12. A New Method for Cerebral Arterial Stiffness by Measuring Pulse Wave Velocity Using Transcranial Doppler.

    PubMed

    Fu, Xian; Huang, Chuming; Wong, Ka Sing; Chen, Xiangyan; Gao, Qingchun

    2016-08-01

    Pulse wave velocity (PWV) has been regarded as the "gold standard" measurement of arterial stiffness (AS), but it is still only used in the assessment of central and peripheral arteries. We constructed a new method to evaluate cerebral AS by measuring PWV using transcranial Doppler (TCD). In all, 90 healthy subjects who received annual health screening were consecutively enrolled in this study between January 2011 and June 2013. Data on clinical characteristics, brachium-ankle (ba) PWV, and carotid-cerebral (cc) PWV measured with our newly constructed method by two experienced operators were recorded. cc PWV was calculated as the distance between two points in the common carotid artery and proximal part of ipsilateral middle cerebral artery, which was divided by the pulse transit time between these two points where the pulse was measured using TCD. The value of cc PWV was 499.3±78.6 cm/s. Correlation between cc PWV and ba PWV in the assessment of AS was r=0.794 (P<0.001). The concordance between both the above mentioned methods was good. Interobserver and intraobserver reliability using interclass correlation for measuring cc PWV were 0.815 (P<0.001) and 0.939 (P<0.001), respectively. In multivariable analysis, older age (β=4.51, P<0.001) and increased diastolic blood pressure (β=2.39, P<0.001) were independently associated with higher cc PWV. cc PWV measured using TCD may be a promising method for the assessment of human cerebral AS, which is independently associated with age and diastolic blood pressure.

  13. Power M-mode Doppler (PMD) for observing cerebral blood flow and tracking emboli.

    PubMed

    Moehring, Mark A; Spencer, Merrill P

    2002-01-01

    Difficulties in location of transcranial ultrasound (US) windows and blood flow in cerebral vessels, and unambiguous detection of microemboli, have limited expansion of transcranial Doppler US. We developed a new transcranial Doppler modality, power M-mode Doppler (PMD), for addressing these issues. A 2-MHz digital Doppler (Spencer Technologies TCD100M) having 33 sample gates placed with 2-mm spacing was configured to display Doppler signal power, colored red and blue for directionality, in an M-mode format. The spectrogram from a user-selected depth was displayed simultaneously. This system was then explored on healthy subjects and patients presenting with varying cerebrovascular pathology. PMD facilitated window location and alignment of the US beam to view blood flow from multiple vessels simultaneously, without sound or spectral clues. Microemboli appeared as characteristic sloping high-power tracks in the PMD image. Power M-mode Doppler is a new paradigm facilitating vessel location, diagnosis, monitoring and microembolus detection.

  14. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors.

    PubMed

    Alhasan, Mustafa K; Liu, Li; Lewis, Matthew A; Magnusson, Jennifer; Mason, Ralph P

    2012-01-01

    Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO).During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs.The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.

  15. Laser Doppler flowmetry, transcutaneous oxygen tension measurements and Doppler pressure compared in patients undergoing amputation.

    PubMed

    Lantsberg, L; Goldman, M

    1991-04-01

    The level of amputation continues to present a challenge for surgeons. In view of this, 24 patients who required an amputation of their ischaemic leg were studied prospectively using Laser Doppler flowmetry (LDF), TcpO2 measurements and Doppler ultrasound to assess the best level for amputation. In all patients gangrene of the leg and rest pain were the indication for an amputation. Skin oxygen tension (TcpO2) and skin blood flow (LDF) measurements were obtained the day before surgery on the proposed anterior and posterior skin flaps for below knee amputation and the maximum Doppler systolic pressure was measured. The level of amputation was chosen at surgery by clinical judgement without reference to the measurements mentioned above. A below knee amputation was performed in 17 patients and an above knee in seven. All amputations healed by primary intention. Doppler pressures showed poor discrimination with a median value of 10 mmHg (0-25) in AK patients and 35 mmHg (0-85) in the BK group (p greater than 0.05). In contrast TcpO2 showed a trend. In the BK group the median value was 20 mmHg (4-50) on the anterior and 22 mmHg (2-60) on the posterior flap compared to above knee amputees with median values of 6 mmHg (2-11) and 8 mmHg (3-38), respectively (p greater than 0.05). Laser Doppler seemed more useful. In BK patients the median LDF values were 36 mV (20-85) on the anterior and 34 mV (20-80) on the posterior flap with median LDF values of 10 mV (10-18) on the anterior and 11 mV (8-38) on the posterior flap in the above knee group (p less than 0.01). Laser Doppler flowmetry is a simple objective test, which is a better discriminator of skin flap perfusion than either TcpO2 or Doppler ankle pressures.

  16. Role of 3D Ultrasound and Doppler in Differentiating Clinically Suspected Cases of Leiomyoma and Adenomyosis of Uterus

    PubMed Central

    Sharma, Kaveri; Venkatesh, B.P; Barman, Partho; Roy, Sumit Kumar; Jayagurunathan, Usha; Sellamuthu, Eswaramoorthy; Moidu, Fazil

    2015-01-01

    Introduction Adenomyosis and Leiomyoma are common disorders affecting females in their reproductive age. They mimic each other in clinical presentation. Due to similarities in clinical symptoms and signs, missing one diagnosis in favour of the other is not very uncommon. Accurate diagnosis of these two conditions is important for their management. In this study we evaluated role of 3D Ultrasound and Doppler in differentiating clinically suspected cases of leiomyoma and adenomyosis of uterus. Materials and Methods A total of 100 patients with symptoms of abnormal uterine bleeding (with or without dysmenorrhoea), lump abdomen, chronic pelvic pain or dysparaunia who were clinically diagnosed as leiomyoma of uterus and/or adenomyosis were enrolled in to the study. These patients underwent transvaginal sonography (TVS), trans abdominal sonography (TAS) along with color and spectral Doppler sonography. Scanning was done in follicular phase of the menstrual cycle to avoid bias due high vascularity of endometrium in secretory phase. The morphology of the lesion, its vascularity, and Pulsality Index (PI), Resistive Index (RI) and Vmax (maximum velocity) were measured. Only those patients who were chosen for operative treatment were included in the study. Radiological diagnosis was then correlated with intra-operative and histopathological diagnosis. Results On imaging, while using morphological criteria and Doppler for diagnosing leiomyoma, it was found that “peripheral vascularity” was seen in 52 (89%) cases, which was the highest. Similarly while diagnosing adenomyosis it was, the criteria “central vascularity” was seen in 28 cases (93%) and “ill defined junctional zone in 3D ultrasound” was seen in 26 cases (86%), which was also observed to be highest. With the cut off values taken for PI,RI and Vmax, diagnosis of leiomyoma was found to be 93.4% sensitive, 95.6% specific and with a positive predictive value of 97.6% and negative predictive value of 88

  17. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  18. Randomized and controlled prospective trials of Ultrasound-guided spinal nerve posterior ramus pulsed radiofrequency treatment for lower back post-herpetic neuralgia.

    PubMed

    Pi, Z B; Lin, H; He, G D; Cai, Z; Xu, X Z

    2015-01-01

    To evaluate the efficacy of ultrasound-guided spinal nerve posterior ramus pulsed radiofrequency treatment for lower back post-herpetic neuralgia. 128 cases of lower back or anterior abdominal wall acute post-herpetic neuralgia patients were selected. They were randomly divided into two groups. Group A: oral treatment only with gabapentin + celecoxib + amitriptyline. Group B: while taking these drugs, patients were treated with radiofrequency (RF) pulses using a portable ultrasound device using the paravertebral puncture technique. In both groups, sudden outbreaks of pain were treated with immediate release 10mg morphine tablets. Visual analogue scale (VAS) was used for pain score, Pittsburgh Sleep Quality Index scale (PSQI) was used to evaluate sleep quality and morphine consumption were recorded at different time points, before and after treatment. Treatment efficiency was calculated while the occurrence of complications was documented. At each time point after treatment, VAS scores were lower, but scores in the RF group was significantly lower than those of the oral-only group. In terms of sleep quality scores and morphine consumption between the two groups, the RF group was significantly lower than the oral-only group. During the procedure no error occurred with needle penetrating the abdominal cavity, chest, offal or blood vessels. Ultrasound-guided spinal nerve posterior ramus pulsed radiofrequency treatment of lower back or anterior abdominal wall post-herpetic neuralgia proved effective by reducing morphine use in patients and led to fewer adverse reactions.

  19. Assessment of flow distribution in the mouse fetal circulation at late gestation by high-frequency Doppler ultrasound.

    PubMed

    Zhou, Yu-Qing; Cahill, Lindsay S; Wong, Michael D; Seed, Mike; Macgowan, Christopher K; Sled, John G

    2014-08-15

    This study used high-frequency ultrasound to evaluate the flow distribution in the mouse fetal circulation at late gestation. We studied 12 fetuses (embryonic day 17.5) from 12 pregnant CD1 mice with 40 MHz ultrasound to assess the flow in 11 vessels based on Doppler measurements of blood velocity and M-mode measurements of diameter. Specifically, the intrahepatic umbilical vein (UVIH), ductus venosus (DV), foramen ovale (FO), ascending aorta (AA), main pulmonary artery (MPA), ductus arteriosus (DA), descending thoracic aorta (DTA), common carotid artery (CCA), inferior vena cava (IVC), and right and left superior vena cavae (RSVC, LSVC) were examined, and anatomically confirmed by micro-CT. The mouse fetal circulatory system was found to be similar to that of the humans in terms of the major circuit and three shunts, but characterized by bilateral superior vena cavae and a single umbilical artery. The combined cardiac output (CCO) was 1.22 ± 0.05 ml/min, with the left ventricle (flow in AA) contributing 47.8 ± 2.3% and the right ventricle (flow in MPA) 52.2 ± 2.3%. Relative to the CCO, the flow percentages were 13.6 ± 1.0% for the UVIH, 10.4 ± 1.1% for the DV, 35.6 ± 2.4% for the DA, 41.9 ± 2.6% for the DTA, 3.8 ± 0.3% for the CCA, 29.5 ± 2.2% for the IVC, 12.7 ± 1.0% for the RSVC, and 9.9 ± 0.9% for the LSVC. The calculated flow percentage was 16.6 ± 3.4% for the pulmonary circulation and 31.2 ± 5.3% for the FO. In conclusion, the flow in mouse fetal circulation can be comprehensively evaluated with ultrasound. The baseline data of the flow distribution in normal mouse fetus serve as the reference range for future studies. Copyright © 2014 the American Physiological Society.

  20. Doppler ultrasonography of the anterior knee tendons in elite badminton players: colour fraction before and after match.

    PubMed

    Koenig, M J; Torp-Pedersen, S; Boesen, M I; Holm, C C; Bliddal, H

    2010-02-01

    Anterior knee tendon problems are seldom reported in badminton players although the game is obviously stressful to the lower extremities. Painful anterior knee tendons are common among elite badminton players. The anterior knee tendons exhibit colour Doppler activity. This activity increases after a match. Painful tendons have more Doppler activity than tendons without pain. Cohort study. 72 elite badminton players were interviewed about training, pain and injuries. The participants were scanned with high-end ultrasound equipment. Colour Doppler was used to examine the tendons of 64 players before a match and 46 players after a match. Intratendinous colour Doppler flow was measured as colour fraction (CF). The tendon complex was divided into three loci: the quadriceps tendon, the proximal patellar tendon and the insertion on the tibial tuberosity. Interview: Of the 72 players, 62 players had problems with 86 tendons in the lower extremity. Of these 86 tendons, 48 were the anterior knee tendons. Ultrasound: At baseline, the majority of players (87%) had colour Doppler flow in at least one scanning position. After a match, the percentage of the knee complexes involved did not change. CF increased significantly in the dominant leg at the tibial tuberosity; single players had a significantly higher CF after a match at the tibial tuberosity and in the patellar tendon both before and after a match. Painful tendons had the highest colour Doppler activity. Most elite badminton players had pain in the anterior knee tendons and intratendinous Doppler activity both before and after match. High levels of Doppler activity were associated with self-reported ongoing pain.

  1. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  2. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  3. Lung ultrasound in the critically ill.

    PubMed

    Lichtenstein, Daniel A

    2014-01-09

    Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the "gold standard" with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside "gold standard" in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the "B-profile." The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than in adults

  4. [Evaluation of neonatal prognosis using Doppler velocimeter in cases of a high risk fetus].

    PubMed

    Ferchiou-Cherif, M; Zhioua, F; Hafsia, S; Hamdoun, L; Jedoui, A; Slim, R; Meriah, S

    1993-01-01

    The authors describe the main characteristics of the Doppler method in the early diagnosis of chronic fetal distress, and report their personal results in the study of 51 high risk pregnancies. In their study the fetal doppler ultrasound findings were correlated with birth weight related to gestational age, and neonatal morbidity. The parameters established from the doppler ultrasound assessment were the placenta resistance (calculated from the formula of Pourcelot: R = S-D/S applied to the umbilical artery) and the cerebro-placental index, Rp/Rc, Rc being the index of cerebral arterial resistance. The diagnosis performance of the method appeared very good: the Rp index was found to be highly specific for hypotrophy (85,7%) and for neonatal morbidity (90%), the RCP index adding its own good sensitivity (85% for hypotrophy and 83,3% for neonatal morbidity). The authors conclude upon the interest to study simultaneously the fetal umbilical and cerebral arterial circulations. The pathological significance of the two indexes appears different so that they are to be complementary in the evaluation of fetal distress.

  5. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].

    PubMed

    Abramowicz, J S; Kremkau, F W; Merz, E

    2012-06-01

    described as a higher pitch, and probably not a "hum". To our knowledge, this phenomenon has not been investigated. Although the report mentioned above suggested that diagnostic ultrasound is detectable at measurable levels in the uterus, there is no independently confirmed, peer-reviewed, published evidence that the fetus actually hears the PRF, responds to it or is harmed by it."The fetus cannot regulate its own body temperature, so amniotic fluid can reach very high temperatures over long periods" 14. Does this statement reflect a real risk? What does it mean if this statement is scientifically true? The fear is, of course, that this will raise the temperature of the fetus. Thermally induced teratogenesis has been demonstrated in many animal studies, as well as several controlled human studies 1516. A temperature increase of 1.5 °C above the normal value has been suggested as a universal threshold 17. It is important to note that diagnostic ultrasound was not the source of the temperature elevation in any of these studies. Some believe that there are temperature thresholds for hyperthermia-induced birth defects (hence the ALARA [as low as reasonably achievable] principle), but there is some evidence that any positive temperature differential for any period of time has some effect, in other words there may be no thermal threshold for hyperthermia-induced birth defects 18. In experimental animals the most common defects are microcephaly with associated functional and behavioral problems 17, microphthalmia and cataracts. There are reports on the effects of hyperthermia and measurements of in vivo temperature induced by pulsed ultrasound but not in humans 192021. Temperature increases of 1 °C are easily reached in routine scanning 22. Elevation of up to 1.5 °C can be obtained in the first trimester and up to 4 °C in the second and third trimesters, particularly with the use of pulsed Doppler 23. When the ultrasound wave travels through tissue, its intensity diminishes

  6. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis.

    PubMed

    Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.

  7. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis

    PubMed Central

    2013-01-01

    The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862

  8. [Parenchymal complications of the transplanted kidney: the role of color-Doppler imaging].

    PubMed

    Granata, Antonio; Clementi, Silvia; Clementi, Anna; Di Pietro, Fabio; Scarfia, Viviana R; Insalaco, Monica; Aucella, Filippo; Prencipe, Michele; Fiorini, Fulvio; Sicurezza, Elvia

    2012-01-01

    Kidney transplantation is the treatment of choice for end-stage renal disease, given the better quality of life of transplanted patients when compared to patients on maintenance dialysis. In spite of surgical improvements and new immunosuppressive regimens, part of the transplanted grafts still develop chronic dysfunction. Ultrasonography, both in B-mode and with Doppler ultrasound, is an important diagnostic tool in case of clinical conditions which might impair kidney function. Even though ultrasonography is considered fundamental in the diagnosis of vascular and surgical complications of the transplanted kidney, its role is not fully understood in case of parenchymal complications of the graft. The specificity of Doppler ultrasound is low both in case of acute complications such as acute tubular necrosis, drug toxicity and acute rejection, and in case of chronic conditions such as chronic allograft nephropathy. Single determinations of resistance indices present low diagnostic accuracy, which is higher in case of successive measurements performed during the follow-up of the graft. Modern techniques including tissue pulsatility index, maximal fractional area and contrast-enhanced ultrasound increase the diagnostic power of ultrasonography in case of parenchymal complications of the transplanted kidney.

  9. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    PubMed

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy--histotripsy.

    PubMed

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J Brian; Cain, Charles A

    2007-10-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.

  11. High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy

    PubMed Central

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247

  12. Christian Andreas Doppler--the man and his legacy.

    PubMed

    Coman, I M

    2005-01-01

    Reminding the life and legacy of the Austrian Scientist who discovered the famous 'Doppler Effect'. C.A. Doppler was born the 29th of November 1803 in Salzburg. After studies in Linz and Vienna, he graduated in mathematics, became assistant at the University and later worked as a professor in Prague. Back to Vienna, he was appointed as professor at the Polytechnic School and --in 1850--as first director of the new Institute of Physics. C.A. Doppler did publish on magnetism, electricity, optics, and astronomy. He remains in the history of science due to the discovery presented (May 25, 1842) at the Royal Bohemian Society of Science entitled "On the colored light of the double stars and certain other stars of the heavens"; the paper described (applied to light) the shift of frequency which bears nowadays his name. The theory was later experimentally proven and--extended for any electromagnetic and acoustic waves--got myriads if applications in astronomy, physics, aviation, meteorology, and health science. Satomura in Japan (1955) published it's first ultrasound vascular application--with successive achievements in the next decades. Doppler ultrasonagraphy became the main noninvasive instrument for functional assesment of heart and vessels.

  13. Effects of pulsed ultrasound on the adsorption of n-alkyl anionic surfactants at the gas/solution interface of cavitation bubbles.

    PubMed

    Yang, Limei; Sostaric, Joe Z; Rathman, James F; Kuppusamy, Periannan; Weavers, Linda K

    2007-02-15

    Sonolysis of argon-saturated aqueous solutions of the nonvolatile surfactants sodium dodecyl sulfate (SDS) and sodium 1-pentanesulfonate (SPSo) was investigated at three ultrasonic frequencies under both continuous wave (CW) and pulsed ultrasound. Secondary carbon-centered radicals were detected by spin trapping using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and electron paramagnetic resonance (EPR) spectroscopy. Following sonolysis, -*CH- radicals were observed for both surfactants under both sonication modes. Under CW at 354 kHz, the maximum plateau -*CH- radical yield was higher for SPSo than for SDS, indicating that SDS, which is more surface active under equilibrium conditions, accumulates at the gas/solution interface of cavitation bubbles to a lesser degree, compared with the less surface active surfactant, SPSo. However, after sonolysis (354 kHz) under pulsed ultrasound with a pulse length of 100 ms and an interval of 500 ms, the -*CH- radical yield at the plateau concentrations was higher for SDS than for SPSo due to increased amounts of SDS accumulation on the bubble surfaces. In contrast to the findings following sonolysis at 354 kHz, sonolysis of aqueous surfactant solutions at 620 kHz and 803 kHz showed a higher -*CH- radical yield for SDS compared with SPSo under CW but lower -*CH- radical yield with increasing pulsing interval, indicating a frequency dependence on accumulation. Results indicate that pulsing the ultrasonic wave has a significant effect on the relative adsorption ability of n-alkyl surfactants at the gas/solution surface of cavitation bubbles.

  14. Using Ultrasound to Enhance Medical Students' Femoral Vascular Physical Examination Skills.

    PubMed

    Ahn, Justin S; French, Andrew J; Thiessen, Molly E W; Browne, Vaughn; Deutchman, Mark; Guiton, Gretchen; Madigosky, Wendy; Kendall, John L

    2015-10-01

    To determine whether the addition of ultrasound to traditional physical examination instruction improves junior medical students' abilities to locate the femoral pulse. Initially, 150 second-year medical students were taught the femoral pulse examination using traditional bedside teaching on standardized patients and online didactic videos. Students were then randomized into 2 groups: group 1 received ultrasound training first and then completed the standardized examination; and group 2 performed the standardized examination first and then received ultrasound training. On the standardized patients, the femoral artery was marked with invisible ink before the sessions using ultrasound. Compared to these markers, students were then evaluated on the accuracy of femoral artery pulse palpation and the estimated location of the femoral vein. All students completed a self-assessment survey after the ultrasound sessions. Ultrasound training improved the students' ability to palpate the femoral pulse (P= .02). However, ultrasound did not facilitate correct estimation of the femoral vein's anatomic location (P = .09). Confidence levels in localizing the femoral artery and vein were equal between groups at baseline, and both increased after the ultrasound sessions. The addition of ultrasound teaching to traditional physical examination instruction enhanced medical student competency and confidence with the femoral vascular examination. However, understanding of anatomy may require emphasis on precourse didactic material, but further study is required. © 2015 by the American Institute of Ultrasound in Medicine.

  15. Color Doppler sonography and angioscintigraphy in hepatic Hodgkin’s lymphoma

    PubMed Central

    Stojković, Mirjana V; Artiko, Vera M; Radoman, Irena B; Knežević, Slavko J; Lukić, Snezana M; Kerkez, Mirko D; Lekić, Nebojsa S; Antić, Andrija A; Žuvela, Marinko M; Ranković, Vitomir I; Petrović, Milorad N; Šobić, Dragana P; Obradović, Vladimir B

    2009-01-01

    AIM: To estimate the characteristics of Color Doppler findings and the results of hepatic radionuclide angiography (HRA) in secondary Hodgkin’s hepatic lymphoma. METHODS: The research included patients with a diagnosis of Hodgkin’s lymphoma with metastatic focal lesions in the liver and controls. Morphologic characteristics of focal liver lesions and hemodynamic parameters were examined by pulsed and Color Doppler in the portal, hepatic and splenic veins were examined. Hepatic perfusion index (HPI) estimated by HRA was calculated. RESULTS: In the majority of patients, hepatomegaly was observed. Lesions were mostly hypoechoic and mixed, solitary or multiple. Some of the patients presented with dilated splenic veins and hepatofugal blood flow. A pulse wave was registered in the centre and at the margins of lymphoma. The average velocity of the pulse wave was higher at the margins (P > 0.05). A continuous venous wave was found only at the margins of lymphoma. There was no linear correlation between lymphoma size and velocity of pulse and continuous wave (r = 390, P < 0.01). HPI was significantly lower in patients with lymphomas than in controls (P < 0.05), pointing out increased arterial perfusion in comparison to portal perfusion. CONCLUSION: Color Doppler ultrasonography is a sensitive method for the detection of neovascularization in Hodgkin’s hepatic lymphoma and estimation of its intensity. Hepatic radionuclide angiography can additionally help in the assesment of vascularisation of liver lesions. PMID:19598303

  16. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  17. Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    You, Dong Gil; Yoon, Hong Yeol; Jeon, Sangmin; Um, Wooram; Son, Sejin; Park, Jae Hyung; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-11-01

    Recently, ultrasound (US)-based drug delivery strategies have received attention to improve enhanced permeation and retention (EPR) effect-based passive targeting efficiency of nanoparticles in vitro and in vivo conditions. Among the US treatment techniques, pulsed-high intensity focused ultrasound (pHIFU) have specialized for improving tissue penetration of various macromolecules and nanoparticles without irreversible tissue damages. In this study, we have demonstrated that pHIFU could be utilized to improve tissue penetration of fluorescent dye-labeled glycol chitosan nanoparticles (FCNPs) in femoral tissue of mice. pHIFU could improve blood flow of the targeted-blood vessel in femoral tissue. In addition, tissue penetration of FCNPs was specifically increased 5.7-, 8- and 9.3-folds than that of non-treated (0 W pHIFU) femoral tissue, when the femoral tissue was treated with 10, 20 and 50 W of pHIFU, respectively. However, tissue penetration of FCNPs was significantly reduced after 3 h post-pHIFU treatment (50 W). Because overdose (50 W) of pHIFU led to irreversible tissue damages, including the edema and chapped red blood cells. These overall results support that pHIFU treatment can enhance the extravasation and tissue penetration of FCNPs as well as induce irreversible tissue damages. We expect that our results can provide advantages to optimize pHIFU-mediated delivery strategy of nanoparticles for further clinical applications.

  18. Echocardiographic Assessment of Aortic Pulse-Wave Velocity: Validation against Invasive Pressure Measurements.

    PubMed

    Styczynski, Grzegorz; Rdzanek, Adam; Pietrasik, Arkadiusz; Kochman, Janusz; Huczek, Zenon; Sobieraj, Piotr; Gaciong, Zbigniew; Szmigielski, Cezary

    2016-11-01

    Aortic pulse-wave velocity (PWV) is a measure of aortic stiffness that has a prognostic role in various diseases and in the general population. A number of methods are used to measure PWV, including Doppler ultrasound. Although echocardiography has been used for PWV measurement, to the authors' knowledge, it has never been tested against an invasive reference method at the same time point. Therefore, the aim of this study was to compare prospectively an echocardiographic PWV measurement, called echo-PWV, with an invasive study. Forty-five patients (mean age, 66 years; 60% men) underwent simultaneous intra-arterial pressure recording and echocardiographic Doppler flow evaluation during elective cardiac catheterization. Proximal pressure and Doppler waveforms were acquired in the aortic arch. Distal pressure waveforms were registered in the right and distal Doppler waveforms in the left external iliac artery. Transit time was measured as a delay of the foot of pressure or Doppler waveform in the distal relative to the proximal location. Distance was measured on the catheter for invasive PWV and over the surface for echo-PWV. Echo-PWV was calculated as distance divided by transit time. In the whole group, mean invasive PWV was 9.38 m/sec and mean echo-PWV was 9.51 m/sec (P = .78). The Pearson' correlation coefficient between methods was 0.93 (P < .0001). A Bland-Altman plot revealed a mean difference between invasive PWV and echo-PWV of 0.13 ± 0.79 m/sec. Echo-PWV, based on Doppler echocardiography, is a reliable method of aortic PWV measurement, with a close correlation with invasive assessment. Wider implementation of the echo-PWV method for the evaluation of aortic wall stiffness can further expand the clinical and scientific utility of echocardiography. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  19. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  20. Noninvasive measurement of regional pulse wave velocity in human ascending aorta with ultrasound imaging: an in-vivo feasibility study.

    PubMed

    Huang, Chengwu; Guo, Dong; Lan, Feng; Zhang, Hongjia; Luo, Jianwen

    2016-10-01

    Accurate and noninvasive techniques for measurement of local/regional pulse wave velocity (PWV), instead of global PWV, is desired for quantifying localized arterial stiffness and improving cardiovascular disease assessment. This study aimed at investigating the feasibility of regional PWV measurement in human ascending aorta in vivo using an ultrasound-based technique. Proximal ascending aortas of 76 healthy patients (23-71 years) were scanned with transthoracic echocardiography in parasternal long-axis view, and ultrasound radiofrequency data were acquired in a high temporal resolution (∼404 Hz). The PWV was derived from the determination of arrival times and identification of travel distances. Both PWVs in early systolic phase (PWVsf; pulse wave velocity measured using the systolic foot as characteristic time point) and late systolic phase (PWVdn; pulse wave velocity measured using the dicrotic notch as characteristic time point) were obtained. The PWVsf and PWVdn were 4.58 ± 1.38 and 6.51 ± 1.90 m/s, respectively, and both were correlated with age (r = 0.30, P = 0.02 and r = 0.71, P < 0.0001). The measurements were reproducible, and PWVdn showed significant correlation with aortic diameter (r = 0.53, P < 0.0001), relative distension (r = -0.44, P = 0.0002), and local PWV derived from Bramwell-Hill equation (r = 35, P = 0.004). The PWV difference (PWVdn - PWVsf) reflected aortic stiffness change within cardiac cycle from early systole to late systole and was also correlated with age (r = 0.50, P < 0.0001). The feasibility of ascending aortic PWV measurement using ultrasound imaging was illustrated in vivo, suggesting the potential of the technique in characterization of regional aortic stiffness and assessment of aortic diseases.

  1. Progression of ultrasound findings of fetal syphilis after maternal treatment.

    PubMed

    Rac, Martha W F; Bryant, Stefanie N; McIntire, Donald D; Cantey, Joseph B; Twickler, Diane M; Wendel, George D; Sheffield, Jeanne S

    2014-10-01

    The purpose of this study was to evaluate ultrasound findings of fetal syphilis and to describe their progression after maternal treatment. This was a retrospective cohort study from September 1981 to June 2011 of seropositive women after 18 weeks of gestation who had an ultrasound before treatment to evaluate for fetal syphilis. Only those women who received treatment after the initial ultrasound scan, but before delivery, were included. If the initial ultrasound scan was abnormal, serial sonography was performed until resolution of the abnormality or delivery. Patient demographics, ultrasound findings, stage of syphilis, delivery, and infant outcomes were recorded. Standard statistical analyses were performed. Kaplan-Meier estimates were constructed to estimate time to resolution. Two hundred thirty-five women met the inclusion criteria; 73 of them (30%) had evidence of fetal syphilis on initial ultrasound scan. Abnormalities included hepatomegaly (79%), placentomegaly (27%), polyhydramnios (12%), ascites (10%) and abnormal middle cerebral arterial Doppler assessment (33%). After treatment, middle cerebral arterial Doppler assessment abnormalities, ascites, and polyhydramnios resolved first, followed by placentomegaly and finally hepatomegaly. Infant outcomes were available for 173 deliveries; of these, 32 infants (18%) were diagnosed with congenital syphilis. Congenital syphilis was more common when antenatal ultrasound abnormalities were present (39% vs 12%; P < .001). Infant examination findings at delivery were similar between women with and without an abnormal pretreatment ultrasound scan. However, in those infants with congenital syphilis, hepatomegaly was the most frequent abnormality found, regardless of antenatal ultrasound findings. Sonographic signs of fetal syphilis confer a higher risk of congenital syphilis at delivery for all maternal stages. Hepatomegaly develops early and resolves last after antepartum treatment. Copyright © 2014 Elsevier Inc

  2. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  3. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    PubMed Central

    Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M.

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  4. Focused ultrasound: concept for automated transcutaneous control of hemorrhage in austere settings.

    PubMed

    Kucewicz, John C; Bailey, Michael R; Kaczkowski, Peter J; Carter, Stephen J

    2009-04-01

    High intensity focused ultrasound (HIFU) is being developed for a range of clinical applications. Of particular interest to NASA and the military is the use of HIFU for traumatic injuries because HIFU has the unique ability to transcutaneously stop bleeding. Automation of this technology would make possible its use in remote, austere settings by personnel not specialized in medical ultrasound. Here a system to automatically detect and target bleeding is tested and reported. The system uses Doppler ultrasound images from a clinical ultrasound scanner for bleeding detection and hardware for HIFU therapy. The system was tested using a moving string to simulate blood flow and targeting was visualized by Schlieren imaging to show the focusing of the HIFU acoustic waves. When instructed by the operator, a Doppler ultrasound image is acquired and processed to detect and localize the moving string, and the focus of the HIFU array is electronically adjusted to target the string. Precise and accurate targeting was verified in the Schlieren images. An automated system to detect and target simulated bleeding has been built and tested. The system could be combined with existing algorithms to detect, target, and treat clinical bleeding.

  5. Virtual guidance as a tool to obtain diagnostic ultrasound for spaceflight and remote environments.

    PubMed

    Martin, David S; Caine, Timothy L; Matz, Timothy; Lee, Stuart M C; Stenger, Michael B; Sargsyan, Ashot E; Platts, Steven H

    2012-10-01

    With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.

  6. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy

    PubMed Central

    El Kaffas, Ahmed; Gangeh, Mehrdad J.; Farhat, Golnaz; Tran, William Tyler; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

    2018-01-01

    High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to

  7. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  8. Compact and Rugged Transceiver for Coherent Doppler Wind Lidar Applications in Space

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Singh, Upendra N.; Trieu, Bo C.; Modlin, Ed A.; Petros, Mulugeta; Bai, Yingxin; Reithmaier, Karl; hide

    2007-01-01

    High-accuracy, vertical profiles of the horizontal vector wind in earth s atmosphere, with the global coverage of an orbiting sensor, are a highly desired measurement of NASA, NOAA, and many other agencies and countries. It is the consensus of NASA and NOAA that the most cost effective, lowest risk measurement method with the earliest achievable mission date is the hybrid Doppler lidar method which utilizes both coherent- and direct-detection Doppler lidars to obtain the desired profiles. NASA Langley Research Center (LaRC) has advanced the 2-micron pulsed solid-state laser greatly over the past 15 years and has recently demonstrated 1.2 J of pulse energy whereas the requirement for a 400-km hybrid Doppler lidar mission is only 0.25 J. The IIP project reported here is an effort to increase the ruggedness and to compactly package the LaRC state-of-the-art laser technology.

  9. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    PubMed

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  10. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  11. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study

    PubMed Central

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-01-01

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time. PMID:21258561

  12. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Martí-Fàbregas, Joan; Durduran, Turgut

    2010-11-19

    Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO(2), was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO(2) changes in adults, continuously, at the bed-side and in real time.

  13. MicroV Technology to Improve Transcranial Color Coded Doppler Examinations.

    PubMed

    Malferrari, Giovanni; Pulito, Giuseppe; Pizzini, Attilia Maria; Carraro, Nicola; Meneghetti, Giorgio; Sanzaro, Enzo; Prati, Patrizio; Siniscalchi, Antonio; Monaco, Daniela

    2018-05-04

    The purpose of this review is to provide an update on technology related to Transcranial Color Coded Doppler Examinations. Microvascularization (MicroV) is an emerging Power Doppler technology which can allow visualization of low and weak blood flows even at high depths, thus providing a suitable technique for transcranial ultrasound analysis. With MicroV, reconstruction of the vessel shape can be improved, without any overestimation. Furthermore, by analyzing the Doppler signal, MicroV allows a global image of the Circle of Willis. Transcranial Doppler was originally developed for the velocimetric analysis of intracranial vessels, in particular to detect stenoses and the assessment of collateral circulation. Doppler velocimetric analysis was then compared to other neuroimaging techniques, thus providing a cut-off threshold. Transcranial Color Coded Doppler sonography allowed the characterization of vessel morphology. In both Color Doppler and Power Doppler, the signal overestimated the shape of the intracranial vessels, mostly in the presence of thin vessels and high depths of study. In further neurosonology technology development efforts, attempts have been made to address morphology issues and overcome technical limitations. The use of contrast agents has helped in this regard by introducing harmonics and subtraction software, which allowed better morphological studies of vessels, due to their increased signal-to-noise ratio. Having no limitations in the learning curve, in time and contrast agent techniques, and due to its high signal-to-noise ratio, MicroV has shown great potential to obtain the best morphological definition. Copyright © 2018 by the American Society of Neuroimaging.

  14. Survey of ultrasound practice amongst podiatrists in the UK.

    PubMed

    Siddle, Heidi J; Patience, Aimie; Coughtrey, James; Mooney, Jean; Fox, Martin; Cherry, Lindsey

    2018-01-01

    Ultrasound in podiatry practice encompasses musculoskeletal ultrasound imaging, vascular hand-held Doppler ultrasound and therapeutic ultrasound. Sonography practice is not regulated by the Health and Care Professions Council (HCPC), with no requirement to hold a formal qualification. The College of Podiatry does not currently define ultrasound training and competencies.This study aimed to determine the current use of ultrasound, training received and mentorship received and/or provided by podiatrists using ultrasound. A quantitative study utilising a cross-sectional, on-line, single-event survey was undertaken within the UK. Completed surveys were received from 284 podiatrists; 173 (70%) use ultrasound as part of their general practice, 139 (49%) for musculoskeletal problems, 131 (46%) for vascular assessment and 39 (14%) to support their surgical practice. Almost a quarter ( n  = 62) worked for more than one organisation; 202 (71%) were employed by the NHS and/or private sector ( n  = 118, 41%).Nearly all (93%) respondents report using a hand-held vascular Doppler in their daily practice; 216 (82%) to support decisions regarding treatment options, 102 (39%) to provide diagnostic reports for other health professionals, and 34 (13%) to guide nerve blocks.Ultrasound imaging was used by 104 (37%) respondents primarily to aid clinical decision making ( n  = 81) and guide interventions (steroid injections n  = 67; nerve blocks n  = 39). Ninety-three percent stated they use ultrasound imaging to treat their own patients, while others scan at the request of other podiatrists ( n  = 28) or health professionals ( n  = 18). Few use ultrasound imaging for research ( n  = 7) or education ( n  = 2).Only 32 (11%) respondents ( n  = 20 private sector) use therapeutic ultrasound to treat patients presenting with musculoskeletal complaints, namely tendon pathologies.Few respondents (18%) had completed formal post-graduate CASE (Consortium

  15. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  16. Laser Sources for Generation of Ultrasound

    NASA Technical Reports Server (NTRS)

    Wagner, James W.

    1996-01-01

    Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.

  17. LASER BIOLOGY AND MEDICINE: Arterial pulse shape measurement using self-mixing effect in a diode laser

    NASA Astrophysics Data System (ADS)

    Hast, J.; Myllylä, Risto; Sorvoja, H.; Miettinen, J.

    2002-11-01

    The self-mixing effect in a diode laser and the Doppler technique are used for quantitative measurements of the cardiovascular pulses from radial arteries of human individuals. 738 cardiovascular pulses from 10 healthy volunteers were studied. The Doppler spectrograms reconstructed from the Doppler signal, which is measured from the radial displacement of the radial artery, are compared to the first derivative of the blood pressure signals measured from the middle finger by the Penaz technique. The mean correlation coefficient between the Doppler spectrograms and the first derivative of the blood pressure signals was 0.84, with a standard deviation of 0.05. Pulses with the correlation coefficient less than 0.7 were neglected in the study. Percentage of successfully detected pulses was 95.7%. It is shown that cardiovascular pulse shape from the radial artery can be measured noninvasively by using the self-mixing interferometry.

  18. Monitoring health and reproductive status of olms (Proteus anguinus) by ultrasound

    PubMed Central

    Lukač, Maja; Cizelj, Ivan; Mutschmann, Frank; Szentiks, Claudia Anita; Jelić, Dušan; Hermes, Robert; Göritz, Frank; Braude, Stanton; Hildebrandt, Thomas Bernd

    2017-01-01

    The olm (Proteus anguinus) is a troglomorphic, neotenous amphibian with extraordinary life expectancy and unique adaptations that deserve further investigation. A low reproductive rate and habitat decline render it threatened by extinction. Establishing captive populations for maintenance and artificial breeding may one day become crucial to the species. Longitudinal, in-vivo assessment of inner organs is invaluable to our understanding of reproductive physiology, health, and behavior. Using ultrasound, we measured heart rate and assessed health and reproductive status of 13 captive olms at Zagreb Zoo. Heart rate averaged 42.9 ± 4.6 bpm (32–55 bpm), as determined via pulsed-wave Doppler at 4–12 MHz. By using frequencies of up to 70 MHz (ultrasound biomicroscopy), inner organs were visualized in detail. Assessment of the gastrointestinal tract provided insights into feeding status and digestive processes. Several subclinical pathologies were detected, including biliary sludge, subcutaneous edema, ascites, and skin lesions. Detection of skin lesions by ultrasound was more sensitive than visual adspection. Olms with ultrasonographically detected skin lesions tested positive for Saprolegnia and were treated. Three of the four affected individuals survived and subsequently tested negative for Saprolegnia. Sex was reliably determined; only one individual proved male. The reason for this extreme female-biased sex-ratio remains unknown. However, as most of the individuals were flushed from the caves by strong currents in spring, the sample may not be representative of natural populations. In female olms, different stages of ovarian follicular development were observed with diameters ranging between 0.1 and 1.1 mm. Results were confirmed by comparing ultrasound, necropsy, and histological findings of one dead specimen. In summary, ultrasound proved a valuable tool to support conservation and captive breeding programs by allowing non-invasive assessment of physiological

  19. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake.

    PubMed

    Tassinary, João Alberto Fioravante; Lunardelli, Adroaldo; Basso, Bruno de Souza; Dias, Henrique Bregolin; Catarina, Anderson Velasque; Stülp, Simone; Haute, Gabriela Viegas; Martha, Bianca Andrade; Melo, Denizar Alberto da Silva; Nunes, Fernanda Bordignon; Donadio, Márcio Vinícius Fagundes; Oliveira, Jarbas Rodrigues de

    2018-03-01

    The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1 MHz frequency, 0.2 W/cm 2 intensity and 20% duty cycle for 30 min. The analyses were carried out up to 336 h (14 days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-β1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192 h after LIPUS exposure. However, alkaline phosphatase and TGF-β1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ultrasound-Guided Pulsed Radiofrequency Stimulation of Posterior Tibial Nerve: A Potential Novel Intervention for Recalcitrant Plantar Fasciitis.

    PubMed

    Wu, Yung-Tsan; Chang, Chih-Ya; Chou, Yu-Ching; Yeh, Chun-Chang; Li, Tsung-Ying; Chu, Heng-Yi; Chen, Liang-Cheng

    2017-05-01

    To evaluate the therapeutic benefit of ultrasound-guided pulsed radiofrequency (PRF) stimulation at the posterior tibial nerve (PTN) in patients with recalcitrant plantar fasciitis (PF). A prospective, randomized, double-blinded, placebo-controlled trial (12-wk follow-up). Outpatient local medical center settings. Patients (N=36) with recalcitrant PF underwent randomization, and all were included in the final data analysis. Patients in the PRF group were treated with 1 dose of ultrasound-guided PRF stimulation at the PTN, and those in the control group received 1 dose of 2% lidocaine, 0.5mL, injected at the PTN under ultrasound guidance. The visual analog scale (first-step and overall pain), American Orthopedic Foot-Ankle Society (AOFAS) ankle-hindfoot scale, and ultrasonographic thickness of the plantar fascia were evaluated at 1, 4, 8, and 12 weeks after treatment. Thirty-six patients (20 feet per group) completed the study. The PRF group had a significantly larger improvement in first-step pain, overall pain, and AOFAS score (all P<.001), as well as plantar fascia thickness (P<.05), compared with those of the control group at all observed time points. This study shows that ultrasound-guided PRF stimulation at the PTN is effective for treating recalcitrant PF. This simple, reproducible method could be a novel strategy for managing recalcitrant PF. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Cerebral Lateralization and General Intelligence: Gender Differences in a Transcranial Doppler Study

    ERIC Educational Resources Information Center

    Njemanze, P.C.

    2005-01-01

    The present study evaluated cerebral lateralization during Raven's progressive matrices (RPM) paradigm in female and male subjects. Bilateral simultaneous transcranial Doppler (TCD) ultrasound was used to measure mean blood flow velocities (MBFV) in the right and left middle cerebral arteries (MCAs) in 24 (15 females and 9 males) right-handed…

  2. Improved cardiac motion detection from ultrasound images using TDIOF: a combined B-mode/ tissue Doppler approach

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.

    2013-03-01

    Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.

  3. [Classification of cerebrovascular processes using ultrasound methods].

    PubMed

    Klein, K

    1984-01-01

    By means of ultrasound A-mode echography and Doppler-Kranzbühler sonography new fundamentals of non-invasive qualitative and quantitative classification of cerebrovascular processes could be developed: Apart from usual screening of stenoses and pulse curve analyses, measurements of diameters and wall movements in the extracranial and intracranial carotid artery and in the vertebral artery as well as determinations of the systolic and diastolic flow velocities in the extracranial arteries are outstanding features. By recording and evaluating these parameters and data patterns, coupled with clinical findings, differential conclusions on reactions of the cerebral hemodynamics in macrocirculatory and microcirculatory regions were realized in geriatric patients under the following pathophysiological and therapeutically induced conditions: Generally and regionally accentuated arteriosclerotic lesions of the brain (predominant vertebrobasilar insufficiency), decrease of flow velocities according to the diameter, aggravation by distress; principal possibility of pharmacological influence if myogenic autoregulation function is rehabilitable: It is demonstrated by the example of a long-term therapy with a combination of Raubasine, Dihydroergocristine and DHE (Defluina forte).

  4. Role of ultrasonography with color-Doppler in the emergency diagnosis of acute penile fracture: a case report.

    PubMed

    Buyukkaya, Ramazan; Buyukkaya, Ayla; Ozturk, Beyhan; Kayıkçı, Ali; Yazgan, Ömer

    2014-03-01

    Penile fracture is the rupture of tunica albuginea, typically resulting from blunt trauma, intercourse, or penile manipulation. Diagnosis is made clinically. Ultrasound is not used frequently in diagnosis of penile fracture but it provides a fast, non-invasive alternative to more often used MRI and cavernography. We aimed to present diagnostic ultrasound and color Doppler images of a patient with acute penile fracture in conjunction with literature.

  5. Calculation of Left Ventricular Diastolic Time Constant (TAU) in Dogs with Mitral Regurgitation Using Continuous-Wave Doppler.

    PubMed

    Wen, Chaoyang; Sun, Jing; Fan, Chunzhi; Dou, Jianping

    2018-05-04

    The left ventricular diastolic time constant (Tau) cannot be practically measured non-invasively. Thus, the aim of this study was to investigate a new method for the evaluation of Tau using continuous-wave (CW) Doppler in dogs with mitral regurgitation. Guided by ultrasound, we created 12 beagle models of mitral regurgitation and acute ischemic left ventricular diastolic dysfunction. Raw audio signals of the CW Doppler spectra were collected, and new mitral regurgitation Doppler spectra were observed after computer re-processing. The new Doppler spectra contour line was constructed using MATLAB (Version R2009), and two time intervals, t1-t2 and t1-t3, were measured on the descending branch of the mitral regurgitation Doppler spectrum and were substituted into Bai's equation group. The Doppler-derived Tau (Tau-d) was resolved and compared with the simultaneous catheter-derived Tau (Tau-c). No significant difference (p > 0.05) between Tau-d (49.33 ± 18.79 ms) and Tau-c (48.76 ± 17.60 ms) was found. A correlation analysis between Tau-d and Tau-c suggested a strong positive relationship (r = 0.85, p = 0.000). Bland-Altman plots of Tau-d and Tau-c revealed fair agreement. Compared with previous non-invasive approaches, this method is simpler and more accurate. There is a strong positive relationship and fair agreement between Tau-d and Tau-c. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. Release of Cell-free MicroRNA Tumor Biomarkers into the Blood Circulation with Pulsed Focused Ultrasound: A Noninvasive, Anatomically Localized, Molecular Liquid Biopsy

    PubMed Central

    Chevillet, John R.; Khokhlova, Tatiana D.; Giraldez, Maria D.; Schade, George R.; Starr, Frank; Wang, Yak-Nam; Gallichotte, Emily N.; Wang, Kai; Hwang, Joo Ha

    2017-01-01

    Purpose To compare the abilities of three pulsed focused ultrasound regimes (that cause tissue liquefaction, permeabilization, or mild heating) to release tumor-derived microRNA into the circulation in vivo and to evaluate release dynamics. Materials and Methods All rat experiments were approved by the University of Washington Institutional Animal Care and Use Committee. Reverse-transcription quantitative polymerase chain reaction array profiling was used to identify candidate microRNA biomarkers in a rat solid tumor cell line. Rats subcutaneously grafted with these cells were randomly assigned among three pulsed focused ultrasound treatment groups: (a) local tissue liquefaction via boiling histotripsy, (b) tissue permeabilization via inertial cavitation, and (c) mild (<10°C) heating of tissue, as well as a sham-treated control group. Blood specimens were drawn immediately prior to treatment and serially over 24 hours afterward. Plasma microRNA was quantified with reverse-transcription quantitative polymerase chain reaction, and statistical significance was determined with one-way analysis of variance (Kruskal-Wallis and Friedman tests), followed by the Dunn multiple-comparisons test. Results After tissue liquefaction and cavitation treatments (but not mild heating), plasma quantities of candidate biomarkers increased significantly (P value range, <.0001 to .04) relative to sham-treated controls. A threefold to 32-fold increase occurred within 15 minutes after initiation of pulsed focused ultrasound tumor treatment, and these increases persisted for 3 hours. Histologic examination confirmed complete liquefaction of the targeted tumor area with boiling histotripsy, in addition to areas of petechial hemorrhage and tissue disruption by means of cavitation-based treatment. Conclusion Mechanical tumor tissue disruption with pulsed focused ultrasound–induced bubble activity significantly increases the plasma abundance of tumor-derived microRNA rapidly after treatment

  7. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses

    NASA Astrophysics Data System (ADS)

    Boonman, Arjan M.; Parsons, Stuart; Jones, Gareth

    2003-01-01

    Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.

  8. Lung ultrasound in the critically ill

    PubMed Central

    2014-01-01

    Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the “gold standard” with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside “gold standard” in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the “B-profile.” The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than

  9. Multifunctional pulse generator for high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  10. Laser-nucleated acoustic cavitation in focused ultrasound.

    PubMed

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  11. Analysis of achilles tendon vascularity with second-generation contrast-enhanced ultrasound.

    PubMed

    Genovese, Eugenio; Ronga, Mario; Recaldini, Chiara; Fontana, Federico; Callegari, Leonardo; Maffulli, Nicola; Fugazzola, Carlo

    2011-01-01

    To compare morphological, power Doppler, and contrast-enhanced ultrasound (CEUS) features of the Achilles tendon between asymptomatic athletes and athletes who had undergone surgical repair of a previous rupture. Twenty-four athletes were divided in two groups (A and B). Group A included 14 patients with a median age of 32 years (range 27 to 47 years) who had undergone surgical repair for unilateral Achilles tendon rupture. Group B (control group) included 10 subjects with a median age of 34 years (range 27 to 40 years) with no previous or present history of tendinopathy. All patients were evaluated with ultrasound, power Doppler, and CEUS with second-generation contrast agent. We studied the uninjured Achilles tendon in athletes of group A and either the left or the right Achilles tendon of the athletes in group B. CEUS showed a significantly greater ability to detect a greater number of vascular spots within the uninjured tendon of group A compared to group B (<0.05). In athletes who had suffered a tear of an Achilles tendon, CEUS detected small vessels that were not identified by power Doppler ultrasound in the uninjured contralateral Achilles tendon. CEUS is useful to evaluate vascularity not detected by other imaging techniques. Vascularity in the uninjured tendon seems to be increased in patients who had a previous rupture. Copyright © 2011 Wiley Periodicals, Inc.

  12. Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Constaninides, N. J.; Bicknell, T. J. (Inventor)

    1980-01-01

    A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.

  13. Ultrasound analysis of mental artery flow in elderly patients: a case-control study.

    PubMed

    Baladi, Marina G; Tucunduva Neto, Raul R C M; Cortes, Arthur R G; Aoki, Eduardo M; Arita, Emiko S; Freitas, Claudio F

    2015-01-01

    Mental artery flow decreases with age and may have an aetiological role in alveolar ridge atrophy. The aim of this study was to identify factors associated with alterations of mental artery flow, assessed by ultrasonography. This case-control study was conducted on elderly patients (aged above 60 years) at the beginning of dental treatment. Intraoral B-mode Doppler ultrasonography was used to assess mental artery flow. The cases were defined as patients with a weak/absent ultrasound signal, whereas the controls presented a strong ultrasound signal. Demographics and radiographic findings (low bone mineral density on dual-energy X-ray absorptiometry and mandibular cortical index on panoramic radiographs) were analysed as risk factors for weak/absent ultrasound signal and were calculated as adjusted odds ratios (AORs) with 95% confidence intervals (CIs) using conditional logistic regression. In addition, the Student's t-test was used to compare the mean alveolar bone height of the analysed groups. A p-value <0.05 was considered statistically significant. A total of 30 ultrasound examinations (12 cases and 18 controls) were analysed. A weak/absent mental artery pulse strength was significantly associated with edentulism (AOR = 3.67; 95% CI = 0.86-15.63; p = 0.046). In addition, there was a significant difference in alveolar bone height between edentulous cases and controls (p = 0.036). Within the limitations of this study, the present results indicate that edentulism is associated with diminished mental artery flow, which, in turn, affects alveolar bone height.

  14. Ultrasound analysis of mental artery flow in elderly patients: a case–control study

    PubMed Central

    Baladi, Marina G; Tucunduva Neto, Raul R C M; Aoki, Eduardo M; Arita, Emiko S; Freitas, Claudio F

    2015-01-01

    Objectives: Mental artery flow decreases with age and may have an aetiological role in alveolar ridge atrophy. The aim of this study was to identify factors associated with alterations of mental artery flow, assessed by ultrasonography. Methods: This case–control study was conducted on elderly patients (aged above 60 years) at the beginning of dental treatment. Intraoral B-mode Doppler ultrasonography was used to assess mental artery flow. The cases were defined as patients with a weak/absent ultrasound signal, whereas the controls presented a strong ultrasound signal. Demographics and radiographic findings (low bone mineral density on dual-energy X-ray absorptiometry and mandibular cortical index on panoramic radiographs) were analysed as risk factors for weak/absent ultrasound signal and were calculated as adjusted odds ratios (AORs) with 95% confidence intervals (CIs) using conditional logistic regression. In addition, the Student's t-test was used to compare the mean alveolar bone height of the analysed groups. A p-value <0.05 was considered statistically significant. Results: A total of 30 ultrasound examinations (12 cases and 18 controls) were analysed. A weak/absent mental artery pulse strength was significantly associated with edentulism (AOR = 3.67; 95% CI = 0.86–15.63; p = 0.046). In addition, there was a significant difference in alveolar bone height between edentulous cases and controls (p = 0.036). Conclusions: Within the limitations of this study, the present results indicate that edentulism is associated with diminished mental artery flow, which, in turn, affects alveolar bone height. PMID:26205777

  15. Prospective cohort study of ultrasound-ultrasound and ultrasound-MR enterography agreement in the evaluation of pediatric small bowel Crohn disease.

    PubMed

    Dillman, Jonathan R; Smith, Ethan A; Sanchez, Ramon; DiPietro, Michael A; Dehkordy, Soudabeh Fazeli; Adler, Jeremy; DeMatos-Maillard, Vera; Khalatbari, Shokoufeh; Davenport, Matthew S

    2016-04-01

    There is a paucity of published literature describing ultrasound (US)-US and US-MR enterography (MRE) inter-radiologist agreement in pediatric small bowel Crohn disease. To prospectively assess US-US and US-MRE inter-radiologist agreement in pediatric small bowel Crohn disease. Institutional Review Board approval and informed consent/assent were obtained for this HIPAA-compliant prospective cohort study of children with newly diagnosed distal small bowel Crohn disease (July 2012 to December 2014). Enrolled subjects (n = 29) underwent two small bowel US examinations performed by blinded independent radiologists both before and at multiple time points after initiation of medical therapy (231 unique US examinations, in total); 134 US examinations were associated with concurrent MRE. The MRE examination was interpreted by a third blinded radiologist. The following was documented on each examination: involved length of ileum (cm); maximum bowel wall thickness (mm); amount of bowel wall and mesenteric Doppler signal, and presence of stricture, penetrating disease and/or abscess. Inter-radiologist agreement was assessed with single-measure, three-way, mixed-model intra-class correlation coefficients (ICC) and prevalence-adjusted, bias-adjusted kappa statistics (κ). Numbers in brackets are 95% confidence intervals. Ultrasound-US agreement was moderate for involved length (ICC: 0.41 [0.35-0.49]); substantial for maximum bowel wall thickness (ICC: 0.67 [0.64-0.70]); moderate for bowel wall Doppler signal (ICC: 0.53 [0.48-0.59]); slight for mesenteric Doppler signal (ICC: 0.25 [0.18-0.42]), and moderate to almost perfect for stricture (κ: 0.54), penetrating disease (κ: 0.80), and abscess (κ: 0.96). US-MRE agreement was moderate for involved length (ICC: 0.42 [0.37-0.49]); substantial for maximum bowel wall thickness (ICC: 0.66 [0.65-0.69]), and substantial to almost perfect for stricture (κ: 0.61), penetrating disease (κ: 0.72) and abscess (κ: 0.88). Ultrasound

  16. Selective detection of cavitation bubbles by triplet pulse sequence in high-intensity focused ultrasound treatment

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Nagaoka, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro

    2018-07-01

    Acoustic cavitation bubbles are known to enhance the heating effect in high-intensity focused ultrasound (HIFU) treatment. The detection of cavitation bubbles with high sensitivity and selectivity is required to predict the therapeutic and side effects of cavitation, and ensure the efficacy and safety of the treatment. A pulse inversion (PI) technique has been widely used for imaging microbubbles through enhancing the second-harmonic component of echo signals. However, it has difficulty in separating the nonlinear response of microbubbles from that due to nonlinear propagation. In this study, a triplet pulse (3P) method was investigated to specifically image cavitation bubbles by extracting the 1.5th fractional harmonic component. The proposed 3P method depicted cavitation bubbles with a contrast ratio significantly higher than those in conventional imaging methods with and without PI. The results suggest that the 3P method is effective for specifically detecting microbubbles in cavitation-enhanced HIFU treatment.

  17. Therapeutic Pulsed Ultrasound Promotes Revascularization and Functional Recovery of Rat Skeletal Muscle after Contusion Injury.

    PubMed

    Chongsatientam, Areeya; Yimlamai, Tossaporn

    2016-12-01

    The mechanism by which therapeutic pulsed ultrasound (TPU) promotes the repair of damaged gastrocnemius muscle was investigated. Male Wistar rats were divided into uninjured, sham-treated injured and TPU-treated injured (TPU) groups. Injury was induced by mass-drop technique. TPU was applied to the injured muscle for 5 min, daily, started at day 1 post-injury and continuing for 3, 7 and 14 d. For 3 d post-injury, a significant reduction in muscle force was observed in both the sham-treated injured and TPU groups. TPU treatment significantly increased recovery force of the injured muscle after day 7 post-injury. This effect of TPU is associated with increased centronucleated fibers and cross-sectional area, mRNA expression of the vascular endothelial growth factor and capillary density of the regenerated fibers, but not with mRNA expression of nitric oxide synthase. We conclude that TPU hastens muscle recovery, at least in part, by upregulating angiogenesis. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. B-Mode ultrasound pose recovery via surgical fiducial segmentation and tracking

    NASA Astrophysics Data System (ADS)

    Asoni, Alessandro; Ketcha, Michael; Kuo, Nathanael; Chen, Lei; Boctor, Emad; Coon, Devin; Prince, Jerry L.

    2015-03-01

    Ultrasound Doppler imaging may be used to detect blood clots after surgery, a common problem. However, this requires consistent probe positioning over multiple time instances and therefore significant sonographic expertise. Analysis of ultrasound B-mode images of a fiducial implanted at the surgical site offers a landmark to guide a user to the same location repeatedly. We demonstrate that such an implanted fiducial may be successfully detected and tracked to calculate pose and guide a clinician consistently to the site of surgery, potentially reducing the ultrasound experience required for point of care monitoring.

  19. [Liver ultrasound: focal lesions and diffuse diseases].

    PubMed

    Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Generation of ultrasound in materials using continuous-wave lasers.

    PubMed

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  1. Wind Measurements with High Energy 2 Micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.; Petros, Mulugeta; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Ji-Rong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    A coherent Doppler lidar based on an injection seeded Ho:Tm:YLF pulsed laser was developed for wind measurements. A transmitted pulse energy over 75 mJ at 5 Hz repetition rate has been demonstrated. Designs are presented on the laser, injection seeding, receiver, and signal processing subsystems. Sample data of atmospheric measurements are presented including a wind profile extending from the atmospheric boundary layer (ABL) to the free troposphere.

  2. An ultrasound look at Korotkoff sounds: the role of pulse wave velocity and flow turbulence.

    PubMed

    Benmira, Amir; Perez-Martin, Antonia; Schuster, Iris; Veye, Florent; Triboulet, Jean; Berron, Nicolas; Aichoun, Isabelle; Coudray, Sarah; Laurent, Jérémy; Bereksi-Reguig, Fethi; Dauzat, Michel

    2017-04-01

    The aim of this study was to analyze the temporal relationships between pressure, flow, and Korotkoff sounds, providing clues for their comprehensive interpretation. When measuring blood pressure in a group of 23 volunteers, we used duplex Doppler ultrasonography to assess, under the arm-cuff, the brachial artery flow, diameter changes, and local pulse wave velocity (PWV), while recording Korotkoff sounds 10 cm downstream together with cuff pressure and ECG. The systolic (SBP) and diastolic (DBP) blood pressures were 118.8±17.7 and 65.4±10.4 mmHg, respectively (n=23). The brachial artery lumen started opening when cuff pressure decreased below the SBP and opened for an increasing length of time until cuff pressure reached the DBP, and then remained open but pulsatile. A high-energy low-frequency Doppler signal, starting a few milliseconds before flow, appeared and disappeared together with Korotkoff sounds at the SBP and DBP, respectively. Its median duration was 42.7 versus 41.1 ms for Korotkoff sounds (P=0.54; n=17). There was a 2.20±1.54 ms/mmHg decrement in the time delay between the ECG R-wave and the Korotkoff sounds during cuff deflation (n=18). The PWV was 10±4.48 m/s at null cuff pressure and showed a 0.62% decrement per mmHg when cuff pressure increased (n=13). Korotkoff sounds are associated with a high-energy low-frequency Doppler signal of identical duration, typically resulting from wall vibrations, followed by flow turbulence. Local arterial PWV decreases when cuff pressure increases. Exploiting these changes may help improve SBP assessment, which remains a challenge for oscillometric techniques.

  3. [Per partum acidosis: Interest and feasibility of cerebral Doppler during labor].

    PubMed

    Barrois, M; Chartier, M; Lecarpentier, E; Goffinet, F; Tsatsaris, V

    2016-09-01

    To evaluate feasibility and interest of fetal cerebral Doppler during labor and the link with fetal pH to predict perinatal fetal asphyxia. Our prospective study in a university perinatal center, included patients during labor. There were no risk factors during pregnancy and patients were included after 37 weeks of pregnancy. For each patient an ultrasound with cerebral Doppler was done concomitant to a fetal scalp blood sample. We collected maternal and fetal characteristics as well as cervix dilatation, fetal heart rate analysis and fetal presentation. Among 49 patients included over a period of 4 months, cerebral Doppler failed in 7 cases (11%). Majority of failure occurred at 10cm of dilatation (P=0.007, OR=14.1 [1.483; 709.1275]). Others factors like: maternal age, body mass index, parity, history of C-Section were not associated with higher rate of failure. We did not found either significant correlation between cerebral fetal Doppler and pH on fetal scalp blood sample (r=0.15) nor pH at cord blood sample (r=0.13). No threshold of cerebral Doppler is significant for fetal asphyxia prediction. Fetal cerebral Doppler is feasible during labor with a low rate of failure but not a good exam to predict fetal acidosis and asphyxia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Role of ultrasound in colorectal diseases.

    PubMed

    Bor, Renáta; Fábián, Anna; Szepes, Zoltán

    2016-11-21

    Ultrasound is an undervalued non-invasive examination in the diagnosis of colonic diseases. It has been replaced by the considerably more expensive magnetic resonance imaging and computed tomography, despite the fact that, as first examination, it can usefully supplement the diagnostic process. Transabdominal ultrasound can provide quick information about bowel status and help in the choice of adequate further examinations and treatment. Ultrasonography, as a screening imaging modality in asymptomatic patients can identify several colonic diseases such as diverticulosis, inflammatory bowel disease or cancer. In addition, it is widely available, cheap, non-invasive technique without the use of ionizing radiation, therefore it is safe to use in childhood or during pregnancy, and can be repeated at any time. New ultrasound techniques such as elastography, contrast enhanced and Doppler ultrasound, mini-probes rectal and transperineal ultrasonography have broadened the indication. It gives an overview of the methodology of various ultrasound examinations, presents the morphology of normal bowel wall and the typical changes in different colonic diseases. We will pay particular attention to rectal and transperineal ultrasound because of their outstanding significance in the diagnosis of rectal and perineal disorders. This article seeks to overview the diagnostic impact and correct indications of bowel ultrasound.

  5. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    PubMed Central

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  6. Computerized Doppler Tomography and Spectrum Analysis of Carotid Artery Flow

    PubMed Central

    Morton, Paul; Goldman, Dave; Nichols, W. Kirt

    1981-01-01

    Contrast angiography remains the definitive study in the evaluation of atherosclerotic occlusive vascular disease. However, a safer technique for serial screening of symptomatic patients and for routine follow up is necessary. Computerized pulsed Doppler ultrasonic arteriography is a noninvasive technique developed by Miles6 for imaging lateral, antero-posterior and transverse sections of the carotid artery. We [ill] this system with new software and hardware to analyze the three-dimensional blood flow data. The system now provides information about the location of the occlusive process in the artery and a semi-quantitative evaluation of the degree of obstruction. In addition, we interfaced a digital signal analyzer to the system which permits spectrum analysis of the pulsed Doppler signal. This addition has allowed us to identify lesions which are not yet hemodynamically significant. ImagesFig. 2bFig. 2c

  7. Histotripsy beyond the “Intrinsic” Cavitation Threshold using Very Short Ultrasound Pulses: “Microtripsy”

    PubMed Central

    Lin, Kuang-Wei; Kim, Yohan; Maxwell, Adam D.; Wang, Tzu-Yin; Hall, Timothy L.; Xu, Zhen; Fowlkes, J. Brian; Cain, Charles A.

    2014-01-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. Conventional histotripsy treatments have used longer pulses from 3 to 10 cycles wherein the lesion-producing bubble cloud generation depends on the pressure-release scattering of very high peak positive shock fronts from previously initiated, sparsely distributed bubbles (the “shock-scattering” mechanism). In our recent work, the peak negative pressure (P−) for generation of dense bubble clouds directly by a single negative half cycle, the “intrinsic threshold,” was measured. In this paper, the dense bubble clouds and resulting lesions (in RBC phantoms and canine tissues) generated by these supra-intrinsic threshold pulses were studied. A 32-element, PZT-8, 500 kHz therapy transducer was used to generate very short (< 2 cycles) histotripsy pulses at a pulse repetition frequency (PRF) of 1 Hz and P− from 24.5 to 80.7 MPa. The results showed that the spatial extent of the histotripsy-induced lesions increased as the applied P− increased, and the sizes of these lesions corresponded well to the estimates of the focal regions above the intrinsic cavitation threshold, at least in the lower pressure regime (P− = 26–35 MPa). The average sizes for the smallest reproducible lesions were approximately 0.9 × 1.7 mm (lateral × axial), significantly smaller than the −6dB beamwidth of the transducer (1.8 × 4.0 mm). These results suggest that, using the intrinsic threshold mechanism, well-confined and microscopic lesions can be precisely generated and their spatial extent can be estimated based on the fraction of the focal region exceeding the intrinsic cavitation threshold. Since the supra-threshold portion of the negative half cycle can be precisely controlled, lesions considerably less than a wavelength are easily produced, hence the term “microtripsy.” PMID:24474132

  8. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound.

    PubMed

    Leung, Kwok-Sui; Lee, Wing-Sze; Tsui, Hon-For; Liu, Paul Po-Lung; Cheung, Wing-Hoi

    2004-03-01

    A clinical study was conducted to investigate the effect of low-intensity pulsed ultrasound (US) stimulation (LIPUS) on the healing of complex tibial fractures. Thirty complex tibial fractures were randomly assigned to the treatment with LIPUS (n = 16) or by a dummy machine (sham-exposed: n = 14). The fractures were immobilized by either internal or external fixations according to the clinical indications. LIPUS was given 20 min/day for 90 days. Fracture healing was monitored by clinical, radiological, densitometric and biochemical assessments. The LIPUS-treated group showed statistically significantly better healing, as demonstrated by all assessments. Complications were minimal in the LIPUS group. There were two cases of delayed union, with one in each group. There were two cases of infection in the control group. The delayed-union cases were subsequently treated by LIPUS and the infection cases were treated with standard protocol. Fracture healing in these patients was again treated by LIPUS.

  9. Studies on the foundation and development of diagnostic ultrasound

    PubMed Central

    Wagai, Toshio

    2007-01-01

    In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150

  10. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Dirckx, Joris

    2014-05-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/III patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.

  11. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campo, Adriaan; Dirckx, Joris

    2014-05-27

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/IIImore » patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.« less

  12. Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo

    PubMed Central

    Li, Ronny X.; Qaqish, William; Konofagou, Elisa. E.

    2015-01-01

    The propagation behavior of the arterial pulse wave may provide valuable diagnostic information for cardiovascular pathology. Pulse Wave Imaging (PWI) is a noninvasive, ultrasound imaging-based technique capable of mapping multiple wall motion waveforms along a short arterial segment over a single cardiac cycle, allowing for the regional pulse wave velocity (PWV) and propagation uniformity to be evaluated. The purpose of this study was to improve the clinical utility of PWI using a conventional ultrasound system. The tradeoff between PWI spatial and temporal resolution was evaluated using an ex vivo canine aorta (n = 2) setup to assess the effects of varying image acquisition and signal processing parameters on the measurement of the PWV and the pulse wave propagation uniformity r2. PWI was also performed on the carotid arteries and abdominal aortas of 10 healthy volunteers (24.8 ± 3.3 y.o.) to determine the waveform tracking feature that would yield the most precise PWV measurements and highest r2 values in vivo. The ex vivo results indicated that the highest precision for measuring PWVs ~ 2.5 – 3.5 m/s was achieved using 24–48 scan lines within a 38 mm image plane width (i.e. 0.63 – 1.26 lines/mm). The in vivo results indicated that tracking the 50% upstroke of the waveform would consistently yield the most precise PWV measurements and minimize the error in the propagation uniformity measurement. Such findings may help establish the optimal image acquisition and signal processing parameters that may improve the reliability of PWI as a clinical measurement tool. PMID:26640603

  13. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  14. Assessment of left atrial appendage function by transthoracic pulsed Doppler echocardiography: Comparing against transesophageal interrogation and predicting echocardiographic risk factors for stroke.

    PubMed

    Wai, Shin Hnin; Kyu, Kyu; Galupo, Mary Joyce; Songco, Geronica G; Kong, William K F; Lee, Chi Hang; Yeo, Tiong Cheng; Poh, Kian Keong

    2017-10-01

    Transesophageal echocardiographic (TEE) findings of left atrial appendage (LAA) thrombus, spontaneous echo contrast (SEC), and LAA dysfunction are established risk factors of cardioembolic stroke. The semi-invasive nature of TEE limits its utility as a routine risk stratification tool. We aim to correlate TEE and transthoracic echocardiography (TTE) pulsed Doppler measurements of LAA flow velocities and use TTE measurements to predict TEE findings. We prospectively measured pulsed Doppler LAA flow velocities in 103 consecutive patients on TEE and TTE. There was a strong correlation between TEE and TTE LAA emptying velocity (LAA E) (r = .88, P < .001) and a moderate correlation between LAA filling velocities (r = .50, P < .001). TTE LAA E predicted the presence of thrombus or SEC independent of atrial fibrillation (AF). To predict the presence of thrombus or SEC, the optimal TTE LAA E cutoff was ≤30 cm/s in all patients (75% sensitive, 90% specific) and ≤31 cm/s in AF patients (80% sensitive, 79% specific). To predict LAA dysfunction (TEE E ≤ 20 cm/s), the optimal TTE LAA E cutoff was ≤27 cm/s (100% sensitive, 89% specific in all patients and 100% sensitive, 74% specific in AF patients). TTE assessment of LAA function is feasible and correlates well with the more invasive TEE method. It predicts the presence of thrombus, SEC, and LAA dysfunction on TEE. TTE LAA assessment has incremental value in thromboembolic risk stratification and should be utilized more frequently. © 2017, Wiley Periodicals, Inc.

  15. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  16. [Quantification and monitoring of vascular resistance in the lower limbs by the Doppler method (animal model)

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)

    1995-01-01

    The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p < 0.001) although mean pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p < 0.01) and vascular resistances increased by 45.9% (p < 0.01). Injection of 1 mg adrenaline induced peripheral vasoconstriction with an increase in blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. Prostate: techniques, results, and potential applications of color Doppler US scanning.

    PubMed

    Rifkin, M D; Sudakoff, G S; Alexander, A A

    1993-02-01

    Color Doppler ultrasound (US) scanning and conventional endorectal gray-scale US of the prostate were performed in 619 patients. Pathologic correlation was available in all cases after US-guided transrectal biopsy. There were 132 cancers in 121 men, 13 foci of atypia in 10 men, 33 foci of inflammation in 31 men, and 469 benign lesions in 457 men. Two hundred seventy patients with abnormal areas of flow identified at color Doppler scanning also underwent spectral waveform analysis of the area of potential concern. No statistical difference in the mean resistive indexes was identified in any patient (P = .25; Scheffe F test, analysis of variance). All malignant lesions had abnormalities demonstrated at gray-scale US and/or focal or diffuse abnormal flow demonstrated at color Doppler scanning. Of the 132 cancers, 123 (93%) had corresponding gray-scale abnormalities and 114 (86%) demonstrated abnormal flow at color Doppler imaging. Nine of the 132 cancers (7%) had no obviously identifiable abnormality at gray-scale scanning but had distinctly abnormal flow at color Doppler scanning. Abnormal findings at color scanning without abnormal findings at gray-scale scanning occurred in eight of the 33 cases of inflammatory foci (24%) and in 24 of the 469 (5%) benign lesions.

  18. Practical utility of thermodilution versus doppler ultrasound to measure hemodialysis blood access flow.

    PubMed

    Fontseré, Néstor; Mestres, Gaspar; Barrufet, Marta; Burrel, Marta; Vera, Manel; Arias, Marta; Masso, Elisabeth; Cases, Aleix; Maduell, Francisco; Campistol, Josep M

    2013-01-01

    The current clinical guidelines recommend indirect access blood flow (Qa) measurement as one of the most important components in vascular access maintenance programs. The best-know methods are doppler ultrasound (DU) and saline dilution method. This study evaluates the efficiency of Qa measurement with thermodilution method (TD) in comparison with the DU. Transversal study in 64 patients in hemodialysis (41 men); mean age 59.9 years with 54 AVFs and 10 PTFE. Qa reference value was obtained with DU in brachial artery (AVFs) or at the zone of arterial puncture (AVGs). Bland-Altman and interclass correlation coefficient (ICC) were used to study accuracy. Mean values obtained with DU-Qa were 1426 ± 753 mL/min AVFs and 1186 ± 789 mL/min AVGs. The mean Qa with TD was 1372 ± 770 AVFs (bias 54.6; ICC 0.923) and 1176 ± 758 AVGs (bias 10.2; ICC 0.992). In the subgroup of 28 patients with radiocephalic latero-terminal AVFs the DU-Qa was 1232 ± 767 mL/min. The Qa was in radial artery 942 (ICC 0.805); radial-ulnar artery 1103 (ICC 0.973); cephalic vein 788 (ICC 0.772) and TD 1026 (ICC 0.971). We detected 5 cases of significant stenosis. After endovascular treatment the Kt was 79 liters (61; p=0.043) and TD-Qa 895 mL/min (663; p=0.043). TD represents a good indirect method of Qa measurement. In the subgroup of patients with radiocephalic AVFs, Qa measurements in the radial and ulnar artery are more accurate. Therefore, in this situation the TD method obtained an excellent correlation in comparison to brachial artery.

  19. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    NASA Astrophysics Data System (ADS)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  20. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.

    PubMed

    Wang, Jen-Chieh; Zhou, Yufeng

    2015-01-01

    Extracorporeal shock wave lithotripsy (ESWL) has been used as an effective modality to fragment kidney calculi. Because of the bubble shielding effect in the pre-focal region, the acoustic energy delivered to the focus is reduced. Low pulse repetition frequency (PRF) will be applied to dissolve these bubbles for better stone comminution efficiency. In this study, low intensity pulsed ultrasound (LIPUS) beam was aligned perpendicular to the axis of a shock wave (SW) lithotripter at its focus. The light transmission was used to evaluate the compressive wave and cavitation induced by SWs without or with a combination of LIPUS for continuous sonication. It is found that bubble shielding effect becomes dominated with the SW exposure and has a greater significant effect on cavitation than compressive wave. Using the combined wave scheme, the improvement began at the 5th pulse and gradually increased. Suppression effect on bubble shielding is independent on the trigger delay, but increases with the acoustic intensity and pulse duration of LIPUS. The peak negative and integral area of light transmission signal, which present the compressive wave and cavitation respectively, using our strategy at PRF of 1 Hz are comparable to those using SW alone at PRF of 0.1 Hz. In addition, high-speed photography confirmed the bubble activities in both free field and close to a stone surface. Bubble motion in response to the acoustic radiation force by LIPUS was found to be the major mechanism of suppressing bubble shielding effect. There is a 2.6-fold increase in stone fragmentation efficiency after 1000 SWs at PRF of 1 Hz in combination with LIPUS. In summary, combination of SWs and LIPUS is an effective way of suppressing bubble shielding effect and, subsequently, improving cavitation at the focus for a better outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  2. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  3. Normal Doppler velocimetry of renal vasculature in Persian cats.

    PubMed

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m

  4. Accuracy of three-dimensional multislice view Doppler in diagnosis of morbid adherent placenta

    PubMed Central

    Abdel Moniem, Alaa M.; Ibrahim, Ahmed; Akl, Sherif A.; Aboul-Enen, Loay; Abdelazim, Ibrahim A.

    2015-01-01

    Objective To detect the accuracy of the three-dimensional multislice view (3D MSV) Doppler in the diagnosis of morbid adherent placenta (MAP). Material and Methods Fifty pregnant women at ≥28 weeks gestation with suspected MAP were included in this prospective study. Two dimensional (2D) trans-abdominal gray-scale ultrasound scan was performed for the subjects to confirm the gestational age, placental location, and findings suggestive of MAP, followed by the 3D power Doppler and then the 3D MSV Doppler to confirm the diagnosis of MAP. Intraoperative findings and histopathology results of removed uteri in cases managed by emergency hysterectomy were compared with preoperative sonographic findings to detect the accuracy of the 3D MSV Doppler in the diagnosis of MAP. Results The 3D MSV Doppler increased the accuracy and predictive values of the diagnostic criteria of MAP compared with the 3D power Doppler. The sensitivity and negative predictive value (NPV) (79.6% and 82.2%, respectively) of crowded vessels over the peripheral sub-placental zone to detect difficult placental separation and considerable intraoperative blood loss in cases of MAP using the 3D power Doppler was increased to 82.6% and 84%, respectively, using the 3D MSV Doppler. In addition, the sensitivity, specificity, and positive predictive value (PPV) (90.9%, 68.8%, and 47%, respectively) of the disruption of the uterine serosa-bladder interface for the detection of emergency hysterectomy in cases of MAP using the 3D power Doppler was increased to 100%, 71.8%, and 50%, respectively, using the 3D MSV Doppler. Conclusion The 3D MSV Doppler is a useful adjunctive tool to the 3D power Doppler or color Doppler to refine the diagnosis of MAP. PMID:26401104

  5. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  6. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

    PubMed

    Burgess, M T; Apostolakis, I; Konofagou, E E

    2018-03-15

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  7. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    PubMed

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Method for ambiguity resolution in range-Doppler measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M. (Inventor); Miller, Lee S. (Inventor)

    1994-01-01

    A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target.

  10. Ultrasound Monitoring of Jugular Venous Pulse during Space Missions: Proof of Concept.

    PubMed

    Zamboni, Paolo; Sisini, Francesco; Menegatti, Erica; Taibi, Angelo; Gadda, Giacomo; Tavoni, Valentina; Malagoni, Anna Maria; Tessari, Mirko; Gianesini, Sergio; Gambaccini, Mauro

    2018-03-01

    The jugular venous pulse (JVP) is one of the main parameters of cardiac function and is used by cardiologists in diagnosing heart failure. Its waveform comprises three positive waves (a, c and v) and two negative waves (x and y). Recently, it was found that JVP can be extrapolated from an ultrasound (US) video recording of the internal jugular vein (IJV), suggesting its application in space missions, on which US scanners are already widely used. To date, the feasibility of assessing JVP in microgravity (microG) has not been investigated. To verify the feasibility of JVP assessment in microG, we tested a protocol of self-performed B-mode ultrasound on the International Space Station (ISS). The protocol consisted of a video recording of IJV synchronized with electrocardiogram that produces a cross-sectional area time trace (JVP trace) (in cm 2 ). The scans were acquired in six experimental sessions; two pre-flight (BDC1 and -2), two in space (ISS1 and -2) and two post-flight (Houston PF1, Cologne PF2). We measured the mean and standard deviation of the JVP waves and the phase relationship between such waves and P and T waves on the electrocardiogram. We verified that such parameters had the same accuracy on Earth as they did under microG, and we compared their values. The sensitivity, specificity and accuracy of JVP trace in microgravity are higher than those on Earth. The sequence of (a, c, and v) ascents and (x and y) descents along the cardiac cycle in microG is the same as that on Earth. The cause-and-effect relationship between the P and T waves on the electrocardiogram and a and v waves, respectively, of JVP is also confirmed in microG. Our experiment indicated the feasibility of deriving a JVP trace from a B-mode US examination self-performed by an astronaut in microG. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  11. Quantification of residual limb skeletal muscle perfusion with contrast-enhanced ultrasound during application of a focal junctional tourniquet

    PubMed Central

    Davidson, Brian P.; Belcik, J. Todd; Mott, Brian H.; Landry, Gregory; Lindner, Jonathan R.

    2015-01-01

    Objective Focal junctional tourniquets (JTs) have been developed to control hemorrhage from proximal limb injuries. These devices may permit greater collateral perfusion than circumferential tourniquets. We hypothesized that JTs eliminate large-vessel pulse pressure yet allow a small amount of residual limb perfusion that could be useful for maintaining tissue viability. Methods Ten healthy control subjects were studied. Transthoracic echocardiography, Doppler ultrasound of the femoral artery (FA) and posterior tibial artery, and contrast-enhanced ultrasound (CEU) perfusion imaging of the anterior thigh extensor and calf plantar flexor muscles were performed at baseline and during application of a JT over the common FA. Intramuscular arterial pulsatility index was also measured from CEU intensity variation during the cardiac cycle. Results FA flow was eliminated by JTs in all subjects; posterior tibial flow was eliminated in all but one. Perfusion measured in the thigh and calf muscles was similar at baseline (0.33 ± 0.29 vs 0.29 ± 0.22 mL/min/g). Application of the JT resulted in a reduction of perfusion (P < .05) that was similar for the thigh and calf (0.08 ± 0.07 and 0.10 ± 0.03 mL/min/g). On CEU, microvascular flux rate was reduced by ≈55%, and functional microvascular blood volume was reduced by ≈35%. Arterial pulsatility index was reduced by ≈90% in the calf. JT inflation did not alter left ventricle dimensions, fractional shortening, cardiac output, or arterial elastance as a measure of total systolic load. Conclusions Application of a JT eliminates conduit arterial pulse and markedly reduces intramuscular pulse pressure, but thigh and calf skeletal muscle perfusion is maintained at 25% to 35% of basal levels. These data suggest that JTs that are used to control limb hemorrhage allow residual tissue perfusion even when pulse pressure is absent. PMID:25065582

  12. Analysis of rhG-CSF-effects on platelets by in vitro bleeding test and transcranial Doppler ultrasound examination.

    PubMed

    Söhngen, D; Wienen, S; Siebler, M; Boogen, C; Scheid, C; Schulz, A; Kobbe, G; Diehl, V; Heyll, A

    1998-12-01

    Experimental evidence suggests a stimulatory effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on both platelets and coagulation. RhG-CSF is increasingly used to stimulate healthy volunteer donors for blood stem cell mobilization. We therefore assessed 25 healthy donors receiving rhG-CSF for changes in in vitro bleeding test (IVBT), coagulation parameters and cerebral microembolism by transcranial Doppler (TCD) ultrasound. A significant shortening of IVBT was found on day 4 of rhG-CSF administration together with increased levels of fibrinogen and factor VIII and reduced activities of protein C and protein S. Although these changes are quite small it is possible that they may lead to a hypercoagulable state especially in donors with other risk factors for thromboembolism. However, TCD examination failed to detect any signs of microembolism. We therefore conclude that rhG-CSF leads to significant changes in coagulation parameters, but has no effect on TCD detectable microembolism as a stroke risk factor. However donors receiving rhG-CSF should be examined carefully to detect pre-existing changes in the coagulation system and we would like to suggest a routine thrombophilia screen.

  13. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta‐analysis

    PubMed Central

    De Boer, M. A.; Heymans, M. W.; Schoonmade, L. J.; Bossuyt, P. M. M.; Mol, B. W. J.; De Groot, C. J. M.; Bax, C. J.

    2018-01-01

    than did UA Doppler in the prediction of low Apgar score (P = 0.017) and emergency delivery for fetal distress (P = 0.034). CPR outperformed MCA Doppler in the prediction of composite adverse outcome (P < 0.001) and emergency delivery for fetal distress (P = 0.013). Conclusion Calculating the CPR with MCA Doppler can add value to UA Doppler assessment in the prediction of adverse perinatal outcome in women with a singleton pregnancy. However, it is unclear to which subgroup of pregnant women this applies. The effectiveness of the CPR in guiding clinical management needs to be evaluated in clinical trials. © 2017 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:28708272

  14. Use of ultrasound imaging for the diagnosis of abnormal uterine bleeding in the bonnet macaque ( Macaca radiata).

    PubMed

    Chaudhari, Uddhav K; Imran, M; Manjramkar, Dhananjay D; Metkari, Siddhanath M; Sable, Nilesh P; Gavhane, Dnyaneshwar S; Katkam, Rajendra R; Sachdeva, Geetanjali; Thakur, Meenakshi H; Kholkute, Sanjeeva D

    2017-02-01

    Ultrasound is a powerful, low-cost, non-invasive medical tool used by laboratory animal veterinarians for diagnostic imaging. Sonohysterography and transvaginal ultrasound are frequently used to assess uterine anomalies in women presenting with abnormal uterine bleeding (AUB). In the present study, we have evaluated the abdominal ultrasound of bonnet monkeys ( n = 8) showing spontaneous ovulatory ( n = 5) and anovulatory ( n = 3) AUB. The ovulatory ( n = 5) macaques showed cyclic AUB for 7-8 days. The anovulatory ( n = 3) macaques had irregular AUB with menstrual cycles of 40-45 days. The B-mode abdominal, colour Doppler and 3D ultrasound scans were performed during the proliferative phase of the menstrual cycle. Ultrasound examination revealed endometrial polyps in five macaques and endometrial hyperplasia in three animals. The width and length of endometrial polyps was around 0.5-1 cm (average 0.51 ± 0.23 cm × 0.96 ± 0.16 cm) with significant increase in endometrial thickness ( P < 0.0002). 3D ultrasound also showed a homogeneous mass in the uterine cavity and colour Doppler ultrasound showed increased vascularity in the endometrial polyps. Endometrial hyperplasia characteristically appeared as a thickened echogenic endometrium ( P < 0.0002). This study demonstrates the use of non-invasive ultrasound techniques in the diagnosis of AUB in macaques.

  15. Recent technological advancements in cardiac ultrasound imaging.

    PubMed

    Dave, Jaydev K; Mc Donald, Maureen E; Mehrotra, Praveen; Kohut, Andrew R; Eisenbrey, John R; Forsberg, Flemming

    2018-03-01

    About 92.1 million Americans suffer from at least one type of cardiovascular disease. Worldwide, cardiovascular diseases are the number one cause of death (about 31% of all global deaths). Recent technological advancements in cardiac ultrasound imaging are expected to aid in the clinical diagnosis of many cardiovascular diseases. This article provides an overview of such recent technological advancements, specifically focusing on tissue Doppler imaging, strain imaging, contrast echocardiography, 3D echocardiography, point-of-care echocardiography, 3D volumetric flow assessments, and elastography. With these advancements ultrasound imaging is rapidly changing the domain of cardiac imaging. The advantages offered by ultrasound imaging include real-time imaging, imaging at patient bed-side, cost-effectiveness and ionizing-radiation-free imaging. Along with these advantages, the steps taken towards standardization of ultrasound based quantitative markers, reviewed here, will play a major role in addressing the healthcare burden associated with cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Are Prenatal Ultrasound Scans Associated with the Autism Phenotype? Follow-Up of a Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Stoch, Yonit K.; Williams, Cori J.; Granich, Joanna; Hunt, Anna M.; Landau, Lou I.; Newnham, John P.; Whitehouse, Andrew J. O.

    2012-01-01

    An existing randomised controlled trial was used to investigate whether multiple ultrasound scans may be associated with the autism phenotype. From 2,834 single pregnancies, 1,415 were selected at random to receive ultrasound imaging and continuous wave Doppler flow studies at five points throughout pregnancy (Intensive) and 1,419 to receive a…

  17. Effects of Low-Intensity Pulsed Ultrasound for Preventing Joint Stiffness in Immobilized Knee Model in Rats.

    PubMed

    Itaya, Nobuyuki; Yabe, Yutake; Hagiwara, Yoshihiro; Kanazawa, Kenji; Koide, Masashi; Sekiguchi, Takuya; Yoshida, Shinichirou; Sogi, Yasuhito; Yano, Toshihisa; Tsuchiya, Masahiro; Saijo, Yoshihumi; Itoi, Eiji

    2018-06-01

    The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) in preventing joint stiffness. Unilateral knee joints were immobilized in two groups of rats (n = 6/period/group). Under general anesthesia, the immobilized knee joints were exposed to LIPUS for 20 min/d, 5 d/wk, using an existing LIPUS device (LIPUS group, 1.5-MHz frequency, 1.0-kHz repetition cycle, 200-µs burst width and 30-mW/cm 2 power output) until endpoints (2, 4 or 6 wk). In the control group, general anesthesia alone was administered in the same manner as in the other group. The variables compared between the groups included joint angles; histologic, histomorphometric and immunohistochemical analyses; quantitative reverse transcription polymerase chain reactions; and tissue elasticity. LIPUS had a preventive effect on joint stiffness, resulting in decreased adhesion, fibrosis and inflammation and hypoxic response after joint immobilization. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Imaging By Ultrasound

    PubMed Central

    Kidney, Maria R.

    1986-01-01

    Imaging by ultrasound has dramatically changed the investigation and management of many clinical problems. It is useful in many different parts of the body. In this brief discussion, the following topics are considered: hepatic lesions, bleeding in early pregnancy, gynecological pathology (adnexal lesions), aortic aneurysms, thyroid nodules and scrotal masses. The usefulness of duplex carotid sonography, which combines ultrasonic imaging and Doppler studies, is also discussed. Other topics (gallstones, biliary obstruction, renal calculi, hydronephrosis) are discussed in the appropriate sections. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:21267202

  19. Fetal tissue Doppler imaging in pregnancies complicated with preeclampsia with or without intrauterine growth restriction.

    PubMed

    Zhou, Qiongjie; Ren, Yunyun; Yan, Yingliu; Chu, Chen; Gui, Yonghao; Li, Xiaotian

    2012-11-01

    This study's aim was to evaluate the effect of preeclampsia and intrauterine growth restriction (IUGR) on fetal cardiac function, and the relationship of the latter with adverse pregnancy outcomes. We did a cross-sectional study of 132 women with uncomplicated singleton pregnancies, 34 with preeclampsia without IUGR, and 12 with preeclampsia and IUGR. Fetal cardiac structure and function were evaluated using fetal two-dimension ultrasound, pulsed wave Doppler and tissue Doppler imaging (TDI). Data were analyzed by t-tests, ANOVA, Chi-square tests, or Wilcoxon rank-sum test. Compared with the normal pregnancy group, mitral/tricuspid early systolic peak velocity of annulus/late diastolic peak velocity of annulus (Sa) and left ventricular (LV)/right ventricular (RV) early diastolic peak velocity at the annulus (Ea) in TDI decreased in preeclampsia with or without IUGR (P < 0.05). LV/RV Ea underwent a gestational decrease in preeclampsia with or without IUGR (P < 0.05). The changes in mitral/tricuspid Sa and LV Sa associated with preeclampsia were even more pronounced with preterm delivery at less than 34 gestational weeks and stillbirth (P < 0.05). Intrauterine growth restriction influences fetal cardiac function in the presence of preeclampsia, and TDI may be a sensitive and preferable method to detect such changes. Fetal LV/RV Ea is a potential marker for early fetal cardiac diastolic impairment, and mitral/tricuspid Sa and LV Sa may be predictors for adverse pregnancy outcomes. © 2012 John Wiley & Sons, Ltd.

  20. Remote Control of Intact Mammalian Brain Circuits Using Pulsed Ultrasound

    DTIC Science & Technology

    2012-12-31

    our work is that we have begun to gain an understanding of what properties of ultrasound waveforms make them effective for neuromodulation . The next...our work is that we have begun to gain an understanding of what properties of ultrasound waveforms make them effective for neuromodulation . The next...ultrasound for neuromodulation based in part upon our advancements made. We expect an additional one or two manuscripts will be published in the

  1. Semiquantitative Evaluation of Extrasynovial Soft Tissue Inflammation in the Shoulders of Patients with Polymyalgia Rheumatica and Elderly-Onset Rheumatoid Arthritis by Power Doppler Ultrasound.

    PubMed

    Suzuki, Takeshi; Yoshida, Ryochi; Okamoto, Akiko; Seri, Yu

    2017-01-01

    Objectives . To develop a scoring system for evaluating the extrasynovial soft tissue inflammation of the shoulders in patients with polymyalgia rheumatica (PMR) and elderly-onset rheumatoid arthritis with PMR-like onset (pm-EORA) using ultrasound. Methods . We analyzed stored power Doppler (PD) images obtained by the pretreatment examination of 15 PMR patients and 15 pm-EORA patients. A semiquantitative scoring system for evaluating the severity of PD signals adjacent to the anterior aspect of the subscapularis tendon was designed. Results . A four-point scale scoring for the hyperemia on the subscapularis tendon was proposed as follows in brief: 0 = absent or minimal flow, 1 = single vessel dots or short linear-shape signals, 2 = long linear-shape signals or short zone-shape signals, or 3 = long zone-shape signals. This scoring system showed good intra- and interobserver reliability and good correlation to quantitative pixel-counting evaluation. By using it, we demonstrated that inflammation in PMR is dominantly localized in extrasynovial soft tissue as compared with pm-EORA. Conclusions . We proposed a reliable semiquantitative scoring system using ultrasound for the evaluation of extrasynovial soft tissue inflammation of the shoulders in patients with both PMR and pm-EORA. This system is simple to use and can be utilized in future investigations.

  2. Study on characteristics of chirp about Doppler wind lidar system

    NASA Astrophysics Data System (ADS)

    Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang

    2016-11-01

    In the doppler wind lidar, usually every 4MHz frequency error will produce wind error of 1m/s of 532nm laser. In the Doppler lidar system, frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range, with long-time (>4h) frequency-locking accuracy being≤0.5MHz and long-time frequency stability being 10-9 . The experimental result indicated that the seed frequency and the pulse laser frequency have a deviation, which effect is called the laser chirp characteristics. Finally chirp test system was constructed and tested the frequency offset in time. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10MHz, long-time stability deviation was around 5MHz. After experimental testing technology mature, which can monitoring the signal at long-term with corrected the wind speed.

  3. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    PubMed

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will

  4. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  5. 4D microvascular imaging based on ultrafast Doppler tomography.

    PubMed

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Doppler centroid estimation ambiguity for synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Curlander, J. C.

    1989-01-01

    A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.

  7. Analytical estimates of the PP-algorithm at low number of Doppler periods per pulse length

    NASA Technical Reports Server (NTRS)

    Angelova, M. D.; Stoykova, E. V.; Stoyanov, D. V.

    1992-01-01

    When discussing the Doppler velocity estimators, it is of significant interest to analyze their behavior at a low number of Doppler periods n(sub D) = 2v(sub r)t(sub s)/lambda is approximately equal to 1 within the resolution cell t(sub s) (v(sub 4) is the radial velocity, lambda is the wavelength). Obviously, at n(sub D) is approximately less than 1 the velocity error is essentially increased. The problem of low n(sub D) arises in the planetary boundary layer (PBL), where higher resolutions are usually required but the signal-to-noise ratio (SNR) is relatively high. In this work analytical expression for the relative root mean square (RMS) error of the PP Doppler estimator at low number of periods for a narrowband Doppler signal and arbitrary model of the noise correlation function is obtained. The results are correct at relatively high SNR. The analysis is supported by computer simulations at various SNR's.

  8. Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration

    NASA Astrophysics Data System (ADS)

    Horne, Devante; Jones, Peter; Salgaonkar, Vasant; Adams, Matt; Ozilgen, B. Arda; Zahos, Peter; Tang, Xinyan; Liebenberg, Ellen; Coughlin, Dezba; Lotz, Jeffrey; Diederich, Chris

    2017-02-01

    Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.

  9. Noninvasive assessment of normal carotid bifurcation hemodynamics with color-flow ultrasound imaging.

    PubMed

    Zierler, R E; Phillips, D J; Beach, K W; Primozich, J F; Strandness, D E

    1987-08-01

    The combination of a B-mode imaging system and a single range-gate pulsed Doppler flow velocity detector (duplex scanner) has become the standard noninvasive method for assessing the extracranial carotid artery. However, a significant limitation of this approach is the small area of vessel lumen that can be evaluated at any one time. This report describes a new duplex instrument that displays blood flow as colors superimposed on a real-time B-mode image. Returning echoes from a linear array of transducers are continuously processed for amplitude and phase. Changes in phase are produced by tissue motion and are used to calculate Doppler shift frequency. This results in a color assignment: red and blue indicate direction of flow with respect to the ultrasound beam, and lighter shades represent higher velocities. The carotid bifurcations of 10 normal subjects were studied. Changes in flow velocities across the arterial lumen were clearly visualized as varying shades of red or blue during the cardiac cycle. A region of flow separation was observed in all proximal internal carotids as a blue area located along the outer wall of the bulb. Thus, it is possible to detect the localized flow patterns that characterize normal carotid arteries. Other advantages of color-flow imaging include the ability to rapidly identify the carotid bifurcation branches and any associated anatomic variations.

  10. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.

    PubMed

    Jin, Qiaofeng; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yeh, Chih-Kuang

    2016-09-01

    Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Application of ultrasound in periodontics: Part I

    PubMed Central

    Bains, Vive K.; Mohan, Ranjana; Bains, Rhythm

    2008-01-01

    Ultrasonic is a branch of acoustics concerned with sound vibrations in frequency ranges above audible level. Ultrasound uses the transmission and reflection of acoustic energy. A pulse is propagated and its reflection is received, both by the transducer. For clinical purposes ultrasound is generated by transducers, which converts electrical energy into ultrasonic waves. This is usually achieved by magnetostriction or piezoelectricity. Primary effects of ultrasound are thermal, mechanical (cavitation and microstreaming), and chemical (sonochemicals). Knowledge of the basic and other secondary effects of ultrasound is essential for the development of techniques of application. PMID:20142941

  12. Imaging in gynecological disease (9): clinical and ultrasound characteristics of tubal cancer.

    PubMed

    Ludovisi, M; De Blasis, I; Virgilio, B; Fischerova, D; Franchi, D; Pascual, M A; Savelli, L; Epstein, E; Van Holsbeke, C; Guerriero, S; Czekierdowski, A; Zannoni, G; Scambia, G; Jurkovic, D; Rossi, A; Timmerman, D; Valentin, L; Testa, A C

    2014-03-01

    To describe clinical history and ultrasound findings in patients with tubal carcinoma. Patients with a histological diagnosis of tubal cancer who had undergone preoperative ultrasound examination were identified from the databases of 13 ultrasound centers. The tumors were described by the principal investigator at each contributing center on the basis of ultrasound images, ultrasound reports and research protocols (when applicable) using the terms and definitions of the International Ovarian Tumor Analysis (IOTA) group. In addition, three authors reviewed together all available digital ultrasound images and described them using subjective evaluation of gray-scale and color Doppler ultrasound findings. We identified 79 women with a histological diagnosis of primary tubal cancer, 70 of whom (89%) had serous carcinomas and 46 (58%) of whom presented at FIGO stage III. Forty-nine (62%) women were asymptomatic (incidental finding), whilst the remaining 30 complained of abdominal bloating or pain. Fifty-three (67%) tumors were described as solid at ultrasound examination, 14 (18%) as multilocular solid, 10 (13%) as unilocular solid and two (3%) as unilocular. No tumor was described as a multilocular mass. Most tumors (70/79, 89%) were moderately or very well vascularized on color or power Doppler ultrasound. Normal ovarian tissue was identified adjacent to the tumor in 51% (39/77) of cases. Three types of ultrasound appearance were identified as being typical of tubal carcinoma using pattern recognition: a sausage-shaped cystic structure with solid tissue protruding into it like a papillary projection (11/62, 18%); a sausage-shaped cystic structure with a large solid component filling part of the cyst cavity (13/62, 21%); an ovoid or oblong completely solid mass (36/62, 58%). A well vascularized ovoid or sausage-shaped structure, either completely solid or with large solid component(s) in the pelvis, should raise the suspicion of tubal cancer, especially if normal

  13. Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v = 0, J)

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Forthomme, Damien; Sears, Trevor; Hall, Gregory; Dagdigian, Paul

    2015-06-01

    Collision-induced rotational energy transfer among rotational levels of ground state CN (X 2σ+, v = 0) radicals has been probed by saturation recovery experiments, using high-resolution, polarized transient FM spectroscopy to probe the recovery of population and the decay of alignment following ns pulsed laser depletion of selected CN rotational levels. Despite the lack of Doppler selection in the pulsed depletion and the thermal distribution of collision velocities, the recovery kinetics are found to depend on the probed Doppler shift of the depleted signal. The observed Doppler-shift-dependent recovery rates are a measure of the velocity dependence of the inelastic cross sections, combined with the moderating effects of velocity-changing elastic collisions. New experiments are underway, in which the pulsed saturation is performed with sub-Doppler velocity selection. The time evolution of the spectral hole bleached in the initially thermal CN absorption spectrum can characterize speed-dependent inelastic collisions along with competing elastic velocity-changing collisions, all as a function of the initially bleached velocity group and rotational state. The initial time evolution of the depletion recovery spectrum can be compared to a stochastic model, using differential cross sections for elastic scattering as well as speed-dependent total inelastic cross sections, derived from ab initio scattering calculations. Progress to date will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 and DE-SC0012704 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  14. Reliability and Clinical Correlation of Transcranial Doppler Ultrasound in Sturge-Weber Syndrome.

    PubMed

    Offermann, Elizabeth A; Sreenivasan, Aditya; DeJong, M Robert; Lin, Doris D M; McCulloch, Charles E; Chung, Melissa G; Comi, Anne M

    2017-09-01

    The reproducibility of transcranial Doppler (TCD) ultrasound measurements in Sturge-Weber syndrome (SWS) and TCD's ability to predict neurological progression is unknown. In 14 individuals with SWS, TCD measured mean flow velocity, pulsatility index, peak systolic velocity, and end-diastolic velocity in the middle, posterior, and anterior cerebral arteries of the affected and unaffected hemisphere. TCD was performed either once (n = 5) or twice in one day (n = 9). We assessed the reproducibility of the measurements performed twice on the same day on subjects and compared the TCD measurements to previously published age-matched controls. Clinically obtained neuroimaging was scored for extent and severity of SWS brain involvement. Patients were prospectively assigned SWS neuroscores. Middle cerebral artery velocity (r = 0.79, P = 0.04, n = 7), posterior cerebral artery velocity (r = 0.90, P = 0.04, n = 5), and anterior cerebral artery pulsatility index (r = 0.82, P = 0.02, n = 7) were reproducible TCD measurements comparing same-day percent side-to-side differences. In subjects with SWS, affected and unaffected mean peak systolic velocity and end-diastolic velocity in the middle, posterior, and anterior cerebral arteries were globally lower compared with age-matched control subjects. Subjects with the lowest affected middle cerebral artery velocity had the greatest worsening in the total neurological score between time 1 and 2 (r = -0.73, P = 0.04, n = 8) and the most severe magnetic resonance imaging involvement of the affected frontal lobe (r = -0.82, P = 0.007, n = 9). TCD may be a reliable measure with potential clinical value, indicating that blood flow may be globally decreased in SWS patients with unilateral brain involvement. Copyright © 2017. Published by Elsevier Inc.

  15. Sizing gaseous emboli using Doppler embolic signal intensity.

    PubMed

    Banahan, Caroline; Hague, James P; Evans, David H; Patel, Rizwan; Ramnarine, Kumar V; Chung, Emma M L

    2012-05-01

    Extension of transcranial Doppler embolus detection to estimation of bubble size has historically been hindered by difficulties in applying scattering theory to the interpretation of clinical data. This article presents a simplified approach to the sizing of air emboli based on analysis of Doppler embolic signal intensity, by using an approximation to the full scattering theory that can be solved to estimate embolus size. Tests using simulated emboli show that our algorithm is theoretically capable of sizing 90% of "emboli" to within 10% of their true radius. In vitro tests show that 69% of emboli can be sized to within 20% of their true value under ideal conditions, which reduces to 30% of emboli if the beam and vessel are severely misaligned. Our results demonstrate that estimation of bubble size during clinical monitoring could be used to distinguish benign microbubbles from potentially harmful macrobubbles during intraoperative clinical monitoring. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Transsclera Drug Delivery by Pulsed High-Intensity Focused Ultrasound (HIFU): An Ex Vivo Study.

    PubMed

    Murugappan, Suresh Kanna; Zhou, Yufeng

    2015-01-01

    PURPOSE/AIM OF STUDY: Drug delivery to the ocular posterior segment is of importance, but it is a challenge in the treatment of irreversible blindness disease, such as age-related macular degeneration. Although some methods (i.e. intraocular injection, sustained release by polymer and iontophoresis) have been applied, some technical drawbacks, such as slow rate and damage to the eye, need to be overcome for wide use. In this study, the feasibility of high-intensity focused ultrasound (HIFU) to enhance the transsclera drug delivery was tested for the first time. One-hundred HIFU pulses with the driving frequency of 1.1 MHz, acoustic power of 105.6 W, pulse duration of 10-50 ms and pulse repetition frequency of 1 Hz were delivered to the fresh ex vivo porcine sclera specimen. In comparison to the passive diffusion (control), 50-ms HIFU can increase the penetration depth by 2.0 folds (501.7 ± 126.4 µm versus 252.4 ± 29.2 µm) using bicinchoninic acid assay and Rhodamine 6 G fluorescence intensity by 3.1 folds (22.4 ± 12.3 versus 7.1 ± 4.1) and coverage area by 2.6 folds (40.4 ± 9.1% versus 15.8 ± 2.9%). No morphological changes on the sonicated sclera samples were found using a surface electron microscope. In summary, pulsed-HIFU may be an effective modality in the transsclera drug delivery with a high transporting rate and depth. In vivo studies are necessary to further evaluate its performance, including the drug penetration and its possible side effects.

  17. No effect of prolonged pulsed high frequency ultrasound imaging of the basilar membrane on cochlear function or hair cell survival found in an initial study.

    PubMed

    Landry, Thomas G; Bance, Manohar L; Adamson, Robert B; Brown, Jeremy A

    2018-06-01

    Miniature high frequency ultrasound devices show promise as tools for clinical middle ear and basal cochlea imaging and vibrometry. However, before clinical use it is important to verify that the ultrasound exposure does not damage the cochlea. In this initial study, electrophysiological responses of the cochlea were measured for a range of stimulus frequencies in both ears of anesthetized chinchillas, before and after exposing the organ of Corti region of one ear to pulsed focused ultrasound for 30 min. Measurements were again taken after an 11 day survival period. Cochlear tissue was examined with a confocal microscope for signs of damage to the cochlear hair cells. No significant change in response thresholds due to exposure was found, and no signs of ultrasound-induced tissue damage were observed, although one animal (out of ten) did have a region of extensive tissue damage in the exposed cochlea. However, after further analysis this was concluded to be not likely a result of the ultrasound exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Noncontact measurement of vibration using airborne ultrasound.

    PubMed

    Mater, O B; Remenieras, J P; Bruneel, C; Roncin, A; Patat, F

    1998-01-01

    A noncontact ultrasonic method for measuring the surface normal vibration of objects was studied. The instrument consists of a pair of 420 kHz ultrasonic air transducers. One is used to emit ultrasounds toward the moving surface, and the other receives the ultrasound reflected from the object under test. Two effects induce a phase modulation on the received signal. The first effect results from the variation of the round trip time interval tau required for the wavefront to go from the emitter to the moving surface and back to the receiver. This is the Doppler effect directly proportional to the surface displacement. The second effect results from the nonlinear parametric interactions of the ultrasonic beams (forward and backward) with the low frequency sound field emitted in the air by the vibrating surface. This latter phenomenon, which is a volume effect, is proportional to the velocity of the vibrating surface and increases with the distance between the transducers and the surface under test. The relative contribution of the Doppler and parametric effects are evaluated, and both have to be taken into account for ultrasonic interferometry in air.

  19. Beat-by-beat stroke volume assessment by pulsed Doppler in upright and supine exercise

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Greene, E. R.; Hoekenga, D. E.; Caprihan, A.; Luft, U. C.

    1981-01-01

    The instantaneous stroke volume (SV) and cardiac output (Q) in eight male subjects during steady-state supine (S) and upright (U) exercises at 300 kpm/min is assessed by a 3.0-MHz pulsed Doppler echocardiograph. The mean transients in heart rate (HR), SV, and Q for each posture were determined and the center-line blood velocities obtained in the ascending aorta. Results show that the mean supine values for SV and Q at rest and exercise were 111 ml and 6.4 l/min and 112 ml and 9.7 l/min, respectively. The corresponding results for U were 76 ml and 5.6 l/min and 92 ml and 8.4 l/min, respectively. The values compare favorably with previous studies utilizing invasive procedures. The transient response of Q following the onset of exercise in U was about twice as fast as in S because of the rapid and almost immediate upsurge in SV. The faster rise in aortic flow in U with exercise represented and additional volume (184 ml) of blood passing through the aorta compared with S in the first 20 exercises. It is suggested that the rapid mobilization of pooled venous blood from the leg veins during U was responsible for the increased blood flow.

  20. Tissue Doppler imaging and echo-Doppler findings associated with a mitral valve stenosis with an immobile posterior valve leaflet in a bull terrier.

    PubMed

    Tidholm, A; Nicolle, A P; Carlos, C; Gouni, V; Caruso, J L; Pouchelon, J L; Chetboul, V

    2004-04-01

    A mitral valve stenosis was diagnosed in a 2-year-old female Bull Terrier by use of two-dimensional (2-D) and M-mode echocardiography, colour-flow imaging and spectral Doppler examinations. Tissue Doppler Imaging was also performed to assess the segmental radial myocardial motion. The mitral valve stenosis was characterized by a decreased mitral orifice area/left ventricle area ratio (0.14), an increased early diastolic flow velocity (E wave = 1.9 m/s), a prolonged pressure half-time (106 ms) and a decreased E-F slope (4.5 cm/s) on pulsed-wave Doppler examination. This mitral stenosis was associated with an immobile posterior leaflet, as seen on 2-D and M-mode echocardiography. Immobility of the posterior mitral leaflet is considered to be a rare finding in humans and, to our knowledge, has not been precisely documented in dogs with mitral valve stenosis.